Proračun induktiviteta magnetskih krugova

Galić, Ivan

Undergraduate thesis / Završni rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:075937

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-05

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Preddiplomski studij

PRORAČUN INDUKTIVITETA MAGNETSKIH KRUGOVA

Završni rad

Ivan Galić

Osijek, 2019.

SADRŽAJ:

1. UVOD1
1.1. Opis zadatka1
2. OSNOVE MAGNETSKIH POLJA2
2.1. Vrste magnetskih materijala
2.1.1. Dijamagnetizam
2.1.2. Paramagnetizam
2.1.3. Feromagnetizam
2.2. Krivulja magnetiziranja
3. MAGNETSKI KRUGOVI
3.1. Serijski magnetski krug 13
3.2. Paralelni magnetski krug
3.3. Magnetski krug sa zračnim rasporom16
4. INDUKTIVITET I MEĐUINDUKTIVITET17
4.1. Induktivitet
4.2. Međuinduktivitet
5. NUMERICKI PRORACUNI
 NUMERICKI PRORACUNI
5. NUMERICKI PRORACUNI 21 6. PRORAČUN – FINITE ELEMENT METHOD MAGNETICS 30 6.1. Programski paket FEMM 30 7. ZAKLJUČAK 38 LITERATURA 39 ŽIVOTOPIS 40 SAŽETAK 41 ABSTRACT 42

POPIS TABLICA

Tablica 2.1.Curieva temperatura materijala	
Tablica 6.1. Usporedba rezultata numeričkog proračuna i računalne simu	ılacije serijskog
magnetskog kruga	
Tablica 6.2. Usporedba rezultata numeričkog proračuna i računalne simul	acije serijskoga
magnetskog kruga sa zračnim rasporom od 5mm	
Tablica 6.3. Usporedba rezultata numeričkog proračuna i računalne simul	lacije serijskoga
magnetskog kruga sa zračnim rasporom od 0.5mm	
Tablica 6.4. Usporedba rezultata numeričkog proračuna i računalne simula	cije paralelnoga
magnetskog kruga	
Tablica 6.5. Usporedba rezultata numeričkog proračuna i računalne simul	acije paralelnog
magnetskog kruga sa zračnim rasporom od 5mm	
Tablica 6.6. Usporedba rezultata numeričkog proračuna i računalne simula	cije paralelnoga
magnetskog kruga sa zračnim rasporom od 0.5 mm	

POPIS SLIKA

Slika 2.1. Magnetsko polje strujne petlje i permanentnog magneta	2
Slika 2.2. Magnetsko polje u prisutnosti dijamagnetskog materijala	4
Slika 2.3. Magnetske domene paramagnetskog materijala bez prisutnosti vanjskog polja	4
Slika 2.4. Magnetske domene paramagnetskog materijala u prisutnosti vanjskog polja	5
Slika 2.5. Magnetsko polje u prisutnosti feromagnetskog materijala	5
Slika 2.6. Poravnanje domena pod utjecajem magnetskog polja H	6
Slika 2.7. Magnetsko polje u prisutnosti feromagnetskog materijala	6
Slika 2.8. Ovisnost magnetizacije i Curieve temperature	7
Slika 2.9. Magnetski dipolni momenti ispod Curieve temperature	7
Slika 2.10. Magnetski dipolni momenti iznad Curieve temperature	7
Slika 2.11. Krivulja magnetiziranja	8
Slika 2.12. Krivulja magnetiziranja paramagnetika feromagnetika	8
Slika 2.13. Krivulja magnetiziranja i magnetska permeabilnost za željezo	9
Slika 2.14. Magnetiziranje feromagnetskog materijala	. 10
Slika 2.15. Petlja histereze tvrdog i mekog magnetskog materijala	. 11
Slika 3.1. Primjeri magnetskih krugova	. 12
Slika 3.2. Serijski magnetski krug	. 14
Slika 3.3. Paralelni magnetski krug	. 15
Slika 3.4. Prstenasti magnetski krug sa zračnim rasporom	. 16
Slika 4.1. Strujna petlja protjecana strujom	. 17
Slika 4.2. Obuhvaćeni magnetski tok	. 18
Slika 4.3. Magnetski tok dva bliska strujna kruga	. 19
Slika 5.1. Serijski magnetski krug	. 21
Slika 5.2. Serijski magnetski krug sa zračnim rasporom od 5 mm	. 22
Slika 5.3. Serijski magnetski krug sa zračnim rasporom od 0.5 mm	. 24
Slika 5.4. Paralelni magnetski krug	. 25
Slika 5.5. Paralelni magnetski krug sa zračnim rasporom od 5 mm	. 26
Slika 5.6. Paralelni magnetski krug sa zračnim rasporom od 0.5 mm	. 28
Slika 6.1. Prikaz modela serijskih magnetskih krugova korištenih u FEMM-u (a) bez zračnog	
raspora, b) zračni raspor od 5 mm, c) zračni raspor od 0.5 mm)	. 30

Slika 6.2. Prikaz modela paralelnih magnetskih krugova korištenih u FEMM-u(a) bez zračnog
raspora, b) zračni raspor od 5 mm, c) zračni raspor od 0.5 mm) 31
Slika 6.3. Prikaz gustoće magnetskog toka i induktiviteta serijskog magnetskog kruga 32
Slika 6.4. Prikaz gustoće magnetskog toka i induktiviteta serijskoga magnetskog kruga sa zračnim
rasporom od 5mm
Slika 6.5. Prikaz gustoće magnetskog toka i induktiviteta serijskoga magnetskog kruga sa zračnim
rasporom od 0.5 mm
Slika 6.6. Prikaz gustoće magnetskog toka i induktiviteta paralelnoga magnetskog kruga 35
Slika 6.7. Prikaz gustoće magnetskog toka i induktiviteta paralelnog magnetskog kruga sa zračnim
rasporom od 5mm
Slika 6.8. Prikaz gustoće magnetskog toka i induktiviteta paralelnoga magnetskog kruga sa zračnim
rasporom od 0.5 mm

1. UVOD

Završni rad će se sastojati od nekoliko cjelina koje će biti detaljno objašnjene. Primjerice, magnetska polja, magnetski krugovi, induktivitet i međuinduktivitet, numerički proračuni, te proračuni upotrebom *Finite Element Method Magnetics*(FEMM) programskog paketa.

U poglavlju "Osnove magnetskih polja" ćemo nešto više reći o magnetskim poljima i vrstama magnetskih materijala. Navest ćemo kako se magnetsko polje mijenja upotrebom različitih vrsta magnetskih materijala, te prikazati krivulju magnetiziranja feromagnetskih materijala.

U poglavlju "Magnetski krugovi" bit će prikazane i objašnjene vrste magnetskih krugova, te će biti postavljen postupak izračuna za različite fizikalne veličine magnetskih krugova. Nadalje, objasnit ćemo induktivitet i međuinduktivitet, te njihovu ovisnost o vrsti magnetskog materijala.

U zadnjem dijelu završnog rada izvršit će se ručni numerički proračun i proračun upotrebom FEMM programskim paketom. Programski paket FEMM služi za rješavanje i analizu elektromagnetskih uređaja.

Na temelju uspoređenih rezultata iznijet će se zaključak o numeričkim proračunima i proračunima koji su odrađeni upotrebom FEMM programskog paketa.

U prilogu završnog rada bit će prikazane upute za korištenje FEMM programskog paketa.

1.1. Opis zadatka

U završnom radu potrebno je prezentirati postupak proračuna magnetskog kruga analitičkim i numeričkim postupcima za različite primjere magnetskih krugova.

2. OSNOVE MAGNETSKIH POLJA

2.1. Vrste magnetskih materijala

Materijal koji je unesen u magnetsko polje djeluje na polje i mijenja ga. Magnetski dipol, koji stvara gibanje naboja u materijalu, uzrokuje odziv materijala vanjskoga magnetskog polja, čime se magnetizira materijal [1]. Magnetsko polje može se opisati pomoću magnetskih silnica (Slika 2.1.).

Slika 2.1. Magnetsko polje strujne petlje i permanentnog magneta [1]

Ovisno o stupnju magnetiziranosti u prisutnosti električnog polja, magnetski učinci u materijalu su: dijamagnetizam, paramagnetizam i feromagnetizam. Dijamagnetizam nastaje zbog promjena magnetskih dipola kada se narine vanjsko magnetsko polje dok su paramagnetizam i feromagnetizam uzrokovani permanentnim magnetskim dipolnim momentima [1].

Magnetsko polje opisano je jednadžbom:

$$B = \mu_0 \cdot H [T] \tag{2-1}$$

gdje je

B – magnetska indukcija,

H-jakost magnetskog polja,

 μ_0 – permeabilnost vakuuma ($\mu_0 = 4\pi \cdot 10^{-7}$ [Tm/A]).

Magnetska indukcija, za razliku od električnog polja, je polje koje nema izvore. Stoga su silnice magnetskog polja zatvorene linije. [1]

Magnetski tok Φ_m je veličina koja označava broj magnetskih silnica koje prolaze kroz površinu i opisana jednadžbom:

$$\Phi_m = B \cdot S \cdot \cos \alpha \, [\text{Wb}] \tag{2-2}$$

Magnetska indukcija *B*, koja je ujedno i gustoća magnetskog toka, označava broj magnetskih silnica koje prolaze površinom *S*. Kut α je kut između smjera magnetske indukcije *B* i normalne na površinu *S*. Djelovanje sile je najjače gdje je vrijednost magnetske indukcije *B* najveća, to jest tamo je najveća gustoća magnetskih silnica.

Parametar koji karakterizira svojstva magnetskih materijala, to jest tip magnetskih materijala, zove se permeabilnost μ , koja je opisana jednadžbom:

$$\mu = \mu_r \mu_0 \tag{2-3}$$

gdje je

 μ_0 – permeabilnost vakuuma,

 μ_r – relativna permeabilnost materijala.

Svaki magnetski materijal ima određenu relativnu permeabilnost μ_r , te se pomoću relativne permeabilnosti mogu klasificirati magnetski materijali:

 $\mu_r < 1$ za dijamagnetske materijale,

 $\mu_r = 1$ za vakuum,

- $\mu_r > 1$ za paramagnetske materijale,
- $\mu_r \gg 1$ za feromagnetske materijale.

