Biondić, Ivan

Master's thesis / Diplomski rad

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:992915

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-06

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET

Sveučilišni studij

Mjerna nesigurnost karakteristike nelinearne zavojnice

Diplomski rad

Ivan Biondić

Osijek, 2014.

Obrazac D1: Obrazac za imenovanje Povjerenstva za obranu diplomskog rada

Osijek,2014.

Odboru za završne i diplomske ispite

Imenovanje Povjerenstva za obranu diplomskog rada

Ime i prezime studenta:	Ivan Biondić					
Studij, smjer:	Sveučilišni diplomski studij elektrotehnike, smjer Elektroenergetika					
Mat. br. studenta, godina upisa:	D-596					
Mentor:	Izv.prof.dr.sc.Kruno Miličević					
Sumentor:						
Predsjednik Povjerenstva:	Izv.prof.dr.sc. D. Pelin					
Član Povjerenstva:						
Naslov diplomskog rada:	Mjerna nesigurnost karakteristike nelinearne zavojnice					
Primarna znanstvena grana rada:	Elektrostrojarstvo					
Sekundarna znanstvena grana (ili polje) rada:	-					
Zadatak diplomskog rada:	Odrediti parametre karakteristike nelinearne zavojnice na temelju mjerenja. Procijeniti utjecaj nesigurnosti izmjerenih veličina na karakteristike nelinearne zavojnice.					
Prijedlog ocjene pismenog dijela ispita (diplomskog rada):	Izvrstan (5)					
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjena znanja stečenih na fakultetu: 3 boda Postignuti rezultati u odnosu na složenost zadatka: 3 boda Jasnoća pismenog izražavanja: 3 boda Razina samostalnosti: II. razina					
Potois sumentora:		Potois mentora:				
		гоция піснога.				
Dostaviti:						
1. Studentska služba						
U Osijeku,2014. godine		Potpis predsjednika Odbora:				

IZJAVA O ORIGINALNOSTI RADA

Osijek, 2014.

Ime i prezime studenta:	Ivan Biondić
Studij :	Sveučilišni diplomski studij elektrotehnike, smjer Elektroenergetika
Mat. br. studenta, godina upisa:	D-596

Ovom izjavom izjavljujem da je rad pod nazivom:

Mjerna nesigurnost karakteristike nelinearne zavojnice

izrađen pod vodstvom mentora

Izv.prof.dr.sc.Krune Miličevića

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija.

Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

SADRŽAJ

1. UVOD	1
1.1. TEORIJSKI UVOD U IZRAČUN MJERNE NESIGURNOSTI	1
1.1.1. Normalna (Gaussova) razdioba	1
1.1.2. Izračun mjerne nesigurnosti na temelju modela s jednim ulazom i jednim izlazom .	4
1.1.3. Izračun mjerne nesigurnosti na temelju modela s više ulaza i jednim izlazom	6
1.1.4. Izračun mjerne nesigurnosti na temelju modela s više ulaza i više izlaza	7
2. MATEMATIČKI MODEL NELINEARNE ZAVOJNICE	.10
2.1. OPIS MJERENJA	12
2.2. KARAKTERISTIKA OTPORA	13
2.2.1. Prvi odsječak karakteristike otpora	13
2.2.2. Drugi odsječak karakteristike otpora	14
2.2.3. Poopćenje izračuna karakteristike otpora	16
2.3. KARAKTERISTIKA INDUKTIVITETA	
2.3.1. Prvi odsječak karakteristike induktiviteta	18
2.3.2. Drugi odsječak karakteristike induktiviteta	20
2.3.3. Poopćenje izračuna karakteristike induktiviteta	22
3. MJERNA NESIGURNOST KARAKTERISTIKA	25
3.1. Analitički izračun mjerne nesigurnosti karakteristike otpora i induktiviteta	25
3.1.1 Analitički izračun faktora utjecajnosti (osjetljivosti)	28
3.1.2 Numerički izračun faktora utjecajnosti (osjetljivosti)	29
3.2. Primjer izračuna mjerne nesigurnosti krivulje magnetiziranja transformatora	30
4. ZAKLJUČAK	36

1. UVOD

Krivulja magnetiziranja pojavljuje se kod modeliranja zavojnica s feromagnetskom jezgrom i transformatora u praznom hodu. Problemi koji se javljaju pri modeliranju nelinearnih zavojnica su utjecaji zasićenja, histereze i vrtložnih struja [1-9]. Razmatrat će se model do čijih se parametara može doći na temelju neinvazivnih mjerenja, kao što su mjerenja napona, struje i djelatne snage. Primjer invazivnog mjerenja je izravno mjerenje magnetskog toka u magnetskoj jezgri (npr. pomoću Hallovog senzora). Neinvazivna mjerenja mogu se vršit na priključnicama zavojnice (transformatora), što je jednostavnije.

Pri određivanju parametara modela potrebno je uvažiti nesigurnosti izmjerenih veličina zbog čega dolazi do rasipanja parametara modela. Dakle, parametre modela pravilno je shvatiti kao raspone (intervale, područja) parametara koji definiraju model s određenom pouzdanosti. Cilj rada je odrediti mjernu nesigurnost karakteristika nelinearne zavojnice i pripadne intervale pouzdanosti [10-13].

1.1. TEORIJSKI UVOD U IZRAČUN MJERNE NESIGURNOSTI

Izračun mjerne nesigurnosti (standardne devijacije) se temelji na širenju pogreške (engl. *error propagation*) kroz model. Temeljna zadaća teorije širenja pogrešaka je pronalaženje funkcije gustoće vjerojatnosti izlaznih varijabli na temelju poznavanja funkcija razdiobi ulaznih podataka i na temelju poznavanja matematičkog modela sustava kroz koji se pogreška širi. Razdiobe ulaznih i izlaznih podataka mogu biti različitog tipa (normalna, uniformna, studentova, Poassonova, ...). Najvažniji tip razdiobe u mjeriteljstvu je normalna (Gaussova) razdioba, jer se gotovo sve druge razdiobe, pod određenim uvjetima (centralni granični teorem), mogu aproksimirati normalnom razdiobom.

1.1.1. Normalna (Gaussova) razdioba

Jednodimenzionalna normalna razdioba zadana je izrazom (1.1). Parametri koji definiraju normalnu razdiobu su μ (aritmetička sredina ili matematičko očekivanje) i σ (standardna devijacija).

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
(1.1)

Na slici 1.1. prikazan je graf normalne razdiobe. Ako je normalnom razdiobom opisan rezultat mjerenja, tada pouzdanost pronalaska prave vrijednosti unutar intervala $\langle \mu - \sigma, \mu + \sigma \rangle$ iznosi 68%, dok pouzdanost za interval $\langle \mu - 2\sigma, \mu + 2\sigma \rangle$ iznosi 95%.

Slika 1.1. Normalna razdioba

Višedimenzionalna (k-dimenzinalna) normalna razdioba zadana je prema izrazu (1.2). Parametri koji definiraju višedimenzionalnu normalnu razdiobu su vektor matematičkog očekivanja $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_k]^T$ i matrica kovarijanci **C**. Matrica **C** je simetrična matrica zadana prema (1.3). Elementi na glavnoj dijagonali matrice kovarijanci σ_{ii}^2 predstavljaju varijancu varijable x_i , dok preostali elementi σ_{ij} $i \neq j$ predstavljaju kovarijancu između varijabli x_i i x_j .

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} \det(\mathbf{C})^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$
(1.2)

$$\mathbf{C} = \begin{bmatrix} \sigma_{11}^{2} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22}^{2} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk}^{2} \end{bmatrix}$$
(1.3)

Kod jednodimenzionalne normalne razdiobe se pojavljuju intervali pouzdanosti koji procjenjuju pouzdanost pronalaska prave vrijednosti unutar određenog intervala. Kod višedimenzionalne normalne razdiobe intervali poprimaju više dimenzija pa se nazivaju područja pouzdanosti, [14,15]. Prema izrazu (1.4) se računa područje (*k*-dimenzionalni elipsoid) čija je pouzdanosti $1-\alpha$.

$$\left(\mathbf{x}-\boldsymbol{\mu}\right)^{T}\mathbf{C}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}\right) = \chi_{k}^{2}(\alpha)$$
(1.4)

Za desnu stranu jednadžbe (1.4) vrijedi izraz (1.5), tj. parametar $\chi_k^2(\alpha)$ se određuje na temelju hi kvadratne razdiobe koja ima *k* stupnjeva slobode i vjerojatnosti α .

$$P(\chi^2 > \chi_k^2(\alpha)) = \alpha \tag{1.5}$$

Neka je, na primjer, rezultat mjerenja opisan dvodimenzionalnom normalnom razdiobom (slika 1.2). Tada se može zaključiti da se prava vrijednost nalazi unutar područja označenog crvenom elipsom s pouzdanosti od 68%, odnosno da se prava vrijednost nalazi unutar područja označenog zelenom elipsom s pouzdanosti od 95%. Prikaz područja pouzdanosti u ravnini mjerenih veličina x_1, x_2 nalazi se na slici 1.3. Iz oblika područja pouzdanosti može se odrediti koja koordinata više doprinosi mjernoj nesigurnosti, a iz nagiba se može zaključiti o međusobnoj zavisnosti koordinata.

Slika 1.2. Dvodimenzionalna normalna razdioba s naznačenim područjima pouzdanosti

Slika 1.3. Prikaz područja pouzdanosti u ravnini x_1, x_2

1.1.2. Izračun mjerne nesigurnosti na temelju modela s jednim ulazom i jednim izlazom

Slika 1.4. Blok dijagram sustava s jednim ulazom i jednim izlazom (engl. SISO)

Na slici 1.4. je najjednostavniji slučaj širenja pogreške kroz sustav. Dakle, potrebno je odrediti funkciju gustoće vjerojatnosti jedne izlazne varijable na temelju poznavanja funkcije gustoće vjerojatnosti jedne ulazne varijable i na temelju matematičkog modela sustava.[11]

Ako je funkcija f(x) koja predstavlja matematički model sustava nelinearna, funkcija gustoće vjerojatnosti izlazne varijable poprima kompliciran oblik, a posebno kada postoji više ulaznih varijabli, više o tome u [12]. Zato se vrlo često koristi procjena funkcije gustoće vjerojatnosti. Procjena se temelji na širenju samo prva dva statistička momenta, odnosno srednje vrijednosti μ_y i drugog centralnog momenta σ_y^2 (varijance). Ova dva momenta u općem slučaju ne opisuju u potpunosti funkciju gustoće vjerojatnosti, osim ako se pretpostavi da je funkcija gustoće vjerojatnosti normalna (Gaussova).

Na slici 1.5. je prikazan jednostavan slučaj s jednim ulazom i jednim izlazom. Neka ulazna varijabla x ima normalnu razdiobu s parametrima μ_x i σ_x . Sada se postavlja pitanje koje vrijednosti poprimaju parametri μ_y i σ_y koji opisuju gustoću vjerojatnosti izlazne varijable.

Slika 1.5. Širenje pogreške

Na slici 1.5. se može primijetiti širenje pogreške ulazne varijable x za koju se pretpostavlja normalna razdioba s parametrima μ_x i σ_x . Ako se varijabla x i njena funkcija gustoće vjerojatnosti preslikava preko funkcije f(x), općenito nelinearne, tada je funkcija gustoće vjerojatnosti izlazne varijable, općenito, različita od normalne razdiobe. Na slici 1.2. je označena gustoća vjerojatnosti preslikana preko nelinearne funkcije f(x) sa p_{y1} . Dakle, tako dobivena razdioba je nesimetrična, odnosno različita od normalne razdiobe. Ako se funkcija f(x)aproksimirala Taylorovim redom prvog stupnja oko točke $x = \mu_x$ dobiva se linearan odnos između ulaza i izlaza (na slici 1.5. označeno s g(x)). U literaturi [13] se mogu pronaći izrazi koji uvažavaju i više stupnjeve Taylorovog reda.

$$y \approx f(\mu_x) + \frac{\partial f}{\partial x}\Big|_{x=\mu_x} \left(x - \mu_x\right)$$
(1.6)

Širenjem varijable s normalnom razdiobom kroz linearan model rezultira također normalnom razdiobom izlazne varijable. Kako bi se jednoznačno odredili parametri izlazne funkcije gustoće koriste se izrazi:

$$\mu_{y} = f\left(\mu_{x}\right) \tag{1.7}$$

$$\sigma_{y} = \frac{\partial f}{\partial x}\Big|_{x=\mu_{x}} \sigma_{x}$$
(1.8)

Bitno je naglasiti kako izračunata distribucije izlazne varijable definirane sa μ_y i σ_y predstavlja aproksimaciju stvarne razdiobe, zbog toga se postavlja pitanje o točnosti same aproksimacije, više o tome u [11,13].

1.1.3. Izračun mjerne nesigurnosti na temelju modela s više ulaza i jednim izlazom

Slika 1.6. Blok dijagram sustava s više ulaza i jednim izlazom (engl. MISO)

U ovom slučaju jedna izlazna varijabla ovisi o n ulaznih varijabli. Funkcija f(x) je u općem slučaju nelinearna. Slično kao i u prethodnom slučaju funkcija se aproksimira Taylorovim redom prvog stupnja oko točke $(\mu_1, \mu_2, \dots, \mu_n)$.

$$y \approx f\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right) + \sum_{i=1}^{n} \left[\frac{\partial f}{\partial x_{i}} \Big|_{\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)} \left(x_{i} - \mu_{i}\right) \right]$$
(1.9)

Aproksimacija prema (1.9) je linearna što znači da je razdioba izlazne varijable normalna (ako su razdiobe svih ulaznih varijabli normalne). Kako bi se odredili parametri normalne razdiobe izlazne varijable koriste se sljedeći izrazi:

$$\mu_{y} = f\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right) \tag{1.10}$$

$$\sigma_{y}^{2} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} \sigma_{i}^{2} + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \sigma_{ij}$$
(1.11)

U izrazu (1.11) je izostavljen vektor $(\mu_1, \mu_2, \dots, \mu_n)$ koji naglašava oko koje točke se računaju parcijalne derivacije. U izrazu (1.11) se pojavljuje kovarijanca σ_{ij} koja predstavlja međusobnu linearnu ovisnost ulaznih varijabli x_i i x_j . Kada su ulazne varijable međusobno nezavisne kovarijanca je nula.

Slika 1.7. Blok dijagram sustava s više ulaza i više izlaza (engl. MIMO)

Ovakav tip sustava (slika 1.7.) je najopćenitiji. Ulazne i izlazne veličine mogu se zapisat i u kompaktnijem (matričnom) obliku, odnosno $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$, $\mathbf{y} = [y_1, y_2, \dots, y_n]^T$. Slično se mogu i funkcije f_1, f_2, \dots, f_m zapisati u obliku jedne vektorske funkcije, tj. $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})]^T$.

Postupak određivanja distribucije izlaznih varijabli sličan je prethodnim primjerima (pogl. 1.1.1. i 1.1.2.) samo što poprima generalizirani oblik. Prvo je potrebno linearizirati vektorsku funkciju f(x) s pomoću Jacobijeve matrice. Elementi Jacobijeve matrice se nazivaju koeficijenti utjecajnosti ili osjetljivosti.

$$\mathbf{J}(\mathbf{x}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$
(1.12)

Dakle, vektorska funkcija $\mathbf{J}(\mathbf{x})$ (dimenzija $m \times n$) je linearizirani oblik vektorske funkcije $\mathbf{f}(\mathbf{x})$, zato se može zapisat u matričnom obliku, odnosno kao linearni operator. U sljedećem koraku se

uvodi (simetrična) matrica kovarijanci \mathbf{C}_x (dimenzija $n \times n$) koja sadrži sve varijance i kovarijance ulaznih varijabli x_1, x_2, \dots, x_n . Ako su sve ulazne varijable međusobno nezavisne tada kovarijance nestaju ($\sigma_{x_i x_j} = 0$ $i \neq j$) a matrica \mathbf{C}_x postaje dijagonalna.

$$\mathbf{C}_{x} = \begin{bmatrix} \sigma_{x_{1}}^{2} & \sigma_{x_{1}x_{2}} & \cdots & \sigma_{x_{1}x_{n}} \\ \sigma_{x_{2}x_{1}} & \sigma_{x_{2}}^{2} & \cdots & \sigma_{x_{2}x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{x_{n}x_{1}} & \sigma_{x_{n}x_{2}} & \cdots & \sigma_{x_{n}}^{2} \end{bmatrix}$$
(1.13)

Za razliku od sustava s jednom izlazom varijablom kod kojih je izlazna nesigurnost σ_y "matrica" dimenzija 1×1 (skalar), dok se kod sustava s *n* izlaznih varijabli nesigurnost izlaznih varijabli daje se u obliku (simetrične) matrice kovarijanci \mathbf{C}_y (dimenzija $m \times m$). Izraz koji opisuje širenje ulazne nesigurnosti (zadane matricom \mathbf{C}_x) kroz linearizirani matematički model sustava (opisan matricom $\mathbf{J}(\mathbf{x})$) je:

$$\mathbf{C}_{\mathbf{y}} = \mathbf{J}\mathbf{C}_{\mathbf{x}}\mathbf{J}^{T} \tag{1.14}$$

$$\begin{bmatrix} \sigma_{y_1}^2 & \sigma_{y_1y_2} & \cdots & \sigma_{y_1y_n} \\ \sigma_{y_2y_1} & \sigma_{y_2}^2 & \cdots & \sigma_{y_2y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{y_ny_1} & \sigma_{y_ny_2} & \cdots & \sigma_{y_n}^2 \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1x_2} & \cdots & \sigma_{x_1x_n} \\ \sigma_{x_2x_1} & \sigma_{x_2}^2 & \cdots & \sigma_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{x_nx_1} & \sigma_{x_nx_2} & \cdots & \sigma_{x_n}^2 \end{bmatrix} \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Promotrimo jedan dijagonalni element matrice \mathbf{C}_{y} , npr. $\sigma_{y_{1}}^{2}$ prema [11] ima oblik:

$$\sigma_{y_1}^2 = \sum_{i=1}^n \left(\frac{\partial f_1}{\partial x_i}\right)^2 \sigma_{x_i}^2 + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f_1}{\partial x_i} \frac{\partial f_1}{\partial x_j} \sigma_{x_i x_j}$$
(1.15)

Jednadžba (1.15) se podudara s jednadžbom (1.11) izvedenom za sustav s više ulaznih varijabli i jednom izlaznom varijablom. Navedena jednadžba se zove zakon širenja.

Promotrimo i jedan ne dijagonalni element matrice C_y , npr. $\sigma_{y_1y_2}$ prema [11] ima oblik:

$$\sigma_{y_1 y_2} = \sum_{i=1}^n \frac{\partial f_1}{\partial x_i} \frac{\partial f_2}{\partial x_i} \sigma_{x_i}^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f_1}{\partial x_i} \frac{\partial f_2}{\partial x_j} \sigma_{x_i x_j}$$
(1.16)

U izrazu (1.16) se može primijetiti kako postoji doprinos kovarijanci $\sigma_{y_1y_2}$ izlaznih varijabli od strane varijanci pojedinih ulaznih varijabli $\sigma_{x_i}^2$ i od strane kovarijanci $\sigma_{x_ix_j}$ ulaznih varijabli. Dakle kovarijanca izlaznih varijabli, npr. $\sigma_{y_1y_2}$ može postojat i kada su ulazne varijable nezavisne ($\sigma_{x_ix_j} = 0 \ i \neq j$). Kada se mjerna nesigurnost izražava matricom kovarijanci tada je mjerni rezultat zapisan na visokoj razini. Više o cjelovitom zapisu mjernog rezultata u [16].

