
Furniture detection in indoor scenes trained on
synthetic 3D data and classification of their opening
mechanisms

Džijan, Matej

Doctoral thesis / Doktorski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj
Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and
Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet
elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:610041

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-20

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science
and Information Technology Osijek

https://urn.nsk.hr/urn:nbn:hr:200:610041
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.etfos.hr
https://repozitorij.etfos.hr
https://repozitorij.unios.hr/islandora/object/etfos:5371
https://dabar.srce.hr/islandora/object/etfos:5371

Faculty of Electrical Engineering, Computer Science
and Information Technology Osijek,
J. J. Strossmayer University of Osijek, Croatia

MATEJ DŽIJAN

Furniture detection in indoor scenes trained
on synthetic 3D data and classification of

their opening mechanisms

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Science, scientific area of Technical Sciences,
scientific field of Computer Science at J. J. Strossmayer University of Osijek

Osijek, Croatia, August 16, 2024

I

Furniture detection in indoor scenes trained on synthetic 3D data
and classification of their opening mechanisms

Prepoznavanje namještaja u unutarnjem prostoru učenjem na
sintetičkim 3D podacima i klasifikacija načina njegovog otvaranja

Matej Džijan, © August, 2024.

MENTOR

prof. Robert Cupec, Ph.D., Faculty of Electrical Engineering, Computer Science
and Information Technology Osijek, J. J. Strossmayer University of Osijek, Croatia

II

Acknowledgements
“It is important to draw wisdom from many different places. If you take it from only one place, it
becomes rigid and stale.”

—Iroh

No man is an island, and neither am I. This thesis is not only the product of my
work, it was possible thanks to the help of many people. I would like to try to show my
gratitude by acknowledging some of them here.

First of all, I would like to thank my great mentor professor Robert Cupec. Thank
you for guiding me through this process and for teaching me how to approach research.
And thank you for your patience, I know I have been tardy at times, but you stuck with
me and now we’re here. I hope we can continue to work together on future research.

I would also like to thank some of my colleagues who are more than just that. My
greatest friend and office mate Valentin Šimundić, thank you for all the good times.
Thank you for boosting my confidence and reminding me of my capabilities when I
doubted myself. Thank you, Petra Pejić, for being kind of a big sister of our work group,
guiding me through the intricacies of the academia and making me do all the extracurric-
ular stuff I often didn’t feel like doing. Thank you, Marin Benčević, for sanity-checking
my ideas and allowing me to do the same for yours; you often made me feel valued
and useful. And thank you to Ratko Grbić, Ivan Vidović and Mateja Pul for being great
colleagues and collaborators. It’s been a pleasure working with you all and I hope we
continue to do so.

I would like to acknowledge FERIT for this opportunity and the Croatian Science
Foundation for supporting my work under the project IP-2019-04-6819.

And thank you to my non-work friends that have provided support when I needed
it and for hanging out with me when I just needed to relax and take my mind off work.
Thank you, Filip Akrap, for all the distractions, even though we sometimes went over-
board with those.

Last, but certainly not least, I would like to thank my amazing parents, Slavica and
Tunjo, and my siblings, Magdalena, Perica and Marko. You provided me with every-
thing I ever needed, and your sacrifices have laid the foundation for all my achieve-
ments. You’ve instilled curiosity and thirst for knowledge in me and those make life so
much more fun.

To everyone mentioned here and the many others who supported me along the way,
your contributions have made this journey more enjoyable and fun.

Matej Džijan
August, 2024.

III

Abstract

Intelligent service robots are increasingly being deployed in households, hospitals, ware-
houses, and other environments. These robots are capable of performing complex tasks,
largely relying on their vision systems for object detection. As these robots operate and
interact in 3D space, data obtained with 3D sensors is crucial for object detection, as it
offers a detailed representation of the environment in the form of point clouds. These
point clouds allow for precise extraction of information about the position, size, and ge-
ometry of objects within the 3D environment. Examples of such sensors include LiDARs
and RGB-D cameras. State-of-the-art 3D object detection methods are predominantly
deep learning-based and, as such, require large amounts of annotated data to perform
effectively. However, acquiring such data can be both expensive and time-consuming.
As a result, synthetic data generation presents a promising alternative, but current object
detectors trained on synthetic data still underperform compared to those trained on real
data. This suggests that current synthetic data generation methods do not yet achieve
sufficient realism.

This thesis aims to address this issue by exploring the field of realistic synthetic 3D
data generation for indoor environments. The primary goal is to analyze the impact of
five key factors of realism: presence of background objects, camera noise, positioning
of objects, context of scenes, and object sizes. To investigate these factors, a modular
method for generating realistic synthetic single-view point clouds was developed. This
method allows for the generation of large, customizable datasets with varying levels of
realism, specifically controlling for the aforementioned factors.

These datasets are used to train state-of-the-art object detectors, and the impact of
each realism factor is evaluated based on the detection performance. Furthermore, the
experiments show that the performance of an object detector can be improved by pre-
training it on a baseline synthetic dataset and fine-tuning it on real data. Notably, the
model trained on geometric data only using this approach outperforms the same object
detector trained solely on real data, which uses both geometric and color data.

In addition to detecting objects, a service robot needs the ability to interact with ob-
jects in their environment. One particular challenge arises with openable objects such as
cabinets, nightstands, and closets. While traditional openable objects often feature sim-
ple handles that can be grasped to open them, modern design increasingly incorporates
handleless doors and drawers. This presents a significant challenge for service robots,
as most existing methods for the robotic manipulation of articulated objects focus on
objects with handles, and there is limited research on handling objects without them.

This thesis addresses the first crucial step in managing such objects: the classification
of the opening mechanism. Three categories are proposed for this classification: objects
with regular handles, objects that can be grasped by their surface to be opened, and ob-
jects with a push latch mechanism. Given that the latter two categories often appear
visually similar and can be difficult even for humans to distinguish based solely on ap-
pearance, this work explores methods that utilize both images of the objects and images
of a human demonstrating the approach to opening them.

Experiments conducted using a new dataset indicate that combining images without
demonstration and images with demonstration significantly improves the performance

IV

of CNN classifiers compared to using either type of image alone. Additionally, experi-
ments conducted with a modern object detector show that such classifiers can be applied
to automatically detected regions providing evidence that the proposed methods could
be used in real-world environments as part of fully autonomous systems.

V

Sažetak

Inteligentni servisni roboti sve se češće koriste u kućanstvima, bolnicama, skladištima
i drugim okruženjima. Ovi roboti sposobni su obavljati složene zadatke, uvelike se
oslanjajući na svoje vizualne sustave za prepoznavanje objekata. Budući da djeluju
u trodimenzionalnom prostoru, za prepoznavanje objekata koriste se podaci dobiveni
3D senzorima jer nude detaljan prikaz okoline u obliku oblaka točaka. Oblaci točaka
omogućuju precizno izdvajanje informacija o položaju, veličini i geometriji objekata un-
utar 3D okoline. Primjeri takvih senzora uključuju LiDAR-e i RGB-D kamere. Mod-
erne metode prepoznavanja 3D objekata uglavnom se temelje na dubokom učenju i,
kao takve, zahtijevaju velike količine označenih podataka za učinkovito funkcioniranje.
Med̄utim, pribavljanje takvih podataka može biti skupo i dugotrajno. Generiranje sin-
tetičkih podataka predstavlja obećavajuću alternativu, ali trenutni detektori objekata
učeni na sintetičkim podacima i dalje pokazuju slabije rezultate u usporedbi s onima koji
su učeni na stvarnim podacima. To sugerira da trenutne metode generiranja sintetičkih
podataka još uvijek ne postižu dovoljnu razinu realizma.

Cilj ovog rada je doprinijeti rješavanju ovog problema istraživanjem područja gener-
iranja realističnih sintetičkih 3D podataka unutarnjih prostora. Glavni cilj je analizirati
utjecaj pet ključnih faktora realizma: prisutnosti pozadinskih objekata, šuma kamere,
pozicioniranja objekata, konteksta scene i veličine objekata. Kako bi se istražili ovi fak-
tori, razvijena je modularna metoda za generiranje realističnih sintetičkih oblaka točaka
iz jedne točke promatranja. Ova metoda omogućava generiranje velikih, prilagodljivih
skupova podataka s različitim razinama realizma, posebno kontrolirajući svaki od nave-
denih faktora.

Ti skupovi podataka se koriste za treniranje modernih detektora objekata, a utje-
caj svakog faktora realizma ocjenjuje se na temelju uspješnosti prepoznavanja. Nadalje,
eksperimenti pokazuju da se performanse detektora objekata mogu poboljšati treniran-
jem istog na sintetičkom skupu podataka i dodatnom treniranju na stvarnim podacima.
Zanimljivo je da model treniran samo na geometrijskim podacima nadmašuje isti detek-
tor objekata obučen isključivo na stvarnim podacima, koji koristi i geometrijske podatke
i podatke o boji.

Pored sposobnosti detekcije objekata, servisni robot treba imati i sposobnost interak-
cije s objektima u svom okruženju. Poseban izazov javlja se kod objekata koji se mogu
otvoriti kao što su ormarići, noćni ormarići i ormari. Dok tradicionalni objekti koji se
mogu otvoriti često imaju jednostavne ručke koje se mogu uhvatiti za otvaranje, mod-
erni dizajn sve više uključuje vrata i ladice bez ručki. To predstavlja značajan izazov za
servisne robote jer se većina postojećih metoda robotskog otvaranja vrata fokusira na
objekte s ručkama, a postoji malo istraživanja o interakciji s objektima bez ručki.