Magnetska susceptibilnost također je jedan od parametara pomoću kojeg se opisuje magnetsko polje. Magnetska susceptibilnost prikazuje koliko se relativna permeabilnost μ_r razlikuje od jedinice te je opisana jednadžbom:

$$\chi_m = \mu_r - 1 \tag{2-4}$$

2.1.1. Dijamagnetizam

Dijamagnetizam je osnovno svojstvo svih materijala, iako je ono uglavnom vrlo slabo. Dijamagnetski materijali sastoje se od atoma koji nemaju magnetski dipolni moment elektrona jer se atomi međusobno poništavaju. Kružno gibanje elektrona stvara male strujne petlje čime nastaje magnetsko polje. Kada se vanjsko magnetsko polje narine materijalu, strujne petlje se poravnavaju tako da se suprotstavljaju polju (Lenzovo pravilo). Zbog suprotstavljanja polju dijamagnetski materijali slabe vanjsko polje. Dijamagnetizam je svojstvo koje feromagnetski i paramagnetski materijali neće posjedovati. [2] Svaki vodič ima dijamagnetska svojstva ako se nalazi u prisutnosti magnetskog polja, koji će se zbog strujnih petlji proizvedenih u vodiču suprotstavljati magnetskom polju. Savršen vodič je savršen dijamagnetik zbog minimalne otpornosti pri stvaranju strujnih petlji. [2]

Slika 2.2. Magnetsko polje u prisutnosti dijamagnetskog materijala [3]

Dijamagnetski materijali imaju slabo izraženo dijamagnetsko ponašanje stoga su im relativne magnetske permeabilnosti μ_r neznatno manje od 1. Neki od dijamagnetskih materijala su: bakar (Cu), zlato (Au), silicij (Si), helij (He), sumpor (S), ugljik (C) itd. [1]

2.1.2. Paramagnetizam

Kod paramagnetskih materijala magnetski dipolni momenti atoma, koji su uzrokovani spinom elektrona, ne poništavaju se u potpunosti kao kod dijamagnetskih materijala. Magnetski dipoli paramagnetskih materijala su nasumce orijentirani (Slika 2.3.), stoga im je ukupno magnetiziranje jednako nuli. [1]

Slika 2.3. Magnetske domene paramagnetskog materijala bez prisutnosti vanjskog polja [5]

U prisutnosti narinutog vanjskog magnetskog polja permanentni magnetski dipoli orijentiraju se paralelno vanjskom magnetskom polju (slika 2.4), čime se povećava magnetsko polje u paramagnetskom materijalu. [4]

Slika 2.4. Magnetske domene paramagnetskog materijala u prisutnosti vanjskog polja [5]

Slika 2.5. Magnetsko polje u prisutnosti paramagnetskog materijala [3]

Paramagnetski materijali imaju slabo izraženo paramagnetsko ponašanje, ali je jače u odnosu na dijamagnetsko ponašanje. Relativne magnetske permeabilnosti μ_r paramagnetskih materijala neznatno je veće od 1. Neki od paramagnetskih materijala su: aluminij (Al), olovo (Pb), Magnezij (Mg) itd.[1]

2.1.3. Feromagnetizam

Feromagnetski materijali unutar domene imaju isto usmjerene magnetske dipolne momente, stoga svaka domena ima svojstva permanentnog magneta. Unutar domene, magnetsko polje je snažno, ali pošto su domene nasumično poredane materijal neće biti magnetiziran. Pod utjecajem vanjskoga magnetskog polja, magnetski momenti domena međusobno se poravnavaju sa smjerom vanjskog polja, te materijal postaje magnetiziran (Slika 2.6.). [1]

Slika 2.6. Poravnanje domena pod utjecajem magnetskog polja \vec{H} [6]

Slika 2.7. Magnetsko polje u prisutnosti feromagnetskog materijala [3]

Feromagnetski materijali imaju jako izraženo feromagnetsko ponašanje. Također imaju puno veću magnetizaciju u odnosu na dijamagnetske i paramagnetske materijale. Relativne magnetske permeabilnosti μ_r feromagnetskih materijala uvelike je veće od 1. Feromagnetski materijali su: željezo (Fe), nikal (Ni), kobalt (Co) te neke njihove legure, također neke legure neferomagnetičkih elemenata. [1]

Curieva temperatura

Curieva temperatura T_c je temperatura pri kojoj feromagnetski materijali gube svoja magnetska svojstva te materijal postaje paramagnetski(Slika 2.8.). [7]

Slika 2.8. Ovisnost magnetizacije o temperaturi [8]

Ispod Curieve temperature, u feromagnetskim materijalima, magnetski dipolni moment su međusobno paralelni (**Error! Reference source not found.**). Povećavanjem Curieve temperature magnetski dipolni momenti nasumično su poredani (Slika 2.10.), te magnetizacija feromagnetskog materijala jednaka je nuli, to jest materijal postaje paramagnetski. [7]

Slika 2.9. Magnetski dipolni momenti ispod Curieve temperature [8]

Slika 2.10. Magnetski dipolni momenti iznad Curieve temperature [8]

Materijal	Curieva temperatura T _c [K]
Kobalt (Co)	1400
Željezo (Fe)	1043
Stroncij ferit	723
Nikal (Ni)	627
Gadolinijum (Gd)	292
Dispozij (Dy)	88

Tablica 2.1. Curieva temperatura materijala

2.2. Krivulja magnetiziranja

Magnetska indukcija dijamagnetskih i paramagnetskih materijala razmjerna je jakosti magnetskog polja to jest permeabilnost im je konstantna:

$$\vec{B} = \mu_0 \mu_r \cdot \vec{H} \tag{2-5}$$

Feromagnetski materijal je nelinearan stoga relativna magnetska permeabilnost feromagnetskih materijala nije konstantna već je funkcija $\mu_r = f(H)$. Ovisnost magnetske indukcije *B* o vanjskom magnetskom polju *H* prikazuje je pomoću krivulje magnetiziranja. [9]

Slika 2.11. Krivulja magnetiziranja paramagnetika[6]

Slika 2.12. Krivulja magnetiziranja feromagnetika [6]

Povećanjem jakosti vanjskog magnetskog polja, pri velikoj jakosti magnetskog polja u feromagnetskom materijalu nastupa zasićenje. Primjerice kada se željezo nađe u prisutnosti vanjskog magnetskog polja povećava se broj domena koje se usmjeravaju u smjeru vanjskog magnetskog polja, te se magnetska indukcija povećava s porastom jakosti vanjskog magnetskog polja. Time je magnetizacija maksimalna i daljnje povećavanje polja ne mijenja magnetizaciju željeza to jest željezo se magnetski zasitilo.[9]

Slika 2.13. Krivulja magnetiziranja i magnetska permeabilnost za željezo[1]

Pri manjim vrijednostima vanjskog magnetskog polja magnetska indukcija je posljedica magnetiziranja unutar materijala. Povećanjem jakosti vanjskog magnetsko polja magnetska indukcija sve sporije raste (dolazi do zasićenja materijala), te je porast indukcije u materijalu posljedica utjecaja vanjskog magnetskog polja. Također je vidljivo da permeabilnost opada povećanjem vanjskog jakosti magnetskog polja. [9]

Prvim magnetiziranjem materijala to jest povećavanjem jakosti vanjskog magnetskog polja H do iznosa H_3 u točki P_3 dolazi do zasićenja materijala. Postupnim smanjivanjem jakosti vanjskog magnetskog polja H magnetska indukcija B ne zauzima iste vrijednosti stoga se B i H smanjuju po novoj krivulji. Kada jakost vanjskog magnetskog polja H postane jednaka nuli u materijalu zaostaje magnetska indukcija B_r (remanentni magnetizam (točka P_4)). Da bi se materijal razmagnetizirao, to jest da bi vrijednost magnetske indukcije B bio jednak nuli, potrebno je okrenuti smjer jakosti vanjskog magnetskog polja *H*. Ta jakost polja vanjskog magnetskog polja H_c (točka P_5) naziva se koerictivna sila. Daljnjim povećanjem jakosti vanjskog magnetskog polja *H* u suprotnom smjeru materijal se dovodi u područje zasićenja (točka P_6). Ponovnim smanjivanjem jakosti magnetskog polja *H* na nulu dolazi do remanentnog magnetizma (točka P_7), te povećanjem polja dolazi se u točku P_3 , čime se dobiva simetrična zatvorena krivulja koja se naziva petlja histereze.[1]

Slika 2.14. Magnetiziranje feromagnetskog materijala [1]

Vrste feromagnetskih materijala

Feromagnetski materijali dijele se na dvije skupine:

- Meki feromagnetski materijali,
- Tvrdi feromagnetski materijali.

Meki feromagnetski materijali imaju visoku relativnu permeabilnost i malu koericitivnu silu, lagano se magnetiziraju i demagnetiziraju, te imaju usku petlju histereze što rezultira malim gubitcima histereze. Neki od mekih feromagnetskih materijala su željezo (Fe) i neke njegove legure, te

materijali poput kobalta (Co), nikla (Ni), aluminija (Al) i volfram (W). Zbog lagane magnetizacije koriste se za naprave koje su izložene izmjeničnim poljima poput elektromagneta, električnih motora, generatora, transformatora itd.[4]

Tvrdi feromagnetski materijali imaju nisku relativnu permeabilnost i visoku koericitivnu silu, teško se magnetiziraju i demagnetiziraju, te imaju široku petlje histereze što rezultira većim gubitcima histereze. Neki od tvrdih feromagnetskih materijala su legure kobalta (Co), nikla (Ni), aluminija (Al). Zbog zadržavanja magnetizacije koriste se kao permanentni magneti u zvučnicima, mjernim instrumentima itd.[4]

Slika 2.15. Petlja histereze tvrdog i mekog magnetskog materijala [6]

3. MAGNETSKI KRUGOVI

Silnice magnetskog polja feromagnetskog materijala zatvorene su krivulje koje se zgušnjavaju u materijalu, stoga feromagnetski materijal znatno bolje vodi magnetsko polje nego drugi materijali. Magnetski krug je prostor u kojem je gustoća magnetskih silnica puno veća nego u preostalom prostoru. [1]

Jedan od primjera magnetskog kruga jest prsten od feromagnetskog materijala oko kojeg je namotana zavojnica po cijelom prstenu (Slika 3.1.a). Ako je oko prstena zavojnica namotana djelomično (Slika 3.1.b) tada će se dio magnetskog toka zatvarati i kroz okolni zrak. Magnetsko polje prstena koji ima prorezanu pukotinu (Slika 3.1.c) proći će kroz pukotinu i zatvoriti će prsten, ali ako je pukotina velika to jest ako je zračni prostor velik, tada će se dio magnetskog toka rasuti i zatvoriti kroz okolni zrak. [1]

Slika 3.1. Primjeri magnetskih krugova [1]

Ako sav magnetski tok u magnetskom krugu prolazi kroz krug, tada će na bilo kojem presjeku *S*, na kojem ne normalan *n*, magnetski tok biti:

$$\phi = \int_{S} B \cdot n \cdot dS \tag{3-1}$$

Također, električna struja u električnom krugu će biti:

$$I = \int_{S} J \cdot n \cdot dS \tag{3-2}$$

Magnetski tok ϕ i električna struja *I* su analogne veličine, te magnetska indukcija *B* i gustoća električne struje *J*.