2. MATEMATIČKI MODEL NELINEARNE ZAVOJNICE

Modeliranje nelinearne zavojnice promatrat će se na temelju pretpostavljenog modela (slika 2.1.), odnosno jednadžbi (2.1) – (2.7). Model se sastoji od paralelnog spoja nelinearnog otpora (linearnog po odsječcima) i nelinearnog induktiviteta (linearnog po odsječcima). [3]

Slika 2.1. Model nelinearne zavojnice

$$u = u_R = u_L \tag{2.1}$$

$$i = i_R + i_L \tag{2.2}$$

$$i_R = f_R(u_R) \tag{2.3}$$

$$i_L = f_L(\varphi) \tag{2.4}$$

$$\varphi = \int u dt \tag{2.5}$$

Funkcije $f_R(u_R)$ i $f_L(\varphi)$ predstavljaju karakteristike otpora i induktiviteta. Bitno je naglasiti kako se radi o neparno simetričnim funkcijama (odnosno centralno simetričnim s obzirom na ishodište pripadnog sustava), što znači da je karakteristiku dovoljno odredit samo u jednom kvadrantu. Isto tako funkcije $f_R(u_R)$ i $f_L(\varphi)$ su linearne po odsječcima (slike 2.2 i 2.3). Jednadžba k-tog $(k = 1, 2, \dots, n)$ odsječka otpora u prvom kvadrantu zadana je izrazom (2.6).

$$i_{Rk}(u_R) = G_k(u_R - \hat{U}_{k-1}) + \hat{I}_{R(k-1)} \quad u_R \in \left[\hat{U}_{k-1}, \hat{U}_k\right]$$
(2.6)

Slika 2.2. Karakteristika nelinearnog otpora ($i_R = f_R(u_R)$)

Izraz za karakteristiku induktiviteta u prvom kvadrantu je:

Slika 2.3. Karakteristika nelinearnog induktiviteta ($i_L = f_L(\varphi)$)

Iz slika 2.2. i 2.3. može se vidjet kako su funkcije $f_R(u_R)$ i $f_L(\varphi)$ određene lomnim točkama. Odnosno, funkcija otpora je određena vršnim vrijednostima napona \hat{U}_k i vršnim vrijednostima struje otpora \hat{I}_{Rk} , dok je karakteristika induktiviteta određena vršnom vrijednosti toka $\hat{\Phi}_k$ i vršnom vrijednosti struje induktiviteta \hat{I}_{Lk} . Kako bi se odredile pojedine karakteristike potrebno je na temelju izmjerenih podataka izračunat lomne točke.

2.1. OPIS MJERENJA

Mjerenja se vrše na temelju sheme na slici 2.4. Kako bi se odredilo n odsječaka (po kvadrantu) na karakteristikama otpora i induktiviteta potrebno je provest n mjerenja. Pomoću naponskog izvora se efektivna vrijednost napona U postavlja na n različitih vrijednosti, uzlaznim slijedom. Pri tome se očitaju pripadne vrijednosti efektivne struje I i djelatne snage P. Prije očitanja instrumenata potrebno je sačekati da se znamenke ustale na instrumentima (očitava se nakon prijelaznih pojava). Isto tako pri povećanju napona potrebno je paziti da se ne prekorači nazivna efektivna vrijednost struje kroz zavojnicu što bi uzrokovalo pregrijavanje namota.

Slika 2.4. Shema mjernog kruga

Dakle u *k*-tom mjerenju očitaju se parametri U_k , I_k , P_k , k = 1, 2, ..., n. Također vrijedi $U_0 = 0$, $I_0 = 0$ i $P_0 = 0$ zbog pretpostavke o neparnoj simetriji karakteristika. Nakon provedenih *n* mjerenja i na temelju pretpostavke poznato je 3n+3 podataka, odnosno: $(U_0, I_0, P_0); (U_1, I_1, P_1); \cdots (U_n, I_n, P_n)$. Iz navedenih parametara i poznate frekvencije naponskog izvora mogu se izračunati karakteristike otpora i induktiviteta.

2.2. KARAKTERISTIKA OTPORA

2.2.1. Prvi odsječak karakteristike otpora

Slika 2.5. Prvi odsječak karakteristike otpora

Prvi odsječak u prvom kvadrantu opisan je jednadžbom (2.9). Svaki odsječak je određen s dvije točke. Prva točka prvog odsječka je ishodište (poznate koordinate) dok su koordinate druge točke nepoznate $(\hat{U}_1, \hat{I}_{R1})$, a mogu se izračunat iz rezultata prvog mjerenja, odnosno iz (U_1, I_1, P_1) . Prva koordinata \hat{U}_1 se jednostavno izračuna prema jednadžbi (2.8), dok je drugu koordinatu \hat{I}_{R1} moguće odredit iz izraza (2.11) i (2.12). Jednadžbe za određivanje \hat{I}_{R1} se temelje na izrazu (2.10) za djelatnu snagu koju troši zavojnica.

$$\hat{U}_1 = \sqrt{2}U_1$$
 (2.8)

$$\dot{u}_{R1} = G_1 u_R \quad u_R \in \left[0, \hat{U}_1\right] \tag{2.9}$$

$$P_{1} = \frac{4}{T} \int_{0}^{T/4} u_{1}(t) i_{R1}(t) dt = \frac{4}{T} \int_{0}^{T/4} G_{1} u_{1}^{2}(t) dt = \frac{4G_{1} \hat{U}_{1}^{2}}{T} \int_{0}^{T/4} \sin^{2}\left(\omega t\right) dt = \frac{G_{1} \hat{U}_{1}^{2}}{2} = G_{1} U_{1}^{2} \qquad (2.10)$$

$$G_1 = \frac{P_1}{U_1^2}$$
(2.11)

$$\hat{I}_{R1} = \sqrt{2}G_1 U_1 \tag{2.12}$$

Efektivna vrijednost struje kroz otpor I_{R1} računa se prema izrazu (2.13), koja je potrebna pri izračunu odsječaka induktiviteta. Bitno je primijetiti kako je omjer vršne i efektivne struje otpora $\sqrt{2}$, ovaj omjer ne mora vrijedit za struje dobivene preslikavanjem preko ostalih odsječaka.

$$I_{R1} = \sqrt{\frac{4}{T}} \int_{0}^{T/4} \hat{i}_{R}^{2} dt = \sqrt{\frac{4}{T}} \int_{0}^{T/4} \left(G_{1}u_{1}\right)^{2} dt = \sqrt{\frac{4}{T}} \int_{0}^{T/4} \left(G_{1}\hat{U}_{1}\sin\left(\omega t\right)\right)^{2} dt = G_{1}U_{1}$$
(2.13)

Moguće je \hat{I}_{R1} i I_{R1} dobit na jednostavniji način, fazorskom transformacijom, ali samo za prvi odsječak. Fazorska transformacija je ograničena na linearne mreže.

2.2.2. Drugi odsječak karakteristike otpora

Slika 2.6. Prva dva odsječka karakteristike otpora

Prva dva odsječka karakteristike otpora u prvom kvadrantu imaju jednadžbe prema (2.14) i (2.15). Parametri koji određuju prvi odsječak $(\hat{U}_1, \hat{I}_{R1})$ su poznati iz prethodnog razmatranja, isto tako poznati su rezultati mjerenja $(U_0, I_0, P_0); (U_1, I_1, P_1); (U_2, I_2, P_2)$. U ovom, drugom, koraku potrebno je odrediti parametre drugog odsječka $(\hat{U}_2, \hat{I}_{R2})$. Parametar \hat{U}_2 se jednostavno odredi iz izmjerenog efektivnog napona U_2 prema izrazu (2.16). Kako bi se odredio drugi parametar \hat{I}_{R2} potrebno je krenut od izraza (2.17) za djelatnu snagu.

$$i_{R1} = G_1 u_R \quad u_R \in \left[0, \hat{U}_1\right] \tag{2.14}$$

$$\dot{i}_{R2} = G_2(u_R - \hat{U}_1) + \hat{I}_{R1} \quad u_R \in \left[\hat{U}_1, \hat{U}_2\right]$$
(2.15)

$$\hat{U}_2 = \sqrt{2}U_2$$
 (2.16)

$$P_{2} = \frac{4}{T} \left\{ \int_{0}^{t_{R1}} u_{2} i_{R1} dt + \int_{t_{R1}}^{T_{4}} u_{2} i_{R2} dt \right\} = \frac{4}{T} \left\{ \int_{0}^{t_{R1}} G_{1} u_{2}^{2} dt + \int_{t_{R1}}^{T_{4}} u_{2} \left[G_{2} (u_{2} - \hat{U}_{1}) + \hat{I}_{R1} \right] dt \right\}$$
(2.17)

Izraz (2.17) sastoji se od dva integrala jer struja koja protječe nelinearnim otporom određuje se preko različitih odsječaka zadanih izrazima (2.14) i (2.15). Struja otpora dobiva se preslikavanjem napona preko prvog odsječka sve dok je trenutna vrijednost napona izvora manja ili jednaka od \hat{U}_1 , nakon čega prelazi na drugi odsječak. Slično se može pokazati i za vremenske intervale, odnosno na vremenskom intervalu $[0, t_{R1}]$ struja je rezultat preslikavanja napona preko prvog odsječka, dok je na intervalu $[t_{R1}, T/4]$ rezultat preslikavanja preko drugog odsječka. Trenutak t_{R1} je određen prelaskom s prvog odsječka na drugi prema jednadžbama (2.18) i (2.19). Detaljniji prikaz nalazi se na slici (2.6.).

$$u_2(t_{R1}) = \hat{U}_1 \tag{2.18}$$

$$t_{R1} = \frac{1}{\omega} \sin^{-1} \frac{U_1}{U_2} \quad t_{R1} \in \left[0, \frac{T}{4}\right]$$
(2.19)

Iz jednadžbe (2.17) moguće je izračunati nagib drugog odsječka G_2 i zatim izračunati \hat{I}_{R2} prema izrazu (2.20). Ovdje nije izveden izraz za izračun G_2 zato što će se u sljedećem razmatranju svi izrazi poopćiti za bilo koji odsječak.

$$\hat{I}_{R2} = \sqrt{2}G_2(U_2 - U_1) + \hat{I}_{R1}$$
(2.20)

Slično kao u slučaju jednog odsječka moguće je izračunati efektivnu vrijednost struje otpora, prema izrazu (2.21), nakon što se odrede parametri drugog odsječka.

$$I_{R2}^{2} = \frac{4}{T} \left\{ \int_{0}^{t_{R1}} \left(G_{1}u_{2} \right)^{2} dt + \int_{t_{R1}}^{T/4} \left[G_{2}(u_{R} - \hat{U}_{1}) + \hat{I}_{R1} \right]^{2} dt \right\}$$
(2.21)

2.2.3. Poopćenje izračuna karakteristike otpora

Poopćenje izraza se temelji na iterativnom postupku, tj. kako bi se izračunali parametri koji određuju k-ti (k = 1, 2, ..., n) odsječak $(\hat{U}_k, \hat{I}_{Rk})$ potrebno je uvažiti k prethodno izračunatih i pretpostavljenih vrhova odsječaka karakteristike otpora $(0,0); (\hat{U}_1, \hat{I}_{R1}); ... (\hat{U}_{k-1}, \hat{I}_{R(k-1)})$ i prvih k+1 mjerenja $(U_0, I_0, P_0); (U_1, I_1, P_1); ... (U_k, I_k, P_k)$. Dakle izračun vrha $(\hat{U}_k, \hat{I}_{Rk})$ ne ovsi o mjerenjima s indeksima većim od k.

Neka je napon izvora u *k*-toj iteraciji dan izrazom (2.22), a jednadžba *z*-tog odsječka izrazom (2.23).

$$u_k(t) = \hat{U}_k \sin\left(\omega t\right) = \sqrt{2}U_k \sin\left(\omega t\right)$$
(2.22)

$$i_{Rz} = G_z(u_R - \hat{U}_{z-1}) + \hat{I}_{R(z-1)} \quad u_R \in \left[\hat{U}_{z-1}, \hat{U}_z\right]$$
(2.23)

Tada se nepoznanica \hat{U}_k računa prema izrazu (2.24).

$$\hat{U}_k = \sqrt{2}U_k \tag{2.24}$$

Kako bi se odredila nepoznanica \hat{I}_{Rk} potrebno je krenuti od jednadžbe za djelatnu snagu, dakle djelatna snaga P_k koju troši zavojnica određena je izrazom (2.25), odnosno izrazom (2.26). Znak sumacije u izrazu (2.25) se pojavljuje jer se struja u *k*-toj iteraciji dobiva preslikavanjem napona preko *k* različitih odsječaka. Izraz (2.26) je prikladnije zapisan izraz (2.25).

$$P_{k} = \frac{4}{T} \sum_{z=1}^{k} \int_{t_{R(z-1,k)}}^{t_{R(z,k)}} u_{k} i_{Rz} dt = \frac{4}{T} \sum_{z=1}^{k} \int_{t_{R(z-1,k)}}^{t_{R(z,k)}} u_{k} \left[G_{z} (u_{k} - \hat{U}_{z-1}) + \hat{I}_{R(z-1)} \right] dt$$
(2.25)

$$P_{k} = \frac{4}{T} \sum_{z=1}^{k} U_{k} \left[2G_{z} (U_{k}A_{z,k} - U_{z-1}B_{z}) + \sqrt{2}\hat{I}_{R(z-1)}B_{z,k} \right]$$
(2.26)

$$A_{z,k} = \frac{1}{2\omega} \left[\arcsin\frac{U_z}{U_k} - \frac{1}{2} \sin\left(2\arcsin\frac{U_z}{U_k}\right) - \arcsin\frac{U_{z-1}}{U_k} + \frac{1}{2} \sin\left(2\arcsin\frac{U_{z-1}}{U_k}\right) \right] \quad (2.27)$$

$$B_{z,k} = -\frac{1}{\omega} \left[\cos\left(\arcsin\frac{U_z}{U_k} \right) - \cos\left(\arcsin\frac{U_{z-1}}{U_k} \right) \right]$$
(2.28)

$$t_{R(z,k)} = \frac{1}{\omega} \sin^{-1} \frac{U_z}{U_k} \quad t_{R(z,k)} \in \left[0, \frac{T}{4}\right]$$
(2.29)

Izraz za nagib k-tog odsječka G_k je jedina nepoznanica u izrazu (2.26) i može se izračunati prema (2.30).

$$G_{k} = \frac{\frac{TP_{k}}{4U_{k}} - \sqrt{2}\hat{I}_{R(k-1)}B_{k,k} - \sum_{z=1}^{k-1} \left[2G_{z}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) + \sqrt{2}\hat{I}_{R(z-1)}B_{z,k}\right]}{2U_{k}A_{k,k} - 2U_{k-1}B_{k,k}}$$
(2.30)

Kada je poznata vrijednost nagiba k-tog odsječka G_k moguće je odrediti \hat{I}_{Rk} prema (2.31), što je cilj.

$$\hat{I}_{Rk} = \sqrt{2}G_k \left(U_k - U_{k-1} \right) + \hat{I}_{R(k-1)}$$
(2.31)

Bitno je primijetiti kako karakteristika otpora ovisi samo o izmjerenim efektivnim naponima i djelatnim snagama, dok uopće ne ovisi o izmjerenim efektivnim strujama.

Kako će za poopćeni izračun karakteristike induktiviteta biti potrebna efektivna vrijednost struje kroz otpor I_{Rk} potrebni su slijedeći izrazi:

$$I_{Rk}^{2} = \frac{4}{T} \sum_{z=1}^{k} \int_{t_{z-1,k}}^{t_{z,k}} \left[G_{z}(u_{k} - \hat{U}_{z-1}) + \hat{I}_{R(z-1)} \right]^{2} dt$$
(2.32)

Prikladniji zapis izraza (2.32) je sljedeći izraz:

$$I_{Rk}^{2} = \frac{4}{T} \sum_{z=1}^{k} \left[2G_{z}^{2}U_{k}^{2}A_{z,k} - 2\sqrt{2}G_{z}U_{k} \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)}\right)B_{z,k} + \left(2G_{z}^{2}U_{z-1}^{2} - 2\sqrt{2}G_{z}U_{z-1}\hat{I}_{R(z-1)} + \hat{I}_{R(z-1)}^{2}\right)E_{z,k} \right] (2.33)$$

$$E_{z,k} = \frac{1}{\omega} \left[\arcsin\frac{U_{z}}{U_{k}} - \arcsin\frac{U_{z-1}}{U_{k}} \right]$$

$$(2.34)$$

2.3. KARAKTERISTIKA INDUKTIVITETA

2.3.1. Prvi odsječak karakteristike induktiviteta

Kako je jedna od veličina koja definira karakteristiku induktiviteta tok, potrebno ga je definirati prema [18]. Valni oblik toka (slika 2.7.) u stacionarnom stanju zadan je prema izrazu:

Slika 2.7. Valni oblik napona i toka u periodičkom (stacionarnom) režimu

Prvi odsječak karakteristike induktiviteta (slika 2.8.) u trećem kvadrantu zadan je jednadžbom (2.36), ali parametar L_1 je nepoznat. Svaki odsječak je određen s dvije točke. Prva točka prvog odsječka je ishodište, dok su koordinate $\left(-\hat{\Phi}_1, -\hat{I}_{L1}\right)$ druge točke nepoznate, a mogu se izračunati iz rezultata prvog mjerenja, odnosno iz (U_1, I_1, P_1) i prethodno izračunate karakteristike otpora, odnosno iz efektivne vrijednosti struje otpora I_{R1} izračunate prema (2.13). Dakle, prva nepoznanica $\hat{\Phi}_1$ može se jednostavno dobiti prema (2.37).

$$i_{L1} = \frac{1}{L_1} \varphi \quad \varphi \in \left[-\hat{\Phi}_1, 0 \right]$$
(2.36)

$$\hat{\Phi}_1 = \frac{U_1 \sqrt{2}}{\omega} \tag{2.37}$$

Slika 2.8. Prvi odsječak karakteristike induktiviteta

Izračun druge nepoznanice \hat{I}_{L1} prvog odsječka induktiviteta temelji se na dva izraza za efektivnu vrijednost struje induktiviteta I_{L1} . Prvi izraz (2.38) služi kako bi se izračunala efektivna struja induktiviteta I_{L1} na temelju poznavanja efektivne struje I_1 i efektivne struje otpora I_{R1} . Izraz (2.38) je dobro poznat iz fazorskog računa. Kako se u prvoj iteraciji struje otpora i induktiviteta preslikavaju samo preko jednog odsječka ispunjen je zahtjev fazorske transformacije da mreža mora biti linearna.

$$I_{L1} = \sqrt{I_1^2 - I_{R1}^2} \tag{2.38}$$

Drugi izraz (2.39) za efektivnu struju temelji se na trenutnoj struji induktiviteta koja se dobije preslikavanjem trenutnog toka preko prvog odsječka. U izrazu (2.39) jedina nepoznanica je L_1 .

$$I_{L1} = \sqrt{\frac{4}{T}} \int_{0}^{T/4} i_{L1}^{2} dt = \sqrt{\frac{4}{T}} \int_{0}^{T/4} \left(\frac{\varphi_{1}}{L_{1}}\right)^{2} dt = \sqrt{\frac{4}{T}} \int_{0}^{T/4} \left(\frac{-\hat{\Phi}_{1} \cos\left(\omega t\right)}{L_{1}}\right)^{2} dt$$
(2.39)

Sređivanjem izraza (2.39) slijedi izraz (2.40) s pomoću kojega se može odrediti L_1 .

$$L_{1} = \frac{U_{1}}{\omega I_{L1}}$$
(2.40)

Kako bi se odredila ordinata vrha prvog odsječka \hat{I}_{L1} , što je i cilj ovog razmatranja, koristi se izraz (2.41).

$$\hat{I}_{L1} = \frac{\hat{U}_1}{\omega L_1}$$
(2.41)

2.3.2. Drugi odsječak karakteristike induktiviteta

Slika 2.9. Drugi odsječak karakteristike induktiviteta

Prva dva odsječka karakteristike induktiviteta u trećem kvadrantu (slika 2.9.) imaju jednadžbe prema (2.42) i (2.43). Koordinate koje određuju prvi odsječak $(\hat{\Phi}_1, \hat{I}_{L1})$ poznate su iz prethodne iteracije, a time i parametri koji određuju jednadžbu prvog odsječak prema (2.42). Još su poznati rezultati prvog i drugog mjerenja $(U_1, I_1, P_1); (U_2, I_2, P_2)$ i vrijednosti efektivne struje otpora za prvu i drugu iteraciju I_{R1} i I_{R2} . U ovoj, drugoj, iteraciji potrebno je odrediti koordinate $(\hat{\Phi}_2, \hat{I}_{L2})$ koje određuju drugi odsječak, a time i parametre jednadžbe (2.43) drugog odsječka.