Ovaj rad bavi se prvim ključnim korakom u interakciji s takvim objektima: klasi-
fikacijom mehanizma otvaranja. Predložene su tri kategorije za ovu klasifikaciju: objekti
s ručkama, objekti koji se mogu uhvatiti za površinu kako bi se otvorili te objekti s meh-
anizmom za otvaranje na dodir. S obzirom na to da objekti posljednje dvije kategorije
često izgledaju slično, pa čak i ljudima može biti teško razlikovati ih samo na temelju
izgleda, ovaj rad istražuje metode koje koriste i slike objekata i slike na kojima ljudi
demonstriraju pristup otvaranju.

VI

Pokusi provedeni s novim skupom podataka pokazuju da kombiniranje slika bez
demonstracije i slika s demonstracijom značajno poboljšava performanse CNN klasi-
fikatora u usporedbi s korištenjem samo jedne vrste slike. Dodatno, pokusi provedeni
s modernim detektorom objekata pokazuju da se takvi klasifikatori mogu primijeniti na
automatski detektirane regije, što sugerira da se predložene metode mogu koristiti u
stvarnim okruženjima kao dio potpuno autonomnih sustava.

VII

Contents

Acknowledgements II

Abstract III

Sažetak V

List of Figures IX

List of Tables XIII

1 Introduction 1
1.1 Contributions . 2
1.2 Organization of the thesis . 2

2 Object detection 3
2.1 2D Object Detection . 4

2.1.1 Traditional Methods . 4
2.1.2 Deep Learning-Based Object Detection Methods 4
2.1.3 Detection Transformers (DETR) . 8

2.2 3D object detection . 8
2.2.1 Data Collection Methods . 8
2.2.2 Types of 3D Data . 9
2.2.3 Feature Extractors for 3D Data . 11
2.2.4 PointNet-Based Methods . 12
2.2.5 3D Convolution-Based Methods . 13
2.2.6 Other Methods . 14

2.3 Evaluating 3D Object Detectors . 14
2.3.1 Intersection over Union (IoU) . 15
2.3.2 Mean Average Precision (mAP) . 15
2.3.3 Additional Evaluation Metrics . 18
2.3.4 Benchmark Datasets . 20

3 Generating synthetic 3D indoor scenes 21
3.1 Existing methods for synthetic 3D data generation 22
3.2 Method . 23

3.2.1 Scene modeling . 24
3.2.2 Rendering a scene . 33

3.3 Experiments . 36
3.3.1 Datasets . 36
3.3.2 Ablation studies . 38
3.3.3 Pretraining with synthetic data . 41

3.4 Conclusion . 44

VIII

4 Furniture opening classification 45
4.1 Dataset . 46

4.1.1 Statistics . 48
4.1.2 Partitions . 50

4.2 Method . 51
4.2.1 Squarification . 53
4.2.2 Classification . 53

4.3 Experiments . 56
4.3.1 Preprocessing . 56
4.3.2 Experimental setup . 57
4.3.3 Validation . 58
4.3.4 Testing . 60
4.3.5 Testing variance . 64
4.3.6 Classifying detected regions . 65

4.4 Conclusion . 68

5 Conclusion 69

6 Curriculum Vitae 71

Bibliography 72

IX

List of Figures

2.1 An example of object detection in an autonomous driving scenario (Lin
et al., 2014). The vehicle detects and localizes a pedestrian, a dog, and
several cars. 3

2.2 The pipeline of the general approach to object detection. More traditional
approach is shown in magenta where the region proposal precedes feature
extraction, and shown in blue is the more modern approach where feature
extraction is done first. Some approaches don’t have separate region pro-
posal generators, instead they predict bounding boxes and classes at once. 5

2.3 Faster R-CNN architecture (Ren et al., 2016). 6
2.4 An illustration of the detection process of YOLO v1 (Redmon et al., 2016). 7
2.5 An example (Geiger, Lenz, and Urtasun, 2012) of a point cloud of an out-

door scene captured with a LiDAR. 9
2.6 An example (Song, Lichtenberg, and Xiao, 2015) of a 3D indoor scene: A)

RGB image, B) Depth image, C) Coloured point cloud, D) Coloured point
cloud with 3D bounding boxes of objects. White pixels in the depth image
are missing values. 10

2.7 An example (Song, Lichtenberg, and Xiao, 2015) of a point cloud (left)
with the corresponding voxel grid (right). 10

2.8 Illustration of the PointNet++ architecture Qi et al., 2017b. Pictured here
are points in 2D space for better visualization. Also shown on the image
are applications of segmentation and classification based on the extracted
features (shown in gray rectangle). 12

2.9 An illustration of the detection process used in Frustum PointNets (Qi et
al., 2018). A 2D region is proposed based on the RGB image which is then
transformed into a frustum proposal. This proposal is then processed to
obtain the final prediction. 13

2.10 Voting mechanism used in VoteNet (Qi et al., 2019) and other methods
(Zhang et al., 2020; Cheng et al., 2021). Each point votes for a center, or a
different geometric primitive. These votes can then be grouped and used
as proposals for final predictions. 13

2.11 Visual representation of Intersection over Union (IoU) for two 2D bound-
ing boxes, A and B. In 3D, these bounding boxes represent 3D volumes
and, accordingly, the intersection and the union are also volumes. 16

2.12 Precision-recall curve for the example given in Table 2.1. 17
2.13 Approximation (orange) of the precision-recall curve (blue). AP is the sum

of the areas of the green rectangles under the monotonic approximation of
the precision-recall curve. 19

3.1 A few examples from the SceneNet RGB-D synthetic dataset McCormac
et al., 2017. 22

X

3.2 Illustration of the modular synthetic data generation method. The five
modules are shown in dark cyan. The background objects module and
the camera noise module can simply be turned on or off, while the other
three have two modes of operation, ground truth based mode (GT) and
a random mode (RND). To generate data, a scene is first modeled by se-
lecting, scaling and positioning objects. Walls are then moved backwards
in order to avoid occlusion of objects in the scene. The final model of the
scene is comprised of 3D mesh models, where each object is assigned its
bounding box. After this, the scene is rendered with an ideal camera, and,
finally, the noise is (optionally) added to the image. The point cloud is
then generated from the final depth image. 24

3.3 An example of the reference frames: scene reference frame (Ss), camera
reference frame (Sc), and object reference frame (So). 26

3.4 A schematic representation of calculation of the set A. β is the tilt of the
camera, determined by the extrinsic parameters. s, the distance from the
camera reference frame to the object plane, is shown in magenta. 27

3.5 An illustration of the Minkowski difference of the convex hulls of Oo
i and

Oo
0. The bottom middle image shows an illustration of the Minkowski

difference of hi and h0, i.e., it shows that the vertices of the sum can be
obtained by placing the center of −h0 on vertices of hi. The bottom right
image shows that placing the convex hull h0 on the edge of the Minkowski
difference doesn’t lead to a collision between hi and h0. 28

3.6 An example of positioning objects and A f ree. Several steps of calculating
A f ree are shown. Each pair of images, except the bottom right, represents
one step. Yellow region represents A f ree, while the purple region repre-
sents the pixels in the image which do not satisfy the three conditions.
Red cross is the selected center of Oo

0 which will be added to the scene, it
has to be in A f ree. Blue crosses represent the centers of orthogonal pro-
jections of objects previously placed in the scene. The right image in each
pair shows the arrangement of the objects currently on the scene. The last
pair shows the final arrangement, and the depth image generated from
that arrangement. 30

3.7 An example of the wall detection process. 31
3.8 Top-down view of a simple scene consisting of one wall with assigned

reference frame and one object represented by its bounding box. The or-
thogonal projection of the object bounding box onto the front surface of
the wall is indicated by a thick red line. 32

3.9 Examples of depth images from the SUN RGB-D dataset (Song, Lichten-
berg, and Xiao, 2015) taken with different cameras and synthetic noisy
images created based on these images using different configurations of
the camera noise module. 34

3.10 The red scene points are occluded by the green scene points from the pro-
jector viewpoint. 36

3.11 Visual representation of the co-occurrences in the SUN RGB-D dataset.
The values shown are in percentages relative to the number of scenes in
which objects of that class occur, i.e., number of co-occurrences for each
pair is divided by the number of scenes containing an object of the class
in the row. 37

XI

3.12 An example of a scene from the SUN RGB-D dataset (Song, Lichtenberg,
and Xiao, 2015) (Original scene) and the scenes generated from it using the
baseline method and the methods obtained by the considered ablations.
The depth image and its corresponding point cloud with bounding boxes
of foreground objects are shown for each scene. 41

3.13 A few examples of scenes from the SUN RGB-D dataset (Original scene)
and the scenes generated from them using the baseline method and the
methods obtained by the considered ablations. 42

4.1 Opening doors without handles . 45
4.2 Examples of various furniture found in the HoDoor dataset (Šimundić et

al., 2023). 47
4.3 Sample images with annotations of the door of the object. Top row: im-

ages without human demonstration; Bottom row: corresponding images
with human demonstration. The images in the bottom row were captured
from the same angle as the top row. 48

4.4 Sample images from the HoDoor dataset representing the three types of
handling considered. Left: Baseline images of the same object captured
from different angles. Right: images with a human demonstrating the
type of opening. 49

4.5 Distribution of object instances per category. 50
4.6 Distribution of images in the viewpoints per class and overall. 51
4.7 Distribution of objects of interest per piece of furniture per class. 52
4.8 Examples of squarification with different values of dimincrease. The ground

truth bounding boxes are shown in magenta, while the squarified bound-
ing boxes are shown in blue. 53