Primjenom Amperovog zakona kružnog protjecanja na zatvorenu krivulju c magnetskog kruga:

$$\oint_c H \cdot dl = NI \tag{3-3}$$

Napon u električnom krugu jednak je naponu izvora:

$$\oint_c E \cdot dl = U \tag{3-4}$$

Jakost magnetskog polja H i jakost električnog polja E su analogne, te magnetnomotorna sila NI i napon U. NI se također naziva magnetska pobuda θ :

$$\Theta = NI \tag{3-5}$$

Jedinica za magnetsku pobudu je amper (A) ili amperzavoji (Az).

Magnetski otpor ili reluktancija je omjer magnetske pobude Θ i magnetskog toka ϕ :

$$R_m = \frac{\Theta}{\phi} = \frac{\oint_c H \cdot dl}{\int_S B \cdot n \cdot dS} = \frac{\oint_c H \cdot dl}{\int_S \mu H \cdot n \cdot dS}$$
(3-6)

Analogno s električnim otporom:

$$R_m = \frac{U}{I} = \frac{\oint_c E \cdot dl}{\int_S J \cdot n \cdot dS} = \frac{\oint_c E \cdot dl}{\int_S \kappa E \cdot n \cdot dS}$$
(3-7)

Magnetska permeabilnost μ i električna provodnost κ su također analogne. Mjerna jedinica za magnetski otpor je $A/Vs = 1/\Omega s = 1/H$. Magnetska vodljivost Λ je recipročna vrijednost magnetskog otpora i mjeri se u $\Omega s = H$.

Ako je magnetsko polje u magnetskom krugu približno homogeno po svim presjecima magnetske indukcije B_{sr} , usmjerene kao i normala *n* na poprečni presjek S_{sr} , tada je magnetski tok prema (3-1):

$$\phi = B_{sr} S_{sr} \tag{3-8}$$

Srednja vrijednost magnetskog polja H_{sr} usmjerena je kao i element konture dl, pa Amperov zakon (3-3) daje:

$$H_{sr}l_{sr} = NI = \Theta \tag{3-9}$$

gdje je l_{sr} srednja duljina magnetskih silnica.

Tada je magnetski otpor:

$$R_m = \frac{\Theta}{\phi} = \frac{H_{sr}l_{sr}}{B_{sr}S_{sr}} = \frac{1}{\mu}\frac{l_{sr}}{S_{se}}$$
(3-10)

3.1. Serijski magnetski krug

Magnetski tok u serijskom magnetskom krugu prolazi kroz sve dijelove kruga u nizu. Slika 3.2. prikazuje magnetski krug koji se sastoji od četiri dijela duljina l_1, l_2, l_3, l_4 s poprečnim presjecima S_1, S_2, S_3, S_4 .[1] Pod pretpostavkom da su magnetske indukcije i magnetske permeabilnosti po dijelovima konstantne $\mu_1, \mu_2, \mu_3, \mu_4$, tada je magnetski tok ϕ po svim presjecima isti:

$$\phi = B_1 S_1 = B_2 S_2 = B_3 S_3 = B_4 S_4 \tag{3-11}$$

Slika 3.2. Serijski magnetski krug

Iz krivulje magnetiziranja pomoću magnetske indukcije za dio kruga B_i određuju se pripadajuće jakosti magnetskog polja H_i . Primjenom Amperovog zakona (3-3) dobije se:

$$H_1 \cdot l_1 + H_2 \cdot l_2 + H_3 \cdot l_3 + H_4 \cdot l_4 = NI = \Theta$$
(3-12)

Ukupni magnetski otpor jednak je zbroju magnetskih otpora pojedinih dijelova:

$$R_m = R_{m1} + R_{m2} + R_{m3} + R_{m4} \tag{3-13}$$

Ukupna magnetska pobuda iz jednadžbe (3-12) raspodjeli se na četiri dijela. Pojedini dijelovi $H_i \cdot l_i$ nazivaju se magnetski naponi U_m stoga se jednadžba (3-12) može zapisati kao:

$$\Theta = U_{m1} + U_{m2} + U_{m3} + U_{m4} = \sum_{i=1}^{4} U_{mi}$$
(3-14)

3.2. Paralelni magnetski krug

Slika 3.3.prikazuje paralelni magnetski krug koji se sastoji od tri dijela duljina l_1, l_2, l_3 s poprečnim presjecima S_1, S_2, S_3 . Magnetske indukcije i magnetske permeabilnosti po dijelovima su konstantne μ_1, μ_2, μ_3 . Magnetska pobuda *NI* smještena je na srednjem stupu. [1]

Slika 3.3. Paralelni magnetski krug [1]

Pomoću zadane magnetske indukcije B_i pripadajućeg dijela iz krivulje magnetiziranja materijala određuje se jakost magnetskog polja H_i . U ovom primjeru koristit će se magnetska indukcija B_1 u lijevom stupu. Magnetski tok stvoren magnetskom pobudom je:

$$\phi = B_3 + S_3 \tag{3-15}$$

Magnetski tok izlazi iz srednjeg stupa i grana se na lijevi ϕ_1 i desni stup ϕ_2 stoga vrijedi:

$$\phi = \phi_1 + \phi_2 \tag{3-16}$$

Pošto su dijelovi kruga spojeni paralelno magnetski naponi U_{m1} i U_{m2} su jednaki. Magnetski tokovi $\phi_1 i \phi_2 su$ obrnuto proporcionalni magnetskim tokovima:

$$\frac{\phi_1}{\phi_2} = \frac{R_{m2}}{R_{m1}} \tag{3-17}$$

Iz jednakosti magnetskih napona u stupovima "1" i "2", od kojih je poznat napon stupa "1" U_{m1} , izračuna se magnetsko polje H_2 u stupu "2":

$$U_{m1} = H_1 \cdot l_1 = U_{m2} = H_2 \cdot l_2 \to H_2 = \frac{H_1 \cdot l_1}{l_2}$$
(3-18)

Nakon što se odredi vrijednost magnetsko polja H_2 u stupu "2", pomoću krivulje magnetiziranja materijala odredi se pripadajuća vrijednost magnetske indukcije B_2 , te se izračuna magnetski tok ϕ_2 :

$$\phi_2 = B_2 S_2 \tag{3-19}$$

Relacijom (3-16) izračuna se ukupan magnetski tok ϕ i magnetska indukcija B_3 iz relacije (3-15). Pomoću krivulje magnetiziranja materijala, upotrebom poznate vrijednosti magnetske indukcije B_3 , odredi se jakost magnetskog polja H_3 , te se pomoću relacije (3-20) izračuna magnetska pobuda Θ .[1]

$$H_1 \cdot l_1 + H_3 \cdot l_3 = NI = \Theta$$
 ; $H_2 \cdot l_2 + H_3 \cdot l_3 = NI = \Theta$ (3-20)

15

3.3. Magnetski krug sa zračnim rasporom

Serijski magnetski krug sastavljen od željezne jezgre i zračnog raspora je magnetski krug sa zračnim rasporom. Slika 3.4. prikazuje prstenasti magnetski krug sa zračnim rasporom. Srednja duljina magnetskih silnica u željeznog jezgri označena je sa l_{Fe} , a duljina zračnog raspora označena je sa δ .[1]

Slika 3.4. Prstenasti magnetski krug sa zračnim rasporom[1]

Ako je širina zračnog raspora mala, pod pretpostavkom da sav magnetski tok željezne jezgre prođe kroz zračni prostor, magnetski tok prolazi preko zračnog raspora približno kroz isti presjek. Time su magnetske indukcije u zračnom rasporu i željeznoj jezgri jednake.[1]

$$\phi_{Fe} = \phi_{\delta}; \ B_{Fe} \cdot S_{Fe} = B_{\delta} \cdot S_{\delta} \to B_{Fe} = B_{\delta} \tag{3-20}$$

Pomoću zadane magnetske indukcije u zračnom rasporu $B_{Fe} = B_{\delta}$ iz krivulje magnetiziranja željeza određuje jakost magnetskog polja u željezu H_{Fe} . Jakost magnetskog polja u zračnom rasporu jednaka je:

$$H_{\delta} = \frac{B_{\delta}}{\mu_o}; H_{Fe} = \frac{B_{Fe}}{\mu_o \mu_r} = \frac{H_{\delta}}{\mu_r}$$
(3-21)

Primjenom Amperovog kružnog zakona dobiva se magnetska uzbuda Θ :

$$H_{Fe} \cdot l_{Fe} + H_{\delta} \cdot \delta = NI = \Theta \tag{3-22}$$

Veliki dio magnetske pobude Θ troši se na uspostavljanje magnetskog toka kroz zračni raspor. Prema relaciji (3-21) jakost magnetskog polja u željeznoj jezgri H_{Fe} puno je manja od jakosti magnetskog polja u zračnom rasporu H_{δ} , to jest manja je za vrijednost relativne permeabilnosti željeza μ_r . Magnetski napon zračnog raspora je za μ_r puta veći od magnetskog napona željezne jezgre, te je magnetski otpor zračnog raspora puno veći od magnetskog otpora željezne jezgre. Zbog ovih činjenica svi elektrotehnički uređaju s magnetskim krugom sa zračnim rasporom poput motora, generatora, elektromagneta itd. izvode se s minimalnim zračnim rasporom kako bi bila potreban što manja magnetska pobuda.[1]

4. INDUKTIVITET I MEÐUINDUKTIVITET

4.1. Induktivitet

U zatvorenim strujnim krugovima električna struja stvara oko sebe magnetsko polje, pa kroz zatvoreni strujni krug prolazi magnetski tok magnetskog polja. Omjer magnetskog toka Φ i električne struje *I* naziva se induktivitet *L* koji je opisan jednadžbom:

$$L = \frac{\Phi}{l} \tag{4-1}$$

Jedinica za induktivitet je henri $H = \frac{Vs}{A}$.

Također induktivitet je svojstvo zavojnice da skladišni elektromagnetsku energiju. [1]

Slika 4.1. Strujna petlja protjecana strujom[1]

Kroz strujnu petlju, načinjenu od N zavoja, prolazi cijeli magnetski tok Φ . Svaki zavoj obuhvaća ukupni magnetski tok Φ . Stoga se uvodi novi pojam obuhvaćenog magnetskog toka Ψ :

$$\psi = N \cdot \phi \tag{4-2}$$

Slika 4.2. Obuhvaćeni magnetski tok[1]

Induktivitet se u ovom slučaju definira kao omjer magnetskog toka i struje koja je stvorila magnetsko polja:

$$L = \frac{\Psi}{I} = \frac{N \cdot \Phi}{I} \tag{4-3}$$

Magnetski tok stvoren jednim zavojem označava se sa ϕ_1 . Magnetski tok svih N zavoja je N puta veći:

$$\phi = N \cdot \phi_1 \tag{4-4}$$

stoga je induktivitet:

$$L = \frac{\psi}{I} = \frac{N \cdot \phi}{I} = \frac{N \cdot N \phi_1}{I} = N^2 \frac{\phi_1}{I} = N^2 \cdot L_1$$
(4-5)

gdje je L_1 induktivitet jednog zavoja.