$$i_{L1} = \frac{1}{L_1} \varphi \quad \varphi \in \left[-\hat{\Phi}_1, 0 \right]$$
(2.42)

$$i_{L2} = \frac{1}{L_2} \left(\varphi + \hat{\Phi}_1 \right) - \hat{I}_{L1} \quad \varphi \in \left[-\hat{\Phi}_2, -\hat{\Phi}_1 \right]$$
(2.43)

Koordinata $\hat{\Phi}_2$ se jednostavno odredi iz izmjerenog efektivnog napona U_2 prema izrazu (2.44).

$$\hat{\Phi}_2 = \frac{U_2\sqrt{2}}{\omega} \tag{2.44}$$

Kako bi se odredio drugi parametar \hat{I}_{L2} potrebno je krenuti od dva izraza za efektivnu struju induktiviteta. Na temelju prvog izraza (2.45) može se izračunati efektivna struja induktiviteta I_{L2} , jer su efektivna struja I_2 i efektivna struja otpora I_{R2} poznate. Efektivna struja I_2 je poznata iz mjerenja, a efektivna struja otpora I_{R2} je poznata iz jednadžbe (2.21), koja je izvedena kod izračuna karakteristike otpora. Izraz (2.45) je ispravno primijeniti i u ovom slučaju, iako nije ispunjen uvjet o linearnoj mreži (u ovom slučaju se struje otpora i induktiviteta preslikavaju preko dva odsječka). Razlog primjenjivosti izraz (2.45) je ortogonalnost struja otpora i induktiviteta, što je nužan uvjet, dok je uvjet linearnosti mreže dovoljan.

$$I_{L2} = \sqrt{I_2^2 - I_{R2}^2} \tag{2.45}$$

Drugi izraz za struju induktiviteta (2.46), izveden je na temelju trenutne struje induktiviteta. Trenutna struja induktiviteta dobiva se preslikavanjem trenutnog toka preko dva odsječka karakteristike induktiviteta, prema izrazima (2.42) i (2.43), što je ujedno razlog zbog kojega se izraz (2.46) sastoji od dva integrala. Struja induktiviteta dobiva se preslikavanjem toka preko prvog odsječka u trećem kvadrantu sve dok je trenutna vrijednost toka unutar segmenta $\left[-\hat{\Phi}_1, 0\right]$, nakon čega prelazi na drugi odsječak. Slično se može pokazati i za vremenske intervale, odnosno na vremenskom intervalu $\left[0, t_{L1}\right]$ struja je preslika toka preko prvog odsječka dok je na intervalu $\left[t_{L1}, T/4\right]$ preslika toka preko drugog odsječka. Trenutak t_{L1} je određen prelaskom s prvog odsječka na drugi prema jednadžbama (2.47) i (2.48). Detaljniji prikaz nalazi se na slici 2.9.

$$I_{L2}^{2} = \frac{4}{T} \left\{ \int_{t_{L1}}^{T/4} \left(\frac{\varphi_{2}}{L_{1}} \right)^{2} dt + \int_{0}^{t_{L1}} \left[\frac{1}{L_{2}} \left(\varphi_{2} + \hat{\Phi}_{1} \right) - \hat{I}_{L1} \right]^{2} dt \right\}$$
(2.46)

 $\varphi_2(t_{L1}) = -\hat{\Phi}_1 \tag{2.47}$

$$t_{L1} = \frac{1}{\omega} \cos^{-1} \frac{U_1}{U_2}$$
(2.48)

U izrazu (2.46) jedina nepoznanica je L_2 . Izraz za izračun L_2 ovdje nije naveden jer će se u sljedećim razmatranjima izvesti poopćeni izraz koji će vrijedit za L_k , iz kojega se jednostavno dolazi do izraza za L_2 uvrštavanjem k = 2. Kako bi se konačno izračunala nepoznanica \hat{I}_{L2} koja definira vrh drugog odsječka koristi se izraz (2.49).

$$\hat{I}_{L2} = \frac{\sqrt{2}}{\omega L_2} \left(U_2 - U_1 \right) + \hat{I}_{L1}$$
(2.49)

2.3.3. Poopćenje izračuna karakteristike induktiviteta

Poopćenje izraza se temelji na iterativnom postupku, tj. kako bi se izračunali parametri koji određuju *k*-ti odsječak $(\hat{\Phi}_k, \hat{I}_{Lk})$ potrebno je uvažiti parametre svih *k* prethodno izračunatih i pretpostavljenih vrhova odsječaka karakteristike induktiviteta $(0,0); (\hat{\Phi}_1, \hat{I}_{L1}); \cdots (\hat{\Phi}_{k-1}, \hat{I}_{L(k-1)}),$ prvih *k* mjerenja $(U_0, I_0, P_0); (U_1, I_1, P_1); \cdots (U_k, I_k, P_k)$ i prvih *k* efektivnih struja otpora $I_{R1}; I_{R2}; \cdots I_{Rk}$ izračunatih prema (2.32). Bitno je primijetiti kako je za izračun karakteristike induktiviteta potrebno prethodno izračunat karakteristiku otpora.

Neka je trenutni tok u *k*-toj iteraciji zadan izrazom (2.50) i neka je jednadžba *z*-tog odsječka u trećem kvadrantu zadana izrazom (2.51). Tada se prva koordinata *k*-tog odsječka $\hat{\Phi}_k$ može izračunati samo na temelju poznavanja izmjerenog efektivnog napona U_k i kružne frekvencije izvora ω prema (2.52).

$$\varphi_k(t) = -\frac{U_k \sqrt{2}}{\omega} \cos(\omega t)$$
(2.50)

$$\dot{I}_{Lz} = \frac{1}{L_z} \left(\varphi + \hat{\Phi}_{z-1} \right) - \hat{I}_{L(z-1)} \quad \varphi \in \left[-\hat{\Phi}_z, -\hat{\Phi}_{z-1} \right]$$
(2.51)

$$\hat{\Phi}_{k} = \frac{U_{k}\sqrt{2}}{\omega} \tag{2.52}$$

Pri izračunu druge nepoznate koordinate \hat{I}_{Lk} potrebno je napisati dva izraza za efektivnu vrijednost struje induktiviteta (2.53) i (2.54). Odnosno, prema izrazu (2.53) izračunati efektivnu

struju induktiviteta I_{Lk} na temelju izmjerene efektivne struje I_k i izračunate, prema (2.32), efektivne struje otpora I_{Rk} i uvrstiti je u jednadžbu (2.54). Izraz (2.53) je opravdan zbog ortogonalnosti struja otpora i induktiviteta (bez daljnjeg dokazivanja).

$$I_{Lk} = \sqrt{I_{k}^{2} - I_{Rk}^{2}}$$
(2.53)

$$I_{Lk}^{2} = \frac{4}{T} \sum_{z=1}^{k} \int_{t_{L(z,k)}}^{t_{L(z-1,k)}} \left[\frac{1}{L_{z}} \left(\varphi_{k} + \hat{\Phi}_{z-1} \right) - \hat{I}_{L(z-1)} \right]^{2} dt$$
(2.54)

U izrazu (2.54) se pojavljuje znak sumacije jer se trenutna vrijednost struje induktiviteta dobiva preslikavanjem toka preko k različitih odsječaka, a svaki odsječak ima drukčije parametre. Granice integracije u izrazu (2.54) određene su prelascima trenutnog toka preko lomnih točaka karakteristike induktiviteta prema (2.55).

$$t_{L(z,k)} = \frac{1}{\omega} \cos^{-1} \frac{U_z}{U_k}$$
(2.55)

Izraz (2.56) je prikladniji zapis izraza (2.54).

$$I_{Lk}^{2} = \frac{4}{T} \sum_{z=1}^{k} S_{z,k}$$
(2.56)

$$S_{z,k} = \left(\frac{\hat{U}_{k}}{\omega L_{z}}\right)^{2} C_{z,k} - \frac{2\hat{U}_{k}}{\omega L_{z}} \left(\frac{\hat{U}_{z-1}}{\omega L_{z}} - \hat{I}_{L(z-1)}\right) D_{z,k} + \left[\left(\frac{\hat{U}_{z-1}}{\omega L_{z}}\right)^{2} - \frac{2\hat{I}_{L(z-1)}\hat{U}_{z-1}}{\omega L_{z}} + \hat{I}_{L(z-1)}^{2}\right] F_{z,k}$$

$$C_{z,k} = \frac{1}{2\omega} \left[\arccos \frac{U_{z-1}}{U_{k}} + \frac{1}{2} \sin \left(2 \arccos \frac{U_{z-1}}{U_{k}}\right) - \arccos \frac{U_{z}}{U_{k}} - \frac{1}{2} \sin \left(2 \arccos \frac{U_{z}}{U_{k}}\right) \right] (2.57)$$

$$D_{z,k} = \frac{1}{\omega} \left[\sin \left(\arccos \frac{U_{z-1}}{U_{k}}\right) - \sin \left(\arccos \frac{U_{z}}{U_{k}}\right) \right] (2.58)$$

$$F_{z,k} = \frac{1}{\omega} \left[\arccos \frac{U_{z-1}}{U_k} - \arccos \frac{U_z}{U_k} \right]$$
(2.59)

Kako je u izrazu (2.56) jedina nepoznanica L_k moguće ju je izračunati. Bitno je uočiti da se nepoznanica L_k nalazi u nazivniku, zbog čega se uvodi supstitucija prema (2.60). Nakon uvođena supstitucije u izraz (2.56) i sređivanja dobije se izraz (2.61).

$$y_k = \frac{1}{\omega L_k} \tag{2.60}$$

$$a_{k}y_{k}^{2} + b_{k}y_{k} + c_{k} = 0$$

$$a_{k} = 2\left(U_{k}^{2}C_{k,k} - 2U_{k}U_{k-1}D_{k,k} + U_{k-1}^{2}F_{k,k}\right)$$

$$b_{k} = 2\sqrt{2}\hat{I}_{L(k-1)}\left(U_{k}D_{k,k} - U_{k-1}F_{k,k}\right)$$

$$c_{k} = \hat{I}_{L(k-1)}^{2}F_{k,k} - \frac{T}{4}I_{Lk}^{2} + \sum_{z=1}^{k-1}S_{z,k}$$

$$(2.61)$$

Rješavanjem kvadratne jednadžbe (2.61) dobiju se dva rješenja, ali jedno je nefizikalno. Odnosno, izraz za y_k (fizikalno rješenje) je dan prema (2.62), zatim se s pomoću supstitucije (2.60) može se izračunati L_k .

$$y_{k} = \frac{-b_{k} + \sqrt{b_{k}^{2} - 4a_{k}c_{k}}}{2a_{k}}$$
(2.62)

Kako bi se odredila ordinata \hat{I}_k vrha koji određuje k-ti odsječak koristi se izraz (2.63).

$$\hat{I}_{Lk} = \sqrt{2} y_k \left(U_k - U_{k-1} \right) + \hat{I}_{L(k-1)}$$
(2.63)

3. MJERNA NESIGURNOST KARAKTERISTIKA

3.1. Analitički izračun mjerne nesigurnosti karakteristike otpora i induktiviteta

Prema razmatranjima iz 1. poglavlja može se nacrtati blok dijagram sustava kojim se mjerna nesigurnost širi, slika 3.1.

Slika 3.1. Blok dijagram sustava s više ulaza i više izlaza u vektorskom obliku

Neka su vektori **x** i **y** oblika prema (3.1). U ulaznom vektoru se nalaze izmjerene vrijednosti dok su u izlaznom vektoru složeni parametri koji definiraju karakteristiku otpora (\hat{U}_k, \hat{I}_{Rk} $k = 1, 2, \dots, n$) i karakteristiku induktiviteta ($\hat{\Phi}_k, \hat{I}_{Lk}$ $k = 1, 2, \dots, n$).

$$\mathbf{x} = \begin{bmatrix} U_1 & U_2 & \cdots & U_n \mid I_1 & I_2 & \cdots & I_n \mid P_1 & P_2 & \cdots & P_n \end{bmatrix}^T$$
$$\mathbf{y} = \begin{bmatrix} \hat{U}_1 & \hat{U}_2 & \cdots & \hat{U}_n \mid \hat{I}_{R1} & \hat{I}_{R2} & \cdots & \hat{I}_{Rn} \mid \hat{\Phi}_1 & \hat{\Phi}_2 & \cdots & \hat{\Phi}_n \mid \hat{I}_{L1} & \hat{I}_{L2} & \cdots & \hat{I}_{Ln} \end{bmatrix}^T (3.1)$$

Neka je zadana matrica kovarijanci ulaznih varijabli C_x tada se matrica kovarijanci C_y izlaznih varijabli može izraziti prema (3.2). U nastavku su matrice C_x , **J** i C_y raspisane.

$$\mathbf{C}_{\mathbf{y}} = \mathbf{J}\mathbf{C}_{\mathbf{x}}\mathbf{J}^{T} \tag{3.2}$$

Matrica \mathbf{C}_x može se zapisati pomoću blok matrica:

$$\mathbf{C}_{x} = \begin{bmatrix} \mathbf{C}_{UU} & \mathbf{C}_{UI} & \mathbf{C}_{UP} \\ \hline \mathbf{C}_{IU} & \mathbf{C}_{II} & \mathbf{C}_{IP} \\ \hline \mathbf{C}_{PU} & \mathbf{C}_{PI} & \mathbf{C}_{PP} \end{bmatrix}$$
(3.4)

Matrica **J** ima oblik:

	$\partial \hat{U_1}$	$\partial \hat{U_1}$		$\underline{\partial \hat{U_1}}$	$\underline{\partial \hat{U_1}}$	$\underline{\partial \hat{U_1}}$		$\partial \hat{U_1}$	$\underline{\partial \hat{U_1}}$	$\underline{\partial \hat{U_1}}$	•••	$\partial \hat{U_1}$
	∂U_1	∂U_2		∂U_n	∂I_1	∂I_2		∂I_n	∂P_1	∂P_2		∂P_n
	$\partial \hat{U}_2$	$\partial \hat{U}_2$		$\partial \hat{U}_2$	$\underline{\partial \hat{U}_2}$	$\underline{\partial \hat{U}_2}$		$\partial \hat{U}_2$	$\partial \hat{U}_2$	$\underline{\partial \hat{U}_2}$		$\underline{\partial \hat{U}_2}$
	∂U_1	∂U_2		∂U_n	∂I_1	∂I_2		∂I_n	∂P_1	∂P_2		∂P_n
	:	:	·.	÷	:	:	•••	÷		:	·.	:
	$\partial \hat{U}_n$	$\partial \hat{U}_n$		$\partial \hat{U}_n$	$\partial \hat{U}_n$	$\frac{\partial \hat{U}_n}{\partial \hat{U}_n}$	$\partial \hat{U}_n$	$\partial \hat{U}_n$	$\partial \hat{U}_n$		$\partial \hat{U}_n$	
	∂U_1	$\overline{\partial U_2}$		∂U_n	∂I_1	∂I_2		∂I_n	∂P_1	∂P_2		∂P_n
	$\partial \hat{I}_{R1}$	$\partial \hat{I}_{R1}$		$\partial \hat{I}_{R1}$	$\partial \hat{I}_{R1}$	$\partial \hat{I}_{R1}$		$\partial \hat{I}_{R1}$	$\partial \hat{I}_{R1}$	$\partial \hat{I}_{R1}$		$\partial \hat{I}_{R1}$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$		∂U_n	∂I_1	∂I_2		∂I_n	∂P_1	∂P_2		∂P_n
	$\partial \hat{I}_{R2}$	$\partial \hat{I}_{R2}$		$\partial \hat{I}_{R2}$	$\partial \hat{I}_{R2}$	$\partial \hat{I}_{R2}$		$\partial \hat{I}_{R2}$	$\partial \hat{I}_{R2}$	$\partial \hat{I}_{R2}$		$\partial \hat{I}_{R2}$
	∂U_1	$\overline{\partial U_2}$		∂U_n	∂I_1	∂I_2		∂I_n	∂P_1	∂P_2		∂P_n
	:	÷	·.	:		÷	·.	÷		÷	•••	:
	$\partial \hat{I}_{Rn}$	$\partial \hat{I}_{_{Rn}}$		$\partial \hat{I}_{Rn}$	$\partial \hat{I}_{Rn}$	$\partial \hat{I}_{_{Rn}}$		$\partial \hat{I}_{Rn}$	$\partial \hat{I}_{Rn}$	$\partial \hat{I}_{\scriptscriptstyle Rn}$		$\partial \hat{I}_{Rn}$
τ_	$\overline{\partial U_1}$	$\overline{\partial U_2}$		$\overline{\partial U_n}$	∂I_1	∂I_2	•••	∂I_n	∂P_1	∂P_2		∂P_n
J –	$\partial \hat{\Phi}_1$	$\partial \hat{\Phi}_1$		$\partial \hat{\Phi}_1$	$\partial \hat{\Phi}_1$	$\partial \hat{\Phi}_1$		$\partial \hat{\Phi}_1$	$\partial \hat{\Phi}_1$	$\partial \hat{\Phi}_1$		$\partial \hat{\Phi}_1$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$		∂U_n	∂I_1	∂I_2		∂I_n	∂P_1	∂P_2		∂P_n
	$\partial \hat{\Phi}_2$	$\partial \hat{\Phi}_2$		$\partial \hat{\Phi}_2$	$\partial \hat{\Phi}_2$	$\partial \hat{\Phi}_2$		$\partial \hat{\Phi}_2$	$\partial \hat{\Phi}_2$	$\partial \hat{\Phi}_2$		$\partial \hat{\Phi}_2$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$	•••	$\overline{\partial U_n}$	∂I_1	∂I_2	•••	∂I_n	∂P_1	∂P_2	•••	∂P_n
	÷	÷	۰.	÷		÷	·.	÷		÷	·.	÷
	$\partial \hat{\Phi}_n$	$\partial \hat{\Phi}_n$		$\partial \hat{\Phi}_n$	$\partial \hat{\Phi}_n$	$\partial \hat{\Phi}_n$		$\partial \hat{\Phi}_n$	$\partial \hat{\Phi}_n$	$\partial \hat{\Phi}_n$		$\partial \hat{\Phi}_n$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$	•••	$\overline{\partial U_n}$	∂I_1	∂I_2	•••	∂I_n	∂P_1	∂P_2	•••	∂P_n
	$\partial \hat{I}_{L1}$	$\partial \hat{I}_{L1}$		$\partial \hat{I}_{L1}$	$\partial \hat{I}_{L1}$	$\partial \hat{I}_{L1}$		$\partial \hat{I}_{L1}$	$\partial \hat{I}_{L1}$	$\partial \hat{I}_{L1}$		$\partial \hat{I}_{L1}$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$	•••	$\overline{\partial U_n}$	∂I_1	$\overline{\partial I_2}$	∂I_n	∂P_1	∂P_2	•••	∂P_n	
	$\partial \hat{I}_{L2}$	$\partial \hat{I}_{L2}$		$\partial \hat{I}_{L2}$	$\partial \hat{I}_{L2}$	$\partial \hat{I}_{L2}$		$\partial \hat{I}_{L2}$	$\partial \hat{I}_{L2}$	$\partial \hat{I}_{L2}$		$\partial \hat{I}_{L2}$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$	•••	$\overline{\partial U_n}$	∂I_1	∂I_2	•••	∂I_n	∂P_1	∂P_2	•••	∂P_n
	÷	÷	۰.	÷	÷	÷	·.	÷	:	÷	·.	÷
	$\partial \hat{I}_{Ln}$	$\partial \hat{I}_{Ln}$		$\partial \hat{I}_{Ln}$	$\partial \hat{I}_{Ln}$	$\partial \hat{I}_{Ln}$		$\partial \hat{I}_{Ln}$	$\partial \hat{I}_{Ln}$	$\partial \hat{I}_{_{Ln}}$		$\partial \hat{I}_{Ln}$
	$\overline{\partial U_1}$	$\overline{\partial U_2}$	•••	$\overline{\partial U_n}$	∂I_1	∂I_2	•••	∂I_n	∂P_1	∂P_2	•••	∂P_n