4.9 The 21 keypoints of a hand (Simon et al., 2017). 54
4.10 Two examples of results from hand pose detection using OpenPose. In (a)

a well predicted hand pose is shown, while in (b) a poorly predicted hand
pose is shown. When the predictions are good, the heatmaps 1-21 have
well defined keypoints. 55

4.11 Scheme of the HoDoorNet method of classification. The top feature ex-
tractor accepts a regular RGB image without human demonstration as in-
put, while the bottom feature extractor accepts the predicted heatmaps of
hand keypoints as input. These features are then concatenated and ran
through a fully connected layer to obtain the object class. 55

4.12 Scheme of the methodhierarchical . The top classifier extractor accepts an RGB
image without human demonstration as input and outputs whether the
RoI is of the handle class or not. If the region is determined not to be of
the handle class, the bottom classifier uses the predicted heatmaps of hand
keypoints as input and outputs whether the object is of push or pull class 56

4.13 Confusion matrix on the test dataset of the methodRGB ResNet34 model. . 62
4.14 Confusion matrix on the test dataset of the methodheatmaps ResNet34 model

with dimincrease = 1.0. 62
4.15 Confusion matrix on the test dataset of the HoDoorNet 18-34 @ none &

1.0 configuration. 63
4.16 Confusion matrix on the test dataset of the methodhierarchical 18-18 @ 0.0 &

1.0 configuration. 64

XII

4.17 An illustration of different classifier models performing perfectly on the
training set but sometimes not performing perfectly on the test set. The
illustration represents a binary classification task with only two input di-
mensions. 66

XIII

List of Tables

2.1 An example of predicted bounding boxes sorted by their confidence score
and the precision and recall for each confidence threshold. 17

3.1 Wall Detection Parameters . 32
3.2 Co-occurrences of the foreground classes in the SUN RGB-D dataset

(Song, Lichtenberg, and Xiao, 2015). Each row shows the number of
scenes an object of that particular class co-occurs with an object of an-
other class. An object co-occurs with an object of the same class if two or
more objects of that class are present in a scene. Additionally, the last two
columns show how many scenes contain an object of that class and the
total number of objects of that class in the dataset, respectively. 36

3.3 Camera intrinsic parameters . 38
3.4 Parameters used for data generation. Parameters denoted by a * are used

in all ablations, while parameters used in specific ablations are denoted
by the ablation numbers in superscript (B represents the baseline case). . . 38

3.5 Average computation time per scene and mean average precision scores
of each ablation with IoU thresholds 0.25 and 0.5 on the SUN RGB-D test
set. Ablations which use ground truth based modes of the size, context
and position modules are marked with +, while ablations which use the
random modes are marked with -. Ablations are marked with + or - for
the noise modules depending on whether they use them or not. The back-
ground module is marked with + if an ablation uses background objects
and with - if it does not. Baseline† uses the same model as Baseline but
the model is tested on scenes with background objects removed. 39

3.6 Per-class mAP@0.25 on the SUN RGB-D test set with FCAF3D
(Rukhovich, Vorontsova, and Konushin, 2021) with different amounts of
real and synthetic data. Values denoted by † are chosen to make the total
number of scenes used for training equal to the total number of scenes
present in the real training dataset. 43

3.7 Per-class mAP@0.50 on the SUN RGB-D test set with FCAF3D
(Rukhovich, Vorontsova, and Konushin, 2021) with different amounts of
real and synthetic data. Values denoted by † are chosen to make the total
number of scenes used for training equal to the total number of scenes
present in the real training dataset. 43

4.1 Distribution of object instances, viewpoints and images per class. 48
4.2 Distribution of viewpoints across classes. 49
4.3 Distribution of instances, viewpoints, and images with human demon-

stration for all partitions. The percentages shown in parentheses represent
are relative to the all column. For example, 50 (69.44%) in the 7th row and
2nd column means that 69.44% of all viewpoints of the push class are in
the train partition. 52

XIV

4.4 F1 score in percentage on the validation set with different combinations of
network architecture and dimincrease parameter using the methodRGB. . . . 58

4.5 F1 score in percentage on the validation set with different combinations of
network architecture and dimincrease parameter using methodheatmaps. . . . 58

4.6 F1 score in percentage on the validation set with different combinations of
network architectures and dimincrease parameter for the feature extractors
of HoDoorNet. The combinations are denoted as network @ dimincrease.
Different combinations for the feature extractor from images without hu-
man demonstration (RGB) are shown in rows while the feature extrac-
tors from images with human demonstration (heatmaps) are shown in
columns. 59

4.7 Accuracy in percentage on the validation set with different combinations
of network architecture and dimincrease parameter using only the image
without human demonstration. The images are categorizes into handle
and no-handle categories. 59

4.8 Accuracy in percentage on the validation set with different combinations
of network architecture and dimincrease parameter using only the image
with human demonstration. Only the images without handles are used
and they are categorizes into push and pull categories. 59

4.9 F1 score in percentage on the validation set with different combinations
of network architecture and dimincrease parameter for the binary classi-
fiers of the hierarchical model. The combinations are denoted as network
@ dimincrease. Different combinations for the binary classifier on images
without human demonstration (RGB) are shown in rows while the binary
classifiers on images with human demonstration (heatmaps) are shown in
columns. 60

4.10 Results of various methods on the test dataset. The table shows the
accuracy, average precision on the whole dataset followed by precision
for each class, average recall on the whole dataset and for each class
separately, and the F1 score. The configurations for HoDoorNet and
methodhierarchical are shown as follow <RGB feature extractor ResNet>-
<heatmaps feature extractor ResNet> @ <RGB dimincrease> & <heatmaps
dimincrease>. e.g. 18-34 @ none & 0.5 means that the feature extractor for
the image without human demonstration is ResNet18 and there is no RoI
preprocessing, while the feature extractor for the RoI with human demon-
stration is ResNet34 and RoI is squarified with dimincrease = 0.5. 60

4.11 F1 scores on the test set in percentage of multiple training experiments for
the HoDoorNets. The third and second to last columns show the average
F1 score and the standard deviation of F1 (F1 SD) in these experiments, re-
spectively. The last column (no pt) shows the F1 scores for the experiment
where the feature extractors were not pretrained. 64

4.12 F1 scores on the test set in percentage of multiple training experiments for
the methodhierarchical . The second to last column and the last column show
the average F1 score and the standard deviation of F1 (F1 SD) in these
experiments, respectively. 65

4.13 Results of object detection with YOLOv7 on the DoorDetect validation set. 66
4.14 Results of the networks presented in Section 4.3.4 on the bounding boxes

detected by YOLO v7 trained on the DoorDetect dataset. Notation is the
same as in Table 4.10. 67

1

1 Introduction

Intelligent service robots are no longer a thing of the distant future, service robots are
already being used for various purposes. They are being utilized both in private and
public sectors. Service robots are helping out in household environments and improving
people’s lives by assisting with various tasks. They are also being used in professional
settings like hospitals and warehouses where they help out by transporting goods, en-
tertaining patients, cleaning and so on. In most of these tasks, object detection is a very
important component.

Object detection entails localization and classification of objects in a scene. Since
service robots often need to traverse and interact with objects in 3D space, it is important
that they work with 3D data such as point clouds and detect objects in that 3D space.
There’s a plethora of research about 3D object detection, with both indoor and outdoor
environments. State-of-the-art methods for 3D object detection are based on supervised
deep learning and as such require large amounts of annotated 3D data for training.

Such data is usually acquired and annotated manually so it can be a time-consuming
and very expensive process. One way to combat this issue is to generate synthetic data
for the purpose of training object detectors. Annotated synthetic data can be fast and
cheap to generate. Not any synthetic data can be used for training, it is often impor-
tant that the data is realistic and diverse. There are many factors of realism that can
be considered when generating synthetic data such as realistic sizes and camera noise.
While there are various proposed methods for synthetic 3D data generation, there is not
much research done on the topic of the importance of various factors of realism in syn-
thetic data generation and their effect on the performance of object detectors trained on
synthetic data.

A modular method for generating synthetic 3D data of indoor spaces is proposed
in this thesis. Its modularity allows for control of realism for the following five factors:
presence of background objects, camera noise, positioning of objects, context of scenes,
and object sizes. Using this method, different datasets are created which can then be
used to train object detectors and perform an ablation study to examine the importance
of those factors of realism. Furthermore, the method is used for generating a synthetic
dataset which is used for pretraining an object detector to improve its performance when
finetuned on real data.

Some of the objects in indoor spaces can be interacted with. These include small
objects which can be moved, objects with horizontal surfaces on which other objects can
be placed on, and objects with enclosed volumes such as kitchen cabinets, closets and
nightstands which have doors and drawers that can be opened. In the case of these
objects which have moving parts that can be opened, it is not enough to just localize the
objects, it is also important to detect the way in which these can be opened. This includes
determining if the object needs to be pulled out like a drawer or opened like a door, the
parameters of this motion, and how to grasp the object to open it.

Traditionally, doors and drawers simply had handles which needed to be grasped
when opening. However, openable furniture without handles has gained popularity in
households. These include doors and drawers which have the so-called push latch mech-
anism or those that lack a handle and need to be grabbed by the surface of the object.

Chapter 1. Introduction 2

Because of this, it is important to first determine the type of opening before anything can
be done with such objects. However, there is limited research on this subject and that is
precisely why it is one of the focuses of this thesis.