Ukupni induktivitet je zbroj magnetskog toka koji proizlazi izvan vodiča i magnetskog toka koji prolazi kroz presjek vodiča to jest, ukupni induktivitet je zbroj vanjskog i unutarnjeg induktiviteta. Induktivitet ovisi o geometriji zavojnice, te njenom obliku i permeabilnosti sredstva zavojnice. Permeabilnost sredstva μ proporcionalan je induktivitetu, što znači da će se induktivitet zavojnice, unošenjem magnetske jezgre permeabilnosti μ , povećati μ puta.[1] Induktivitet prstenaste zavojnice:

$$L = \frac{\mu S N^2}{l} \tag{4-6}$$

gdje je

N – broj zavoja zavojnice,

l – duljina zavojnice,

S- površina presjeka zavojnice,

 μ -permeabilnost jezgre.

4.2. Međuinduktivitet

Međuindukcija je djelovanje dvaju ili više zavojnica koje su međusobno povezane zajedničkim magnetskim tokom. Magnetski tok, dva bliska strujna kruga, koji je proizveden strujom I_1 u strujnom krugu "1" će u potpunosti ili djelomično prolaziti kroz strujni krug "2" i biti će obuhvaćen strujom I_2 .[1]

Slika 4.3. Magnetski tok dva bliska strujna kruga[1]

Magnetski tok, ϕ_1 stvoren je strujnim krugom "1". Samo dio magnetskog toka ϕ_{21} prolazit će strujnim krugom "2":

$$\phi_{21} = k_1 \cdot \phi_1; k_1 \le 1 \tag{4-7}$$

Koeficijent međuindukcije ili međuinduktivitet M_{21} između krugova "1" i "2"je omjer magnetskog toka ϕ_{21} obuhvaćenog strujnim krugom "2" i struje I_1 strujnog kruga "1" koja je proizvela taj magnetski tok:

$$M_{21} = \frac{\phi_{21}}{l_1} \tag{4-8}$$

Ako je petlja strujnog kruga "1" sačinjena od N_1 zavoja tada će ukupni magnetski tok ϕ_{1uk} i dio toka koji prolazi kroz strujnu petlju "2" ϕ_{21uk} biti N_1 puta veći:

$$\phi_{1uk} = N_1 \cdot \phi_1; \phi_{21uk} = N_1 \cdot \phi_{21} = k_1 \cdot N_1 \cdot \phi_1 = k_1 \cdot \phi_{1uk}$$
(4-9)

Ako je petlja strujnog kruga "2" sačinjena od N_1 zavoja tada će ukupni magnetski tok ψ_{21uk} kojeg ona obuhvaća biti N_2 puta veći:

$$\psi_{21uk} = N_2 \cdot \phi_{21uk} = N_2 \cdot N_1 \cdot \phi_{21} \tag{4-10}$$

međuinduktivitet je onda:

$$M_{21} = \frac{\psi_{21uk}}{l_1} = \frac{N_2 \cdot N_1 \cdot \phi_{21}}{l_1} \tag{4-11}$$

19

Međuinduktivitet između krugova "2" i "1":

$$M_{12} = \frac{\phi_{12}}{I_2}; \phi_{12} = k_2 \cdot \phi_2; k_2 \le 1$$
(4-12)

te petlje strujnih krugova N_1 i N_2 :

$$M_{12} = \frac{\psi_{12uk}}{I_2} = \frac{N_1 \cdot N_2 \cdot \phi_{12}}{I_2} \tag{4-13}$$

Međuinduktiviteti M_{12} i M_{21} su jednaki i mogu se izraziti preko induktiviteta L_1 i L_2 :

$$M_{12} = \frac{\psi_{12uk}}{I_2} = \frac{N_1 \cdot N_2 \cdot \phi_{12}}{I_2} = \frac{N_1 \cdot N_2 \cdot k_2 \cdot \phi_2}{I_2} = N_1 \cdot k_2 \frac{N_2 \cdot \phi_2}{I_2} = k_2 \cdot N_1 \frac{L_2}{N_2}$$
(4-14)

$$M_{21} = \frac{\psi_{21uk}}{I_1} = \frac{N_2 \cdot N_1 \cdot \phi_{21}}{I_1} = \frac{N_2 \cdot N_1 \cdot k_1 \cdot \phi_1}{I_1} = N_2 \cdot k_1 \frac{N_1 \cdot \phi_1}{I_1} = k_1 \cdot N_2 \frac{L_1}{N_1}$$
(4-15)

jer su induktiviteti krugova "1" i "2":

$$L_1 = \frac{\psi_{1uk}}{I_1} = \frac{N_1 \cdot \phi_{1uk}}{I_1} = \frac{N_1 \cdot N_1 \cdot \phi_1}{I_1}$$
(4-16)

$$L_2 = \frac{\psi_{2uk}}{I_2} = \frac{N_2 \cdot \phi_{2uk}}{I_2} = \frac{N_2 \cdot N_2 \cdot \phi_2}{I_2}$$
(4-17)

Množenjem jednadžbi (4-14)i (4-15) dobiva se:

$$M_{12} \cdot M_{21} = M^2 = k_1 \cdot k_2 \cdot L_1 L_2 = k^2 \cdot L_1 L_2 \tag{4-18}$$

odnosno:

$$M = k\sqrt{L_1 L_2} \le \sqrt{L_1 L_2} \tag{4-19}$$

Koeficijent magnetske sprege k uvijek je ≤ 1 . Ako su strujni krugovi idealno magnetski spregnuti, tada magnetski tok koji je proizveden jednim krugom prolazi i kroz drugi krug, stoga su koeficijent magnetske sprege jednog kruga k_1 i drugog kruga k_2 jednaki to jest k = 1. Također udaljavanjem jednog kruga od drugog, sve manji dio magnetskog toka koji je proizveden jednim krugom prolazi kroz drugi krug, te im se koeficijent magnetske spregek smanjuje.[1]

Međuinduktivitet linearnih materijala ovisi o geometriji strujnih krugova i permeabilnosti materijala. Za nelinearne to jest feromagnetske materijale međuinduktivitet ovisi o magnetskom polju to jest struji zbog permeabilnosti feromagnetskih materijala $\mu = \mu(H).[1]$

5. NUMERIČKI PRORAČUNI

Zadatak 1.

Za serijski magnetski krug (Slika 5.1.) potrebno je izračunati induktivitet magnetskog kruga. Zadano je: duljina silnica l = 6cm, broj namota zavojnice N = 500 zavoja. Jezgra je od željeza relativne permeabilnosti $\mu_r = 5000$. Dimenzije magnetskog kruga su 2 cm · 3 cm.

Slika 5.1. Serijski magnetski krug

Silnice magnetskog kruga jednake su duljine na sve četiri strane, stoga je srednja duljina silnica:

$$l_{sr} = 4 \cdot 6 \text{ cm} = 24 \text{ cm} = 24 \cdot 10^{-2} \text{ m}$$

Pomoću dimenzija magnetskog kruga može se izračunati poprečni presjek:

 $S = 2 \text{ cm} \cdot 3 \text{ cm} = 6 \text{ cm}^2 = 6 \cdot 10^{-4} \text{ m}^2$

Permeabilnost magnetske jezgre iznosi:

$$\mu_c = \mu_r \mu_o = 5000 \cdot 4\pi \cdot 10^{-7} = 6.28 \cdot 10^{-3}$$

Ukupni magnetski otpor serijskoga magnetskog kruga jednak je zbroju magnetskih otpora pojedinih dijelova, stoga je ukupan magnetski otpor jednak omjeru srednje duljine silnica l_{sr} i umnošku permeabilnosti jezgre μ_c i poprečnog presjeka *S*:

$$R_m = \frac{l_{sr}}{\mu_c S} = \frac{24 \cdot 10^{-2}}{(6.28 \cdot 10^{-3}) \cdot (6 \cdot 10^{-4})} = 6.369 \cdot 10^4 \text{ H}^{-1}$$

Magnetski tok ϕ u magnetskom krugu sličan je struji u strujom krugu. Magnetski tok ϕ , magnetski otpor R_m i magnetska pobuda θ opisane su relacijom:

$$\theta = R_m \phi \tag{5-1}$$

Pomoću jednadžbe za magnetsku pobudu (3-5), jednadžba (5-1) može se raspisati na:

$$NI = R_m \phi \to \phi = \frac{NI}{R_m}$$
(5-2)

Induktivitet je opisan jednadžbom:

$$L = \frac{\Psi}{I} \tag{5-3}$$

Obuhvaćeni magnetski tok ψ jednak je umnošku broja zavoja zavojnice N i magnetskog toka ϕ :

$$\Psi = N \cdot \phi \tag{5-4}$$

Stoga je induktivitet *L*:

$$L = \frac{N \cdot \phi}{I} = \frac{N \cdot \frac{NI}{R_m}}{I} = \frac{\frac{N^2 I}{R_m}}{I} = \frac{N^2}{R_m}$$
$$L = \frac{N^2}{R_m} = \frac{500^2}{6.369 \cdot 10^4} = 3.925 \text{ H}$$

Zadatak 2.

Za serijski magnetski krug (Slika 5.2.) potrebno je izračunati induktivitet magnetskog kruga. Zadano je: duljina silnica l = 6cm, broj namota zavojnice N = 500 zavoja, zračni raspor $l_g = 5$ mm. Jezgra je od željeza relativne permeabilnosti $\mu_r = 5000$. Dimenzije magnetskog kruga su 2 cm · 3 cm.

Slika 5.2. Serijski magnetski krug sa zračnim rasporom od 5 mm

Srednja duljina silnica magnetskog kruga sa zračnim rasporom biti će umanjena za vrijednost duljine zračnog raspora l_g .

$$l_{sr} = 4 \cdot l - l_g = 4 \cdot 6 - 0.5 = 23.5 \text{ cm} = 23.5 \cdot 10^{-2} \text{ m}$$

Pomoću dimenzija magnetskog kruga može se izračunati poprečni presjek magnetske jezgre:

$$S_c = 2 \text{ cm} \cdot 3 \text{ cm} = 6 \text{ cm}^2 = 6 \cdot 10^{-4} \text{m}^2$$

Permeabilnost magnetske jezgre iznosi:

$$\mu_c = \mu_r \mu_o = 5000 \cdot 4\pi \cdot 10^{-7} = 6.28 \cdot 10^{-3}$$

Ukupan magnetski otpor R_m serijskog magnetskog kruga je zbroj magnetskog otpora jezgre R_c i magnetskog otpora zračnog raspora R_g .