Dakle, potrebno je odrediti elemente matrice **J** na temelju matematičkog modela izvedenog u 2. poglavlju. Moguća su dva načina izračuna, analitički i numerički (poglavlja 3.1.1. i 3.1.2.). Zbog kraćeg zapisa matrice **J** mogu se koristiti blok matrice.

$$\mathbf{J} = \begin{bmatrix} \mathbf{J}_{\hat{U}U} & \mathbf{J}_{\hat{U}I} & \mathbf{J}_{\hat{U}P} \\ \mathbf{J}_{\hat{I}_{R}U} & \mathbf{J}_{\hat{I}_{R}I} & \mathbf{J}_{\hat{I}_{R}P} \\ \mathbf{J}_{\hat{\Phi}U} & \mathbf{J}_{\hat{\Phi}I} & \mathbf{J}_{\hat{\Phi}P} \\ \mathbf{J}_{\hat{I}_{L}U} & \mathbf{J}_{\hat{I}_{L}I} & \mathbf{J}_{\hat{I}_{L}P} \end{bmatrix}$$
(3.5)

Matrica kovarijanci izlaznih varijabli \mathbf{C}_{y} ima oblik:

$$\mathbf{C}_{y} = \begin{bmatrix} \sigma_{\dot{u}_{1}\dot{u}_{1}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{2}}^{2} & \cdots & \sigma_{\dot{u}_{1}\dot{u}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{k}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{k}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{k}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{k}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{n}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{1}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{1}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{1}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{1}}^{2} & \sigma_{\dot{u}_{1}\dot{u}_{n}}^{2} & \sigma_$$

Zapis matrice \mathbf{C}_{y} s pomoću blok matrica je:

$$\mathbf{C}_{y} = \begin{bmatrix} \mathbf{C}_{\hat{U}\hat{U}} & \mathbf{C}_{\hat{U}\hat{l}_{R}} & \mathbf{C}_{\hat{U}\hat{h}_{R}} & \mathbf{C}_{\hat{U}\hat{l}_{L}} \\ \mathbf{C}_{\hat{l}_{R}\hat{U}} & \mathbf{C}_{\hat{l}_{R}\hat{l}_{R}} & \mathbf{C}_{\hat{l}_{R}\hat{\Phi}} & \mathbf{C}_{\hat{l}_{R}\hat{l}_{L}} \\ \hline \mathbf{C}_{\hat{\Phi}\hat{U}} & \mathbf{C}_{\hat{\Phi}\hat{l}_{R}} & \mathbf{C}_{\hat{\Phi}\hat{\Phi}} & \mathbf{C}_{\hat{\Phi}\hat{l}_{L}} \\ \hline \mathbf{C}_{\hat{l}_{L}\hat{U}} & \mathbf{C}_{\hat{l}_{L}\hat{l}_{R}} & \mathbf{C}_{\hat{l}_{L}\hat{h}_{R}} & \mathbf{C}_{\hat{l}_{L}\hat{\Phi}} & \mathbf{C}_{\hat{l}_{L}\hat{l}_{L}} \end{bmatrix}$$
(3.6)

Kako su karakteristike otpora i induktiviteta određene uređenim parovima $(\hat{U}_k, \hat{I}_{Rk})$ $(\hat{\Phi}_k, \hat{I}_{Lk})$ $k = 1, 2, \dots, n$, mjerna nesigurnost pojedinog uređenog para određena je pripadnom matricom kovarijanci, dimenzija 2×2, koja se sastoji od elemenata matrice \mathbf{C}_y . Neka matrica \mathbf{C}_{Rk} pripada uređenom paru $(\hat{U}_k, \hat{I}_{Rk})$, a matrica \mathbf{C}_{Lk} uređenom paru $(\hat{\Phi}_k, \hat{I}_{Lk})$.

$$\mathbf{C}_{Rk} = \begin{bmatrix} \sigma_{\hat{U}_k \hat{U}_k}^2 & \sigma_{\hat{U}_k \hat{I}_{Rk}} \\ \sigma_{\hat{I}_{Rk} \hat{U}_k} & \sigma_{\hat{I}_{Rk} \hat{I}_{Rk}}^2 \end{bmatrix} \quad \mathbf{C}_{Lk} = \begin{bmatrix} \sigma_{\hat{\Phi}_k \hat{\Phi}_k}^2 & \sigma_{\hat{\Phi}_k \hat{I}_{Lk}} \\ \sigma_{\hat{I}_{Lk} \hat{\Phi}_k} & \sigma_{\hat{I}_{Lk} \hat{I}_{Lk}}^2 \end{bmatrix}$$
(3.7)

Poznavanjem lomnih točaka i pripadnih matrica kovarijanci svaka lomna točka se može procijeniti dvodimenzionalnom normalnom razdiobom.

3.1.1 Analitički izračun faktora utjecajnosti (osjetljivosti)

Izračun elemenata blok matrica $\mathbf{J}_{\hat{U}U}$, $\mathbf{J}_{\hat{U}I}$ i $\mathbf{J}_{\hat{U}P}$ se temelji na izrazu (2.24) za izračun \hat{U}_k . Elementi matrice $\mathbf{J}_{\hat{U}U}$ su određeni prema (3.8), koji iskazuje da je blok matrica $\mathbf{J}_{\hat{U}U}$ dijagonalna. Elementi matrica $\mathbf{J}_{\hat{U}I}$ i $\mathbf{J}_{\hat{U}P}$ su zadani prema (3.9) i (3.10), odnosno obje blok matrice su nulmatrice.

$$\frac{\partial \hat{U}_{k}}{\partial U_{j}} = \frac{\partial \left(\sqrt{2}U_{k}\right)}{\partial U_{j}} = \sqrt{2} \frac{\partial U_{k}}{\partial U_{j}} = \sqrt{2} \delta_{jk}$$
(3.8)

$$\frac{\partial \hat{U}_k}{\partial I_j} = \frac{\partial \left(\sqrt{2}U_k\right)}{\partial I_j} = 0$$
(3.9)

$$\frac{\partial \hat{U}_{k}}{\partial P_{j}} = \frac{\partial \left(\sqrt{2}U_{k}\right)}{\partial P_{j}} = 0$$
(3.10)

U izrazu (3.8) oznaka δ_{ik} predstavlja Kroneckerovu delta funkciju.

Elementi blok matrica $\mathbf{J}_{\hat{l}_{R}U}$, $\mathbf{J}_{\hat{l}_{R}I}$ i $\mathbf{J}_{\hat{l}_{R}P}$ se temelje na izrazu (2.31) za izračun \hat{l}_{Rk} . Kako \hat{l}_{Rk} ne ovisi o ulaznim veličinama U_{j} i P_{j} za koje vrijedi k < j blok matrice $\mathbf{J}_{\hat{l}_{R}U}$ i $\mathbf{J}_{\hat{l}_{R}P}$ poprimaju donje trokutasti oblik. Izračun preostalih elemenata blok matrica $\mathbf{J}_{\hat{l}_{R}U}$ i $\mathbf{J}_{\hat{l}_{R}P}$ dan je u obliku priloga zbog opsežnosti. Blok matrica $\mathbf{J}_{\hat{l}_{R}I}$ je nulmatrica jer \hat{l}_{Rk} ne ovisi o mjerenoj struji I.

Elementi blok matrica $\mathbf{J}_{\hat{\Phi}U}$, $\mathbf{J}_{\hat{\Phi}I}$ i $\mathbf{J}_{\hat{\Phi}P}$ temelje se na izrazu (2.52) za izračun $\hat{\Phi}_k$. Elementi blok matrice $\mathbf{J}_{\hat{\Phi}U}$ određeni su izrazom (3.11) prema kojem se može zaključiti kako je blok matrica $\mathbf{J}_{\hat{\Phi}U}$ dijagonalna. Elementi blok matrice $\mathbf{J}_{\hat{\Phi}I}$ i $\mathbf{J}_{\hat{\Phi}P}$ određeni su izrazima (3.12) i (3.13) prema kojima su blok matrice $\mathbf{J}_{\hat{\Phi}I}$ i $\mathbf{J}_{\hat{\Phi}P}$ nulmatrice.

$$\frac{\partial \hat{\Phi}_k}{\partial U_j} = \frac{\partial}{\partial U_j} \left(\frac{U_k \sqrt{2}}{\omega} \right) = \frac{\sqrt{2}}{\omega} \delta_{jk}$$
(3.11)

$$\frac{\partial \hat{\Phi}_k}{\partial I_j} = \frac{\partial}{\partial I_j} \left(\frac{U_k \sqrt{2}}{\omega} \right) = 0$$
(3.12)

$$\frac{\partial \hat{\Phi}_k}{\partial P_j} = \frac{\partial}{\partial P_j} \left(\frac{U_k \sqrt{2}}{\omega} \right) = 0$$
(3.13)

Elementi blok matrica $\mathbf{J}_{\hat{l}_{L}U}$, $\mathbf{J}_{\hat{l}_{L}I}$ i $\mathbf{J}_{\hat{l}_{L}P}$ zasnivaju se na izrazu (2.63) za izračun \hat{l}_{Lk} . Kako \hat{l}_{Lk} ne ovisi o ulaznim parametrima U_j , I_j i P_j za koje vrijedi k < j, zbog toga blok matrice $\mathbf{J}_{\hat{l}_{L}U}$, $\mathbf{J}_{\hat{l}_{L}I}$ i $\mathbf{J}_{\hat{l}_{L}P}$ imaju donje trokutasti oblik. Izračun preostalih elemenata naveden je u prilogu zbog opsežnosti.

3.1.2 Numerički izračun faktora utjecajnosti (osjetljivosti)

Prema [13] koeficijenti utjecajnosti $\frac{\partial f_k}{\partial x_j}$ (elementi matrice **J**) mogu se približno numerički izračunati prema jednadžbama:

$$\frac{\partial f_k}{\partial x_j}\Big|_{\mathbf{x}=(x_1, x_2, \cdots, x_n)} \approx \frac{f_k(x_1, x_2, \cdots, x_j + h, \cdots, x_n) - f_k(x_1, x_2, \cdots, x_n)}{h}$$
(3.14)

$$\frac{\partial f_k}{\partial x_j}\Big|_{\mathbf{x}=(x_1, x_2, \cdots, x_n)} \approx \frac{f_k(x_1, x_2, \cdots, x_j + h, \cdots, x_n) - f_k(x_1, x_2, \cdots, x_j - h, \cdots, x_n)}{2h}$$
(3.15)

Jednadžba (3.15) daje bolja rješenja od jednadžbe (3.14) jer je apsolutna pogreška kod jednadžbe (3.14) proporcionalna s h, dok je kod jednadžbe apsolutna pogreška proporcionalna s h^2 . Problem kod numeričkih derivacija je u odabiru pomaka h. Sa stajališta apsolutnih pogrešaka bolja je manja vrijednost pomaka h (idealno je $h \rightarrow 0$). Kako računala imaju konačnu razlučivost (pamte brojeve na konačno mnogo decimala) mora se paziti kako izrazi u brojnicima jednadžbi (3.14) i (3.15) ne bi bili ispod razine razlučivosti (ovaj uvjet propisuje minimalnu vrijednost pomaka h).

3.2. Primjer izračuna mjerne nesigurnosti krivulje magnetiziranja transformatora

Mjerenja su provedena na transformatoru u praznom hodu nazivne snage 200 VA i nazivnog primarnog napona 30 V. Shema mjernog kruga je dana u poglavlju 2.1., a rezultati mjerenja nalaze se u tablici 3.1. Parametri koji određuju karakteristike otpora i induktiviteta, koji se određuju na temelju 2. poglavlja, također se nalaze u tablici 3.1. Program koji izračunava parametre karakteristika iz izmjerenih podataka nalazi se na CD-u prilogu P.3.1.

	U_k, \mathbf{V}	I _k , A	P _k , W	\hat{U}_k , V	\hat{I}_{Rk} , A	$\hat{\Phi}_k$, Vs	\hat{I}_{Lk} , A
<i>k</i> = 1	4.18	0.008	0.022	5.91	0.007	0.019	0.009
<i>k</i> = 2	8.51	0.014	0.083	12.03	0.013	0.038	0.012
<i>k</i> = 3	12.36	0.018	0.172	17.48	0.020	0.056	0.013
<i>k</i> = 4	16.21	0.022	0.290	22.92	0.025	0.073	0.018
<i>k</i> = 5	19.97	0.028	0.435	28.24	0.030	0.090	0.028
<i>k</i> = 6	23.91	0.040	0.630	33.81	0.038	0.108	0.052
<i>k</i> = 7	24.70	0.043	0.680	34.93	0.041	0.111	0.062
<i>k</i> = 8	26.21	0.054	0.790	37.07	0.046	0.118	0.087
<i>k</i> = 9	27.24	0.064	0.870	38.52	0.049	0.123	0.117
<i>k</i> = 10	28.53	0.089	1.020	40.35	0.061	0.128	0.184
<i>k</i> = 11	29.32	0.139	1.200	41.46	0.084	0.132	0.362
<i>k</i> = 12	30.67	0.271	1.500	43.37	0.095	0.138	0.681
<i>k</i> = 13	31.62	0.561	1.900	44.72	0.145	0.142	1.620
<i>k</i> = 14	32.08	0.752	2.100	45.37	0.150	0.144	2.110
<i>k</i> = 15	32.72	1.238	2.600	46.27	0.222	0.147	3.660
<i>k</i> = 16	33.31	1.793	3.300	47.11	0.304	0.150	5.029
<i>k</i> = 17	34.29	3.320	6.000	48.49	0.679	0.154	9.300

Tablica 3.1. Izmjerene vrijednosti i parametri karakteristika

Često se izmjereni podatci daju u grafičkom obliku odnosno kao zavisnosti $I = f_I(U)$ i $P = f_P(U)$, slike 3.2. i 3.3. Karakteristike otpora i induktiviteta su prikazane na slikama 3.4. i 3.5.

Slika 3.3. Grafički prikaz $P = f_P(U)$

Slika 3.5. Karakteristika induktiviteta

Neka je mjerna nesigurnost izmjerenih podataka 1% od očitane vrijednosti i neka su izmjereni podatci međusobno nezavisni (kovarijance su nula). Tada matrica kovarijanci izmjerenih veličina im dijagonalan oblik:

$$\mathbf{C}_{x} = 0,01^{2} diag \begin{bmatrix} U_{1}^{2} & U_{2}^{2} & \cdots & U_{n}^{2} \end{bmatrix} I_{1}^{2} & I_{2}^{2} & \cdots & I_{n}^{2} \end{bmatrix} P_{1}^{2} P_{2}^{2} & \cdots & P_{n}^{2} \end{bmatrix}$$
(3.16)

Na temelju razmatranja iz poglavlja 3.1. mogu se odrediti područja pouzdanosti kojima se procjenjuje mjerna nesigurnost karakteristika otpora i induktiviteta. Program koji računa područja pouzdanosti nalazi se na CD-u P.3.2.

Slika 3.6. Područja pouzdanosti lomnih točaka karakteristike otpora

Slika 3.7. Područja pouzdanosti lomnih točaka karakteristike induktiviteta

Na slikama 3.6. i 3.7. prikazane su karakteristike otpora i induktiviteta s naznačenim područjima pouzdanosti lomnih točaka. Crvenom elipsom je naznačeno područje čija je pouzdanost 68%, dok je zelenom elipsom označeno područje čija je pouzdanost 95%. Lomne točka nalaze se u središtu pripadnog područja pouzdanosti (elipse). Iz nagiba područja pouzdanosti može se dobiti informacija o zavisnosti koordinata lomnih točaka. Tako se, na primjer, za posljednju točku na karakteristici otpora (isto vrijedi i za posljednju točku na karakteristici induktiviteta) može zaključiti kako u slučaju povećanja napona (toka) dolazi do smanjenja struje, vrijedi i obratno. Ako se usporede područja pouzdanosti npr. na karakteristici otpora za točke koje se nalaze prije i poslije "koljena" uočava se značajno povećanje nesigurnosti točaka poslije "koljena". Iako slike pružaju kvalitativan opis mjerne nesigurnosti, kvantitativni podatci se nalaze u matrici kovarijanci izlaznih veličina C_y .

Slika 3.8. Usporedba područja pouzdanosti posljednje točke karakteristike otpora

Na slikama 3.8. i 3.9. napravljena je usporedba područja pouzdanosti (68%) za različite mjerne nesigurnosti izmjerenih podataka (napona, struje i snage). Žutom bojom označeno je područje pouzdanosti za koje je mjerna nesigurnost izmjerenog napona 1% od očitane vrijednosti, dok je mjerna nesigurnost preostalih podataka 0,5% od očitane vrijednosti. Slično vrijedi i za preostala dva područja pouzdanosti. Na slikama 3.8. i 3.9. prikazana je samo posljednja točka pripadne karakteristike zbog preglednosti. Može se primijetiti kako mjerna nesigurnost izmjerenog napona ima najveći utjecaj na nesigurnost obje karakteristike.

Slika 3.9. Usporedba područja pouzdanosti posljednje točke karakteristike induktiviteta

4. ZAKLJUČAK

U uvodnom poglavlju opisan je postupak procjene širenja mjernih nesigurnosti kroz matematički model. Postupak se temelji na pretpostavkama da se mjerne nesigurnosti mogu opisati normalnom razdiobom i na pretpostavci da je linearizirani matematički model dovoljno točan za izračun mjerne nesigurnost. Bitno je naglasiti kako postoji postupak (Monte Carlo simulacija) koji uvažava mjerne nesigurnosti s gustoćama vjerojatnosti različitim od normalne, isto tako za konačni rezultat daje razdiobe koje ne moraju biti normalne.

U drugom poglavlju je detaljno opisan matematički model, prema Dommelovoj metodi, kojim je modelirana karakteristika nelinearne zavojnice. Prednosti ovakvog načina modeliranja su relativno jednostavna mjerenja (efektivne vrijednosti napona i struje te djelatne snage). Više o nedostatcima ovakvog modeliranja u [19]. Postoje i drugačije metode modeliranja karakteristika, npr. s pomoću polinoma i/ili trigonometrijskih funkcija, tada se govori o estimaciji parametara modela (npr. koeficijenata polinoma).

U trećem poglavlju primijenjen je postupak širenja mjerne nesigurnosti opisan u prvom poglavlju na karakteristike izvedene u drugom poglavlju. Na kraju trećeg poglavlja prikazan je konkretan primjer dobiven na temelju mjerenja. Napravljena je usporedba utjecaja nesigurnosti mjerenih veličina na nesigurnosti karakteristika otpora i induktiviteta prema kojoj se vidi kako mjerna nesigurnost napona ima najveći utjecaj.