Because these handleless objects can look similar to one another, it is sometimes hard
to classify them even for a human. They are also very often just design choices and not
necessarily the best choice based on objective parameters. Consequently, it can be helpful
to determine the opening type with the help of human demonstration. The methods
presented in this thesis classify the opening types of openable furniture based on human
demonstration. The proposed methods are tested on a new dataset to determine the
importance of using human demonstration for this task.

1.1 Contributions

In this thesis, a modular method for synthetic 3D data generation is proposed and
studied. Additionally, a method for classification of openable objects based on human
demonstration is proposed. The following original contributions to the scientific litera-
ture are proposed:

• Modular method for generating synthetic 3D indoor scenes based on real 3D
scenes and a database of 3D furniture models,

• Analysis of the effects of scene realism factors and camera model in synthetic
3D scene generation on the performance of object detectors in indoor spaces,

• Method for classifying furniture opening methods based on an image and hu-
man demonstration of furniture opening type.

1.2 Organization of the thesis

This thesis is organized in six chapters. The first one is this chapter, Introduction. In
Chapter 2, a brief overview of object detection is given. 2D object detection is described
and various methods are presented. After this, the field of 3D object detection is covered.
3D data collection methods are described, followed up by common feature extractors for
3D data and object detectors which use these feature extractors. Finally, an overview of
the evaluation of 3D object detectors is given. In Chapter 3, the aforementioned mod-
ular method for synthetic 3D data generation is covered. It briefly touches on existing
methods for synthetic 3D data generation, followed up by in-depth description of the
method and all its modules. This is followed up by experiments using datasets gener-
ated by the method and a discussion about the results. Chapter 4 focuses on furniture
opening methods. A brief introduction to the subject is given and it’s followed up by an
in-depth analysis of the dataset created for this research. Various methods for classifica-
tion are then proposed and described. Finally, the proposed methods are tested using the
dataset and the results are discussed. Key findings of this thesis and potential directions
of future research are described in the Conclusion.

3

2 Object detection

Object detection is one of the most important tasks in the field of computer vision. It
entails the identification and localization of objects in images and videos. It’s a funda-
mental task for various applications, including autonomous driving, medical imaging,
intelligent service robots, augmented reality, and many others. Object detection can be
divided into two main subtasks:

• Localization: Localization entails determining the precise location of an object
within an image or some other medium. This is typically represented by a 2D
or 3D bounding box.

• Classification: Classification is the task of categorizing an object into a discrete,
finite set of categories.

To illustrate the importance and functionality of object detection, consider the ex-
ample of an autonomous vehicle navigating through a busy urban environment. The
vehicle must detect various objects such as pedestrians, other vehicles, traffic signs, and
obstacles to make informed driving decisions. This real-time object detection capabil-
ity enables the vehicle to avoid collisions, adhere to traffic rules, and ensure passenger
safety.

Figure 2.1: An example of object detection in an autonomous driving sce-
nario (Lin et al., 2014). The vehicle detects and localizes a pedestrian, a

dog, and several cars.

The evolution of object detection methods has been characterized by significant ad-
vances, moving from traditional approaches relying on hand-crafted features to modern
techniques using deep learning. This progression has led to substantial improvements

Chapter 2. Object detection 4

in detection accuracy and robustness, enabling more complex and dynamic real-world
applications.

This chapter explores the development of object detection methods, starting with
2D object detection techniques and extending to the realm of 3D object detection. Vari-
ous methodologies are described, highlighting key milestones and innovations that have
shaped the field.

2.1 2D Object Detection

2D object detection aims to identify and locate objects within a two-dimensional image.
The primary goal is to predict bounding boxes around objects and classify them into pre-
defined categories. The bounding box is uniquely defined by four values. It is most often
described by the coordinates of its center or top-left corner, and by its width and height.
Over the years, various approaches have been proposed for 2D object detection, which
can be broadly categorized into traditional methods and deep learning-based methods.
Today, an extension of this task is also very common: instance segmentation. In addition
to the tasks of localization and classification, instance segmentation includes per-pixel
annotation of each detected object.

2.1.1 Traditional Methods

Traditional methods for 2D object detection often rely on handcrafted features and clas-
sical machine learning techniques. Popular approaches include the use of Haar-like fea-
tures (Viola and Jones, 2001), Histogram of Oriented Gradients (Dalal and Triggs, 2005),
and Deformable Part Models (Felzenszwalb et al., 2009). These methods typically in-
volve:

• Feature Extraction: Extracting meaningful features from the image that can repre-
sent the objects of interest.

• Classification: Using machine learning classifiers such as Support Vector Machines
(SVM) to classify regions of the image as containing objects or not.

• Post-Processing: Refining the detection results through non-maximum suppres-
sion (NMS) to remove redundant bounding boxes.

Furthermore, traditional object detectors, while not explicitly generating region pro-
posals in the way modern methods do, utilize mechanisms to focus on promising regions
within the image. The Viola-Jones detector, for example, employs a sliding window ap-
proach that scans the image at multiple scales and positions, using a cascade of classifiers
to quickly discard non-object regions.

2.1.2 Deep Learning-Based Object Detection Methods

As deep learning has developed, object detection has seen significant improvements in
performance. Convolutional neural networks (CNNs) have become the foundation of
modern 2D object detection methods. However, the general strategy remains similar to
traditional methods, involving feature extraction, region proposals, and classification, as
shown in Figure 2.2.

The breakthrough of deep CNNs, starting with LeNet-5 (LeCun et al., 1998) and later
AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), marked a significant step towards
the application of deep learning in object detection. These networks demonstrated the

Chapter 2. Object detection 5

Object detection pipeline

Region proposal
generatorFeature extraction

Classification

Postprocessing

Figure 2.2: The pipeline of the general approach to object detection. More
traditional approach is shown in magenta where the region proposal pre-
cedes feature extraction, and shown in blue is the more modern approach
where feature extraction is done first. Some approaches don’t have sepa-
rate region proposal generators, instead they predict bounding boxes and

classes at once.

power of deep learning for feature extraction and classification, setting the stage for
modern object detection frameworks. After AlexNet, various architectures for feature ex-
traction from RGB images have been proposed: VGG (Simonyan and Zisserman, 2014),
ResNet (He et al., 2016), EfficientNet (Koonce and Koonce, 2021), etc.

R-CNN and its Derivatives

Region-based Convolutional Neural Networks (R-CNN) (Girshick et al., 2014) was a
novel approach that integrated deep learning with object detection. It involved a multi-
stage pipeline that included region proposal generation, feature extraction using CNNs,
and classification with Support Vector Machines (SVMs).

• Region Proposal: Selective search generates around 2000 region proposals from
the input image.

• Feature Extraction: Each region proposal is resized to a fixed size and passed
through a CNN (e.g., AlexNet) to extract features.

• Classification and Bounding Box Regression: Features are fed into SVM classifiers
for classification and a linear regressor for bounding box refinement.

While it was a big step in deep learning-based object detection, R-CNN is very com-
putationally expensive and has a slow detection time. Various improvements to this
network were later proposed, which boosted both its speed and detection performance.

Chapter 2. Object detection 6

Fast R-CNN (Girshick, 2015) improved upon R-CNN by improving the detection
pipeline, making it faster and more efficient. Instead of running the CNN for each re-
gion proposal, Fast R-CNN processes the entire image with a CNN to produce a fea-
ture map. Region proposals are then projected onto this feature map, and RoI pooling
extracts fixed-size feature vectors from each region. These features are fed into fully
connected layers that predict class scores and bounding box coordinates. This approach
significantly reduces computation by sharing CNN features across proposals.

Faster R-CNN (Ren et al., 2016) introduced the Region Proposal Network (RPN) to
generate region proposals, combining proposal generation and detection into a single
network. The entire image is passed through a CNN to produce a feature map, and
the RPN generates region proposals by predicting objectness scores and bounding box
parameters. These proposals are used to extract features using RoI pooling, followed by
classification and bounding box regression. The whole architecture is shown in Figure
2.3. The addition of the RPN makes the framework more efficient and allows for end-to-
end training, leading to better performance.

Figure 2.3: Faster R-CNN architecture (Ren et al., 2016).

You Only Look Once (YOLO)

Unlike traditional methods that use a pipeline of separate components for region pro-
posal and classification, YOLO (Redmon et al., 2016) predicts bounding boxes and class
probabilities directly from full images in one evaluation, allowing for real-time process-
ing.

YOLO v1 (Redmon et al., 2016) divides the input image into an SxS grid. A grid cell
is responsible for detecting an object if that object’s center falls into that grid cell. Each
grid cell predicts a fixed number, two in the original proposal, of bounding boxes and
confidence scores for those boxes. Additionally, class probabilities are predicted for each
grid cell. These are then used to obtain the final predictions. This design makes YOLO
very fast and suitable for real-time applications. The network, however, struggles with
smaller objects and complex scenes. An illustration of the detection process is shown in
Figure 2.4.

YOLO v2 (Redmon and Farhadi, 2016), also known as YOLO9000, introduces batch
normalization, a high-resolution classifier, and anchor boxes, improving accuracy and

Chapter 2. Object detection 7

Figure 2.4: An illustration of the detection process of YOLO v1 (Redmon
et al., 2016).

speed over YOLO v1. YOLO v3 (Redmon and Farhadi, 2018) uses a deeper network,
Darknet-53 with residual connections, and predicts bounding boxes at three different
scales, which improves small object detection and overall performance.