Magnetski otpor magnetske jezgre R_c iznosi:

$$R_c = \frac{l_{sr}}{\mu_c S_c} = \frac{23.5 \cdot 10^{-2}}{(6.28 \cdot 10^{-3}) \cdot (6 \cdot 10^{-4})} = 6.236 \cdot 10^4 \text{H}^{-1}$$

Zbog rasipanja magnetskog toka poprečni presjek zračnog raspora biti će veći nego poprečni presjek željezne jezgre. Ovaj problem se rješava tako da se duljina zračnog raspora l_g zbroj sa svakom dimenzijom magnetskog kruga.

$$S_g = (2 \text{ cm} + 0.5 \text{ cm}) \cdot (3 \text{ cm} + 0.5 \text{ cm}) = 8.75 \text{ cm}^2 = 8.75 \cdot 10^{-4} \text{ m}^2$$

Permeabilnost zračnog raspora μ_g približno je jednaka permeabilnosti vakuuma μ_0 :

$$\mu_g \approx \mu_0 = 4\pi \cdot 10^{-7}$$

Magnetski otpor zračnog raspora R_giznosi:

$$R_g = \frac{l_g}{\mu_g S_g} = \frac{0.5 \cdot 10^{-2}}{(4\pi \cdot 10^{-7}) \cdot (8.5 \cdot 10^{-4})} = 4.547 \cdot 10^6 \mathrm{H}^{-1}$$

Ukupan magnetski otpor R_m iznosi:

$$R_m = R_c + R_g = 6.236 \cdot 10^4 + 4.547 \cdot 10^6 = 4.609 \cdot 10^6 \, \mathrm{H^{-1}}$$

Induktivitet *L* iznosi:

$$L = \frac{N^2}{R_m} = \frac{500^2}{4.609 \cdot 10^6} = 54.24 \text{ mH}$$

Zadatak 3.

Za serijski magnetski krug (Slika 5.3.) potrebno je izračunati induktivitet magnetskog kruga. Zadano je: duljina silnica l = 6cm, broj namota zavojnice N = 500 zavoja, zračni raspor $l_g = 0.5$ mm. Jezgra je od željeza relativne permeabilnosti $\mu_r = 5000$. Dimenzije magnetskog kruga su 2 cm · 3 cm.

Slika 5.3. Serijski magnetski krug sa zračnim rasporom od 0.5 mm

Srednja duljina silnica magnetskog kruga sa zračnim rasporom bit će umanjena za vrijednost duljine zračnog raspora l_q .

$$l_{sr} = 4 \cdot l - l_{g} = 4 \cdot 6 - 5 \cdot 10^{-2} = 23.95 \text{ cm} = 23.95 \cdot 10^{-2} \text{ m}$$

Pomoću dimenzija magnetskog kruga može se izračunati poprečni presjek magnetske jezgre:

$$S_c = 2 \text{ cm} \cdot 3 \text{ cm} = 6 \text{ cm}^2 = 6 \cdot 10^{-4} \text{m}^2$$

Permeabilnost magnetske jezgre iznosi:

$$\mu_c = \mu_r \mu_o = 5000 \cdot 4\pi \cdot 10^{-7} = 6.28 \cdot 10^{-3}$$

Ukupni magnetski otpor R_m serijskoga magnetskog kruga je zbroj magnetskog otpora jezgre R_c i magnetskog otpora zračnog raspora R_g .

Magnetski otpor magnetske jezgre R_c iznosi:

$$R_c = \frac{l_{sr}}{\mu_c S_c} = \frac{23.95 \cdot 10^{-2}}{(6.28 \cdot 10^{-3}) \cdot (6 \cdot 10^{-4})} = 6.356 \cdot 10^4 \text{ H}^{-1}$$

Zbog rasipanja magnetskog toka poprečni presjek zračnog raspora bit će veći nego poprečni presjek željezne jezgre. Ovaj problem se rješava tako da se duljina zračnog raspora l_g zbroji sa svakom dimenzijom magnetskog kruga.

$$S_g = (2 \text{ cm} + 0.05 \text{ cm}) \cdot (3 \text{ cm} + 0.05 \text{ cm}) = 6.25 \text{ cm}^2 = 6.25 \cdot 10^{-4} \text{ m}^2$$

Permeabilnost zračnog raspora μ_g približno je jednaka permeabilnosti vakuuma μ_0 :

$$\mu_g \approx \mu_0 = 4\pi \cdot 10^{-7}$$

Magnetski otpor zračnog raspora R_giznosi:

$$R_g = \frac{l_g}{\mu_g S_g} = \frac{0.05 \cdot 10^{-2}}{(4\pi \cdot 10^{-7}) \cdot (6.25 \cdot 10^{-4})} = 6.366 \cdot 10^5 \mathrm{H}^{-1}$$

Ukupni magnetski otpor R_miznosi:

$$R_m = R_c + R_g = 6.356 \cdot 10^4 + 6.366 \cdot 10^5 = 7.001 \cdot 10^5 \text{H}^{-1}$$

Induktivitet *L* iznosi:

$$L = \frac{N^2}{R_m} = \frac{500^2}{7.001 \cdot 10^5} = 0.35 \text{ H}$$

Zadatak 4.

Za paralelni magnetski krug (Slika 5.4.) potrebno je izračunati induktivitet magnetskog kruga. Zadano je: duljina silnica l = 10cm, broj namota zavojnice N = 500 zavoja. Jezgra je od lijevanog željeza relativne permeabilnosti $\mu_r = 1000$. Dimenzije magnetskog kruga su 2 cm · 2 cm.

Slika 5.4. Paralelni magnetski krug

Kao što je prikazano na slici 5.4. u paralelnom magnetskom krugu potrebno je prvo izračunati magnetski otpor lijeve grane Φ_a , desne grane Φ_b i središnje grane Φ_c .

Pomoću dimenzija magnetskog kruga može se izračunati poprečni presjek magnetske jezgre:

$$S_c = 2 \text{ cm} \cdot 2 \text{ cm} = 4 \text{ cm}^2 = 4 \cdot 10^{-4} \text{ m}^2$$

Permeabilnost magnetske jezgre iznosi:

$$\mu_c = \mu_r \mu_o = 1000 \cdot 4\pi \, \cdot \, 10^{-7} = 1.26 \cdot \, 10^{-3}$$

Magnetski otpor srednje grane iznosi:

$$R_c = \frac{l_c}{\mu_c S_c} = \frac{10 \cdot 10^{-2}}{(1.26 \cdot 10^{-3}) \cdot (4 \cdot 10^{-4})} = 1.984 \cdot 10^5 \text{ H}^{-1}$$

Srednja duljina silnica lijeve grane magnetskog kruga iznosi:

 $l_a = 3 \cdot 10 \text{ cm} = 30 \text{ cm} = 30 \cdot 10^{-2} \text{m}$

Magnetski otpor lijeve grane iznosi:

$$R_a = \frac{l_a}{\mu_c S_c} = \frac{30 \cdot 10^{-2}}{(1.26 \cdot 10^{-3}) \cdot (4 \cdot 10^{-4})} = 5.952 \cdot 10^5 \text{ H}^{-1}$$

Magnetski otpor desne grane jednak je magnetskom otporu lijeve grane:

$$R_b = R_a = 5.952 \cdot 10^5 \mathrm{H}^{-1}$$

Magnetski otpori R_a i R_b su u paraleli, stoga ukupni magnetski tok R_m iznosi:

$$R_m = R_c + \frac{1}{\frac{1}{R_a} + \frac{1}{R_b}} = 1.984 \cdot 10^5 + \frac{1}{\frac{1}{5.952 \cdot 10^5} + \frac{1}{\frac{1}{5.952 \cdot 10^5}}} = 4.960 \cdot 10^5 \text{ H}^{-1}$$

Induktivitet L iznosi:

$$L = \frac{N^2}{R_m} = \frac{500^2}{4.960 \cdot 10^5} = 0.50 \text{ H}$$

Zadatak 5.

Za paralelni magnetski krug (Slika 5.5.) potrebno je izračunati induktivitet magnetskog kruga. Zadano je: duljina silnica l = 10cm, broj namota zavojnice N = 500 zavoja, zračni raspor $l_g = 5$ mm. Jezgra je od lijevanog željeza relativne permeabilnosti $\mu_r = 1000$. Dimenzije magnetskog kruga su $2cm \cdot 2cm$.

Slika 5.5. Paralelni magnetski krug sa zračnim rasporom od 5 mm

Potrebno je prvo izračunati magnetski otpor lijeve grane Φ_a , desne grane Φ_b i središnje grane Φ_c . Pomoću dimenzija magnetskog kruga može se izračunati poprečni presjek magnetske jezgre:

$$S_c = 2 \text{ cm} \cdot 2 \text{ cm} = 4 \text{ cm}^2 = 4 \cdot 10^{-4} \text{ m}^2$$

Poprečni presjek zračnog raspora iznosi:

$$S_g = (2 \text{ cm} + 0.5 \text{ cm}) \cdot (2 \text{ cm} + 0.5 \text{ cm}) = 6.25 \text{ cm}^2 = 6.25 \cdot 10^{-4} \text{m}^2$$

Duljina silnice središnje grane umanjena je za vrijednost zračnog raspora:

 $l_c = l - l_g = 10 \text{ cm} - 0.5 \text{ cm} = 9.5 \text{ cm} = 9.5 \cdot 10^{-2} \text{ m}$

Permeabilnost magnetske jezgre iznosi:

$$\mu_c = \mu_r \mu_o = 1000 \cdot 4\pi \cdot 10^{-7} = 1.26 \cdot 10^{-3}$$

Permeabilnost zračnog raspora μ_g približno je jednaka permeabilnosti vakuuma μ_0 :

$$\mu_q \approx \mu_0 = 4\pi \cdot 10^{-7}$$

Magnetski otpor srednje grane iznosi:

$$R_c = \frac{l_c}{\mu_c S_c} = \frac{9.5 \cdot 10^{-2}}{(1.26 \cdot 10^{-3}) \cdot (4 \cdot 10^{-4})} = 1.885 \cdot 10^5 \text{H}^{-1}$$

Magnetski otpor zračnog raspora iznosi:

$$R_g = \frac{l_g}{\mu_g S_g} = \frac{0.5 \cdot 10^{-2}}{(4\pi \cdot 10^{-7}) \cdot (6.25 \cdot 10^{-4})} = 6.366 \cdot 10^6 \text{H}^{-1}$$

Srednja duljina silnica lijeve grane magnetskog kruga iznosi:

$$l_a = 3 \cdot 10 \text{ cm} = 30 \text{ cm} = 30 \cdot 10^{-2} \text{ m}$$

Magnetski otpor lijeve grane iznosi:

$$R_a = \frac{l_a}{\mu_c S_c} = \frac{30 \cdot 10^{-2}}{(1.26 \cdot 10^{-3}) \cdot (4 \cdot 10^{-4})} = 5.952 \cdot 10^5 \text{H}^{-1}$$

Magnetski otpor desne grane jednak je magnetskom otporu lijeve grane:

$$R_b = R_a = 5.952 \cdot 10^5 \mathrm{H}^{-1}$$

Magnetski otpori R_c i R_g su u seriji dok su magnetski otpori R_a i R_b su u paraleli, stoga ukupan magnetski tok R_m iznosi:

$$R_m = R_c + R_g + \frac{1}{\frac{1}{R_a} + \frac{1}{R_b}}$$
$$R_m = 1.885 \cdot 10^5 + 6.366 \cdot 10^6 + \frac{1}{\frac{1}{5.952 \cdot 10^5} + \frac{1}{5.952 \cdot 10^5}} = 6.852 \cdot 10^6 \text{ H}^{-1}$$

Induktivitet *L* iznosi:

$$L = \frac{N^2}{R_m} = \frac{500^2}{6.852 \cdot 10^6} = 36.48 \text{mH}$$

Zadatak 6.