Literatura

- T. Stensland, E.F. Fuchs, W.M. Grady, M.T. Doyle: "Modeling of Magnetizing and Dore-Loss Currents in Single-Phase Transformers with Voltage Harmonics for Use in Power Flow", IEEE Transactions on Power Delivery, vol. 12, no. 2, pp. 768-784, April 1997.
- [2] J.A. Martinez-Velasco, B.A. Mork: "Transformer Modeling for Low Frequency Transients -The State of the Art," Proceedings of the 2003 IPST International Conference on Power Systems Transients, New Orleans, June 2003.
- [3] W.L.A. Neves, H.W. Dommel: "*On Modelling Iron Core Nonlinearities*", IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 417-425, May 1993.
- [4] E. J. Tarasiewicz, A. S. Morched, A. Narang, E. P. Dick: "Frequency Dependent Eddy Current Models for Nonlinear Iron Cores", IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 588-597, May 1993.
- [5] K.H. Carpenter: "Simple Models for Dynamic Hysteresis Which Add Frequency-Dependent Losses to Static Models", IEEE Transactions on Magnetics, vol. 34, no. 3, pp. 619-622, May 1998.
- [6] W. Chandrasena, P.G. McLaren, U.D. Annakkage, R.P. Jayasinghe, D. Muthumuni, E. Dirks: "Simulation of Hysteresis and Eddy Current Effects in a Power Transformer", Proceedings of the 2003 IPST International Conference on Power Systems Transients, New Orleans, June 2003.
- [7] N.A. Janssens: "Magnetic Cores Modeling for Ferroresonance Computations using the Harmonic Balance Method", IEEE Power Engineering Society General Meeting, vol. 3, pp. 1644-1649, July 2003.
- [8] E.F. Fuchs, R. Fei: "A new Computer-Aided Method for the Efficiency Measurement of Low-Loss Transformers and Inductors under Nonsinusoidal Operation", IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 292-304, January 1996.
- [9] J. Kral, R. Smid, H. M. Geirinhas Ramos, and A. Lopes Ribeiro: "The Lift-Off Effect in Eddy Currents on Thickness Modeling and Measurement", IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 7, pp. 2043-2049, July 2013
- [10] JCGM 100:2008, "Evaluation of measurement data—Guide to the expression of uncertainty in measurement," (GUM, originally published in 1993), Joint Committee for Guides in Metrology, 2008. [Online]. Dostupno na: <u>http://www.bipm.org/en/publications/guides/gum.html</u>
- [11] R.Siegwart, K.A.Arras, "An introduction to error propagation", Swiss federal institute of tecnology Lausanne, 1998.
- [12] A.M. Breipohl, "Probabilistic systems analysis: An introduction to probabilistic models, decisions and applications of random processes", John Wiley & Sons, 1970.
- [13]M.G.Cox, P.M.Harris, "Software support for metrology best practice guide no. 6", 2006

- [14]Bilješke s predavanja Advanced multivariated statistical metods, "Multivariate normal distribution". <u>http://jonathantemplin.com/files/multivariate/mv11icpsr/mv11icpsr_lecture04.pdf</u>
- [15]Bilješke s predavanja, "*Multivariated normal distribution"* http://www.public.iastate.edu/~maitra/stat501/lectures/MultivariateNormalDistribution-I.pdf
- [16] Z.Godec, D.Dorić, "Osnove mjerenja", priručnik za laboratorijske vježbe, 2007.
- [17]W.L.A. Neves, H.W. Dommel: "On Modelling Iron Core Nonlinearities", IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 417-425, May 1993.
- [18] I. Flegar, "Teorija mreža Bilješke s predavanja", Elektrotehnički fakultet Osijek, 2001.
- [19] K. Milicevic, I. Lukacevic, I. Flegar, "*Modeling of Nonlinear Coil in a Ferroresonant Circuit*," Electrical engineering (Archiv fur Elektrotechnik), Vol. 91; pp. 51-59, 2009

Sažetak

Nelinearna zavojnica modelira se otporom i induktivitetom čije su karakteristike linearne po odsječcima. Parametri karakteristika se određuju na temelju mjerenja napona, struje i snage. Kako sva mjerenja posjeduje mjernu nesigurnost promatra se njihov utjecaj na parametre karakteristika otpora i induktiviteta. Procjena mjerne nesigurnosti parametara karakteristika temelji se na pretpostavkama da se mjerne pogreške izmjerenih veličina mogu opisati normalnom razdiobom i da se može primijeniti linearizirani matematički model. Na temelju provedene analize uočeno je kako dolazi do znatnog povećanja mjerne nesigurnosti karakteristika dolazi od mjerne nesigurnosti izmjerenog napona.

Ključne riječi: širenje pogrešaka, procjena mjerne nesigurnosti, modeliranje nelinearne zavojnice, područja pouzdanosti

Measurement uncertainty of the instantaneous characteristics of nonlinear coil

Abstract

Nonlinear coil model is defined by piecewise characteristics of resistance and inductance. The characteristics of coil are obtained by measurements: RMS coil voltage, RMS coil current and coil losses. Since every measurement has uncertainties, it is investigated how measurement uncertainties reflect on coil characteristics. Estimation of coil characteristics uncertainties is based on following assumptions: all measurement errors have normal distribution and linearized model is sufficiently accurate approximation of nonlinear coil model. Results show that uncertainty of coil characteristics is growing for higher amplitudes of voltage. Highest contribution to coil characteristics uncertainty has uncertainty of measured RMS voltage.

Key words: error propagation, uncertainty estimation, nonlinear coil model, confidence regions

Životopis

Ivan Biondić rođen je 7.1.1991. u Našicama. Živi u Čačincima gdje je završio osnovnu školu "Antun Gustav Matoš". Zatim upisuje S.Š. Marka Marulića u Slatini, smjer Elektrotehnika. Sve je razrede završio s odličnim uspjehom, te sudjelovao na natjecanjima. Zbog ostvarenih rezultata na natjecanjima (1. mjesto na državnom natjecanju iz matematike) ima izravni upis na Elektrotehnički fakultet u Osijeku. Odabire smjer elektroenergetiku. Preddiplomski studij je završio s odličnim uspjehom i upisao diplomski studij smjer elektroenergetika.

(potpis)

Prilog

Izračun preostalih elemenata matrice $\mathbf{J}_{\hat{I}_{R}U}$.

$$\frac{\delta \hat{I}_{Rk}}{\delta U_{j}} = \frac{\delta \hat{I}_{R(k-1)}}{\delta U_{j}} + \sqrt{2} \left(U_{k} - U_{k-1} \right) \frac{\delta G_{k}}{\delta U_{j}} + \sqrt{2} G_{k} \left(\frac{\delta U_{k}}{\delta U_{j}} - \frac{\delta U_{k-1}}{\delta U_{j}} \right)$$

 $rac{\delta \hat{I}_{_{R(k-1)}}}{\delta U_{_{j}}}$ - poznato iz prethodnih iteracija

$$\frac{\delta U_k}{\delta U_j} = \delta_{jk} = \begin{cases} 1, & j = k \\ 0, & inače \end{cases}$$

$$\begin{split} & \frac{\delta G_{k}}{\delta U_{j}} = \frac{\delta}{\delta U_{j}} \left\{ \frac{\frac{TP_{k}}{4U_{k}} - \sqrt{2}\hat{I}_{R(k-1)}B_{k,k} - \sum_{z=1}^{k-1} \left[2G_{z}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) + \sqrt{2}\hat{I}_{R(z-1)}B_{z,k}\right] \right\} = \\ & = \frac{\delta}{\delta U_{j}} \left(\frac{TP_{k}}{4U_{k}}\right) - \sqrt{2}\frac{\delta}{\delta U_{j}}\left(\hat{I}_{R(k-1)}B_{k,k}\right) - \frac{\delta}{\delta U_{j}}\sum_{z=1}^{k-1} \left[2G_{z}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) + \sqrt{2}\hat{I}_{R(z-1)}B_{z,k}\right] \\ & - \frac{TP_{k}}{4U_{k}} - \sqrt{2}\hat{I}_{R(k-1)}B_{k,k} - \sum_{z=1}^{k-1} \left[2G_{z}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) + \sqrt{2}\hat{I}_{R(z-1)}B_{z,k}\right] \\ & - \frac{2(U_{k}A_{k,k} - 2U_{k-1}B_{k,k})^{2}}{2(U_{k}A_{k,k} - U_{k-1}B_{k,k})^{2}} \left(\frac{\delta}{\delta U_{j}}\left(U_{k}A_{k,k}\right) - \frac{\delta}{\delta U_{j}}\left(U_{k-1}B_{k,k}\right) \right) \end{split}$$

$$= \frac{-\frac{TP_{k}}{4U_{k}^{2}}\frac{\partial U_{j}}{\partial U_{j}} - \sqrt{2}\frac{\delta}{\partial U_{j}}\left(\hat{I}_{R(k-1)}B_{k,k}\right) - \sum_{z=1}^{k-1}\left[2\frac{\delta}{\partial U_{j}}\left(G_{z}(U_{k}A_{z,k} - U_{z-1}B_{z,k})\right) + \sqrt{2}\frac{\delta}{\partial U_{j}}\left(\hat{I}_{R(z-1)}B_{z,k}\right)\right]}{2(U_{k}A_{k,k} - U_{k-1}B_{k,k})}$$

$$= \frac{-\frac{TP_{k}}{4U_{k}^{2}} - \sqrt{2}\hat{I}_{R(k-1)}B_{k,k} - \sum_{z=1}^{k-1}\left[2G_{z}(U_{k}A_{z,k} - U_{z-1}B_{z,k}) + \sqrt{2}\hat{I}_{R(z-1)}B_{z,k}\right]}{2(U_{k}A_{k,k} - U_{k-1}B_{k,k})^{2}}\left(A_{k,k}\frac{\delta U_{k}}{\delta U_{j}} + U_{k}\frac{\delta A_{k,k}}{\delta U_{j}} - B_{k,k}\frac{\delta U_{k-1}}{\delta U_{j}} - U_{k-1}\frac{\delta B_{k,k}}{\delta U_{j}}\right) + \sqrt{2}\left(B_{z,k}\frac{\delta \hat{I}_{R(z-1)}}{\delta U_{j}} + \hat{I}_{R(z-1)}\frac{\delta B_{k,k}}{\delta U_{j}}\right) - \sum_{z=1}^{k-1}\left[2\left((U_{k}A_{z,k} - U_{z-1}B_{z,k})\frac{\delta G_{z}}{\delta U_{j}} + G_{z}\frac{\delta}{\delta U_{j}}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right)\right) + \sqrt{2}\left(B_{z,k}\frac{\delta \hat{I}_{R(z-1)}}{\delta U_{j}} + \hat{I}_{R(z-1)}\frac{\delta B_{k,k}}{\delta U_{j}}\right)\right]$$

$$= \frac{-\frac{TP_{k}}{4U_{k}^{2}}\frac{\partial U_{k}}{\partial U_{j}} - \sqrt{2}\left(B_{k,k}\frac{\delta \hat{I}_{R(k-1)}}{\delta U_{j}} + \hat{I}_{R(k-1)}\frac{\delta B_{k,k}}{\delta U_{j}}\right) - \sum_{z=1}^{k-1}\left[2\left((U_{k}A_{z,k} - U_{z-1}B_{z,k})\frac{\delta G_{z}}{\delta U_{j}} + G_{z}\frac{\delta}{\delta U_{j}}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right)\right) + \sqrt{2}\left(B_{z,k}\frac{\delta \hat{I}_{R(z-1)}}{\delta U_{j}} + \hat{I}_{R(z-1)}\frac{\delta B_{k,k}}{\delta U_{j}}\right)\right]$$

$$= \frac{-\frac{TP_{k}}{4U_{k}^{2}}\frac{\partial U_{k}}{\partial U_{j}} - \sqrt{2}\left(B_{k,k}\frac{\delta \hat{I}_{R(k-1)}}{\delta U_{j}} + \hat{I}_{R(k-1)}\frac{\delta B_{k,k}}{\delta U_{j}}\right) - \sum_{z=1}^{k-1}\left[2\left((U_{k}A_{z,k} - U_{z-1}B_{z,k})\frac{\delta G_{z}}{\delta U_{j}} + G_{z}\left(\frac{\delta}{\delta U_{j}}\left(U_{k}A_{z,k}\right) - U_{k-1}\frac{\delta B_{k,k}}{\delta U_{j}}\right)\right) + \sqrt{2}\left(B_{z,k}\frac{\delta \hat{I}_{R(z-1)}}{\delta U_{j}} + \hat{I}_{R(z-1)}\frac{\delta B_{z,k}}{\delta U_{j}}\right) - \frac{TP_{k}}{z=1}\left[2\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right)\frac{\delta G_{z}}{\delta U_{j}} + G_{z}\left(\frac{\delta}{\delta U_{j}}\left(U_{k}A_{z,k}\right) - \frac{\delta}{\delta U_{j}}\left(U_{z-1}B_{z,k}\right)\right)\right) + \sqrt{2}\left(B_{z,k}\frac{\delta \hat{I}_{R(z-1)}}{\delta U_{j}} + \hat{I}_{R(z-1)}\frac{\delta B_{z,k}}{\delta U_{j}}\right) - \frac{TP_{k}}{z=1}\left[2G_{z}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) + \sqrt{2}\left(B_{z,k}\frac{\delta I_{k-1}}{\delta U_{j}} - U_{k-1}\frac{\delta B_{k,k}}{\delta U_{j}}\right) - \frac{TP_{k}}}{2\left(U_{k}A_{k,k} - U_{k-1}B_{k,k}\right)^{2}} - \frac{TP_{k}}{z=1}\left[2G_{z}\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) + \sqrt{2}\left(B_{k,k}\frac{\delta U_{k}}{\delta U_{j}} - U_{$$

$$=\frac{-\frac{TP_{k}}{4U_{k}^{2}}\frac{\delta U_{k}}{\delta U_{j}}-\sqrt{2}\left(B_{k,k}\frac{\delta \hat{I}_{R(k-1)}}{\delta U_{j}}+\hat{I}_{R(k-1)}\frac{\delta B_{k,k}}{\delta U_{j}}\right)-\sum_{z=1}^{k-1}\left[2\left(\left(U_{k}A_{z,k}-U_{z-1}B_{z,k}\right)\frac{\delta G_{z}}{\delta U_{j}}+G_{z}\left(A_{z,k}\frac{\delta U_{k}}{\delta U_{j}}+U_{k}\frac{\delta A_{z,k}}{\delta U_{j}}-B_{z,k}\frac{\delta U_{z-1}}{\delta U_{j}}-U_{z-1}\frac{\delta B_{z,k}}{\delta U_{j}}\right)\right)+\sqrt{2}\left(B_{z,k}\frac{\delta \hat{I}_{R(z-1)}}{\delta U_{j}}+\hat{I}_{R(z-1)}\frac{\delta B_{z,k}}{\delta U_{j}}\right)-\frac{1}{2\left(U_{k}A_{k,k}-U_{k-1}B_{k,k}\right)}$$

$$-\frac{\frac{TP_{k}}{4U_{k}}-\sqrt{2}\hat{I}_{R(k-1)}B_{k,k}-\sum_{z=1}^{k-1}\left[2G_{z}\left(U_{k}A_{z,k}-U_{z-1}B_{z,k}\right)+\sqrt{2}\hat{I}_{R(z-1)}B_{z,k}\right]}{2\left(U_{k}A_{k,k}-U_{k-1}B_{k,k}\right)^{2}}\left(A_{k,k}\frac{\delta U_{k}}{\delta U_{j}}+U_{k}\frac{\delta A_{k,k}}{\delta U_{j}}-B_{k,k}\frac{\delta U_{k-1}}{\delta U_{j}}-U_{k-1}\frac{\delta B_{k,k}}{\delta U_{j}}\right)$$

Izvod
$$\frac{\partial A_{z,k}}{\partial U_j}$$
 ako je $z \neq k$

$$\begin{split} &\frac{\partial A_{z,k}}{\partial U_{j}} = \frac{1}{2\omega} \frac{\partial}{\partial U_{j}} \left[\arcsin \frac{U_{z}}{U_{k}} - \frac{1}{2} \sin \left(2 \arcsin \frac{U_{z}}{U_{k}} \right) - \arcsin \frac{U_{z}}{U_{k}} \right) - \arcsin \frac{U_{z-1}}{U_{k}} + \frac{1}{2} \sin \left(2 \arcsin \frac{U_{z-1}}{U_{k}} \right) \right] = \\ &= \frac{1}{2\omega} \left[\frac{\partial}{\partial U_{j}} \left(\arcsin \frac{U_{z}}{U_{k}} \right) - \frac{1}{2} \frac{\partial}{\partial U_{j}} \left(\sin \left(2 \arcsin \frac{U_{z}}{U_{k}} \right) \right) - \frac{\partial}{\partial U_{j}} \left(\arcsin \frac{U_{z-1}}{U_{k}} \right) + \frac{1}{2} \frac{\partial}{\partial U_{j}} \left(\sin \left(2 \arcsin \frac{U_{z-1}}{U_{k}} \right) \right) \right] \right] = \\ &= \frac{1}{2\omega} \left[\frac{\frac{1}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} - \cos \left(2 \arcsin \frac{U_{z}}{U_{k}} \right) \frac{\frac{1}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} - \frac{1}{2} \cos \left(2 \arcsin \frac{U_{z}}{U_{k}} \right) \frac{1}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} - \frac{1}{2} \cos \left(2 \arcsin \frac{U_{z-1}}{U_{k}} \right)^{2}} + \cos \left(2 \arcsin \frac{U_{z-1}}{U_{k}} \right) \frac{1}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}}} \right] = \\ &= \frac{1}{2\omega} \left[\frac{1}{2\omega} \left(\frac{1}{2\omega} \frac{U_{z}}{U_{k}} - \frac{U_{z}}{U_{k}} \frac{U_{z}}{U_{k}}} \right) \frac{1}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} - \cos \left(2 \arcsin \frac{U_{z}}{U_{k}} \right) \frac{1}{2\omega} \frac{U_{z}}{U_{k}} \frac{U_{z}}{U_{k}}} - \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}} + \cos \left(2 \arcsin \frac{U_{z-1}}{U_{k}} \right) \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}}} \right] = \\ &= \frac{1}{2\omega} \left[\frac{1}{2\omega} \left(\frac{U_{z}}{U_{k}} - \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}}} \right) \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}}} - \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}}} \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}}{U_{k}^{2}} \frac{U_{z}}{U_{k}}} \right] + \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}{U_{k}^{2}} \frac{U_{z}}}{U_{k}^{2}} \frac$$

$$=\frac{1}{2\omega}\left[\frac{\frac{1}{U_{k}}\frac{\partial U_{z}}{\partial U_{j}}-\frac{U_{z}}{U_{k}}\frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1-\left(\frac{U_{z}}{U_{k}}\right)^{2}}}\left(1-\cos\left(2\arcsin\frac{U_{z}}{U_{k}}\right)\right)-\frac{\frac{1}{U_{k}}\frac{\partial U_{z-1}}{\partial U_{j}}-\frac{U_{z-1}}{U_{k}}\frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1-\left(\frac{U_{z-1}}{U_{k}}\right)^{2}}}\left(1-\cos\left(2\arcsin\frac{U_{z-1}}{U_{k}}\right)\right)\right)\right]$$

$$=\frac{1}{\omega}\left[\frac{\frac{1}{U_{k}}\frac{\partial U_{z}}{\partial U_{j}}-\frac{U_{z}}{U_{k}}\frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1-\left(\frac{U_{z}}{U_{k}}\right)^{2}}}\left(\frac{U_{z}}{U_{k}}\right)^{2}-\frac{\frac{1}{U_{k}}\frac{\partial U_{z-1}}{\partial U_{j}}-\frac{U_{z-1}}{U_{k}}\frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1-\left(\frac{U_{z-1}}{U_{k}}\right)^{2}}}\left(\frac{U_{z}}{U_{k}}\right)^{2}\right]=\frac{1}{\omega}\left[\frac{U_{z}^{2}U_{k}\frac{\partial U_{z}}{\partial U_{j}}-U_{z}^{3}\frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2}-U_{z}^{2}}}-\frac{U_{z-1}^{3}\frac{\partial U_{k}}{\partial U_{j}}-U_{z-1}^{3}\frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2}-U_{z-1}^{2}}}\right]$$