YOLO v4 (Bochkovskiy, Wang, and Liao, 2020) further enhances the architecture
by integrating several techniques to boost both speed and accuracy. It uses the CSP-
Darknet53 backbone with Cross-Stage Partial connections (Wang et al., 2020) to reduce
computation while maintaining accuracy. The Path Aggregation Network (PANet) (Liu
et al., 2018) is utilized for better feature fusion. Improved anchor generation and predic-
tion across multiple scales, along with training enhancements like Bag of Freebies and
Bag of Specials, are incorporated to enhance training without increasing inference cost.
YOLO v4 maintains real-time performance while improving detection accuracy.

YOLOv7 (Wang, Bochkovskiy, and Liao, 2022) is based on the YOLOv4 algorithm
and improves accuracy and inference times by introducing several structural and opti-
mization modifications. One of which is the Extended Efficient Layer Aggregation Net-
work (E-ELAN) (Wang, Liao, and Yeh, 2022) backbone, which is an architecture in the
backbone of the framework that allows the framework to continuously learn from the
data while not disturbing the existing flow of gradients during training. Additionally,
the compound scaling method was proposed, which subsequently scales the width of
the block with the same amount of change to the transition layers. This results in pre-
serving the properties of the initial model design and the optimal structure. YOLO v7
offers improved detection accuracy while maintaining high speed, though it requires
more computational resources for training.

Single Shot MultiBox Detector (SSD)

SSD (Liu et al., 2016) is based on a feed-forward CNN but with three additional key
features. The first of which is multi-scale feature maps. As the input image is passed
through a CNN, feature maps at different layers are produced. Each of these feature
maps is responsible for detecting objects at different scales. Additionally, it uses convo-
lutional predictors for detection instead of using fully connected layers for this purpose.
Each aforementioned feature layer produces a set of detections using only convolutional

Chapter 2. Object detection 8

filters. Finally, the method uses pre-defined default boxes, or anchors, with different
scales and aspect ratios for each cell in the feature maps. For each of these boxes in each
of the cells, an offset of the bounding box and class scores are predicted. At the end NMS
is applied as usual to obtain the final predictions. SSD outperformed the state-of-the-art
methods at the time, both in accuracy of detection and speed.

2.1.3 Detection Transformers (DETR)

Detection Transformers (DETR) (Carion et al., 2020) represent a novel approach to object
detection by leveraging transformers (Vaswani et al., 2017) for both object detection and
bounding box prediction. Unlike traditional convolutional approaches, DETR uses an
encoder-decoder architecture based on transformers. The input image is processed by a
CNN backbone to produce a feature map, which is then flattened and passed through
a transformer encoder. The encoder captures the global context of the image. In the
decoder, a fixed set of learned object queries is used to decode the encoded features.
Each query attends to the entire feature map and predicts an object’s bounding box and
class.

One of the key advantages of DETR is its ability to simplify the detection pipeline by
removing the need for region proposal networks or non-maximum suppression. DETR
is trained end-to-end, and the loss function combines classification and bounding box
regression, along with a bipartite matching loss to ensure one-to-one matching between
predicted and ground truth boxes. This end-to-end approach, combined with the power
of transformers to capture long-range dependencies and global context, allows DETR to
achieve competitive performance with traditional methods. However, it requires large
amounts of data and computational resources for training and initially exhibits slower
convergence compared to CNN-based methods.

2.2 3D object detection

Similar to 2D object detection, the task of 3D object detection is classification and local-
ization of objects, but instead of detecting bounding boxes on images, bounding boxes
in three-dimensional space are predicted. 3D object detection is crucial for applications
such as autonomous driving, robotics, and augmented reality, where understanding the
spatial relationships is essential. Various approaches have been developed to handle
3D data, often leveraging point clouds, RGB-D images, and multi-view images. Under-
standing how 3D data is collected and the different types of data available is essential
for developing effective 3D object detection methods.

2.2.1 Data Collection Methods

3D data can be collected using a variety of sensors and techniques. Two of the most
common methods are LiDAR and RGB-D cameras.

LiDAR (Light Detection and Ranging): LiDAR sensors emit laser pulses and mea-
sure the time it takes for the pulses to return after hitting an object. This time-of-flight
measurement allows the sensor to calculate the distance to the object, creating a 3D point
cloud that represents the environment. LiDAR is widely used in autonomous vehicles
due to its high accuracy and ability to capture detailed spatial information over large
distances.

RGB-D Cameras: RGB-D cameras, such as the Microsoft Kinect, capture both color
(RGB) images and depth (D) information. Depth is typically measured using structured
light or time-of-flight techniques. RGB-D cameras are popular in robotics and indoor

Chapter 2. Object detection 9

mapping applications because they provide rich color information along with depth
data, enabling a comprehensive understanding of the scene.

2.2.2 Types of 3D Data

3D data can be represented in various ways, some of which are easily converted in one
another.

Point Clouds: Point clouds are sets of data points defined in a three-dimensional
coordinate system. Each point represents a sample on the surface of an object or within
the environment. Point clouds are commonly generated by LiDAR sensors or with RGB-
D cameras, and are widely used in 3D object detection and mapping due to their detailed
spatial representation. An example of a point cloud captured with a LiDAR is shown in
Figure 2.5.

Figure 2.5: An example (Geiger, Lenz, and Urtasun, 2012) of a point cloud
of an outdoor scene captured with a LiDAR.

Depth Images: Depth images, or depth maps, are 2D images where each pixel value
represents the distance from the sensor to the object in the scene in the direction of the
camera optical axis. Depth images can be generated by RGB-D cameras and are useful
for applications requiring both visual and spatial information. Due to some limitations
and challenges of depth sensing technologies, including reflective and absorptive sur-
faces, geometric occlusions and other, depth images can have some missing values or
gaps. Given the camera parameters, depth images can easily be converted into point
clouds, or coloured point clouds given the corresponding RGB image. An examples of
an RGB-D image, a corresponding coloured point cloud and the point cloud with 3D
bounding boxes of objects is shown in Figure 2.6.

Voxel Grids: Voxel grids are a structured representation of three-dimensional space,
dividing it into a regular grid of small, cube-shaped volumes called voxels (volumetric
pixels). Each voxel in this grid represents a discrete unit of space, much like a pixel rep-
resents a unit of space in a 2D image. Voxel grids provide a way to discretize 3D space,
allowing for efficient processing and analysis of volumetric data. They are commonly
used in 3D object detection, medical imaging and 3D reconstruction. By converting point
cloud data into a structured grid format, voxel grids enable the use of 3D convolutional
neural networks (CNNs) to extract spatial features directly from volumetric data. An
example of a point cloud with its corresponding voxel grid is shown in Figure 2.7.

Chapter 2. Object detection 10

Figure 2.6: An example (Song, Lichtenberg, and Xiao, 2015) of a 3D in-
door scene: A) RGB image, B) Depth image, C) Coloured point cloud, D)
Coloured point cloud with 3D bounding boxes of objects. White pixels in

the depth image are missing values.

Figure 2.7: An example (Song, Lichtenberg, and Xiao, 2015) of a point
cloud (left) with the corresponding voxel grid (right).

Multi-View Point Clouds: Multi-view point clouds are created by combining point
clouds or depth images from multiple viewpoints. This approach enhances the com-
pleteness and accuracy of the 3D representation by capturing the scene from different
angles. Multi-view point clouds are often used in applications like 3D reconstruction
and augmented reality.

3D Scans of Space: 3D scans involve capturing detailed spatial information of an
environment or object using techniques like laser scanning or photogrammetry. These
scans can produce highly accurate 3D models used in various fields, including architec-
ture, cultural heritage preservation, and industrial inspection.

Different types of 3D data offer various advantages, depending on the application.
Point clouds are ideal for detailed spatial analysis and object detection in environments

Chapter 2. Object detection 11

with significant depth variations. Depth images are beneficial for integrating depth in-
formation with traditional 2D image processing techniques. While voxel-grids usually
discard some information when generated from point clouds, they are structured data
and allow for use of 3D CNNs. Multi-view point clouds and 3D scans provide com-
prehensive and accurate representations of complex scenes, making them valuable for
reconstruction and detailed analysis.

2.2.3 Feature Extractors for 3D Data

Point clouds, a common form of 3D data, are unstructured and irregular, making them
more challenging to process compared to structured 2D images. Efficient feature extrac-
tion from point clouds is essential for accurate 3D object detection. Several methods
have been developed to address these challenges, including 3D convolutional networks,
PointNet and its variants, and transformers.

3D Convolutional Networks

3D convolutional networks extend the concept of 2D convolutions to three dimensions,
allowing the network to learn spatial features directly from volumetric data. This ap-
proach involves voxelizing the point cloud, i.e., dividing the space into a regular grid of
voxels, and applying 3D convolutions. Voxel-based methods have shown good perfor-
mances, but have high memory consumption and can have artifacts due to the voxeliza-
tion operation.

PointNet

PointNet Qi et al., 2017a was a breakthrough in processing point clouds directly with-
out voxelization. There are several issues when working with point clouds directly.
The method must be invariant to point cloud permutations, i.e., the order of the points
mustn’t impact the results of the method. The method also needs to be invariant to rota-
tions and translations of the point cloud, and it must be sensitive to local structure and
geometry; it cannot look at each point in isolation.

PointNet first transforms the input point cloud in order to make it invariant to ge-
ometric transformations. An affine transformation is predicted by a T-Net and directly
applied to the coordinates of the input points. It is followed up by a multilayer percep-
tron (MLP), another T-Net and transformation, and a second MLP. After this, a feature
vector is assigned to each point in the point cloud which represents which area of the
observed volume the point belongs to. Max-pooling is then applied on these feature
vectors and the resulting global feature vector encodes which areas of the observed vol-
ume are filled with points. Such a vector is invariant to permutations of the input point
cloud. This approach is efficient and deals with the other previously mentioned issues.
However, PointNet primarily captures global features and may not effectively capture
local structures.

