Harmonijska analiza snage pretvaračkih komponenata istosmjernog uzlaznog pretvarača

Jakobović, Tomislav

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:680389

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-12

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Sveučilišni studij

Harmonijska analiza snage pretvaračkih komponenata istosmjernog uzlaznog pretvarača

Završni rad

Tomislav Jakobović

Sadržaj

1.Uvod	1
1.1.Zadatak završnog rada	1
2.Pretvorba snage na frekvenciji	2
3.Analiza rada	11
3.1.Kontinuirani režim rada	11
3.1.1.Interval A	11
3.1.2.Interval B	12
3.2.Diskontinuirani režim rada	
4.Mjerenje na uzlaznom pretvaraču napona	14
5.Analiza rezultata mjerenja u MATLAB-u	16
5.1.Istosmjerna snaga i snaga prvog harmonika za diodu	20
5.2.Istosmjerna snaga i snaga prvog harmonika za tranzistor	21
5.3.Istosmjerna snaga i prvi harmonik izmjenične snage	
6.Zaključak	24
Literatura	25
Životopis	
Sažetak	27
Abstract	
Prilog	

1.Uvod

Osnovni razlozi stalnog povećanja elektroničkih energetskih pretvarača kao i sve šira njihova primjena su težnja za postizanjem što bolje tehničke karakteristike energetskih i elektroničkih trošila kao i sve izraženija potreba za štednjom električne energije.

Primjenu elektroničkih energetskih pretvarača pronalazimo primjerice u punjačima akumulatorskih baterija mobilnih telefona snage od nekoliko vata pa do nekoliko tisuća megavata, također, koriste se u regulaciji istosmjernih i izmjeničnih elektromotornih pogona, u elektrokemiji, računalnoj opremi, rasvjeti, sustavima klimatizacije itd.

Tema ovog rada je harmonijska analiza snage za istosmjerni uzlazni pretvarač. Istosmjerni uzlazni pretvarač ima dvije pretvaračke komponente, pri tome, sklopka V_1 može biti realizirana bilo kojim punoupravljivim poluvodičkim ventilom, dok sklopka V_2 može biti realizirana diodom. Sklopke V_1 i V_2 sklapaju protutaktno. Uzlazni istosmjerni pretvarač upotrebljava se za napajanje elektroničkih sklopova. Uz harmonijsku analizu snage, također će se analizirati napon i struja tranzistora i diode na pojedinim harmonicima.

1.1. Zadatak završnog rada

Za osnovno periodičko rješenje jednog, odabranog istosmjernog uzlaznog pretvarača izmjeriti harmonijski sadržaj struje i napona pretvaračkih komponenata s pomoću MATLAB. Za odabrane mjerne točke odrediti istosmjernu i izmjeničnu snagu pretvaračkih komponenata (BT, dioda). Komentirati dobivene rezultate s obzirom na očekivane.

2. Pretvorba snage na frekvenciji

Ako se element mreže α nalazi u periodički ustaljenom stanju te ako je u sustavu neke višeharmonijske mreže može mu se odrediti djelatnu snagu, a struje i napone prikazati u Fourierov red:

$$u_a = U_a(0) + \sum_{n=1}^{\infty} \left[\widehat{U}_a(n) \cos(n\omega t) + \widehat{V}_a(n) \sin(n\omega t) \right]$$
(2-1)

gdje je $\omega = 2\pi/T$, *T* jest perioda rada [1]

$$i_{a} = I_{a}(0) + \sum_{n=1}^{\infty} [\hat{I}_{a}(n)\cos(n\omega t) + \hat{J}_{a}(n)\sin(n\omega t)]$$
(2-2)

 $U_a(0)$ je srednja vrijednost napona [2]:

$$U_a(0) = \frac{1}{T} \int_0^T u_a(t) dt$$
 (2-3)

 $I_a(0)$ je srednja vrijednost struje [2]:

$$I_{a}(0) = \frac{1}{T} \int_{0}^{T} i_{a}(t) dt$$
 (2-4)

 $\hat{U}_a(n)$ i $\hat{V}_a(n)$ su amplitude ortogonalnih komponenata n-tog harmonijskog člana napona:

$$\widehat{U}_a(n) = \frac{2}{T} \int_0^T u_a(t) \cos(n\omega t) dt$$
(2-5)

$$\hat{V}_a(n) = \frac{2}{T} \int_0^T u_a(t) \sin(n\omega t) dt$$
(2-6)

 $\hat{I}_a(n)$ i $\hat{J}_a(n)$ su amplitude ortogonalnih komponenata n-tog harmonijskog člana struje te se opisuju preko izraza (2-7) i (2-8) [2]:

$$\hat{I}_{a}(n) = \frac{2}{T} \int_{0}^{T} i_{a}(t) \cos(n\omega t) dt$$
(2-7)

$$\hat{j}_{a}(n) = \frac{2}{T} \int_{0}^{T} i_{a}(t) \sin(n\omega t) dt$$
 (2-8)

Djelatna snaga računa se prema izrazu:

$$P_{\alpha} = \frac{1}{T} \int_{0}^{T} u_{\alpha} i_{\alpha} dt$$
(2-9)

Izrazi (2-1) i (2-2) se uvrštavaju u izraz (2-9) kako bi se djelatna snaga prikazala pomoću Fourierovog reda.