Izvod
$$\frac{\partial A_{z,k}}{\partial U_j}$$
 ako je $z = k$

$$\begin{split} \frac{\partial A_{k,k}}{\partial U_{j}} &= \frac{1}{2\omega} \frac{\partial}{\partial U_{j}} \left[\frac{\pi}{2} - \arcsin \frac{U_{k-1}}{U_{k}} + \frac{1}{2} \sin\left(2 \arcsin \frac{U_{k-1}}{U_{k}}\right) \right] = \frac{1}{2\omega} \left[-\frac{\partial}{\partial U_{j}} \left(\arcsin \frac{U_{k-1}}{U_{k}} \right) + \frac{1}{2} \frac{\partial}{\partial U_{j}} \left(\sin\left(2 \arcsin \frac{U_{k-1}}{U_{k}}\right) \right) \right] = \\ &= \frac{1}{2\omega} \left[-\frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} + \cos\left(2 \arcsin \frac{U_{k-1}}{U_{k}}\right) \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} \right] = \frac{1}{2\omega} \left[-\frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} \left(-1 + \cos\left(2 \arcsin \frac{U_{k-1}}{U_{k}}\right) \right) \right] \right] \\ &= \frac{1}{\omega} \left[-\frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} \right] = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}}{\frac{\partial U_{k}}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}{\frac{\partial U_{k}}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}{\frac{\partial U_{k}}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_{k-1}^{2}}}} \right) = \frac{1}{\omega U_{k}^{2}} \left(-\frac{U_{k-1}^{2} \frac{\partial U_{k}}{\sqrt{U_{k}^{2} - U_$$

Izvod
$$\frac{\partial B_{z,k}}{\partial U_j}$$
 ako je $z \neq k$

$$\begin{split} &\frac{\partial B_{z,k}}{\partial U_{j}} = -\frac{1}{\omega} \frac{\partial}{\partial U_{j}} \left[\cos\left(\arcsin\frac{U_{z}}{U_{k}}\right) - \cos\left(\arcsin\frac{U_{z-1}}{U_{k}}\right) \right] = -\frac{1}{\omega} \left[\frac{\partial}{\partial U_{j}} \left(\cos\left(\arcsin\frac{U_{z}}{U_{k}}\right)\right) - \frac{\partial}{\partial U_{j}} \left(\cos\left(\arcsin\frac{U_{z-1}}{U_{k}}\right)\right) \right] = \\ &= -\frac{1}{\omega} \left[-\sin\left(\arcsin\frac{U_{z}}{U_{k}}\right) \frac{\frac{1}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \sin\left(\arcsin\frac{U_{z-1}}{U_{k}}\right) \frac{\frac{1}{U_{k}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}} \right] = \\ &= \frac{1}{\omega} \left[\frac{U_{z}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}} \right] = \frac{1}{\omega U_{k}^{2}} \left[\frac{U_{z}U_{k} \frac{\partial U_{z}}{\partial U_{j}} - U_{z}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{z}^{2}}} - \frac{U_{z-1}U_{k} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{\partial U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{z}^{2}}} \right] \\ &= \frac{1}{\omega} \left[\frac{U_{z}U_{k} \frac{\partial U_{z}}{\partial U_{j}} - U_{z}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} - \frac{U_{z-1}U_{k} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{\partial U_{j}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{z}^{2}}} \right] \\ &= \frac{1}{\omega} \left[\frac{U_{z}U_{k} \frac{\partial U_{z}}{\partial U_{j}} - U_{z}^{2} \frac{\partial U_{k}}{\partial U_{j}}} - \frac{U_{z-1}U_{k} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}U_{k}}{\partial U_{j}}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{2} \frac{\partial U_{k}}{\partial U_{j}}} \right] \\ &= \frac{1}{\omega} \left[\frac{U_{z}U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{z}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} \right] \\ &= \frac{1}{\omega} \left[\frac{U_{z}U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{z}^{2}} \frac{\partial U_{k}}{\partial U_{j}}} - \frac{U_{z}}{U_{z}^{2}} \frac{\partial U_{k}}{\partial U_{j}}} \right] \\ &= \frac{1}{\omega} \left[\frac{U_{z}U_{k}} \frac{\partial U_{z}}{\partial U_{k}} - \frac{U_{z}}{U_{k}} \frac{\partial U_{z}}{\partial U_{k}} - \frac{U_{z}}}{U_{k}^{2}} \frac{\partial U_{z}}{\partial U_{k}}} - \frac{U_{z}}}{U_{z}^{2}} \frac{\partial U_{k}}{\partial U_{k}}} \right] \\ &= \frac{1}{\omega} \left[\frac{U_{z}U_{k}} \frac{\partial U_{z}}{\partial U_{k}} - \frac{U_{z}}}{U_{k}} \frac{U_{z}U_{k}}}{U_{k}} - \frac{U_{z}}}{U_{k}} \frac{U_{z}}}{U_{k}} - \frac{U_{z}}}{U_{k}} \frac{U_{z}}}{U_{k}} - \frac{U_{z}}}{U$$

Izvod
$$\frac{\partial B_{z,k}}{\partial U_j}$$
 ako je $z = k$

$$\frac{\partial B_{k,k}}{\partial U_{j}} = \frac{1}{\omega} \frac{\partial}{\partial U_{j}} \cos\left(\arcsin\frac{U_{k-1}}{U_{k}}\right) = -\frac{1}{\omega} \sin\left(\arcsin\frac{U_{k-1}}{U_{k}}\right) \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k-1}U_{k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1}^{2} \frac{\partial U_{k}}{\partial U_{j}}}{\omega U_{k}^{2} \sqrt{U_{k}^{2} - U_{k-1}^{2}}}$$

Izračun preostalih elemenata matrice $\mathbf{J}_{\hat{I}_R P}$.

$$\frac{\delta \hat{I}_{Rk}}{\delta P_{j}} = \frac{\delta \hat{I}_{R(k-1)}}{\delta P_{j}} + \sqrt{2} \left(U_{k} - U_{k-1} \right) \frac{\delta G_{k}}{\delta P_{j}}$$

 $rac{\delta \hat{I}_{_{R(k-1)}}}{\delta P_{_{j}}}$ - poznato iz prethodnih iteracija

$$\frac{\delta G_{k}}{\delta P_{j}} = \frac{\frac{T}{4U_{k}} \frac{\delta P_{k}}{\delta P_{j}} - \sqrt{2}B_{k,k} \frac{\delta \hat{I}_{R(k-1)}}{\delta P_{j}} - \sum_{z=1}^{k-1} \left[2\left(U_{k}A_{z,k} - U_{z-1}B_{z,k}\right) \frac{\delta G_{z}}{\delta P_{j}} + \sqrt{2}B_{z,k} \frac{\delta \hat{I}_{R(z-1)}}{\delta P_{j}} \right]}{2U_{k}A_{k,k} - 2U_{k-1}B_{k,k}}$$

$$\frac{\delta P_k}{\delta P_j} = \delta_{jk}$$

 $\frac{\delta G_z}{\delta P_j}$ - poznato iz prethodnih iteracija

Izračun preostalih elemenata matrice $\mathbf{J}_{\hat{I}_L U}$.

$$\frac{\partial \hat{I}_{Lk}}{\partial U_{j}} = \sqrt{2} \frac{\partial}{\partial U_{j}} \left[y_{k} \left(U_{k} - U_{k-1} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k-1}}{\partial U_{j}} \right) \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial U_{j}} + y_{k} \left(\frac{\partial U_{k}}{\partial U_{j}} - \frac{\partial U_{k}}{\partial U_{j}} \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} = \sqrt{2} \left[\left(U_{k} - U_{k} \right] + \frac{\partial U_{k}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} \right] + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} + \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \frac{\partial U_{k}}{\partial U_{j}} + \frac{\partial U_{k$$

 $\frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}}$ - poznato iz prethodne iteracije

$$\frac{\partial U_k}{\partial U_j} = \delta_{jk}$$

$$\begin{split} \frac{\partial y_k}{\partial U_j} &= \frac{\partial}{\partial U_j} \left(\frac{-b_k + \sqrt{b_k^2 - 4a_k c_k}}{2a_k} \right) = \frac{2a_k \frac{\partial}{\partial U_j} \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) - \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) \frac{\partial}{\partial U_j} (2a_k)}{4a_k^2} = \\ &= \frac{2a_k \left[-\frac{\partial b_k}{\partial U_j} + \frac{\partial}{\partial U_j} \sqrt{b_k^2 - 4a_k c_k} \right] - 2 \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) \frac{\partial a_k}{\partial U_j}}{4a_k^2} = \frac{a_k \left[-\frac{\partial b_k}{\partial U_j} + \frac{1}{2\sqrt{b_k^2 - 4a_k c_k}} \frac{\partial}{\partial U_j} (b_k^2 - 4a_k c_k) \right] - \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) \frac{\partial a_k}{\partial U_j}}{2a_k^2} = \\ &= \frac{a_k \left\{ -\frac{\partial b_k}{\partial U_j} + \frac{1}{2\sqrt{b_k^2 - 4a_k c_k}} \left[2b_k \frac{\partial b_k}{\partial U_j} - 4a_k \frac{\partial c_k}{\partial U_j} - 4c_k \frac{\partial a_k}{\partial U_j} \right] \right\} - \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) \frac{\partial a_k}{\partial U_j}}{2a_k^2} = \\ &= \frac{a_k \left\{ -\frac{\partial b_k}{\partial U_j} + \frac{1}{2\sqrt{b_k^2 - 4a_k c_k}} \left[2b_k \frac{\partial b_k}{\partial U_j} - 4a_k \frac{\partial c_k}{\partial U_j} - 4c_k \frac{\partial a_k}{\partial U_j} \right] \right\} - \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) \frac{\partial a_k}{\partial U_j}}{2a_k^2} = \\ &= \frac{a_k \left\{ -\frac{\partial b_k}{\partial U_j} + \frac{1}{\sqrt{b_k^2 - 4a_k c_k}} \left[b_k \frac{\partial b_k}{\partial U_j} - 2a_k \frac{\partial c_k}{\partial U_j} - 2c_k \frac{\partial a_k}{\partial U_j} \right] \right\} - \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right) \frac{\partial a_k}{\partial U_j}}{2a_k^2} \end{split}$$

$$\begin{aligned} \frac{\partial a_{k}}{\partial U_{j}} &= 2 \frac{\partial}{\partial U_{j}} \left(U_{k}^{2} C_{k,k} - 2U_{k} U_{k-1} D_{k,k} + U_{k-1}^{2} F_{k,k} \right) = \\ &= 2 \left[2U_{k} C_{k,k} \frac{\partial U_{k}}{\partial U_{j}} + U_{k}^{2} \frac{\partial C_{k,k}}{\partial U_{j}} - 2 \left(U_{k-1} D_{k,k} \frac{\partial U_{k}}{\partial U_{j}} + U_{k} D_{k,k} \frac{\partial U_{k-1}}{\partial U_{j}} + U_{k} U_{k-1} \frac{\partial D_{k,k}}{\partial U_{j}} \right) + 2U_{k-1} \frac{\partial U_{k-1}}{\partial U_{j}} F_{k,k} + U_{k-1}^{2} \frac{\partial F_{k,k}}{\partial U_{j}} \right] \end{aligned}$$

$$\begin{split} &\frac{\partial b_{k}}{\partial U_{j}} = 2\sqrt{2} \frac{\partial}{\partial U_{j}} \Big[\hat{I}_{L(k-1)} \Big(U_{k} D_{k,k} - U_{k-1} F_{k,k} \Big) \Big] = 2\sqrt{2} \Bigg[\Big(U_{k} D_{k,k} - U_{k-1} F_{k,k} \Big) \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \hat{I}_{L(k-1)} \frac{\partial}{\partial U_{j}} \Big(U_{k} D_{k,k} - U_{k-1} F_{k,k} \Big) \Bigg] = \\ &= 2\sqrt{2} \Bigg[\Big(U_{k} D_{k,k} - U_{k-1} F_{k,k} \Big) \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \hat{I}_{L(k-1)} \Bigg(\frac{\partial}{\partial U_{j}} \Big(U_{k} D_{k,k} \Big) - \frac{\partial}{\partial U_{j}} \Big(U_{k-1} F_{k,k} \Big) \Bigg) \Bigg] = \\ &= 2\sqrt{2} \Bigg[\Big(U_{k} D_{k,k} - U_{k-1} F_{k,k} \Big) \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \hat{I}_{L(k-1)} \Bigg(D_{k,k} \frac{\partial U_{k}}{\partial U_{j}} + U_{k} \frac{\partial D_{k,k}}{\partial U_{j}} - F_{k,k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1} \frac{\partial F_{k,k}}{\partial U_{j}} \Bigg) \Bigg] \end{split}$$

$$\begin{split} &\frac{\partial c_{k}}{\partial U_{j}} = \frac{\partial}{\partial U_{j}} \left\{ \hat{I}_{L(k-1)}^{2} F_{k,k} - \frac{T}{4} I_{Lk}^{2} + \sum_{z=1}^{k-1} \left\{ 2 \left(U_{k} y_{z} \right)^{2} C_{z,k} - 2 \sqrt{2} U_{k} y_{z} \left(\sqrt{2} U_{z-1} y_{z} - \hat{I}_{L(z-1)} \right) D_{z,k} + \left[2 \left(U_{z-1} y_{z} \right)^{2} - 2 \sqrt{2} U_{z-1} y_{z} \hat{I}_{L(z-1)} + \hat{I}_{L(z-1)}^{2} \right] F_{z,k} \right\} \right\} \\ &= \frac{\partial}{\partial U_{j}} \left(\hat{I}_{L(k-1)}^{2} F_{k,k} \right) - \frac{T}{4} \frac{\partial I_{Lk}^{2}}{\partial U_{j}} + \frac{\partial}{\partial U_{j}} \sum_{z=1}^{k-1} S_{z,k} = F_{k,k} \frac{\partial \hat{I}_{L(k-1)}^{2}}{\partial U_{j}} + \hat{I}_{L(k-1)}^{2} \frac{\partial F_{k,k}}{\partial U_{j}} - 2 \frac{T}{4} I_{Lk} \frac{\partial I_{Lk}}{\partial U_{j}} + \frac{\partial}{\partial U_{j}} \sum_{z=1}^{k-1} S_{z,k} \\ &= 2 F_{k,k} \hat{I}_{L(k-1)} \frac{\partial \hat{I}_{L(k-1)}}{\partial U_{j}} + \hat{I}_{L(k-1)}^{2} \frac{\partial F_{k,k}}{\partial U_{j}} - \frac{T}{2} I_{Lk} \frac{\partial I_{Lk}}{\partial U_{j}} + \frac{\partial}{\partial U_{j}} \sum_{z=1}^{k-1} S_{z,k} \end{split}$$

$$\begin{split} &\frac{\partial}{\partial U_{j}}\sum_{z=1}^{k} S_{z,k} = \frac{\partial}{\partial U_{j}} \sum_{z=1}^{k-1} \left\{ 2(U_{k}y_{z})^{2} C_{z,k} - 2\sqrt{2}U_{k}y_{z} \left(\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u(z=1})\right) D_{z,k} + \left[2(U_{z=1}y_{z})^{2} - 2\sqrt{2}U_{z=1}y_{z} \hat{l}_{u(z=1)} + \hat{l}_{u(z=1)}^{2} \right] F_{z,k} \right\} = \\ &= \sum_{z=1}^{k-1} \left\{ 2\frac{\partial}{\partial U_{j}} \left[(U_{k}y_{z})^{2} C_{z,k} \right] - 2\sqrt{2} \frac{\partial}{\partial U_{j}} \left[U_{k}y_{z} \left(\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) D_{z,k} \right] + \frac{\partial}{\partial U_{j}} \left[\left[2(U_{z=1}y_{z})^{2} - 2\sqrt{2}U_{z=1}y_{z} \hat{l}_{u(z=1)} + \hat{l}_{u(z=1)}^{2} \right] F_{z,k} \right] \right\} = \\ &= \sum_{z=1}^{k-1} \left\{ 2\left[C_{z,k} \frac{\partial}{\partial U_{j}} \left(U_{k}y_{z} \right)^{2} + \left(U_{k}y_{z} \right)^{2} \frac{\partial C_{z,k}}{\partial U_{j}} \right] - 2\sqrt{2} \left[\left(\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) D_{z,k} \frac{\partial}{\partial U_{j}} \left(U_{k}y_{z} \right) + U_{k}y_{z} D_{z,k} \frac{\partial}{\partial U_{j}} \left(\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) \frac{\partial D_{z,k}}{\partial U_{j}} \right] \right\} \\ &+ F_{z,k} \frac{\partial}{\partial U_{j}} \left[2(U_{z=1}y_{z})^{2} - 2\sqrt{2}U_{z=1}y_{z} \hat{l}_{u(z=1)} + \hat{l}_{u(z=1)}^{2} \right] + \left[2(U_{z=1}y_{z})^{2} - 2\sqrt{2}U_{z=1}y_{z} \hat{l}_{u(z=1)} + \hat{l}_{u(z=1)}^{2} \right] \frac{\partial D_{z,k}}{\partial U_{j}} \right] \\ &+ F_{z,k} \frac{\partial}{\partial U_{j}} \left[2(U_{z=1}y_{z})^{2} - 2\sqrt{2}U_{z=1}y_{z} \hat{l}_{u(z=1)} + \hat{l}_{u(z=1)}^{2} \right] \frac{\partial D_{z,k}}{\partial U_{j}} \right] - 2\sqrt{2} \left[\left(\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) D_{z,k} \frac{\partial}{\partial U_{j}} \left(U_{k}y_{z} \right) + U_{k}y_{z} D_{z,k} \left[\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) \frac{\partial D_{z,k}}{\partial U_{j}} \right] \\ &+ F_{z,k} \left[2\frac{\partial}{\partial U_{j}} \left(U_{z=1}y_{z} \right)^{2} - 2\sqrt{2} \left(U_{z=1}y_{z} - \hat{l}_{u(z=1)} \right) D_{z,k} \frac{\partial}{\partial U_{j}} \left(U_{k}y_{z} \right) + U_{k}y_{z} D_{z,k} \left[\sqrt{2}\frac{\partial}{\partial U_{j}} \left(U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) \frac{\partial D_{z,k}}{\partial U_{j}} \right] \right] \\ &+ F_{z,k} \left[2\frac{\partial}{\partial U_{j}} \left(U_{z=1}y_{z} \right)^{2} - 2\sqrt{2} \left(\frac{\partial}{\partial U_{j}} \left(U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) \frac{\partial D_{z,k}}{\partial U_{j}} \right] + \left[2(U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) D_{z,k} \left(y_{z} \frac{\partial}{\partial U_{j}} \right] + U_{k}y_{z} D_{z,k} \left[\sqrt{2} \left(y_{z} \frac{\partial}{\partial U_{j}} \left(U_{z=1}y_{z} - \hat{l}_{u(z=1)}\right) \frac{\partial}{\partial U_{j}} \right] \right] \\ \\ &+ F_{z,k} \left[2\frac{\partial}{\partial U_{j}} \left(U_{z=1}y_{z} - \hat{l}_{u} \left(y_{z} \frac{\partial}{\partial U_{j}} \right) + \left(U_{z}y_{z} \right)^{2} \left(\sqrt{2} \left(\sqrt{2}U_{z=1}y_{z} - \hat{l}_{u$$