PointNet++

PointNet++ Qi et al., 2017b extends PointNet by introducing a hierarchical structure
that captures both local and global features. It applies PointNet recursively on nested
partitions of the input point set, enabling the network to learn local features at multiple
scales. This hierarchical approach improves the ability to capture fine-grained geometric
details, enhancing the performance for tasks requiring precise localization.

Chapter 2. Object detection 12

Figure 2.8: Illustration of the PointNet++ architecture Qi et al., 2017b. Pic-
tured here are points in 2D space for better visualization. Also shown on
the image are applications of segmentation and classification based on the

extracted features (shown in gray rectangle).

Transformers

Transformers (Vaswani et al., 2017) have recently been adapted for 3D point cloud
processing. They leverage self-attention mechanisms to capture relationships between
points, allowing the network to focus on important regions of the point cloud. Trans-
formers can handle irregular and unordered point sets efficiently and have shown
promising results in various 3D tasks. The flexibility and effectiveness of transformers
make them a powerful tool for 3D feature extraction.

2.2.4 PointNet-Based Methods

PointNet and its variants have been pivotal in advancing 3D object detection by directly
processing point clouds without the need for voxelization. Frustum PointNets (Qi et al.,
2018) leverage 2D object detection to propose 2D regions and classify them. These 2D re-
gions are then transformed into frustum proposals. A frustum is a portion of a pyramid
that is left after the upper part is cut off. Each frustum proposal is processed by a Point-
Net (Qi et al., 2017a) to obtain binary segmentation of the point cloud in the frustum.
The segmented point cloud is further processed by another PointNet to obtain the final
bounding box. An illustration of the detection process is shown in Figure 2.9. VoteNet
(Qi et al., 2019) introduces a novel approach where the input point cloud is processed
by PointNet++ (Qi et al., 2017b), which outputs a subsampled subset of points with fea-
tures. These so-called seed points are then used to generate votes, which are later clus-
tered and processed to obtain the final predictions (illustrated in Figure 2.10). VoteNet
outperformed the state-of-the-art methods with only geometric data, i.e., without using
RGB data. H3DNet (Zhang et al., 2020) enhances the VoteNet method by predicting
three geometric primitives instead of just one. In addition to bounding box centers, it
also predicts bounding box face centers and bounding box edge centers. All of these are
then used to generate proposals. By combining different geometric cues, such as planes
and lines, H3DNet improves the detection of objects in complex scenes with varying
structures. Back-tracing Representative Points Network (BRNet) (Cheng et al., 2021)
upgrades the VoteNet architecture in a different fashion. After the voted clusters have
been generated, representative points are back-traced, which imply the possible area of
the object. Features of nearby seed points are then aggregated to these representative
points and fused with clustered vote features. These can then be used to produce refined
representative points and classes for final predictions. This method reduces the negative

Chapter 2. Object detection 13

effects that partial coverage of the objects and outliers from the cluttered background
can have on the performance of a detector.

Figure 2.9: An illustration of the detection process used in Frustum Point-
Nets (Qi et al., 2018). A 2D region is proposed based on the RGB image
which is then transformed into a frustum proposal. This proposal is then

processed to obtain the final prediction.

Figure 2.10: Voting mechanism used in VoteNet (Qi et al., 2019) and other
methods (Zhang et al., 2020; Cheng et al., 2021). Each point votes for a
center, or a different geometric primitive. These votes can then be grouped

and used as proposals for final predictions.

2.2.5 3D Convolution-Based Methods

3D convolution-based methods leverage the power of 3D convolutions to process vox-
elized point clouds, enabling the extraction of spatial features directly from volumet-
ric data. There are many notable convolution-based methods (Zhou and Tuzel, 2018;
Rukhovich, Vorontsova, and Konushin, 2021; Shi et al., 2020; Yan, Mao, and Li, 2018;
Yang et al., 2020). Some of them are explained here to give an insight into the basic prin-
ciples of the convolution-based methods. VoxelNet (Zhou and Tuzel, 2018) was one of
the first methods to directly operate on raw point clouds by dividing the point cloud
into equally spaced 3D voxels and applying 3D CNNs to extract features. It first parti-
tions the 3D space into equally spaced voxels. Points are then grouped into correspond-
ing voxels and subsampled inside those voxels. Each group of points is then passed
through a stack of Voxel Feature Encoding (VFE) layers. A VFE layer takes a point-wise
input and outputs a point-wise feature map. This stack of VFEs outputs a voxel-wise
feature map which is then passed through a 3D CNN and finally an RPN to obtain pre-
dictions. Fully Convolutional Anchor-Free 3D (FCAF3D) (Rukhovich, Vorontsova, and
Konushin, 2021) is another recent development that simplifies the 3D object detection

Chapter 2. Object detection 14

pipeline by eliminating the need for anchor boxes. FCAF3D leverages sparse 3D con-
volutions to directly predict object locations and classifications from 3D feature maps.
It uses so called HDResNets (Xiang, Sun, and Tu, 2023) as backbone, followed up by a
simplified GSDN (Generative Sparse Detection Networks) decoder (Gwak, Choy, and
Savarese, 2020) and, finally, an anchor-free sparse convolution head is used for predic-
tions. Point-Voxel Region-based Convolutional Neural Network (PV-RCNN) (Shi et
al., 2020) combines the strengths of point-based and voxel-based methods by utilizing
both point features and voxel features in its detection pipeline. It first applies voxeliza-
tion and sparse 3D convolutions to extract voxel features, then refines these features
using a PointNet-based (Qi et al., 2017a) module to incorporate fine-grained point de-
tails.

2.2.6 Other Methods

Besides these two categories, there are many other methods for 3D object detection.
Some utilize transformers (Liu et al., 2021; Misra, Girdhar, and Joulin, 2021). Attention
mechanisms allow these networks to focus on relevant parts of the point cloud effec-
tively. On the other hand, Point Graph Neural Network (Point-GNN) (Shi and Rajku-
mar, 2020) utilizes graph neural networks (GNNs) to model the relationships between
points in a point cloud.

2.3 Evaluating 3D Object Detectors

Evaluating the performance of 3D object detectors is crucial to understanding their effec-
tiveness and identifying areas for improvement. To understand the evaluation of object
detectors, the output of an object detector has to be understood first. A detector outputs
a finite set of predictions. Each prediction consists of 3 things:

• Parameters of the bounding box. In 3D object detection, this is usually a bounding
box which is aligned with the upright axis, i.e. aligned with the floor of a scene. In
such a case, the bounding box is uniquely defined by the position of its center, its
dimensions, and the rotation around the axis with which it is aligned.

• Predicted class of the detected object.

• Confidence score. The higher the confidence score, the higher the confidence of the
detector that the prediction is correct and more weight is given to that particular
prediction when evaluating the detector.

When evaluating a detector, it is important to define the confidence threshold which
determines the predictions which will be kept as true predictions and which will be
discarded as unimportant. Confidence score is used when calculating some evaluation
metrics.

The most common metric of evaluation is mean average precision or mAP. Another
popular one is average recall or AR. To understand these metrics, however, one must first
understand a few other important terms. These include precision, recall, and Intersection
over Union (IoU). It’s important to note that object detectors cannot realistically identify
all objects on a given scene, instead they have a finite set of categories of objects which
they identify, referred to as objects of interest in this thesis.

Precision measures the ability of a detector to correctly identify present objects. It is
defined as follows:

P =
TP

TP + FP
, (2.1)

Chapter 2. Object detection 15

where TP stands for True positive, i.e. number of correctly identified objects, and FP
stands for False positive, i.e. number of detections which do not correspond to actual
objects.

Similarly, recall measures the detector’s ability to identify all objects of interest
present on the scene. It is defined by the following equation:

R =
TP

TP + FN
, (2.2)

where FN stand for False negative, i.e. number of objects of interest which have not been
identified by the detector.

2.3.1 Intersection over Union (IoU)

To understand these metrics, it is important to define what is a correct prediction (TP)
and what is not (FP). Intersection over Union (IoU) is used for this purpose. IoU mea-
sures the overlap between a predicted bounding box and the ground truth bounding
box. It is defined as the ratio of volume of intersection of the two bounding boxes and
the union of those two bounding boxes:

IoU (A, B) =
Volume of Intersection (A ∩ B)

Volume of Union (A ∪ B)
(2.3)

A visual representation of this equation for 2D bounding boxes is shown in Figure 2.11.
This representation is analogous to 3D IoU. In the case of 2D IoU, volumes of intersection
and union are simply replaced with areas in the above formula.

An IoU value ranges from 0 to 1, where 0 stands for no overlap and 1 for a perfect
overlap. A higher IoU value means a better prediction. When evaluating a detector,
so-called IoU threshold is defined which determines the minimum IoU required for a
predicted bounding box to be considered correct. In 3D object detection, IoU threshold
of 0.25 or 0.5 are most commonly used.

2.3.2 Mean Average Precision (mAP)

Mean average precision (mAP) is widely used as a benchmark for the evaluation of 2D
and 3D object detectors. Mean average precision is simply the average of average pre-
cisions (AP) over all classes. To define the average precision, precision-recall curve first
needs to be defined.