$$P_{\alpha} = \frac{1}{T} \int_{0}^{T} \left\{ U_{a}(0) + \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\}$$
$$\cdot \left\{ I_{a}(0) + \sum_{n=1}^{\infty} \left[\widehat{I}_{a}(n) \cos(n\omega t) + \widehat{J}_{a}(n) \sin(n\omega t) \right] \right\} dt$$

$$P_{\alpha} = \frac{1}{T} \int_{0}^{T} \left\{ U_{a}(0) \cdot I_{a}(0) + U_{a}(0) \cdot \sum_{n=1}^{\infty} [\hat{I}_{a}(n) \cos(n\omega t) + \hat{f}_{a}(n) \sin(n\omega t)] + \sum_{n=1}^{\infty} [\hat{U}_{a}(n) \cos(n\omega t) + \hat{V}_{a}(n) \sin(n\omega t)] \cdot I_{a}(0) + \sum_{n=1}^{\infty} [\hat{U}_{a}(n) \cos(n\omega t) + \hat{V}_{a}(n) \sin(n\omega t)] + \sum_{n=1}^{\infty} [\hat{I}_{a}(n) \cos(n\omega t) + \hat{f}_{a}(n) \sin(n\omega t)] \right\} dt$$

Daljnjim sređivanjem jednadžbe, slijedi :

$$P_{\alpha} = \frac{1}{T} \int_{0}^{T} U_{a}(0) \cdot I_{a}(0) dt$$

$$+ \frac{1}{T} \int_{0}^{T} \left\{ U_{a}(0) \sum_{n=1}^{\infty} [\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t)] \right\} dt$$

$$+ \frac{1}{T} \int_{0}^{T} \left\{ I_{a}(0) \sum_{n=1}^{\infty} [\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t)] \right\} dt$$

$$+ \frac{1}{T} \int_{0}^{T} \left\{ \sum_{n=1}^{\infty} [\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t)] \right\} dt$$

$$\cdot \sum_{n=1}^{\infty} [\widehat{I}_{a}(n) \cos(n\omega t) + \widehat{J}_{a}(n) \sin(n\omega t)] \right\} dt$$

Istosmjernu snagu elementa mreže α predstavlja prvi član u izrazu. Izvod je prikazan s izrazom (2-10). [2]

$$P_{\alpha}(0) = \frac{1}{T} \int_{0}^{T} U_{a}(0) \cdot I_{a}(0) dt$$
$$P_{\alpha}(0) = \frac{1}{T} U_{a}(0) \cdot I_{a}(0) \cdot T$$
$$P_{\alpha}(0) = U_{a}(0) \cdot I_{a}(0)$$
(2-10)

Ukupna snaga dobije se sređivanjem:

$$P_{\alpha} = P_{\alpha}(0) + \frac{1}{T} \int_{0}^{T} \left\{ U_{a}(0) \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\} dt$$
$$+ \frac{1}{T} \int_{0}^{T} \left\{ I_{a}(0) \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\} dt$$
$$+ \frac{1}{T} \int_{0}^{T} \left\{ \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\} dt$$
$$\cdot \sum_{n=1}^{\infty} \left[\widehat{I}_{a}(n) \cos(n\omega t) + \widehat{I}_{a}(n) \sin(n\omega t) \right] \right\} dt$$

Za sređivanje prethodnog izraza potrebno je koristiti svojstva ortogonalnosti, a za to će poslužiti izrazi (2-11), (2-12),(2-13)

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \cos(m\omega t) dt = \begin{cases} 1, n = m \neq 0\\ 0, n \neq m\\ \frac{1}{2}, n = m = 0 \end{cases}$$

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \cos(m\omega t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(0\omega t) \cos(0\omega t) dt = \frac{1}{\omega T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(0\omega t) \cos(0\omega t) dt$$

$$= \frac{1}{T} \cdot \left(\frac{T}{2} - \left(-\frac{T}{2}\right)\right) = \frac{1}{T} \left(\frac{T}{2} + \frac{T}{2}\right) = \frac{1}{T} \cdot T = 1$$

(2-11)

n=1, m=0

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \cos(m\omega t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(1\omega t) \cos(0\omega t) dt = \frac{1}{\omega T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(1\omega t) dt =$$
$$= \frac{1}{\omega T} \cdot \left(\sin\left(\omega \frac{T}{2}\right) - \sin\left(-\omega \frac{T}{2}\right) \right) = \frac{1}{\omega T} 2\sin\left(\omega \frac{T}{2}\right) = \frac{1}{2\pi} 2\sin\left(2\frac{\pi}{2}\right)$$
$$= \frac{1}{2\pi} 2\sin\pi = 0$$

n=1, m=1

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \cos(m\omega t) dt = \frac{1}{T} \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(1\omega t) \cos(1\omega t) dt = \frac{1}{2T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 + \cos(1\omega t) dt =$$
$$= \frac{1}{2\omega T} \cdot \left(t + \frac{\sin 2\omega t}{2\omega}\right) = \frac{1}{4\omega T} \cdot \left(2\omega \frac{T}{2} - \sin\left(-2\omega \frac{T}{2}\right) - \left(2\omega \frac{T}{2} - \sin\left(-2\omega \frac{T}{2}\right)\right)\right) =$$
$$= \frac{1}{4\omega T} \left(4\omega \frac{T}{2} + 2\sin\omega \frac{T}{2}\right) = \frac{1}{8\pi} \left(4\frac{2\pi}{2} + 2\sin\frac{2\pi}{2}\right) = \frac{1}{8\pi} (4\pi) = \frac{1}{2}$$

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \sin(m\omega t) dt$$
(2-12)

Rješenje jednadžbe (2-12) je uvijek 0.