Za paralelni magnetski krug (Slika 5.6.) potrebno je izračunati induktivitet magnetskog kruga. Zadano je: duljina silnica l = 10cm, broj namota zavojnice N = 500 zavoja, zračni raspor $l_g = 0.5$ mm. Jezgra je od lijevanoga željeza relativne permeabilnosti $\mu_r = 1000$. Dimenzije magnetskoga kruga su 2 cm · 2cm.

Slika 5.6. Paralelni magnetski krug sa zračnim rasporom od 0.5 mm

Potrebno je prvo izračunati magnetski otpor lijeve grane Φ_a , desne grane Φ_b i središnje grane Φ_c . Pomoću dimenzija magnetskog kruga može se izračunati poprečni presjek magnetske jezgre:

$$S_c = 2 \text{ cm} \cdot 2 \text{ cm} = 4 \text{ cm}^2 = 4 \cdot 10^{-4} \text{ m}^2$$

Poprečni presjek zračnog raspora iznosi:

$$S_g = (2 \text{ cm} + 0.05 \text{ cm}) \cdot (2 \text{ cm} + 0.05 \text{ cm}) = 4.20 \text{ cm}^2 = 4.20 \cdot 10^{-4} \text{ m}^2$$

Duljina silnice središnje grane umanjena je za vrijednost zračnog raspora:

$$l_c = l - l_g = 10 \text{ cm} - 0.05 \text{ cm} = 9.95 \text{ cm} = 9.95 \cdot 10^{-2} \text{ m}$$

Permeabilnost magnetske jezgre iznosi:

$$\mu_c = \mu_r \mu_o = 1000 \cdot 4\pi \cdot 10^{-7} = 1.26 \cdot 10^{-3}$$

Permeabilnost zračnog raspora μ_g približno je jednaka permeabilnosti vakuuma μ_0 :

$$\mu_a \approx \mu_0 = 4\pi \cdot 10^{-7}$$

Magnetski otpor srednje grane iznosi:

$$R_c = \frac{l_c}{\mu_c S_c} = \frac{9.95 \cdot 10^{-2}}{(1.26 \cdot 10^{-3}) \cdot (4 \cdot 10^{-4})} = 1.974 \cdot 10^5 \,\mathrm{H^{-1}}$$

Magnetski otpor zračnog raspora iznosi:

$$R_g = \frac{l_g}{\mu_g S_g} = \frac{0.05 \cdot 10^{-2}}{(4\pi \cdot 10^{-7}) \cdot (4.20 \cdot 10^{-4})} = 9.473 \cdot 10^5 \,\mathrm{H^{-1}}$$

Srednja duljina silnica lijeve grane magnetskoga kruga iznosi:

 $l_a = 3 \cdot 10 \text{ cm} = 30 \text{ cm} = 30 \cdot 10^{-2} \text{m}$

Magnetski otpor lijeve grane iznosi:

$$R_a = \frac{l_a}{\mu_c S_c} = \frac{30 \cdot 10^{-2}}{(1.26 \cdot 10^{-3}) \cdot (4 \cdot 10^{-4})} = 5.952 \cdot 10^5 \text{ H}^{-1}$$

Magnetski otpor desne grane jednak je magnetskom otporu lijeve grane:

$$R_b = R_a = 5.952 \cdot 10^5 \,\mathrm{H^{-1}}$$

28

Magnetski otpori R_c i R_g su u seriji dok su magnetski otpori R_a i R_b su u paraleli, stoga ukupan magnetski tok R_m iznosi:

$$R_m = R_c + R_g + \frac{1}{\frac{1}{R_a} + \frac{1}{R_b}}$$
$$R_m = 1.974 \cdot 10^5 + 9.473 \cdot 10^5 + \frac{1}{\frac{1}{5.952 \cdot 10^5} + \frac{1}{5.952 \cdot 10^5}} = 1.442 \cdot 10^6 \text{ H}^{-1}$$

Induktivitet *L* iznosi:

$$L = \frac{N^2}{R_m} = \frac{500^2}{1.442 \cdot 10^6} = 0.17 \text{H}$$

6. PRORAČUN – FINITE ELEMENT METHOD MAGNETICS

6.1. Programski paket FEMM

Finite Element Method Magnetics (FEMM) je programski paket za rješavanje i analizu elektromagnetskih uređaja (motori, transformatori, zavojnice, itd.). Pomoću FEMM-a rješavaju se 2D ravni i 3D asimetrični linearni i nelinearni, magnetski i magnetostatski problemi, te linearni elektrostatski problemi. FEMM je vrlo jednostavan program za koristiti koji daje točne rezultate zadanih problema kojega je moguće koristiti i na uređajima čiji su računalni sklopovi jeftiniji.[10]

Slika 6.1. Prikaz modela serijskih magnetskih krugova korištenih u FEMM-u (a) bez zračnog raspora, b) zračni raspor od 5mm, c) zračni raspor od 0.5mm)

Slika 6.2. Prikaz modela paralelnih magnetskih krugova korištenih u FEMM-u (a) bez zračnog raspora, b) zračni raspor od 5mm, c) zračni raspor od 0.5mm)

Slika 6.3. Prikaz gustoće magnetskog toka i induktiviteta serijskog magnetskog kruga

Tablica 6.1.	Usporedba rezultata	numeričkog	proračuna	i računalne	simulacije	serijskog
		magnetsko	og kruga			

Numerički proračun	Numerički proračun dobiven računalnom simulacijom	
$R_m = 6.369 \cdot 10^4 \text{ H}^{-1}$	$R_m = 5.458 \cdot 10^4 \ \mathrm{H^{-1}}$	
L = 3.925 H	L = 4.593 H	
Pogreška pri pro	oračunu indukcije	
$\Delta_p = \frac{4.593 - 3.925}{3.925} \cdot 100\% = 17.02\%$		

Slika 6.4. Prikaz gustoće magnetskog toka i induktiviteta serijskoga magnetskog kruga sa zračnim rasporom od 5mm

Tablica 6.2. Usporedba rezultata numeričkog proračuna i računalne simulacije serijskogamagnetskog kruga sa zračnim rasporom od 5mm

Numerički proračun	Numerički proračun dobiven računalnom simulacijom	
$R_m = 4.609 \cdot 10^6 \mathrm{H^{-1}}$	$R_m = 3.496 \cdot 10^6 \mathrm{H}^{-1}$	
L = 54.24mH	L = 70.89 mH	
Pogreška pri prora	ačunu indukcije	
$\Delta_p = \frac{70.89 \cdot 10^{-3} - 54.24 \cdot 10^{-3}}{54.24 \cdot 10^{-3}} \cdot 100\% = 30.69\%$		

Slika 6.5. Prikaz gustoće magnetskog toka i induktiviteta serijskoga magnetskog kruga sa zračnim rasporom od 0.5mm

Tablica 6.3. Usporedba rezultata numeričkog proračuna i računalne simulacije serijskogamagnetskog kruga sa zračnim rasporom od 0.5mm

Numerički proračun	Numerički proračun dobiven računalnom simulacijom	
$R_m = 7.001 \cdot 10^5 \text{ H}^{-1}$ L = 0.35 H	$R_m = 6.001 \cdot 10^5 \mathrm{H}^{-1}$ $L = 0.390 \mathrm{H}$	
Pogreška pri pro	računu indukcije	
$\Delta_p = \frac{0.390 - 0.35}{0.35} \cdot 100\% = 11.43\%$		

Slika 6.6. Prikaz gustoće magnetskog toka i induktiviteta paralelnoga magnetskog kruga

Tablica 6.4. Usporedba rezultata numeričkog proračuna i računalne simulacije paralelnog	A
magnetskog kruga	

Numerički proračun	Numerički proračun dobiven računalnom simulacijom	
$R_m = 4.960 \cdot 10^5 \mathrm{H}^{-1}$	$R_m = 4.443 \cdot 10^5 \mathrm{H^{-1}}$	
L = 0.50 H	L = 0.563 H	
Pogreška pri pro	računu indukcije	
$\Delta_p = \frac{0.563 - 0.50}{0.50} \cdot 100\% = 12.55\%$		

Slika 6.7. Prikaz gustoće magnetskog toka i induktiviteta paralelnog magnetskog kruga sa zračnim rasporom od 5mm

Tablica 6.5. Usporedba rezultata numeričkog proračuna i računalne simulacije paralelnogmagnetskog kruga sa zračnim rasporom od 5mm

Numerički proračun	Numerički proračun dobiven računalnom simulacijom	
$R_m = 6.852 \cdot 10^6 \text{ H}^{-1}$	$R_m = 5.522 \cdot 10^6 \mathrm{H}^{-1}$	
L = 36.48 mH	L = 45.31mH	
Pogreška pri pro	računu indukcije	
$\Delta_p = \frac{45.31 \cdot 10^{-3} - 36.48 \cdot 10^{-3}}{36.48 \cdot 10^{-3}} \cdot 100\% = 24.21\%$		

Slika 6.8. Prikaz gustoće magnetskog toka i induktiviteta paralelnoga magnetskog kruga sa zračnim rasporom od 0.5 mm

Tablica 6.6. Usporedba rezultata numeričkog proračuna i računalne simulacije paralelnogamagnetskog kruga sa zračnim rasporom od 0.5 mm

Numerički proračun	Numerički proračun dobiven računalnom simulacijom	
$R_m = 1.442 \cdot 10^6 \ \mathrm{H^{-1}}$	$R_m = 1.287 \cdot 10^6 \mathrm{H^{-1}}$	
L = 0.17 H	$L = 0.194 { m H}$	
Pogreška pri proračunu indukcije		
$\Delta_p = \frac{0.194 - 0.17}{0.17} \cdot 100\% = 14.24\%$		

7. ZAKLJUČAK

Cilj rada bio je prezentirati postupak proračuna induktiviteta magnetskih krugova analitičkim i numeričkim postupcima. Zbog pojednostavljenja i aproksimacija u inženjerskoj praksi često se koristi približan analitički proračun koji nije u potpunosti točan, te se unosi određena greška u očitanju rezultata. Korištenjem simulacijskih alata koji koriste numeričke metode proračuna dobiva se točniji proračun magnetskih krugova. U završnom radu opisana su magnetska polja, te kako magnetsko polje utječe na različite magnetske materijale. Također su iznesene osnove magnetskih krugova, potom su opisani serijski i paralelni magnetski krugovi i magnetski krugovi sa zračnim rasporom. U šestom poglavlju opisan je programski paket *Finite Element Method Magnetics* pomoću kojega se modelira magnetski krug. Programski paket jednostavan je za koristiti i pritom daje vrlo točne rezultate.