Precision-recall curve

Ideal detector would have a high precision and a high recall, i.e., all detections would
be correct and all objects of interest would be detected. As previously mentioned, the
model outputs confidence score for each predicted bounding box and that score needs to
be higher than some confidence threshold for a prediction to not be discarded. The lower
this confidence threshold, the higher the number of detections made by the detector and
the lower the probability that objects were missed. This generally results in a higher recall.
On the other hand, the higher the confidence threshold is, the lower is the chance that a
false detection is made which generally results in higher precision. As it is important for
a detector to have both high precision and recall, there is a trade-off between these two
values based on the confidence threshold.

Chapter 2. Object detection 16

A

BA∩B

A∪B

IoU (A, B) =

Figure 2.11: Visual representation of Intersection over Union (IoU) for two
2D bounding boxes, A and B. In 3D, these bounding boxes represent 3D
volumes and, accordingly, the intersection and the union are also volumes.

A precision-recall curve which plots the value of precision against recall for different
confidence threshold values can be defined. The specific threshold values are not impor-
tant for the curve as the curve only plots precision and recall. This is best demonstrated
with an example.

Given a dataset which contains 4 objects which need to be detected, a detector has
made 10 predictions. For each of these predictions, it is determined if the prediction is
correct or not based on the IoU of the prediction and the ground truth bounding boxes.
Additionally, the detector has also output the confidence score for each of the predic-
tions. These predictions are then sorted based on their confidence scores. The predic-
tions are shown in Table 2.1. The first column shows the rank of each prediction (based
on confidence score), the second shows whether the prediction is correct or not, and the
last two show precision and recall for the confidence threshold equal to the confidence
score of that prediction, i.e., precision and recall when considering all the predictions
with higher or equal confidence score to that prediction. Precision and recall are calcu-
lated by Equations 2.1 and 2.2, respectively.

Chapter 2. Object detection 17

Rank Correct Precision Recall
1 True 1.0 0.25
2 False 0.5 0.25
3 True 0.67 0.5
4 False 0.5 0.5
5 False 0.4 0.5
6 False 0.33 0.5
7 True 0.43 0.75
8 False 0.38 0.75
9 False 0.33 0.75
10 True 0.4 1.0

Table 2.1: An example of predicted bounding boxes sorted by their
confidence score and the precision and recall for each confidence

threshold.

Taking the fifth row as example, there are 2 TP, 3 FP, and 2 FN, since there are 4 objects
in total which need to be detected. Based on Equation 2.1, precision is equal to 2/5, or
0.4. Similarly, based on Equation 2.2, recall is equal to 2/4, or 0.5.

As the confidence threshold decreases (going down the table), the recall increases or
stays the same. On the other hand, precision decreases with each false prediction and
then spikes back up with each correct prediction. This is best visualized with a graph
which is shown in Figure 2.12.

Figure 2.12: Precision-recall curve for the example given in Table 2.1.

Average Precision (AP)

Average precision is defined as the area under the precision-recall curve:

AP =
∫ 1

0
p(r)dr, (2.4)

Chapter 2. Object detection 18

where p is precision, and r is recall. It is desirable that this area is as high as possible,
and when both precision and recall are high, the area under the curve will also be high.
However, when either of these is low across a large range of confidence threshold values,
the area will be low. As both precision and recall are real numbers between 0 and 1, AP
will also be a real number between 0 and 1.

Since AP is defined as an integral, it is approximated in practice. This is done because
a continuous function is needed for integration, but in practice, there is a finite number
of recall-precision pairs. Continuous representation of the model’s performance at all
possible threshold levels would be computationally intensive and impractical. There
are two common approaches to this approximation. One is interpolation and averaging
across a definite set of points. For example, an 11-point average can be taken by taking
11 values of recall between 0.0 and 1.0 with 0.1 increment. Precision can then be taken
for these 11 values of recall. In some cases, precision-recall pairs for these exact values of
recall might not be available so precision might need to be interpolated from the curve.
In the general case of N values, AP is calculated as follows:

AP =
1
N

1.0

∑
r=0.0
step s

p(r), (2.5)

where s = 1
N−1 .

Another approximation approach, common in the field of 3D object detection is using
a monotonic approximation of the precision-recall curve. Each precision value p(r) is
replaced with the maximum precision value for recalls higher than r:

p̃(r) = max
r̃≥r

p(r̃). (2.6)

AP is then calculated as the area under this approximation of the precision-recall curve
which is equal to the sum of the rectangles defined by the marginal values of precision
and recall. This is best illustrated by an example. Approximation of the curve shown in
Figure 2.12 is shown in Figure 2.13. The figure shows the monotonic approximation of
the curve and the rectangles whose areas can easily be calculated and summed to obtain
the final AP value.

After AP has been calculated for each of the classes of interest, mean average preci-
sion is calculated as follows:

mAP =
1
k

k

∑
i

APi, (2.7)

where k is the number of classes, and APi is the average precision of class i.

2.3.3 Additional Evaluation Metrics

While mAP is the primary metric, other evaluation criteria may be important for a com-
prehensive assessment of 3D object detectors:

Average Recall

Average recall is used to evaluate the recall capabilities of an object detector. The defini-
tion of average recall varies depending on use. One definition is similar to the definition
of average precision in that it averages recall over an interval of IoU values, typically
[0.5, 1.0], and it is equal to the area under the recall-IoU curve:

Chapter 2. Object detection 19

Figure 2.13: Approximation (orange) of the precision-recall curve (blue).
AP is the sum of the areas of the green rectangles under the monotonic

approximation of the precision-recall curve.

AR = 2
∫ 1

0.5
r(o)do, (2.8)

where o is IoU and r(o) is the corresponding recall. This can be calculated separately for
each class and the mean average recall can be calculated as the mean value of AR across
all classes.

Another definition of AR is AR at specific IoU threshold. It is often noted as AR@o,
where o is the IoU threshold value. E.g. AR@0.25 represents the average recall for all
classes with IoU threshold of 0.25. This is the definition which will be used throughout
this thesis.

Accuracy

In multiclass classification, accuracy is often used to measure the performance of a clas-
sifier and it is defined as follows:

A =
CP
All

, (2.9)

where CP is the number of correct predictions and All is the total number of samples.
Accuracy is, however, not a suitable measure for the task of object detection since there
is a discrepancy between predicted bounding boxes and ground truth ones, and mAP is
a more appropriate metric for this task.

F1 score

Another measure used in classification but not often used in object detection is the F1
score and it is defined as follows:

Chapter 2. Object detection 20

F1 = 2
P · R

P + R
, (2.10)

where P and R are precision and recall, respectively. F1 score is a valuable metric in
classification tasks with imbalanced data. When data is imbalanced, a classifier which
favors overclassifying into the most numerous class will have high accuracy even though
it might not predict the less represented classes. Moreover, if it is not clear which of the
precision and recall is more important for a specific task, F1 can be a good metric because
it values both equally. F1 is not used often in object detection because mAP captures both
precision and recall across different IoU thresholds and object classes more effectively.

Inference Time

Inference time measures the speed of the detector, which is critical for real-time appli-
cations such as autonomous driving. It is usually measured in milliseconds per frame
(ms/frame) or frames per second (fps). A detector should provide a good balance be-
tween accuracy and speed for real-time applications.

Memory Usage

Memory usage is an important metric, especially for deployment on resource-
constrained devices. It includes the amount of GPU memory and RAM required during
inference. Efficient memory usage ensures that the detector can be deployed on a wider
range of hardware.

2.3.4 Benchmark Datasets

Evaluating 3D object detectors requires large, annotated datasets that represent various
scenarios and environments. Common benchmark datasets include:

• KITTI (Geiger et al., 2013): A dataset for autonomous driving that includes LiDAR
point clouds, RGB images, and annotations for cars, pedestrians, and cyclists.

• Waymo Open Dataset (Sun et al., 2020): A large-scale dataset containing LiDAR
and camera data from autonomous vehicles, with annotations for various object
classes.

• NuScenes (Caesar et al., 2020): A dataset providing 360-degree sensor coverage
with LiDAR, radar, and camera data, including annotations for diverse object
classes.

• SUN RGB-D (Song, Lichtenberg, and Xiao, 2015): An indoor dataset with RGB-D
images and 3D annotations for various objects in indoor environments.

• ScanNet (Dai et al., 2017): A large-scale dataset of 3D scans of indoor scenes, cap-
tured using RGB-D sensors.

These datasets offer a wide range of environments and scenarios, from urban driving
to indoor navigation, making them essential resources for developing and evaluating 3D
object detection algorithms.

21

3 Generating synthetic 3D indoor
scenes

One of the biggest issues with deep learning-based methods in general is that they usu-
ally require large quantities of data. This is no different when it comes to 3D object de-
tection. Furthermore, since the state-of-the-art methods for 3D object detection require
supervised learning, the data also has to be annotated. Collecting and annotating data
can be a time-consuming and costly process, and sometimes it’s just not feasible to col-
lect adequate amounts of data for a specific problem. While there are various methods
for training robust models with limited data, this chapter deals with one way of doing
this, using synthetic data.

To detect and correctly classify objects in complex scenes, neural networks rely not
only on the shape of the object, but also on its size and position relative to other objects in
the scene. The presence of an object can help classify other objects that may not be clearly
visible in a scene, for example, due to occlusion or limited field of view of the camera.
In this thesis, this concept is referred to as the context of a scene. In addition, in real
life there are often objects that have a similar shape to the objects of interest, but belong
to different classes. If these objects, dubbed background objects, are not present in the
training data, this can lead to a high number of false positive detections. Finally, neural
networks can distinguish important details from unimportant ones if both are present
in the training data. Therefore, local distortions of object surfaces due to measurement
noise in images taken by a real camera can confuse a detector if it has not learned to
ignore them, which it can only learn to do if such distortions are present in the training
data.