Ta tvrdnja će se prikazati kroz 2 primjera.

n=0, m=0

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \sin(m\omega t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(0\omega t) \sin(0\omega t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 \cdot 0 dt = 0$$

n=1, m=0

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t) \sin(m\omega t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(1\omega t) \sin(0\omega t) dt = 0$$

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(n\omega t) \sin(m\omega t) dt = \begin{cases} \frac{1}{2}, & n = m \neq 0\\ 0, & n \neq m \end{cases}$$
(2-13)

n= 1, m=1

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(n\omega t) \sin(m\omega t) dt = \frac{1}{T} \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(0\omega t) \sin(2\omega t) dt = \frac{1}{2T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 - \cos(2\omega t) dt =$$
$$= \frac{1}{2\omega T} \cdot \left(t - \frac{\sin 2\omega t}{2\omega}\right)$$
$$= \frac{1}{4\omega T} \cdot \left(2\omega \frac{T}{2} - \sin\left(2\omega \frac{T}{2}\right) - \left(-2\omega \frac{T}{2} - \sin\left(-2\omega \frac{T}{2}\right)\right)\right)$$
$$= \frac{1}{4\omega T} \left(4\omega \frac{T}{2} - 2\sin\omega \frac{T}{2}\right) = \frac{1}{8\pi} \left(4\frac{2\pi}{2} - 2\sin\frac{2\pi}{2}\right) = \frac{1}{8\pi} (4\pi) = \frac{1}{2}$$

n=1, m=0

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(n\omega t) \sin(m\omega t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(1\omega t) \sin(0\omega t) dt = 0$$

Prva dva člana prethodnog izraza za ukupnu snagu jednaka su 0 zbog navedenih izraza ortogonalnosti.

$$\frac{1}{T}\int_{0}^{T} \left\{ U_{a}(0) \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\} dt = 0$$
$$\frac{1}{T}\int_{0}^{T} \left\{ I_{a}(0) \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\} dt = 0$$

Djelatna snaga ima oblik :

•

$$P_{\alpha} = P_{\alpha}(0) + \frac{1}{T} \int_{0}^{T} \left\{ \sum_{n=1}^{\infty} \left[\widehat{U}_{a}(n) \cos(n\omega t) + \widehat{V}_{a}(n) \sin(n\omega t) \right] \right\}$$
$$\sum_{n=1}^{\infty} \left[\widehat{I}_{a}(n) \cos(n\omega t) + \widehat{J}_{a}(n) \sin(n\omega t) \right] dt$$

Izmjeničnu snagu predstavlja drugi dio izraza:

$$\tilde{P}_{\alpha} = \frac{1}{T} \int_{0}^{T} \left\{ \sum_{n=1}^{\infty} \left[\hat{U}_{a}(n) \cos(n\omega t) + \hat{V}_{a}(n) \sin(n\omega t) \right] \right\}$$
$$\cdot \sum_{n=1}^{\infty} \left[\hat{I}_{a}(n) \cos(n\omega t) + \hat{J}_{a}(n) \sin(n\omega t) \right] dt$$

Radi lakšeg razlikovanja suma, jedna će biti označena indeksom *n*, a druga indeksom *k*.

$$\tilde{P}_{\alpha} = \frac{1}{T} \int_{0}^{T} \left\{ \sum_{n=1}^{\infty} \left[\hat{U}_{a}(n) \cos(n\omega t) + \hat{V}_{a}(n) \sin(n\omega t) \right] \cdot \sum_{k=1}^{\infty} \left[\hat{I}_{a}(k) \cos(k\omega t) + \hat{J}_{a}(k) \sin(k\omega t) \right] \right\} dt$$

$$\tilde{P}_{\alpha} = \frac{1}{T} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \int_{0}^{\pi} \left[\hat{U}_{a}(n) \cos(n\omega t) \cdot \hat{I}_{a}(k) \cos(k\omega t) + \hat{U}_{a}(n) \cos(n\omega t) \cdot \hat{J}_{a}(k) \sin(k\omega t) \right. \\ \left. + \hat{V}_{a}(n) \sin(n\omega t) \cdot \hat{I}_{a}(k) \cos(k\omega t) + \hat{V}_{a}(n) \sin(n\omega t) \cdot \hat{J}_{a}(k) \sin(k\omega t) \right] dt$$

$$\tilde{P}_{\alpha} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1}{T} \int_{0}^{T} \widehat{U}_{a}(n) \cos(n\omega t) \cdot \widehat{I}_{a}(k) \cos(k\omega t) dt + \frac{1}{T} \int_{0}^{T} \widehat{U}_{a}(n) \cos(n\omega t) \cdot \widehat{J}_{a}(k) \sin(k\omega t) dt + \frac{1}{T} dt \right\}$$

$$\begin{split} \tilde{P}_{a} &= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1}{T} \widehat{U}_{a}(n) \cdot \widehat{I}_{a}(k) \int_{0}^{T} \cos(n\omega t) \cdot \cos(k\omega t) dt + \frac{1}{T} \widehat{U}_{a}(n) \right. \\ &\left. \cdot \widehat{J}_{a}(k) \int_{0}^{T} \cos(n\omega t) \sin(k\omega t) dt + \frac{1}{T} \widehat{V}_{a}(n) \cdot \widehat{I}_{a}(k) \int_{0}^{T} \sin(n\omega t) \cos(k\omega t) dt \right. \\ &\left. + \frac{1}{T} \widehat{V}_{a}(n) \cdot \widehat{J}_{a}(k) \int_{0}^{T} \sin(n\omega t) \sin(k\omega t) dt \right\} \end{split}$$

Za rješavanje izraza koristit će se izrazi ortogonalnosti (2-11), (2-12) i (2-13).