Izvod
$$\frac{\partial C_{z,k}}{\partial U_j}$$
 ako je $z \neq k$

$$\begin{split} &\frac{\partial C_{z,k}}{\partial U_{j}} = \frac{1}{2\omega} \frac{\partial}{\partial U_{j}} \left[\arccos \frac{U_{z-1}}{U_{k}} + \frac{1}{2} \sin \left(2 \arccos \frac{U_{z-1}}{U_{k}} \right) - \arccos \frac{U_{z}}{U_{k}} - \frac{1}{2} \sin \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \right] = \\ &= \frac{1}{2\omega} \left[\frac{\partial}{\partial U_{j}} \left(\arccos \frac{U_{z-1}}{U_{k}} \right) + \frac{1}{2} \frac{\partial}{\partial U_{j}} \left(\sin \left(2 \arccos \frac{U_{z-1}}{U_{k}} \right) \right) - \frac{\partial}{\partial U_{j}} \left(\arccos \frac{U_{z}}{U_{k}} \right) - \frac{1}{2} \frac{\partial}{\partial U_{j}} \left(\sin \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \right) \right] = \\ &= \frac{1}{2\omega} \left[- \frac{\frac{1}{U_{k}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}} - \cos \left(2 \arccos \frac{U_{z-1}}{U_{k}} \right) \frac{\frac{1}{U_{k}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \frac{1}{2} \frac{\frac{\partial U_{z}}{U_{k}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \cos \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \frac{1}{U_{k}} \frac{\frac{\partial U_{z}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \frac{1}{2\omega} \left[\frac{1}{U_{k}} \frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \cos \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \frac{1}{U_{k}} \frac{\frac{\partial U_{z}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \frac{U_{z}} \frac{\partial U_{z}}{U_{k}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \cos \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \frac{1}{U_{k}} \frac{\frac{\partial U_{z}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} + \frac{U_{z}} \frac{\partial U_{z}}{U_{k}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} \right] = \frac{1}{2\omega} \left[- \frac{1}{\frac{U_{k}}} \frac{\frac{\partial U_{z-1}}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}} \left(1 + \cos \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \right) \right] \right] = \frac{1}{2\omega} \left[- \frac{1}{\omega} \left[\frac{1}{\frac{U_{z}}} \frac{\frac{\partial U_{z}}{\partial U_{j}}} - \frac{U_{z-1}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}}} - \frac{U_{z-1}}{U_{z}} \frac{\partial U_{k}}{\partial U_{j}}} + \frac{U_{z}} \frac{2U_{k}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}}} \right] \right] + \frac{U_{z}} \frac{\frac{\partial U_{z}}{\partial U_{j}}} \frac{U_{z}}{U_{k}} \frac{\frac{U_{z}}{U_{k}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} \left(1 + \cos \left(2 \arccos \frac{U_{z}}{U_{k}} \right) \right) \right] = \frac{1}{\omega} \left[- \frac{1}{\omega} \left[\frac{U_{z}}{U_{k}} \frac{U_{z}}{U_{j}} - \frac{U_{z}}}{\frac{U_{z}}} \frac{\frac{U_{z}}}{U_{j}}} \frac{U_{z}}{U_{k}} \frac{U_{z}}{U_{j}}} + \frac{U_{z}} \frac{U_{z}}{U_{k}} \frac{U_{z}}{U_{j}}} \right] \right] = \frac{1}{\omega} \left[- \frac{U_{z}}{U_{k}} \frac{U_{z}}}{U_{z}} \frac{U_{z}}}{U_{z}} \frac{U_{z}}{$$

Izvod
$$\frac{\partial C_{z,k}}{\partial U_j}$$
 ako je $z = k$

$$\begin{split} &\frac{\partial C_{k,k}}{\partial U_{j}} = \frac{1}{2\omega} \frac{\partial}{\partial U_{j}} \left[\arccos \frac{U_{k-1}}{U_{k}} + \frac{1}{2} \sin \left(2 \arccos \frac{U_{k-1}}{U_{k}} \right) \right] = \frac{1}{2\omega} \left[\frac{\partial}{\partial U_{j}} \left(\arccos \frac{U_{k-1}}{U_{k}} \right) + \frac{1}{2} \frac{\partial}{\partial U_{j}} \left(\sin \left(2 \arccos \frac{U_{k-1}}{U_{k}} \right) \right) \right] = \\ &= \frac{1}{2\omega} \left[-\frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} - \cos \left(2 \arccos \frac{U_{k-1}}{U_{k}} \right) \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} \right] = \frac{1}{2\omega} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} \left[-1 - \cos \left(2 \arccos \frac{U_{k-1}}{U_{k}} \right) \right] = \\ &= -\frac{1}{\omega} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k-1}^{2}U_{k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1}^{3}}{\frac{\partial U_{k}}{\partial U_{j}}} = \frac{1}{2\omega} \frac{U_{k-1}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} \left[-1 - \cos \left(2 \arccos \frac{U_{k-1}}{U_{k}} \right) \right] = \\ &= -\frac{1}{\omega} \frac{1}{\frac{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k-1}^{2}U_{k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1}^{3}}{\frac{\partial U_{k}}{\partial U_{j}}} = \frac{U_{k-1}^{3}U_{k} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = \frac{U_{k-1}^{3}U_{k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1}^{3}}}{\frac{\partial U_{k}}^{3}\sqrt{U_{k}^{2}} - U_{k-1}^{3}}} \end{bmatrix}$$

Izvod $\frac{\partial D_{z,k}}{\partial U_j}$ ako je $z \neq k$

$$\frac{\partial D_{z,k}}{\partial U_{j}} = \frac{1}{\omega} \frac{\partial}{\partial U_{j}} \left[\sin\left(\arccos\frac{U_{z-1}}{U_{k}}\right) - \sin\left(\arccos\frac{U_{z}}{U_{k}}\right) \right] = \frac{1}{\omega} \left[\frac{\partial}{\partial U_{j}} \sin\left(\arccos\frac{U_{z-1}}{U_{k}}\right) - \frac{\partial}{\partial U_{j}} \sin\left(\arccos\frac{U_{z}}{U_{k}}\right) \right] = \frac{1}{\omega} \left[\frac{\partial}{\partial U_{j}} \sin\left(\arccos\frac{U_{z-1}}{U_{k}}\right) - \frac{\partial}{\partial U_{j}} \sin\left(\csc\frac{U_{z}}{U_{k}}\right) \right] = \frac{1}{\omega} \left[-\cos\left(\arccos\frac{U_{z-1}}{U_{k}}\right) - \frac{\frac{\partial}{\partial U_{j}}}{\frac{1}{\omega} - \frac{U_{z-1}}{U_{k}}} \frac{\partial}{\partial U_{j}} - \frac{U_{z-1}}{U_{k}} \frac{\partial}{\partial U_{j}} - \frac{U_{z}}{\partial U_{j}} \frac{\partial}{\partial U_{j}} - \frac{U_{z}}{2} \frac{\partial}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_{k}}\right)^{2}}} + \cos\left(\arccos\frac{U_{z}}{U_{k}}\right) \frac{\frac{1}{\omega} \frac{\partial}{\partial U_{j}} - \frac{U_{z}}{U_{k}} \frac{\partial}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{z}}{U_{k}}\right)^{2}}} \right] = \frac{1}{\omega} \left[-\frac{U_{z-1}U_{k} \frac{\partial}{\partial U_{j}} - U_{z-1}^{2} \frac{\partial}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{z-1}^{2}}} + \frac{U_{z}U_{k} \frac{\partial}{\partial U_{j}} - U_{z}^{2} \frac{\partial}{\partial U_{j}}}{\sqrt{U_{k}^{2} - U_{z}^{2}}} \right]$$

Izvod
$$\frac{\partial D_{z,k}}{\partial U_j}$$
 ako je $z = k$

$$\frac{\partial D_{k,k}}{\partial U_{j}} = \frac{1}{\omega} \frac{\partial}{\partial U_{j}} \sin\left(\arccos\frac{U_{k-1}}{U_{k}}\right) = -\frac{1}{\omega} \cos\left(\arccos\frac{U_{k-1}}{U_{k}}\right) \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{1}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{1}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{1}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k-1}}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k-1}}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k-1}}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}}} = -\frac{U_{k-1}}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}}} = -\frac{U_{k-1}}{\omega} \frac{U_{k-1}}{U_{k}} \frac{\frac{1}{U_{k}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}}} = -\frac{U_{k-1}}U_{k} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{U_{k}} \frac{U_{k-1}}{U_{k}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}}{\sqrt{1 - \left(\frac{U_{k}}{U_{k}}\right)^{2}}}} = -\frac{U_{k-1}}U_{k} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}}{\sqrt{1 - \left(\frac{U_{k}}{U_{k}}\right)^{2}}} = -\frac{U_{k}}U_{k} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}}{\sqrt{1 - \left(\frac{U_{k}}{U_{k}}\right)^{2}}} = -\frac{U_{k}}U_{k} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}}{\sqrt{1 - \left(\frac{U_{k}}{U_{k}}\right)^{2}}} \frac{U_{k}}{\frac{1}{U_{k}}}} \frac{U_{k}}{\frac{1}{U_{k}}} \frac{U_{k}}{\frac{1}{U_{k}}}}{\sqrt{1 - \left(\frac{U_{k}}{U_{k}}\right)^{2}}}} = -\frac{U_{k}}U_{k} \frac{U_{k}}{\frac{1}{U_{k}}}}{\sqrt{1 - \left(\frac{U_{k}}{U_{k}}\right)^{2}}}} \frac{U_{k}}{\frac$$

Izvod
$$\frac{\partial E_{z,k}}{\partial U_j}$$
 ako je $z \neq k$

$$\frac{\partial E_{z,k}}{\partial U_{j}} = \frac{1}{\omega} \frac{\partial}{\partial U_{j}} \left[\arcsin \frac{U_{z}}{U_{k}} - \arcsin \frac{U_{z-1}}{U_{k}} \right] = \frac{1}{\omega} \left[\frac{\partial}{\partial U_{j}} \arcsin \frac{U_{z}}{U_{k}} - \frac{\partial}{\partial U_{j}} \arcsin \frac{U_{z-1}}{U_{k}} \right] = \frac{1}{\omega} \left[\frac{\frac{1}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{k}} \frac{\partial U_{z}}{\partial U_{k}} - \frac{U_{z}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j}} - \frac{U_{z}}{U_{k}} \frac{\partial U_{z}}{\partial U_{j$$

Izvod $\frac{\partial E_{z,k}}{\partial U_j}$ ako je z = k

$$\frac{\partial E_{k,k}}{\partial U_{j}} = \frac{1}{\omega} \frac{\partial}{\partial U_{j}} \left[\frac{\pi}{2} - \arcsin \frac{U_{k-1}}{U_{k}} \right] = -\frac{1}{\omega} \frac{\partial}{\partial U_{j}} \left[\arcsin \frac{U_{k-1}}{U_{k}} \right] = -\frac{1}{\omega} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1} \frac{\partial U_{k}}{\partial U_{j}}}{\omega U_{k} \sqrt{U_{k}^{2} - U_{k-1}^{2}}}$$

$$\begin{aligned} \text{Izvod} \quad \frac{\partial F_{z,k}}{\partial U_j} \text{ ako je } z \neq k \\ \frac{\partial F_{z,k}}{\partial U_j} = \frac{1}{\omega} \frac{\partial}{\partial U_j} \left[\arccos \frac{U_{z-1}}{U_k} - \arccos \frac{U_z}{U_k} \right] = \frac{1}{\omega} \left[-\frac{\frac{1}{U_k} \frac{\partial U_{z-1}}{\partial U_j} - \frac{U_{z-1}}{U_k^2} \frac{\partial U_k}{\partial U_j}}{\sqrt{1 - \left(\frac{U_{z-1}}{U_k}\right)^2}} + \frac{\frac{1}{U_k} \frac{\partial U_z}{\partial U_j} - \frac{U_z}{U_k^2} \frac{\partial U_k}{\partial U_j}}{\sqrt{1 - \left(\frac{U_z}{U_k}\right)^2}} \right] = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_i \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_z^2}} - \frac{U_k \frac{\partial U_{z-1}}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_{z-1}^2}} \right] \\ = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_i \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_z^2}} - \frac{U_k \frac{\partial U_{z-1}}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_{z-1}^2}} \right] \\ = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_i \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_z^2}} - \frac{U_k \frac{\partial U_z}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_{z-1}^2}}} \right] \\ = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_i \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_z^2}} - \frac{U_k \frac{\partial U_z}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_{z-1}^2}}} \right] \\ = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_i \frac{\partial U_k}{\partial U_j}}{\sqrt{U_k^2 - U_z^2}} - \frac{U_k \frac{\partial U_z}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}}}{\sqrt{U_k^2 - U_{z-1}^2}} \right] \\ = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_i \frac{\partial U_k}{\partial U_j}} - \frac{U_k \frac{\partial U_z}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}} + \frac{U_k \frac{\partial U_z}{\partial U_j} - U_{z-1} \frac{\partial U_k}{\partial U_j}}}{\sqrt{U_k^2 - U_z^2}} \right] \\ = \frac{1}{\omega U_k} \left[\frac{U_k \frac{\partial U_z}{\partial U_j} - U_j \frac{\partial U_k}{\partial U_j}} - \frac{U_k \frac{\partial U_z}{\partial U_j} - U_j \frac{\partial U_k}{\partial U_j}} + \frac{U_k \frac{\partial U_j}{\partial U_j}} + \frac{U_$$

Izvod
$$\frac{\partial F_{z,k}}{\partial U_j}$$
 ako je $z = k$

$$\frac{\partial F_{k,k}}{\partial U_{j}} = \frac{1}{\omega} \frac{\partial}{\partial U_{j}} \arccos \frac{U_{k-1}}{U_{k}} = -\frac{1}{\omega} \frac{\frac{1}{U_{k}} \frac{\partial U_{k-1}}{\partial U_{j}} - \frac{U_{k-1}}{U_{k}^{2}} \frac{\partial U_{k}}{\partial U_{j}}}{\sqrt{1 - \left(\frac{U_{k-1}}{U_{k}}\right)^{2}}} = -\frac{U_{k} \frac{\partial U_{k-1}}{\partial U_{j}} - U_{k-1} \frac{\partial U_{k}}{\partial U_{j}}}{\omega U_{k} \sqrt{U_{k}^{2} - U_{k-1}^{2}}}$$

$$\frac{\partial I_{Lk}}{\partial U_{j}} = \frac{\partial}{\partial U_{j}} \sqrt{I_{k}^{2} - I_{Rk}^{2}} = \frac{-\frac{\partial I_{Rk}^{2}}{\partial U_{j}}}{2\sqrt{I_{k}^{2} - I_{Rk}^{2}}} = -\frac{1}{2I_{Lk}} \frac{\partial I_{Rk}^{2}}{\partial U_{j}}$$

$$\begin{aligned} \frac{\partial I^{2}_{Rk}}{\partial U_{j}} &= \frac{4}{T} \frac{\partial}{\partial U_{j}} \sum_{z=1}^{k} \left[2G_{z}^{2}U_{k}^{2}A_{z,k} - 2\sqrt{2}G_{z}U_{k} \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)}\right) B_{z,k} + \left(2G_{z}^{2}U_{z-1}^{2} - 2\sqrt{2}G_{z}U_{z-1}\hat{I}_{R(z-1)} + \hat{I}_{R(z-1)}^{2}\right) E_{z,k} \right] = \\ &= \frac{4}{T} \sum_{z=1}^{k} \left\{ 2\frac{\partial}{\partial U_{j}} \left[G_{z}^{2}U_{k}^{2}A_{z,k} \right] - 2\sqrt{2}\frac{\partial}{\partial U_{j}} \left[G_{z}U_{k} \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)}\right) B_{z,k} \right] + \frac{\partial}{\partial U_{j}} \left[\left(2G_{z}^{2}U_{z-1}^{2} - 2\sqrt{2}G_{z}U_{z-1}\hat{I}_{R(z-1)} + \hat{I}_{R(z-1)}^{2}\right) E_{z,k} \right] \right\} = \\ \end{aligned}$$

$$\begin{split} &= \frac{4}{T} \sum_{i=1}^{k} \left\{ 2 \left[U_{i}^{2} A_{i,k} \frac{\partial G_{i}^{2}}{\partial U_{j}} + G_{i}^{2} A_{i,k} \frac{\partial U_{k}^{2}}{\partial U_{j}} + G_{i}^{2} U_{k}^{2} \frac{\partial A_{i,k}}{\partial U_{j}} \right] \\ &= \frac{4}{T} \sum_{i=1}^{k} \left\{ -2\sqrt{2} \left[U_{k} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial G_{k}}{\partial U_{j}} + G_{i} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial G_{k}}{\partial U_{j}} + G_{i} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) + G_{i} U_{k} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) + G_{i} U_{k} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) + (2G_{i}^{2} U_{i-1}^{2} - 2\sqrt{2} G_{i} U_{i-1} \hat{I}_{R(i-1)} + \hat{I}_{R(i-1)}^{2} \right) + \left(2G_{i}^{2} U_{i-1}^{2} - 2\sqrt{2} G_{i} U_{i-1} \hat{I}_{R(i-1)} \right) + \left(2G_{i}^{2} U_{i-1}^{2} - 2\sqrt{2} G_{i} U_{i-1} \hat{I}_{R(i-1)} \right) \frac{\partial E_{i,k}}{\partial U_{j}} \\ &= \frac{4}{T} \sum_{i=1}^{k} \left\{ -2\sqrt{2} \left[U_{k} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial G_{i}}{\partial U_{j}} + G_{i}^{2} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial G_{k}}{\partial U_{j}} + G_{i}^{2} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) \right) \right\} \\ &+ E_{i,k} \left[2 \frac{\partial}{\partial U_{j}} \left(G_{i}^{2} U_{i-1}^{2} \right) - 2\sqrt{2} \frac{\partial}{\partial U_{j}} \left(G_{i} U_{i-1} \hat{I}_{R(i-1)} \right) + \left(\frac{\partial}{\partial U_{j}} \right) \right] + \left(2G_{i}^{2} U_{i-1}^{2} - 2\sqrt{2} G_{i} U_{i-1} \hat{I}_{R(i-1)} \right) \frac{\partial E_{i,k}}{\partial U_{j}} \right] \right\} \\ &+ E_{i,k} \left[2 \frac{\partial}{\partial U_{j}} \left(G_{i}^{2} U_{i-1}^{2} \right) - 2\sqrt{2} \frac{\partial}{\partial U_{j}} \left(G_{i} U_{i-1} \hat{I}_{R(i-1)} \right) + \left(\frac{\partial}{\partial U_{j}} \right) \right] + \left(2G_{i}^{2} U_{i-1}^{2} - 2\sqrt{2} G_{i} U_{i-1} \hat{I}_{R(i-1)} \right) \frac{\partial E_{i,k}}{\partial U_{j}} \right] \right] \\ &+ E_{i,k} \left[2 \left[2U_{i}^{2} A_{i,k} G_{i} \frac{\partial G_{i}}{\partial U_{j}} + G_{i}^{2} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial U_{k}}{\partial U_{j}} + G_{i} \left(\sqrt{2} G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial U_{k}}{\partial U_{j}} + G_{i} U_{i,i} \right] \right] \\ &+ E_{i,k} \left[4G_{i} U_{i-1} \frac{\partial}{\partial U_{j}} \left(G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial G_{i}}{\partial U_{j}} + G_{i} \left(A_{i} \int B_{i,i} - \hat{I}_{R(i-1)} \right) \frac{\partial E_{i,k}}{\partial U_{j}} \right] \\ &+ E_{i,k} \left[4G_{i} U_{i-1} \frac{\partial}{\partial U_{j}} \left(G_{i} U_{i-1} - \hat{I}_{R(i-1)} \right) B_{i,k} \frac{\partial G_{k}}{\partial U_{j}} + G_{i} \left(A_{i} \int B_{i,i} -$$

$$=\frac{4}{T}\sum_{z=1}^{k} \begin{cases} 2\left(2U_{k}^{2}A_{z,k}G_{z}\frac{\partial G_{z}}{\partial U_{j}}+2G_{z}^{2}A_{z,k}U_{k}\frac{\partial U_{k}}{\partial U_{j}}+G_{z}^{2}U_{k}^{2}\frac{\partial A_{z,k}}{\partial U_{j}}\right) \\ -2\sqrt{2}\left[U_{k}\left(\sqrt{2}G_{z}U_{z-1}-\hat{I}_{R(z-1)}\right)B_{z,k}\frac{\partial G_{z}}{\partial U_{j}}+G_{z}\left(\sqrt{2}G_{z}U_{z-1}-\hat{I}_{R(z-1)}\right)B_{z,k}\frac{\partial U_{k}}{\partial U_{j}}+G_{z}U_{k}B_{z,k}\left[\sqrt{2}\left(U_{z-1}\frac{\partial G_{z}}{\partial U_{j}}+G_{z}\frac{\partial U_{z-1}}{\partial U_{j}}\right)-\frac{\partial \hat{I}_{R(z-1)}}{\partial U_{j}}\right]+G_{z}U_{k}\left(\sqrt{2}G_{z}U_{z-1}-\hat{I}_{R(z-1)}\right)\frac{\partial B_{z,k}}{\partial U_{j}}\frac{\partial Q_{z}}{\partial U_{j}}+G_{z}\hat{I}_{R(z-1)}+\hat{I}_{R(z-1)}\frac{\partial U_{z-1}}{\partial U_{j}}+U_{z-1}\hat{I}_{R(z-1)}\frac{\partial G_{z}}{\partial U_{j}}\right)+\hat{I}_{R(z-1)}\frac{\partial \hat{I}_{R(z-1)}}{\partial U_{j}}\right]+\left(2G_{z}^{2}U_{z-1}^{2}-2\sqrt{2}G_{z}U_{z-1}+\hat{I}_{R(z-1)}+\hat{I}_{R(z-1)}\frac{\partial E_{z,k}}{\partial U_{j}}\right)\frac{\partial E_{z,k}}{\partial U_{j}}$$