Numerički proračuni vršeni su na serijskim i paralelnim magnetskim krugovima, te magnetskim krugovima sa zračnim rasporom različitih veličina. Usporedbom rezultata dobivenih numeričkim proračunima i rezultata dobivenih računalnom simulacijom pomoću programskog paketa *Finite Element Method Magnetics* vidljivo je da se kod rezultata dobivenih numeričkim proračunima unosi određena pogreška u rezultate. Odstupanje rezultata najmanje je kod magnetskih krugova bez zračnih raspora. Povećavanjem zračnog raspora serijskih i paralelnih magnetskih krugova povećava se i odstupanje rezultata. Upotrebom programskog paketa *Finite Element Method Magnetics* dobivene rezultata. Upotrebom programskog paketa *Finite Element Method Magnetics* dobivene rezultate za zamišljeni model magnetskog kruga moguće je vizualno prikazati, te se daljnjom promjenom modela brzo dolazi do novih rezultata.

Upotrebom simulacijskih alata koji koriste numeričke metode proračuna kao što je *Finite Element Method Magnetics* omogućen je točniji proračun različitih modela magnetskih krugova, te se omogućava izmjena modela magnetskih krugova kako bi se uklonile određene pogreške.

LITERATURA

- [1] Željko Štih, Bojan Trkulja, Elektromagnetska polja Magnetostatika, Zagreb, 2010.
- [2] Dijamagnetizam, url: http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/magpr.html#c2 (27.08.2019.)
- [3] Fotografija, url: https://radiopaedia.org/articles/diamagnetism?lang=us (26.08.2019.)
- [4] Paramagnetizam, Feromagnetizam url:
 <u>https://electronicspani.com/types-of-magnetic-materials/</u> (27.08.2019.)
- [5] Fotografija, url: <u>https://www.arnoldmagnetics.com/permanent-magnets/capabilities/magnetizing/</u> (27.08.2019)
- [6] Fotografija, url:
 <u>https://www.fpz.unizg.hr/elektrotehnika/admin/upload/magnetizam_iii.pdf</u> (27.08.2019.)
- [7] Curieva temperatura, url: <u>https://sciencestruck.com/curie-temperature</u> (27.08.2019.)
- [8] Fotografija, url: <u>https://en.wikipedia.org/wiki/Curie_temperature</u> (27.08.2019.)
- [9] Krivulja magnetiziranja, url: https://www.fpz.unizg.hr/elektrotehnika/admin/upload/magnetizam_iii.pdf (27.08.2019.)
- [10] Finite Element Method Magnetics, url: <u>https://www.researchgate.net/publication/226596016_The_finite_element_method_magnetics</u> <u>s_FEMM_freeware_package_May_it_serve_as_an_educational_tool_in_teaching_electroma_gnetics</u> (28.08.2019.)

ŽIVOTOPIS

IVAN GALIĆ

Rođen je u Zagrebu 5. siječnja 1992. U Osijeku, 2007. godine završava osnovnu školu "Retfala" s odličnim uspjehom zatim se upisuje u III. gimnaziju u Osijeku koju završava 2011. godine kada istovremeno upisuje preddiplomski studij elektrotehnike na Elektrotehničkom fakultetu u Osijeku. Tečno govori engleski jezik, informatički je pismen te se izvrsno služi Microsoft Office programskim paketom.

SAŽETAK

U završnom radu iznesene su osnove magnetskih polja, vrste magnetskih materijala, krivulja magnetiziranja, vrste magnetskih krugova, induktivitet i međuinduktivitet. Cilj završnog rada je prezentirati postupak proračuna induktiviteta magnetskoga kruga analitičkim i numeričkim postupcima za različite primjere magnetskih krugova upotrebom *Finite Element Method Magnetics* programskoga paketa. Dobiveni rezultati su uspoređeni i prokomentirani. U prilogu završnoga rada prikazane su upute za korištenje *Finite Element Method Magnetics* programskoga paketa.

Ključne riječi: magnetsko polje, magnetski materijali, krivulja magnetiziranja, magnetski krugovi, induktivitet, međuinduktivitet, numerički proračun, analitički proračun, *Finite Element Method Magnetics*

ABSTRACT

The graduation thesis describes theory of magnetic fields, types of magnetic materials, magnetization curve, types of magnetic circuits, inductance and mutual inductance. The aim of this graduation thesis to analitically and numerically calculate magnetic curcuit inductance using Finite Element Method Magnetics software package. The results were compared and commented. The enclosure contains instruction for using Finite Element Method Magnetics software package.

Keywords:magnetic field, magnetic material, magnetization curve, magnetic circuits, inductance, mutual inductance, numerical calculation, analytical calculation, Finite Element Method Magnetics.

PRILOG

Prikaz postupka numeričkoga proračuna u programskom paketu *Finite Element Method Magnetics* i upute za korištenje.

Zadatak:

Nakon otvaranja programskog paketa *Finite Element Method Magnetics* otvaramo novi projekt. *File – New*

File Edit View	Help
New	Ctrl+N
Open	Ctrl+0

Nakon otvaranja novog projekta, otvara se izbornik u kojem odabiremo vrstu zadatka. Pošto se izrađuje model magnetskoga kruga odabiremo *Magnetics Problem*

Create a new problem		 X	
Magnetics Problem		•	
	ОК	Cancel	
L			

Otvara se nova radna površina u kojem ćemo modelirati magnetski krug.

Prije modeliranja definira se vrsta zadatka klikom na tipku *Problem*, čime se otvara novi prozor u kojemu se odabire tip problema i mjerna jedinica u kojoj želimo izraditi zadatak.

Problem Type - Planar Length Units–Centimeters Depth– 3

Problem Definition	x			
Problem Type	Planar 💌			
Length Units	Centimeters 💌			
Frequency (Hz)	0			
Depth	3			
Solver Precision	1e-008			
Min Angle	30			
Smart Mesh	On 💌			
AC Solver	Succ. Approx			
Previous Solution				
Prev Type	None			
Comment				
Add comments here.				
OK Cancel				

Za crtanje magnetskog kruga koristit ćemo se ikonama s alatne trake.

• /

Pomoću ikone upisujemo koordinate magnetskoga kruga. Koordinate upisujemo *klikom* na radnu površinu ili pritiskom tipke *Tab* na tipkovnici. Zbog lakšeg izvršavanja zadatka koristit ćemo se tipkom *Tab*. Pritiskom tipke *Tab* na tipkovnici otvara se novi prozor na kojem unosimo jednu koordinatu.

Enter Point		×
x-coord	0	
y-coord	0	
	ОК	Cancel

Odabirom koordinate na *x-osi* i *y-osi* unosi se koordinata (0,0).

x-coord 0

y-coord 0

Klikom na tipku OK iscrtava se koordinata (0,0) na radnoj površini projekta.

0 🖻	1 1	0 🚳	r	13	1 n	
	 			· · · · · · · · ·	:	
H.	 					
	 				<u>.</u>	· · · · · · · · · · · · · · · · · · ·
D	 			· · · · · · · · · · · · · · · · · · ·		
D	 					· · · · · · · · · · · · · · · · · · ·
<u>a</u>	 			· · · · · · · · · · · · · · · · · · ·		
î	 					
₽						
4	 					
-	 					
_K	 					
size						

Nakon unošenja svih koordinata magnetskog kruga klikom na ikonu Zna alatnoj traci spajaju se točke.

Nakon spajanja svih koordinata dobije se model serijskoga magnetskog kruga.

Dodavanje materijala magnetskom krugu:

Properties – Materials Library

Nakon toga se otvara novi prozor u kojem odabiremo vrste materijala u *Materials Library* koje ćemo koristiti, te ih onda odabirom lijevim klikom prebacimo u *Model Materials*.

Air

Soft Magnetic Materials – Pure Iron – desni klik – Modify Material – Relative $\mu_x, \mu_y = 5000$ Copper AWG Magnet Wire – 10 AWG

Nakon toga na alatnoj traci odabiremo ikonu <a>o pomoću koje unosimo materijale magnetskog kruga. *Lijevim klikom* odaberemo područja.

Odabrana su područja kojima je potrebno definirati materijale. Materijali se definiraju tako da desnim klikom označimo *<None>*, te pritiskom tipke *Spacebar* na tipkovnici otvara se novi prozor u kojem unosimo vrstu materijala.

Properties for selected block		
Block type	Pure Iron 💌	
Mesh size	<none> <no mesh=""> Air</no></none>	
🔽 Let Triangle	Pure Iron 10 AWG	
In Circuit	<none></none>	
Number of Turns	1	
Magnetization Direction	0	
In Group	0	
Block label located in an external region		
Set as default block label		
	OK Cancel	

Nakon što su određeni materijali magnetskoga kruga, potrebno je odrediti materijal zavojnice. *Properties – Circuits*

-
ОК

AddProperty

Series

CurcuitCurren, Amps – 1- OK

Circuit Property	×
Name New Circuit	
C Parallel	t, Amps
	OK Cancel

Desni klik - Spacebar – Blocktype – 10 AWG In Circuit – New Circuit Numberof Turns – 500 Desni klik –Spacebar – Blocktype – 10 AWG In Circuit – New Circuit Numberof Turns– -500

Prije pokretanja simulacije potrebno je odrediti područje koje će biti simulirano. Ovaj problem se rješava pomoću rubnih uvjeta. Prvo je potrebno definirate rubne uvjete.

Properties – Boundary

Property Definition			
Property Name			
New Boundary	•		
Add Property			
Delete Property	ОК		
Modify Property			

Add property

Name New Boundary	ОК
BC Type Prescribed A	Cancel
Small skin depth parameters µ relative 0 o Mixed BC parameters c 0 c 1 coefficient 0	Prescribed A parameters A_0 0 A_1 0 A_2 0 ϕ , deg 0
Air Gap parameters	

Nakon definiranja rubnih uvjeta potrebno je odabrati dvije proizvoljne točke, koje će u ovom slučaju

imati koordinate (20,0) i -20,0). Odabiremo

Tab – xcoord 20 – ycoord 0

```
Tab-xcoord 20 - ycoord 0
```


Klikom na ikonu 📭 na alatnoj traci *lijevim klikom* povezuju se dvije točke.