Izraz za izmjeničnu snagu preuređen je kako bi se mogla koristiti ortogonalnost. Promijenjene su granice integrala [5] :

$$\begin{split} \tilde{P}_{\alpha} &= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1/2}{T/2} \widehat{U}_{a}(n) \cdot \widehat{I}_{a}(k) \int_{-T/2}^{T/2} \cos(n\omega t) \cdot \cos(k\omega t) dt + \frac{1/2}{T/2} \widehat{U}_{a}(n) \right. \\ &\left. \cdot \widehat{J}_{a}(k) \int_{-T/2}^{T/2} \cos(n\omega t) \sin(k\omega t) dt + \frac{1/2}{T/2} \widehat{V}_{a}(n) \right. \\ &\left. \cdot \widehat{I}_{a}(k) \int_{-T/2}^{T/2} \sin(n\omega t) \cos(k\omega t) dt + \frac{1/2}{T/2} \widehat{V}_{a}(n) \right. \end{split}$$

Izraz za izmjeničnu snagu poprima oblik (2-14) nakon korištenja izraza za ortogonalnost.

$$\tilde{P}_{\alpha} = \sum_{n=1}^{\infty} P_{\alpha}(n) = \sum_{n=1}^{\infty} \frac{1}{2} \left[\hat{U}_{\alpha}(n) \cdot \hat{I}_{\alpha}(n) + \hat{V}_{\alpha}(n) \cdot \hat{J}_{\alpha}(n) \right]$$
(2-14)

S $P_{\alpha}(n)$ je označena djelatna snaga elementa mreže α na frekvenciji $\omega_n = n\omega[2]$.

Djelatna snaga elementa mreže α je:

$$P_{\alpha} = P_{\alpha}(0) + \tilde{P}_{\alpha} \tag{2-15}$$

Djelatna snaga P_{α} je rastavljena na dvije temeljne komponente, a to su: istosmjerna snaga $P_{\alpha}(0)$ elementa mreže α (2-10) i izmjenična snaga \tilde{P}_{α} elementa mreže α (2-14).

3.Analiza rada

Istosmjerni uzlazni pretvarač sadrži dvije sklopke(dioda i tranzistor). Na slici 3.1. prikazana je shema pretvarača. Ventil V_1 je upravljiv, dok je V_2 idealna dioda.

Slika 3.1. Nadomjesna shema spoja uzlaznog pretvarača [3]

Kod uzlaznog pretvarača razlikujemo dva načina rada. To su: kontinuirani i diskontinuirani načini rada. U kontinuiranom načinu rada struja induktiviteta je uvijek veća od nule, dok u diskontinuiranom načinu rada struja induktiviteta pada na nulu i jedan dio vremenskog perioda je jednaka nuli [3].

3.1.Kontinuirani način rada uzlaznog pretvarača

U kontinuiranom načinu rada postoje dva intervala u analizi rada. U prvom intervalu, interval A, vodi ventil V_1 , a ne vodi ventil V_2 . U drugom intervalu, interval B, vodi ventil V_2 , a ne vodi ventil V_1 [3].

3.1.1 Interval A

Kada je dan impuls za uklapanje ventila V_1 tada započinje interval A. Kada vodi V_1 ne vodi V_2 .

Slika 3.2. sadrži prikaz nadomjesne sheme za taj interval.

Slika 3.2. Nadomjesna shema spoja uzlaznog pretvarača za interval A [3]

3.1.2. Interval B

Kada vodi ventil V_2 , ne vodi ventil V_1 . Slika 3.3. sadrži prikaz nadomjesne sheme za taj interval.

Slika 3.3. Nadomjesna shema spoja uzlaznog pretvarača za interval B [3]

Na slici 3.4. prikazani su valni oblici u kontinuiranom režimu rada.

Slika 3.4. Karakteristični valni oblici uzlaznog pretvarača u kontinuiranom načinu rada [3]

3.2.Diskontinuirani režim rada

Nadomjesna shema nalazi se na slici 3.5. u diskontinuiranom režimu rada pojavljuje se interval kod kojeg je struja induktiviteta nula. Taj interval može se nazvati interval C. Interval C započinje kada na ventilu V_2 struja padne na nulu, a završava kada se ventil V_1 uključi.

Slika 3.5. Nadomjesna shema spoja uzlaznog pretvarača za interval C[3]

Valni oblici za diskontinuiran režim rada prikazani su slikom 3.6.

Slika 3.6. Karakteristični valni oblici uzlaznog pretvarača u diskontinuiranom načinu rada[3]

4. Mjerenje na uzlaznom pretvaraču napona

Maketa korištena za mjerenje je napravljena kroz diplomski rad "Način rada istosmjernog uzlaznog pretvarača napona 27 V/1 A"[6]. Uzlazni pretvarač opisan je u "Priručniku za praktikum iz osnova energetske elektronike"[3]. Mjerenja su obavljena tako da su snimljene karakteristične veličine u 3 radne točke u kontinuiranom režimu rada i 3 radne točke u diskontinuiranom režimu rada uzlaznog pretvarača [4]. Tablicom 4.1. prikazani su rezultati mjerenja.