Izračun preostalih elemenata matrice $\mathbf{J}_{\hat{I}_{L}I}$.

$$\frac{\partial \hat{I}_{Lk}}{\partial I_{j}} = \sqrt{2} \left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial I_{j}} + \frac{\partial \hat{I}_{L(k-1)}}{\partial I_{j}}$$

 $\frac{\partial \hat{I}_{L(k-1)}}{\partial I_{j}}$ - poznato iz prethodnih iteracija

$$\frac{\partial y_k}{\partial I_j} = \frac{\partial}{\partial I_j} \left(\frac{-b_k + \sqrt{b_k^2 - 4a_k c_k}}{2a_k} \right) = \frac{\frac{\partial}{\partial I_j} \left(-b_k + \sqrt{b_k^2 - 4a_k c_k} \right)}{2a_k} = \frac{\left(-\frac{\partial b_k}{\partial I_j} + \frac{\partial}{\partial I_j} \sqrt{b_k^2 - 4a_k c_k} \right)}{2a_k} = \frac{1}{2a_k} \left(-\frac{\partial b_k}{\partial I_j} + \frac{2b_k \frac{\partial b_k}{\partial I_j} - 4a_k \frac{\partial c_k}{\partial I_j}}{2\sqrt{b_k^2 - 4a_k c_k}} \right) = \frac{1}{2a_k} \left(-\frac{\partial b_k}{\partial I_j} + \frac{b_k \frac{\partial b_k}{\partial I_j} - 2a_k \frac{\partial c_k}{\partial I_j}}{\sqrt{b_k^2 - 4a_k c_k}} \right)$$

$$\frac{\partial a_k}{\partial I_j} = 0$$

 $\frac{\partial b_k}{\partial I_j} = 2\sqrt{2} \left(U_k D_{k,k} - U_{k-1} F_{k,k} \right) \frac{\partial \hat{I}_{L(k-1)}}{\partial I_j}$

 $\frac{\partial c_{k}}{\partial I_{j}} = F_{k,k} \frac{\partial \hat{I}_{L(k-1)}^{2}}{\partial I_{j}} - \frac{T}{4} \frac{\partial I_{Lk}^{2}}{\partial I_{j}} + \frac{\partial}{\partial I_{j}} \sum_{z=1}^{k-1} \left\{ 2 \left(U_{k} y_{z} \right)^{2} C_{z,k} - 2 \sqrt{2} U_{k} y_{z} \left(\sqrt{2} U_{z-1} y_{z} - \hat{I}_{L(z-1)} \right) D_{z,k} + \left[2 \left(U_{z-1} y_{z} \right)^{2} - 2 \sqrt{2} U_{z-1} y_{z} \hat{I}_{L(z-1)} + \hat{I}_{L(z-1)}^{2} \right] F_{z,k} \right\} = 0$

$$=2F_{k,k}\hat{I}_{L(k-1)}\frac{\partial\hat{I}_{L(k-1)}}{\partial I_{j}} - \frac{T}{2}I_{Lk}\frac{\partial I_{Lk}}{\partial I_{j}} + \sum_{z=1}^{k-1} \begin{cases} 2U_{k}^{2}C_{z,k}\frac{\partial y_{z}^{2}}{\partial I_{j}} - 2\sqrt{2}D_{z,k}U_{k}\frac{\partial}{\partial I_{j}} \Big[y_{z} \Big(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{L(z-1)}\Big) \Big] \\ +F_{z,k}\frac{\partial}{\partial I_{j}} \Big[2(U_{z-1}y_{z})^{2} - 2\sqrt{2}U_{z-1}y_{z}\hat{I}_{L(z-1)} + \hat{I}_{L(z-1)}^{2} \Big] \end{cases} = \\ =2F_{k,k}\hat{I}_{L(k-1)}\frac{\partial\hat{I}_{L(k-1)}}{\partial I_{j}} - \frac{T}{2}I_{Lk}\frac{\partial I_{Lk}}{\partial I_{j}} + \sum_{z=1}^{k-1} \begin{cases} 4U_{k}^{2}C_{z,k}y_{z}\frac{\partial y_{z}}{\partial I_{j}} - 2\sqrt{2}D_{z,k}U_{k} \Big[\Big(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{L(z-1)}\Big)\frac{\partial y_{z}}{\partial I_{j}} + y_{z}\frac{\partial}{\partial I_{j}}\Big(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{L(z-1)}\Big)\Big] \\ +F_{z,k} \Big[2U_{z-1}^{2}\frac{\partial y_{z}^{2}}{\partial I_{j}} - 2\sqrt{2}D_{z,k}U_{k} \Big[\Big(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{L(z-1)}\Big)\frac{\partial y_{z}}{\partial I_{j}} + y_{z}\frac{\partial}{\partial I_{j}}\Big(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{L(z-1)}\Big)\Big] \\ +F_{z,k} \Big[2U_{z-1}^{2}\frac{\partial y_{z}^{2}}{\partial I_{j}} - 2\sqrt{2}U_{z-1}\frac{\partial}{\partial I_{j}}\Big(y_{z}\hat{I}_{L(z-1)}\Big) + \frac{\partial^{2}\hat{I}_{L(z-1)}}{\partial I_{j}}\Big] \\ =2F_{k,k}\hat{I}_{L(k-1)}\frac{\partial\hat{I}_{L(k-1)}}{\partial I_{j}} - \frac{T}{2}I_{Lk}\frac{\partial I_{Lk}}{\partial I_{j}} + \sum_{z=1}^{k-1} \begin{cases} 4U_{k}^{2}C_{z,k}y_{z}\frac{\partial y_{z}}{\partial I_{j}} - 2\sqrt{2}D_{z,k}U_{k}\Big[\Big(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{L(z-1)}\Big)\frac{\partial y_{z}}{\partial I_{j}} + y_{z}\Big(\sqrt{2}U_{z-1}\frac{\partial y_{z}}{\partial I_{j}} - \frac{\partial \hat{I}_{L(z-1)}}{\partial I_{j}}\Big] \end{cases} + 2F_{z,k} \Big[2y_{z}U_{z-1}^{2}\frac{\partial y_{z}}{\partial I_{j}} - 2\sqrt{2}D_{z,k}U_{k}\Big[\Big(\hat{I}_{L(z-1)}\frac{\partial y_{z}}{\partial I_{j}} + y_{z}\Big(\sqrt{2}U_{z-1}\frac{\partial y_{z}}{\partial I_{j}} - \frac{\partial \hat{I}_{L(z-1)}}{\partial I_{j}}\Big] \Big] + 2F_{z,k} \Big[2y_{z}U_{z-1}^{2}\frac{\partial y_{z}}{\partial I_{j}} - \sqrt{2}U_{z-1}\Big[\hat{I}_{L(z-1)}\frac{\partial y_{z}}{\partial I_{j}} + y_{z}\frac{\partial \hat{I}_{L(z-1)}}{\partial I_{j}}\Big] + \hat{I}_{L(z-1)}\frac{\partial \hat{I}_{L(z-1)}}{\partial I_{j}}\Big] \Big] \Big]$$

 $\frac{\partial y_z}{\partial I_j}$ - poznato iz prethodnih iteracija

$$\frac{\partial I_{Lk}}{\partial I_{j}} = \frac{\partial}{\partial I_{j}} \sqrt{I_{k}^{2} - I_{Rk}^{2}} = \frac{\frac{\partial I_{k}^{2}}{\partial I_{j}}}{2\sqrt{I_{k}^{2} - I_{Rk}^{2}}} = \frac{I_{k}}{\sqrt{I_{k}^{2} - I_{Rk}^{2}}} = \frac{I_{k}}{I_{Lk}} \frac{\partial I_{k}}{\partial I_{j}}$$

 $\frac{\partial I_{Rk}}{\partial I_j} = 0$ u-i karakteristika ne ovisi o izmjerenoj struji (ovisi samo o naponu i snazi)

 $\frac{\partial I_k}{\partial I_j} = \delta_{jk}$

Izračun preostalih elemenata matrice $\mathbf{J}_{\hat{l}_L P}$.

$$\frac{\partial \hat{I}_{Lk}}{\partial P_{j}} = \sqrt{2} \left(U_{k} - U_{k-1} \right) \frac{\partial y_{k}}{\partial P_{j}} + \frac{\partial \hat{I}_{L(k-1)}}{\partial P_{j}}$$

 $rac{\partial \hat{I}_{L(k-1)}}{\partial P_j}$ - poznato iz prethodnih iteracija

$$\frac{\partial y_{k}}{\partial P_{j}} = \frac{\partial}{\partial P_{j}} \left(\frac{-b_{k} + \sqrt{b_{k}^{2} - 4a_{k}c_{k}}}{2a_{k}} \right) = \frac{\frac{\partial}{\partial P_{j}} \left(-b_{k} + \sqrt{b_{k}^{2} - 4a_{k}c_{k}} \right)}{2a_{k}} = \frac{\left(-\frac{\partial b_{k}}{\partial P_{j}} + \frac{\partial}{\partial P_{j}} \sqrt{b_{k}^{2} - 4a_{k}c_{k}} \right)}{2a_{k}} = \frac{1}{2a_{k}} \left(-\frac{\partial b_{k}}{\partial P_{j}} + \frac{2b_{k} \frac{\partial b_{k}}{\partial P_{j}} - 4a_{k} \frac{\partial c_{k}}{\partial P_{j}}}{2\sqrt{b_{k}^{2} - 4a_{k}c_{k}}} \right) = \frac{1}{2a_{k}} \left(-\frac{\partial b_{k}}{\partial P_{j}} + \frac{b_{k} \frac{\partial b_{k}}{\partial P_{j}} - 2a_{k} \frac{\partial c_{k}}{\partial P_{j}}}{\sqrt{b_{k}^{2} - 4a_{k}c_{k}}} \right) = \frac{1}{2a_{k}} \left(-\frac{\partial b_{k}}{\partial P_{j}} + \frac{b_{k} \frac{\partial b_{k}}{\partial P_{j}} - 2a_{k} \frac{\partial c_{k}}{\partial P_{j}}}{\sqrt{b_{k}^{2} - 4a_{k}c_{k}}} \right) = \frac{1}{2a_{k}} \left(-\frac{\partial b_{k}}{\partial P_{j}} + \frac{b_{k} \frac{\partial b_{k}}{\partial P_{j}} - 2a_{k} \frac{\partial c_{k}}{\partial P_{j}}}{\sqrt{b_{k}^{2} - 4a_{k}c_{k}}} \right)$$

 $\frac{\partial b_k}{\partial P_j} = 2\sqrt{2} \left(U_k D_{k,k} - U_{k-1} F_{k,k} \right) \frac{\partial \hat{I}_{L(k-1)}}{\partial P_j}$

$$\begin{split} &\frac{\partial c_{k}}{\partial P_{j}} = F_{k,k} \frac{\partial \hat{I}_{l,(k-1)}^{2}}{\partial P_{j}} - \frac{T}{4} \frac{\partial I_{l,k}^{2}}{\partial P_{j}} + \frac{\partial}{\partial P_{j}} \sum_{z=1}^{k-1} \left\{ 2(U_{k}y_{z})^{2} C_{z,k} - 2\sqrt{2}U_{k}y_{z} \left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) D_{z,k} + \left[2(U_{z-1}y_{z})^{2} - 2\sqrt{2}U_{z-1}y_{z} \hat{I}_{l,(z-1)} + \hat{I}_{l,(z-1)}^{2} \right] F_{z,k} \right\} = \\ &= 2F_{k,k} \hat{I}_{l,(k-1)} \frac{\partial \hat{I}_{l,(k-1)}}{\partial P_{j}} - \frac{T}{2} I_{l,k} \frac{\partial I_{l,k}}{\partial P_{j}} + \sum_{z=1}^{k-1} \left\{ 2U_{k}^{2}C_{z,k} \frac{\partial y_{z}^{2}}{\partial P_{j}} - 2\sqrt{2}D_{z,k}U_{k} \frac{\partial}{\partial P_{j}} \left[y_{z} \left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \right] \right\} = \\ &= 2F_{k,k} \hat{I}_{l,(k-1)} \frac{\partial \hat{I}_{l,(k-1)}}{\partial P_{j}} - \frac{T}{2} I_{l,k} \frac{\partial I_{l,k}}{\partial P_{j}} + \sum_{z=1}^{k-1} \left\{ 4U_{k}^{2}C_{z,k}y_{z} \frac{\partial y_{z}}{\partial P_{j}} - 2\sqrt{2}D_{z,k}U_{k} \left[\left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \frac{\partial y_{z}}{\partial P_{j}} + y_{z} \frac{\partial}{\partial P_{j}} \left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \right] \right\} = \\ &= 2F_{k,k} \hat{I}_{l,(k-1)} \frac{\partial \hat{I}_{l,(k-1)}}{\partial P_{j}} - \frac{T}{2} I_{l,k} \frac{\partial I_{l,k}}{\partial P_{j}} + \sum_{z=1}^{k-1} \left\{ 4U_{k}^{2}C_{z,k}y_{z} \frac{\partial y_{z}}{\partial P_{j}} - 2\sqrt{2}D_{z,k}U_{k} \left[\left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \frac{\partial y_{z}}{\partial P_{j}} + y_{z} \frac{\partial}{\partial P_{j}} \left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \right] \right\} = \\ &= 2F_{k,k} \hat{I}_{l,(k-1)} \frac{\partial \hat{I}_{l,(k-1)}}{\partial P_{j}} - \frac{T}{2} I_{l,k} \frac{\partial I_{l,k}}{\partial P_{j}} + \sum_{z=1}^{k-1} \left\{ 4U_{k}^{2}C_{z,k}y_{z} \frac{\partial y_{z}}{\partial P_{j}} - 2\sqrt{2}D_{z,k}U_{k} \left[\left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \frac{\partial y_{z}}{\partial P_{j}} + y_{z} \left(\sqrt{2}U_{z-1}\frac{\partial y_{z}}{\partial P_{j}} - \frac{\partial \hat{I}_{l,(z-1)}}{\partial P_{j}}\right) \right\} = \\ &= 2F_{k,k} \hat{I}_{l,(k-1)} \frac{\partial \hat{I}_{l,(k-1)}}{\partial P_{j}} - \frac{T}{2} I_{l,k} \frac{\partial I_{l,k}}{\partial P_{j}} + \sum_{z=1}^{k-1} \left\{ 4U_{k}^{2}C_{z,k}y_{z} \frac{\partial y_{z}}{\partial P_{j}} - 2\sqrt{2}D_{z,k}U_{k} \left[\left(\sqrt{2}U_{z-1}y_{z} - \hat{I}_{l,(z-1)}\right) \frac{\partial y_{z}}}{\partial P_{j}} + y_{z} \left(\sqrt{2}U_{z-1}\frac{\partial y_{z}}{\partial P_{j}} - \frac{\partial \hat{I}_{l,(z-1)}}{\partial P_{j}}\right) \right\}$$

 $\frac{\partial y_z}{\partial P_j}$ - poznato iz prethodnih iteracija

$$\frac{\partial I_{Lk}}{\partial P_j} = \frac{\partial}{\partial P_j} \sqrt{I_k^2 - I_{Rk}^2} = \frac{-\frac{\partial I_{Rk}^2}{\partial P_j}}{2\sqrt{I_k^2 - I_{Rk}^2}} = -\frac{1}{2I_{Lk}} \frac{\partial I_{Rk}^2}{\partial P_j}$$

$$\begin{split} &\frac{\partial l^{2}_{Rk}}{\partial P_{j}} = \frac{4}{T} \frac{\partial}{\partial P_{j}} \sum_{z=1}^{k} \left[2G_{z}^{2}U_{k}^{2}A_{z,k} - 2\sqrt{2}G_{z}U_{k} \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) B_{z,k} + \left(2G_{z}^{2}U_{z-1}^{2} - 2\sqrt{2}G_{z}U_{z-1} \hat{I}_{R(z-1)} + \hat{I}_{R(z-1)}^{2} \right) E_{z,k} \right] = \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[2U_{k}^{2}A_{z,k} \frac{\partial G_{z}^{2}}{\partial P_{j}} - 2\sqrt{2}U_{k}B_{z,k} \frac{\partial}{\partial P_{j}} \left[G_{z} \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) \right] + E_{z,k} \frac{\partial}{\partial P_{j}} \left(2G_{z}^{2}U_{z-1}^{2} - 2\sqrt{2}G_{z}U_{z-1} + \hat{I}_{R(z-1)}^{2} \right) \right] \right] = \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[\frac{4U_{k}^{2}A_{z,k}G_{z} \frac{\partial G_{z}}{\partial P_{j}} - 2\sqrt{2}U_{k}B_{z,k} \left[G_{z} \frac{\partial}{\partial P_{j}} \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) + \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) \frac{\partial G_{z}}{\partial P_{j}} \right] \right] = \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[\frac{4U_{k}^{2}A_{z,k}G_{z} \frac{\partial G_{z}}{\partial P_{j}} - 2\sqrt{2}U_{z-1} \frac{\partial}{\partial P_{j}} \left(G_{z} \hat{I}_{R(z-1)} \right) + \frac{\partial \hat{I}_{R(z-1)}^{2}}{\partial P_{j}} \right) + \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) \frac{\partial G_{z}}{\partial P_{j}} \right] \right] \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[\frac{4U_{k}^{2}A_{z,k}G_{z} \frac{\partial G_{z}}{\partial P_{j}} - 2\sqrt{2}U_{z-1} \frac{\partial}{\partial P_{j}} \left(G_{z} \hat{I}_{R(z-1)} \right) + \frac{\partial \hat{I}_{R(z-1)}^{2}}{\partial P_{j}} \right) + \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) \frac{\partial G_{z}}{\partial P_{j}} \right] \right] \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[\frac{4U_{k}^{2}A_{z,k}G_{z} \frac{\partial G_{z}}{\partial P_{j}} - 2\sqrt{2}U_{k}B_{z,k} \left[G_{z} \left(\sqrt{2}U_{z-1} \frac{\partial G_{z}}{\partial P_{j}} - \frac{\partial \hat{I}_{R(z-1)}}{\partial P_{j}} \right) + \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) \frac{\partial G_{z}}{\partial P_{j}} \right] \right] \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[\frac{4U_{k}^{2}A_{z,k}G_{z} \frac{\partial G_{z}}{\partial P_{j}} - 2\sqrt{2}U_{k}B_{z,k} \left[G_{z} \left(\sqrt{2}U_{z-1} \frac{\partial G_{z}}{\partial P_{j}} - \frac{\partial \hat{I}_{R(z-1)}}{\partial P_{j}} \right) + \left(\sqrt{2}G_{z}U_{z-1} - \hat{I}_{R(z-1)} \right) \frac{\partial G_{z}}{\partial P_{j}} \right] \right] \\ &= \frac{4}{T} \sum_{z=1}^{k} \left[\frac{4U_{k}^{2}A_{z,k}G_{z} \frac{\partial G_{z}}{\partial P_{j}} - 2\sqrt{2}U_{z-1} \left(\hat{I}_{R(z-1)} \frac{\partial G_{z}}{\partial P_{j}} + G_{z} \frac{\partial \hat{I}_{R(z-1)}}{\partial P_{j}} \right) + \hat{I}_{R(z-1)} \frac{\partial \hat{I}_{R(z-1)}}{\partial P_{j}} \right]$$