Nakon povezivanja točaka s lijeva na desno iskače prozor u kojem se unose vrijednosti luka.

Arc Angle – 180 Boundary Condition – New boundary

Nakon crtanja donjeg luka potrebno je nacrtati i gornji luk kojega crtamo tako da odbiremo točke s desna na lijevo.

Arc Angle – 180

Boundary Condition – New boundary

Klikom na ikonu 🌌 na alatnoj traci analiziramo model, te klikom na ikonu 🐼 gledamo rezultate simulacije.

Klikom na ikonu Ima alatnoj traci iskače prozor na kojem odabiremo gustoću magnetskoga toka klikom na *Show Density Plot*

Dialog	×		
Plotted Value Flux Density (T)			
✓ Show Density Plot			
I▼ Show Legend			
Greyscale			
Lower Bound			
5.08062044827575e-007			
Upper Bound			
1.50248240112493			
0	K Cancel		

Klikom na ikonu 🚺 na alatnoj traci iskače prozor na kojem je ispisana vrijednost induktiviteta zavojnice.

Circuit Properties
Circuit Name
New Circuit
Results Total current = 1 Amps Voltage Drop = 0.0982682 Volts Flux Linkage = 4.59349 Webers Flux/Current = 4.59349 Henries Voltage/Current = 0.0982682 Ohms Power = 0.0982682 Watts
ОК

Zadatak:

Ovaj zadatak je sličan prijašnjem zadatku samo što je u ovom zadatku potrebno modelirati serijski magnetski krug sa zračnim rasporom od 5mm. Jedino je potrebno dodati par novih koordinata točaka tako da bi se dobio zračni raspor od 5mm.

Nakon modeliranja potrebno je nacrtati lukove pomoću ikone 📭 na alatnoj traci i definirati rubne uvjete. Klikom na ikonu 📽 na alatnoj traci analiziramo model, te klikom na ikonu 😵 gledamo rezultate simulacije. Klikom na ikonu 🔊 na alatnoj traci iskače prozor na kojem odabiremo gustoću magnetskog toka klikom na *Show Density Plot*.

	2.070e-001 : >2.179e-001	
	1.961e-001 : 2.070e-001	
	1.852e-001:1.961e-001	
	1.743e-001 : 1.852e-001	
	1.634e-001:1.743e-001	
	1.525e-001 : 1.634e-001	
	1.416e-001 : 1.525e-001	
	1.307e-001:1.416e-001	
	1.198e-001 : 1.307e-001	
	1.089e-001:1.198e-001	
	9.805e-002:1.089e-001	
	8.716e-002:9.805e-002	
	7.626e-002: 8.716e-002	
	6.537e-002:7.626e-002	
	5.447e-002:6.537e-002	
	4.358e-002: 5.447e-002	
	3.269e-002: 4.358e-002	
	2.179e-002: 3.269e-002	
	1.090e-002 : 2.179e-002	
	<4.410e-006:1.090e-002	
Density Plot: B , Tesla		

Klikom na ikonu 🚺 na alatnoj traci iskače prozor na kojem je ispisana vrijednost induktviteta zavojnice.

Circuit Name	
coil Circuit	
Results	
Total current = 1 Amps	
Flux Linkage = 0.0708943 Webers	
Flux/Current = 0.0708943 Henries	
Power = 0.0982682 Watts	

Zadatak:

Ovaj zadatak je sličan prijašnjem zadatku samo što je za razliku od prošlog zadatka u ovom zadatku zračni razmjer 0.5mm.

Nakon modeliranja potrebno je nacrtati lukove pomoću ikone 📭 na alatnoj traci i definirati rubne uvjete. Klikom na ikonu 📽 na alatnoj traci analiziramo model, te klikom na ikonu 😵 gledamo rezultate simulacije. Klikom na ikonu 🔊 na alatnoj traci iskače prozor na kojem odabiremo gustoću magnetskog toka klikom na *Show Density Plot*.

Klikom na ikonu 🚺 na alatnoj traci iskače prozor na kojem je ispisana vrijednost induktiviteta zavojnice.

Circuit Properties	×
Circuit Name	
New Circuit	•
Results	
Total current = 1 Amps Voltage Drop = 0.0982682 Volts Flux Linkage = 0.389963 Webers Flux/Current = 0.389963 Henries Voltage/Current = 0.0982682 Ohms Power = 0.0982682 Watts	
	ОК

Kod izrade paralelnih magnetskih krugova koristit će se jezgra od lijevanog željeza čija relativna

permeabilnosti iznosi $\mu_r = 1000$. Također će dubina materijala biti promjenjena i ona iznosi 2cm. Dubina materijala:

Problem Type - Planar Length Units – Centimeters Depth – 3

Problem Definition			
Problem Type	Planar 💌		
Length Units	Centimeters 💌		
Frequency (Hz)	0		
Depth	2		
Solver Precision	1e-008		
Min Angle	30		
Smart Mesh	On 💌		
AC Solver	Succ. Approx 💌		
Previous Solution			
Prev Type	None		
Comment			
Add comments here.			
OK Cancel			

Permeabilnost materijala:

Properties – Materials Library

Nakon toga se otvara novi prozor u kojem odabiremo vrste materijala u *Materials Library* koje ćemo koristiti, te ih onda odabirom lijevim klikom prebacimo u Model Materials.

Air

Soft Magnetic Materials – Steel – desni klik – Modify Material – Relative $\mu_x, \mu_y = 1000$

Copper AWG Magnet Wire - 10 AWG

Zadatak:

Nakon postavljanja zadatka izrađuje se model paralelnoga magnetskog kruga

Nakon modeliranja potrebno je nacrtati lukove pomoću ikone 📭 na alatnoj traci i definirati rubne uvjete. Klikom na ikonu 📽 na alatnoj traci analiziramo model, te klikom na ikonu 😵 gledamo rezultate simulacije. Klikom na ikonu 🔊 na alatnoj traci iskače prozor na kojem odabiremo gustoću magnetskog toka klikom na *Show Density Plot*.

	2.677e+000 : >2.818e+000		
	2.536e+000 : 2.677e+000		
	2.395e+000 : 2.536e+000		
	2.255e+000 : 2.395e+000		
	2.114e+000 : 2.255e+000		
	1.973e+000 : 2.114e+000		
	1.832e+000 : 1.973e+000		
	1.691e+000 : 1.832e+000		
	1.550e+000 : 1.691e+000		
	1.409e+000 : 1.550e+000		
	$1.268e\pm0.00$ · $1.409e\pm0.00$		
	1 1270+000 : 1 2680+000		
	0.9640-001 + 1.1270+000		
	9.0040-001 . 1.12/0+000		
	8.455e-001 : 9.864e-001		
	7.046e-001 : 8.455e-001		
	5.636e-001 : 7.046e-001		
	4.227e-001 : 5.636e-001		
	2.818e-001 : 4.227e-001		
	1.409e-001 : 2.818e-001		
	<4.402e-006 : 1.409e-001		
Density Plate IRI, Tasla			
Density Flot, [D], Tesid			

Klikom na ikonu 🚺 na alatnoj traci iskače prozor na kojem je ispisana vrijednost induktviteta zavojnice.

Circuit Properties	×
Circuit Name New Circuit	•
Results Total current = 1 Amps Voltage Drop = 0.0655121 Volts Flux Linkage = 0.563011 Webers Flux/Current = 0.563011 Henries Voltage/Current = 0.0655121 Ohms Power = 0.0655121 Watts	
	ОК

Zadatak:

Ovaj zadatak je sličan prijašnjem zadatku samo što je u ovom zadatku potrebno modelirati serijski magnetski krug sa zračnim rasporom od 5mm. Jedino je potrebno dodati par novih koordinata točaka tako da bi se dobio zračni raspor od 5mm.

Nakon modeliranja potrebno je nacrtati lukove pomoću ikone 🝙 na alatnoj traci i definirati rubne uvjete. Klikom na ikonu 📽 na alatnoj traci analiziramo model, te klikom na ikonu 😵 gledamo rezultate simulacije. Klikom na ikonu 🔊 na alatnoj traci iskače prozor na kojem odabiremo gustoću magnetskog toka klikom na *Show Density Plot*.

Klikom na ikonu ikonu ikonu kato iskače prozor na kojem je ispisana vrijednost induktviteta zavojnice.

Circuit Properties
Circuit Name
New Circuit
Results Total current = 1 Amps Voltage Drop = 0.0655121 Volts Flux Linkage = 0.0453069 Webers Flux/Current = 0.0453069 Henries Voltage/Current = 0.0655121 Ohms Power = 0.0655121 Watts
ОК

Zadatak:

Ovaj zadatak je sličan prijašnjem zadatku samo što je za razliku od prošlog zadatka u ovom zadatku zračni razmjer 0.5mm.

Nakon modeliranja potrebno je nacrtati lukove pomoću ikone $\boxed{}$ na alatnoj traci i definirati rubne uvjete. Klikom na ikonu $\boxed{}$ na alatnoj traci analiziramo model, te klikom na ikonu $\boxed{}$ gledamo rezultate simulacije. Klikom na ikonu $\boxed{}$ na alatnoj traci iskače prozor na kojem odabiremo gustoću magnetskog toka klikom na *Show Density Plot*.

9.289e-001 : >9.778e-001		
8.800e-001 : 9.289e-001		
8.311e-001 : 8.800e-001		
7.822e-001 : 8.311e-001		
7.333e-001 : 7.822e-001		
6.844e-001 : 7.333e-001		
6.355e-001 : 6.844e-001		
5.867e-001 : 6.355e-001		
5.378e-001 : 5.867e-001		
4.889e-001 : 5.378e-001		
4.400e-001 : 4.889e-001		
3.911e-001 : 4.400e-001		
3.422e-001 : 3.911e-001		
2.933e-001 : 3.422e-001		
2.444e-001 : 2.933e-001		
1.956e-001 : 2.444e-001		
1.467e-001 : 1.956e-001		
9.778e-002 : 1.467e-001		
4.889e-002 : 9.778e-002		
<1.498e-006 : 4.889e-002		
Density Plot: IBL Tesla		
benord from for to the form		

Klikom na ikonu 🚺 na alatnoj traci iskače prozor na kojem je ispisana vrijednost induktiviteta zavojnice.

Circuit Properties	x
Circuit Name	
New Circuit	-
Results Total current = 1 Amps Voltage Drop = 0.0655121 Volts Flux Linkage = 0.194194 Webers Flux/Current = 0.194194 Henries Voltage/Current = 0.0655121 Ohms Power = 0.0655121 Watts	
OK	_