Slika 4.1. Shema mjerenja za uzlazni pretvarač

Broj mjerenja	1.	2.	3.	4.	5.	б.
Veličina mjerenja						
E[V]	20,00 V	14,77 V	13,27 V	21,85 V	16,12 V	18,46 V
$U_{D(0)}$	27,38 V	27,01 V	26,81 V	27,55 V	27,2 V	27,34 V
$I_{DI(0)}$	0,693 A	0,684 A	0,678 A	0,698 A	0,688 A	0,692 A
$I_{TR(0)}$	0,405 A	0,909 A	1,355 A	0,375 A	0,822 A	0,658 A
$I_{LE(0)}$	1,06 A	1,57 A	2,03 A	1,04 A	1,5 A	1,25 A
$U_{DI(0)}$	-8,1 V	-13,3 V	-15,8 V	-7,0 V	-12,5 V	-10,2 V
$U_{TR(0)}$	19,4 V	13,8 V	11,3 V	20,4 V	14,5 V	17,1 V
Frekvencija	6500 Hz	6500 Hz	6500 Hz	2400 Hz	2400 Hz	2400 Hz
	Kontinuirani režim			Disk	continuirani re	ežim

 Tablica 4.1.
 Radne točke korištene za mjerenje [4]

Kao što je u tablici 4.1. vidljivo mjereni su: napona izvora (E[V]),srednja vrijednost napona trošila($U_{D(0)}$,srednja vrijednost struje diode($I_{DI(0)}$), srednja vrijednost struje tranzistora($I_{TR(0)}$), srednja vrijednost struje izvora($I_{LE(0)}$), srednja vrijednost napona diode($U_{DI(0)}$),srednja vrijednost napon tranzistora($U_{TR(0)}$) te frekvenciju. Za svaku radnu točku napravljeno je ukupno šest mjerenja koja se još dijele u dvije grupe mjerenja za kontinuirani i diskontinuirani režim rada. Važno je napomenuti da pretvarač pri frekvenciji od 6500 Hz radi u kontinuiranom režimu rada, a pri 2400 Hz radi u diskontinuiranom režimu rada. Također, mjerenja su odrađena u 2 serije iz razloga što valni analizator ima samo tri ulaza za napone, a bilo je potrebno mjeriti 4 karakteristične veličine napona.

5. Analiza rezultata mjerenja u MATLAB-u

Mjerenja karakterističnih veličina izvršena su na osciloskopu te su s osciloskopa spremana s pomoću *Wavestar*-a na računalo, u obliku csv.datoteke. *Wavestar* je softver koji može raditi harmonijsku analizu. Takva datoteka otvara se u MATLAB-u i dalje obrađuje. Analiza će biti rađena preko *MATLAB*-a jer *Wavestar* ne može odrediti kut snage za više harmonike u odnosu na prvi harmonik, te tako ne može dati informaciju o kutevima prvog harmonika. Obrada podataka u *MATLAB*-u izvršena je putem programskog koda.[p1]

Slika 5.1. Rezultati mjerenja na ventilima a) Napon diode u_{v2} , struja diode i_{v2} , b) Napon tranzistora u_{v1} , Struja tranzistora i_{v1}

S pomoću slika 5.2. a) i 5.2. b) očitane su vrijednosti i unesene u tablicu 5.1.

n	U_n	In	α_u	α_i	P_n
0	13,06	0,6157	180	0	-8,04
1	12,13	0,7724	110,5	143,2	7,79
2	0,8805	0,3899	-13,58	-55,07	0,2572
3	3,14	0,2189	145,9	145,3	0,6873
4	1,227	0,1899	5,591	-24,73	0,2011
5	0,9928	0,1328	-166,2	170,8	0,1206
6	1,557	0,1238	28,54	4,293	0,1758
7	0,3783	0,09677	-91,66	-158	0,0147
8	1,43	0,09207	62,8	33,4	0,1147
9	0,362	0,07847	-20,5	-126,4	-0,00778
10	1,206	0,07318	102,3	62,65	0,06797

Tablica 5.1. Harmonici napona, struja, kuteva i snage diode

Na sljedećem primjeru za drugi harmonik (n=2) bit će prikazano računanje snage i bit će fazorski prikazan slikom 5.3.

$$P(2) = U(2) \cdot I(2) \cdot \cos(\alpha_u - \alpha_i) = 0,8805 \cdot 0,3899 \cdot \cos(-13,58 - (-55,07)) = 0,2572W$$

$$\tilde{P}_{V2} = P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10)$$

= 7,79 + 0,2572 + 0,6873 + 0,2011 + 0,1206 + 0,1758 + 0,0147 + 0,1147
+ (-0,00778) + 0,06797 = 9,42W

Sa slike 5.4. očitana su karakteristične snage koja se nalaze i u tablici 5.1.Snage su potvrđene i analitičkim postupkom, a uspoređivanjem istosmjerne i izmjenične snage dobiva se:

$$P_{V2} = P_{V2}(0) + \tilde{P}_{V2}$$

Djelatna snaga diode predstavlja njene gubitke koji iznose 1,38 W.

Slika 5.4. Snaga na frekvenciji diode

U Tablici 5.2. prikazana su odstupanja viših harmonika od prvog harmonika diode i tranzistora.

Tablica 5.2. Odstupanja snaga na višim harmonicima u odnosu na snagu za diodu i tranzistor

n	P(1)
P(2)	3,3%
P(3)	8,82%
P(4)	2,58%
P(5)	1,55%
P(6)	2,26%
P(7)	0,00189%
P(8)	0,0147%
P(9)	0,00099%
P(10)	0,0087%

n	P(1)
P(2)	3,3%
P(3)	8,82%
P(4)	2,58%
P(5)	1,55%
P(6)	2,26%
P(7)	0,00189%
P(8)	0,0147%
P(9)	0,00099%
P(10)	0,0087%

Promatrat će se u analizi istosmjerna snaga i prvi harmonik, a ostale komponente će se zanemariti.

S pomoću slika 5.5. a) i 5.5. b) očitane su vrijednosti i unesene u tablicu 5.3.

Slika 5.5. a)Spektar napona tranzistora u_{v1} , b)Spektar struje tranzistora i_{v1}

N	U_n	I_n	α_u	α_i	P_n
0	14,73	0,778	0	0	11,46
1	12,04	0,8543	110,1	-112,5	-7,57
2	0,9477	0,4052	-15,08	120,1	-0,2762
3	3,158	0,2316	145,5	-54,03	-0,6893
4	1,472	0,1991	2,872	148,3	-0,2567
5	1,023	0,1391	-170,5	-16,49	-0,1279
6	1,472	0,1278	31,9	-179,8	-0,1614
7	0,4235	0,102	-92,48	17,83	-0,01499
8	1,393	0,0943	56,87	-148,9	-0,1079
9	0,4278	0,07707	-19,19	50,72	0,01133
10	1,151	0,07723	100,6	-116,4	-0,071

Tablica 5.3. Harmonici napona, struje, kuteva i snage tranzistora

$$\tilde{P}_{V1} = P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10)$$

= -7,57 - 0,2762 - 0,6893 - 0,2567 - 0,1279 - 0,1614 - 0,01499
- 0,1079 + 0,01133 - 0,071 = -9,26W

Sa slike 5.6. očitane su karakteristične snage koje se nalaze i u tablici 5.3.Snage su potvrđene i analitičkim postupkom, a uspoređivanjem istosmjerne i izmjenične snage dobiva se:

$$P_{V1} = P_{V1}(0) + \tilde{P}_{V1}$$

Djelatna snaga diode predstavlja njene gubitke koji iznose 2,2 W.

Slika 5.6. Snaga na frekvenciji tranzistora

5.1. Istosmjerna snaga i snaga na prvom harmoniku za diodu

Slika 5.7. prikazuje fazorski prikaz istosmjerne snage i prvog harmonika napona i struje diode.Vrijednosti harmonika iz tablice 5.4. su očitani pomoću MATLAB-a i nalaze se na slikama 5.2. a) i 5.2.b)

Tablica 5.4. Harmonici napona, struja, kuteva te istosmjerne snage i snage na prvom harmoniku diode

n	U _D	I_D	α_u	α_i	α_P	-/ +	P_n
0	13,06	0,6157	180	0	180	-	8,04
1	12,13	0,7724	110,5	143,2	32,7	+	7,79

Uvjet za određivanje predznaka snaga: $\frac{\pi}{2} \le \alpha \le \pi$ ili $-\pi \le \alpha \le -\frac{\pi}{2}$. Ako α zadovoljava taj uvjet snaga je negativna.

$ \alpha_u - \alpha_i \leq 90^\circ \rightarrow P_n > 0$	$ \alpha_u - \alpha_i \le 90^\circ \Rightarrow P_n > 0$
180°-0° ≤90°	110.5°-143.2° ≤90°
180°>90°	32.7°<90°
P(0) < 0 –istosmjerna snaga je negativna	P(1) > 0 - izmjenična snaga je pozitivna

na prvom harmoniku

Prema izračunu dioda se ponaša kao izvor istosmjerne snage i trošilo izmjenične snage na osnovnom harmoniku.

Slika 5.7. Fazorski prikaz struje i napona diode za istosmjernu snagu i nulti harmonik

S pomoću očitanih vrijednosti harmonika iz tablice 5.4. moguće je izračunati istosmjernu snagu i snagu na prvom harmoniku.

$$P(0) = U(0) \cdot I(0) \cdot \cos(\alpha_u - \alpha_i) = 13,06 \cdot 0,6157 \cdot \cos(180 - 0) = -8,04W$$
$$P(1) = U(1) \cdot I(1) \cdot \cos(\alpha_u - \alpha_i) = 12,13 \cdot 0,7724 \cdot \cos(110,5 - 143,2) = 7,79W$$

5.2. Istosmjerna snaga i snaga prvog harmonika za tranzistor

Slika 5.8. prikazuje fazorski prikaz istosmjerne snage i prvog harmonika napona i struje tranzistora.Vrijednosti harmonika iz tablice 5.5. su očitane pomoću MATLAB-a i nalaze se na slikama 5.5. a) i 5.5.b)

Tablica 5.5. Harmonici napona, struja, kuteva te istosmjerne snage i snage na prvom harmoniku tranzistora

n	U_{TR}	I_{TR}	α_u	α_i	α_P	-/ +	P_n
0	14,73	0,778	0	0	0	+	14,46
1	12,04	0,8543	110,1	-112,5	223	-	7,57

Uvjet za određivanje predznaka snaga: $\frac{\pi}{2} \le \alpha \le \pi$ ili $-\pi \le \alpha \le -\frac{\pi}{2}$. Ako α zadovoljava taj uvjet snaga je negativna.

$ \alpha_u - \alpha_i \leq 90^\circ \Rightarrow P_n > 0$	$ \alpha_u - \alpha_i \leq 90^\circ \Rightarrow P_n > 0$
0°-0° ≤90°	110.1°-(-112.5°) ≤90°
0°<90°	222.6°>90°
P(0) > 0 – istosmjerna snaga je pozitivna	P(1) < 0 - izmjenična snaga je negativna na
	prvom harmoniku

Prema izračunu tranzistor se ponaša kao izvor izmjenične snage i trošilo istosmjerne snage na osnovnom harmoniku.

Slika 5.8. Fazorski prikaz struje i napona tranzistora za istosmjernu snagu i nulti harmonik

S pomoću očitanih vrijednosti harmonika iz tablice 5.5. moguće je izračunati istosmjernu snagu i snagu na prvom harmoniku.

$$P(0) = U(0) \cdot I(0) \cdot \cos(\alpha_u - \alpha_i) = 14,73 \cdot 0,778 \cdot \cos(0 - 0) = 11,46W$$

$$P(1) = U(1) \cdot I(1) \cdot \cos(\alpha_u - \alpha_i) = 12,04 \cdot 0,8543 \cdot \cos(110,1 - (-112,5)) = -7,57W$$

5.3. Istosmjerna snaga i prvi harmonik izmjenične snage

Analiza za istosmjernu snagu

S pomoću tablice 4.1. mogu se izračunati snage izvora i trošila za prvu radnu točku.

Snaga izvora dobije se sljedećim izrazom:

$$P_E = U_E \cdot I_E = 20 \cdot 1,06 = 21,2W$$

Snaga trošila dobije se sljedećim izrazom:

$$P_D = U_D \cdot I_D = 27,38 \cdot 0,405 = 11,09W$$

Element	P(0)
Dioda	-8,04
Tranzistor	11,46
Izvor	21,2
Trošilo	11,09

Tablica 5.6. Pojedini elementi i njihove istosmjerne snage

S pomoću vrijednosti iz tablice 5.3.1. možemo prikazati zakon o očuvanju snage koji je dan izrazom $P_E(0) = P_D(0) + P_{V2}(0) + P_{V1}(0)$, gdje su: $P_E(0)$ istosmjerna snaga na izvoru, $P_D(0)$ istosmjerna snaga trošila, $P_{V1}(0)$ istosmjerna snaga tranzistora, te $P_{V2}(0)$ istosmjerna snaga diode.

S obzirom na to da se dioda ponaša kao izvor (što je vidljivo u tablici 5.6.) jer ima negativan predznak izraz za zakon o očuvanju snage poprima sljedeći oblik:

 $P_E(0) + P_{V2}(0) = P_{V1}(0) + P_D(0)$ gdje se daljnjim uvrštavanjem vrijednosti istosmjernih snaga iz tablice 5.6. dobije:

-21,2-8,04=11,09+11,46

-29,24=22,55 W

Prema zakonu o očuvanja istosmjerne snage mogu se procijeniti gubici na nadomjesnim otporima reaktivnih komponenata (prigušnice I kondenzatora) koji iznose oko 6, 7 W!

Analiza rada za prvi harmonik izmjenične snage

Element	P(1)
Dioda	7,79
Tranzistor	-7,57

Tablica 5.7. Snaga na prvom harmoniku na diodi i tranzistoru

Ako se izjednače snage tranzistora i diode iz tablice 5.7., odnosno uvrste se u izraz:

 $|P_{V1}(1)| = P_{V2}(1)$

7,57≈7,79

time je potvrđen uvjet opstojnosti izravnih istosmjernih pretvarača [1] koji definira da je $|P_{V2}(f_s)| = |P_{V1}(f_s)|.$

6.Zaključak

Dioda proizvodi istosmjernu snagu, a troši izmjeničnu jer je istosmjerna snaga diode negativna, a osnovni harmonik snage diode je pozitivan. Tranzistor proizvodi izmjeničnu snagu, a troši istosmjernu snagu jer je nulti harmonik snage tranzistora pozitivan.

Predznak snage se određuje iz provođenja harmonijske analize za harmonike, poznavajući amplitude harmonica struje (I_n) i amplitude harmonike napona (U_n) te uspoređujući kutove na pojedinom harmonijskom članu. Tako je pokazano da ako se kut između fazora struje i napona kreće: $\frac{\pi}{2} \le \alpha \le \pi$ ili $-\pi \le \alpha \le -\frac{\pi}{2}$ tada je snaga na tom harmoniku negativna.

S pomoću napisanog programa za obradu prenesenih valnih oblika koji su učitani s osciloskopa na računalo u MATLAB je za valne oblike napravljena brza Fourierova transformacija (eng. Fast Fourier Transform)

Procijenjeni su gubici za jednu radnu točku mjerenja, te je dobiveno da su gubici diode 1,38 W, a gubici tranzistora 2,2 W.

Procijenjeni su gubici na nadomjesnim otporima ulazne prigušnice i izlaznog kondenzatora, gubici nastaju zbog ulaznog otpora izvora kao i otpora spojnih vodiča i oni iznose 6,69 W.

Provjeren je uvjet opstojnosti uzlaznog pretvarača te je snaga na sklopnoj frekvenciji 6500 Hz obje pretvaračke komponente po apsolutnom iznosu približno jednaka:

 $|P_{D(0)}|=7,79\approx|P_{TR(0)}=7,57$

Literatura

[1] Elektronički energetski pretvarači, Dr.sc. Ivan Flegar, Kigen d.o.o., Zagreb, 2010. god

[2] Teorija mreža-Bilješke s predavanja, Dr.sc. Ivan Flegar, Elektrotehnički fakultet Osijek, 2001. god

[3] Priručnik za praktikum iz osnova energetske elektronike 2.izdanje, D.Pelin, K.Miličević, D.Vulin,Osijek,2013.

[4] "Verificiranje koncepta pretvorbe snage na frekvenciji istosmjernih uzlaznih pretvarača", diplomski rad, Elektrotehnički fakultet, Sveučilište J.J.Strossmayera u Osijeku , Osijek, 2017.

[5] <u>https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/fourier-series-basics/MIT18_03SCF11_s21_7text.pdf</u>

[6] "Način rada istosmjernog uzlaznog pretvarača napona 27V/1A", diplomski rad, Elektrotehnički fakultet, Sveučilište J.J.Strossmayera u Osijeku, Osijek, 2010.

Životopis

TOMISLAV JAKOBOVIĆ

Rođen je u Đakovu 22. svibnja 1995. godine. U Đakovu, 2010. završava osnovnu školu "OŠ Ivan Goran Kovačić" te upisuje opću gimnaziju Antun Gustav Matoš u Đakovu.

Završava srednju školu 2014. godine te upisuje preddiplomski studij elektrotehnike u Osijeku.

Započinje školovanje 2014. godine na Fakultet elektrotehnike, računarstva i informacijskih tehnologija u Osijeku.

Sažetak

Završni rad sadrži detaljan izvod snage na frekvenciji. U izvodu formula djelatna snaga je rastavljiva na dvije komponente, istosmjernu i izmjeničnu. Odrađeno je mjerenje na uzlaznom pretvaraču napona i rezultati mjerenja prikazani su tablično.

Odrađena su mjerenja za 3 radne točke u kontinuiranom režimu rada i određena su mjerenja za 3 radne točke u diskontinuiranom režimu rada uzlaznog pretvarača.

Analiza rezultata mjerenja obrađena je u MATLAB-u. Pokazana su pretvaračka svojstva tranzistora i diode uzlaznog pretvarača.

Ključne riječi: snaga na frekvenciji, uzlazni pretvarač

Abstract

The final work contains detailed output of the power of harmonics. When it comes to formula excerpt it is visible that active power can be divided onto two components; direct current (DC) power and alternating current (AC) power. Furthermore, the measuring was done for boost converter and results of it are shown in table. There were measurement done for 3 working points in continuous mode and 3 working points in discontinuous mode. Analysis result was processed in MATLAB.It is shown conversion properties by transistor and diode of boost converter.

Key words: power of harmonics, boost converter

Prilog:

[p1] Programski kod u MATLAB-u

```
podatci=importdata('C:\Users\TomislavJakobović\Desktop\ZR\Dajana
26.06\ventili\diskontinuirani 16,12.csv',',',1);%
                                                        prigusnica-invert
                                                                              ;
25ms-otpornik ;
                   25ms;
data=podatci.data;
n=length(data);
delta t=data(2,1)-data(1,1);
% data(:,1)=(0:pi/1000:2*pi)';
% data(:,2)=cos(data(:,1))+cos(2*data(:,1))+cos(3*data(:,1));
% data(:,3)=data(:,2);
% data(:,4)=data(:,2).^2;
n=length(data);
% data(:,1)=delta t*(0:n-1);
fs=1/(data(2,1)-data(1,1));
k=0.02*fs;
br harm=40;% broj prikazanih harmonika
a=1;%pocetni uzorak (NE Mjenjaj!)
b=n;%zadnji uzorak
auto period=1;%automatsk trazenje perioda -1, rucno -0
mjerenje=1
S.FontSize=12;
S.FontWeight='bold';
0
                  data(:, (mjerenje-1)*6+2)=filtriraj([data(:, (mjerenje-1)*6+1)
data(:, (mjerenje-1)*6+2)]);
                  data(:,(mjerenje-1)*6+4)=filtriraj([data(:,(mjerenje-1)*6+3)
2
data(:, (mjerenje-1)*6+4)]);
% subplot(2,1,1);
% plot(data(:,1)-min(data(:,1)),data(:,(mjerenje-1)*6+2),'linewidth',2);
% subplot(2,1,2);
% plot(data(:,1)-min(data(:,1)),data(:,(mjerenje-1)*6+4),'linewidth',2);
if(auto period==1)
[estimirano best, estimiranoAll, gof]=OdrediPeriod v1([1:n].', data(:, (mjerenje-
1)*4+2),b);
    b=round(2*pi/estimirano best);
end
Br perioda=floor(n/b);
b=b*Br perioda;
figure(1);
subplot(2,1,1);
plot(data(a:b,1)-min(data(:,1)),data(a:b,(mjerenje-1)*4+2),'*g');
hold on; grid on;
plot(data(:,1)-min(data(:,1)),data(:,(mjerenje-1)*4+2));
```

Ovo je prva stranica koda od tri stranice koda, a ostatak koda nalazi se na CD-u.