This chapter focuses on 3D indoor scenes, in particular single-view depth images
that can be easily converted into point clouds, with annotations in the form of oriented
3D bounding boxes of objects and per-point semantic segmentation. Various factors can
be considered when creating realistic synthetic depth images for machine learning: pres-
ence of background objects, camera noise, positioning of objects, context of scenes, ob-
ject sizes, texture, occlusion, environment layout, reflectance properties etc. The goal in
this chapter is to gain insight into the importance of the first five of the listed factors.
The approach used in this chapter is to generate synthetic depth images using the co-
occurrence, placement, and size of objects from real scenes and train an object detector
using these images. In this way, the baseline object detector is obtained, which is tested
on real test scenes. Furthermore, additional synthetic depth image datasets with random
object classes, arrangements and sizes are also generated. These additional datasets are
used to perform an ablation study by comparing the performance of the same object de-
tector trained on these additional datasets with the results of the baseline object detector.
Analogously, the importance of the presence of background objects in synthetic scenes
and realistic camera simulation are also investigated.

For this to be possible, a method for synthetic dataset generation that controls for
realism of these factors is necessary. In this chapter, a modular method for generating
synthetic 3D data of indoor scenes is proposed. The method consists of object selection,
scaling, and positioning modules that can be configured to use parameters from real

Chapter 3. Generating synthetic 3D indoor scenes 22

scenes or random values. In addition, it includes modules for introducing background
objects and simulating camera noise that can be turned on and off. The method allows
for creation of various datasets, including a dataset with an object arrangement similar to
that of a real dataset, but with different object instances, which can be used as a baseline.
By systematically eliminating the aforementioned five factors of realism one by one, an
ablation study can be conducted to determine the importance of each of those factors.

3.1 Existing methods for synthetic 3D data generation

3D synthetic data generation. Most methods for 3D synthetic data generation are de-
signed for outdoor environments. Ros et al., 2016 capture scenes of a man-made model
of a city, providing a highly controlled setting for generating consistent data for various
tasks. Similarly, Johnson-Roberson et al., 2017, Saleh et al., 2018, and Hu et al., 2019 use
models of cities from the video game GTA V to generate synthetic data. These methods
leverage the rich, detailed environments available in GTA V to simulate diverse urban
scenes, which are useful for tasks like object detection, semantic segmentation, and au-
tonomous driving research.

When it comes to indoor scenes, Handa et al., 2016 manually create indoor environ-
ments, placing furniture and objects to simulate realistic room layouts. These scenes
are then captured from various angles to generate a comprehensive dataset, dubbed
SceneNet. Furthermore, they propose an automatic furniture arrangement method
which allows them to augment these scenes and obtain even more variety in their
dataset. McCormac et al., 2017 build upon SceneNet by sampling random layouts from
it and random objects from ShapeNet (Chang et al., 2015). By using a physics engine to
generate random positions, a practically unlimited number of scene configurations can
be created. A few examples from their dataset, called SceneNet RGB-D, are shown in
Figure 3.1.

Figure 3.1: A few examples from the SceneNet RGB-D synthetic dataset
McCormac et al., 2017.

The synthetic scenes in Tremblay, To, and Birchfield, 2018 are generated using the
NVIDIA Deep Learning Dataset Synthesizer (To et al., 2018). This tool allows for the
creation of highly customizable environments. In their study, the authors selected three
different settings — a kitchen, a sun temple, and a forest — and manually chose 15
locations within these environments to cover a variety of terrain and lighting conditions.
During scene generation, models were randomly placed and oriented within a vertical
cylinder at the selected locations, introducing variability and complexity into the dataset.

Chapter 3. Generating synthetic 3D indoor scenes 23

Leonardi et al., 2022 present a pipeline and tool in Blender (Community, 2018) for
generating synthetic 3D data. This tool allows users to adjust various parameters, in-
cluding camera position, lighting, and object colors, providing a high degree of control
over the generated scenes. This flexibility makes it possible to create a wide range of
scenarios tailored to specific research needs.

Although there are a number of approaches to generating synthetic datasets, none
of them is suitable for performing the ablation study presented in this chapter. In the
approaches presented in McCormac et al., 2017, Tremblay, To, and Birchfield, 2018, and
Leonardi et al., 2022, the objects are randomly positioned, which does not allow for a
study of the influence of realistic object arrangement. Moreover, these approaches as-
sume that the models of the objects inserted in the scene have realistic sizes, while the
method described in this chapter can use models with normalized sizes and retrieves
realistic object sizes from a distribution obtained from a real dataset. Finally, a method
that reconstructs walls from real images is proposed, ensuring a wall layout similar to
that of a real dataset, which is not done in any of the related research considered in this
section.
Imperfect camera simulation. There are two main approaches to generate camera noise:
algorithm-based and deep learning-based methods. The method in Gschwandtner et al.,
2011 models realistic cameras by simulating light rays to obtain precise distances from
points to the camera. It uses 3D models to directly generate noisy images. Similarly, the
methods in Landau, Choo, and Beling, 2016 and Planche et al., 2017 use 3D CAD data
and render noisy images by modeling real sensors. Considering deep learning methods,
two GAN-based methods are proposed in Shrivastava et al., 2017 and Bousmalis et al.,
2017, while the method proposed in Sweeney, Izatt, and Tedrake, 2019 is a CNN which
predicts noise in simulated depth images. There is no universally accepted method for
comparing camera simulators, apart from the qualitative assessment of the images pro-
duced by a particular method.

3.2 Method

In this chapter, a method for generating realistic synthetic depth images for training 3D
object detectors for indoor scenes is proposed. The method is suitable for studying the
importance of various factors involved in this process. It requires two datasets, a dataset
containing real scenes with bounding boxes of objects described by the object’s class,
size, and position, and a dataset with 3D CAD models of objects commonly found in
indoor environments.These datasets are referred to as the scene dataset and the model
dataset, respectively.

In the proposed data generation method, there’s a distinction between foreground
classes and background classes including walls. Foreground classes are the classes of
interest, which an object detector is tasked with recognizing, while background classes
are the remaining objects which can appear in certain indoor scenes.

The method has a modular structure (see Figure 3.2), and takes into account the fol-
lowing five factors, which are important for the creation of realistic synthetic scenes:
camera noise, presence of background objects, positioning, context, and size. A separate
module is created for each of these five factors. While camera noise and the presence
of background objects can simply be turned off, there are two modes of operation for
the other three modules, ground truth based mode and random mode. The positioning,
context, and size modules are described in subsection 3.2.1. More information about
inserting walls into the scenes can be found in subsection 3.2.1, while the camera noise
module is described in subsection 3.2.2.

Chapter 3. Generating synthetic 3D indoor scenes 24

Scene modeling

Move walls behind
objects

Select objects in the
scene

GT RND

Render scene

On Off

Position the objects

GT RND

Determine the size
of the objects

 GT RND

Add camera noise

 On Off

Real
scene

Foreground
objects

Background
objects

Figure 3.2: Illustration of the modular synthetic data generation method.
The five modules are shown in dark cyan. The background objects mod-
ule and the camera noise module can simply be turned on or off, while
the other three have two modes of operation, ground truth based mode
(GT) and a random mode (RND). To generate data, a scene is first mod-
eled by selecting, scaling and positioning objects. Walls are then moved
backwards in order to avoid occlusion of objects in the scene. The final
model of the scene is comprised of 3D mesh models, where each object is
assigned its bounding box. After this, the scene is rendered with an ideal
camera, and, finally, the noise is (optionally) added to the image. The

point cloud is then generated from the final depth image.

3.2.1 Scene modeling

A typical indoor scene consists of objects on a horizontal floor surface and walls. There-
fore, to create a scene, the classes of objects that should appear in the scene, need to be
determined first. Next, sizes and specific instances of the objects must be selected. These
objects are then placed in the scene and finally the positions of the walls are adjusted
to avoid obscuring other objects. However, these modules are not independent of each
other. When ground truth context is used, ground truth sizes are also used. Furthermore,
when ground truth positioning is used, the ground truth context and sizes are also used.

Context

In the ground truth based mode, a synthetic scene is generated from a real scene from
the scene dataset using the models from the model dataset. Each object in the real scene
is represented in the synthetic scene by a model of the same class, providing the context
for the scene. The camera is positioned at the same height above the floor as in the real
scene.

To evaluate the contribution of context, in the random mode synthetic scenes are gen-
erated without realistic context by drawing a random number of objects (nobj) of random
classes and a random number of walls (nw) drawn from uniform distributions on the in-
tervals [nobj,min, nobj,max] and [nw,min, nw,max], respectively. Wall dimensions in meters are
drawn from uniform distributions on intervals [1, 2] for width and height, and [0.4, 0.5]
for depth. Furthermore, the camera height is randomly selected from a normal distribu-
tion with mean µc and standard deviation σc obtained by fitting a normal distribution to
the camera height values from the scene dataset. The values of the parameters used in
the experiments are shown in Table 3.4.

Object size

There are many datasets with 3D CAD models which do not have realistic sizes and
instead consist of normalized models, e.g., ShapeNet (Chang et al., 2015). To use these

Chapter 3. Generating synthetic 3D indoor scenes 25

datasets, a size needs to be assigned to each object and the object model scaled to that
size before placing it in a scene.

The object size is defined with three values: h, wp, and lp. These values are defined
as the height of the object, the width divided by the height, and the length divided by
the height, respectively. In the ground truth based mode, the height h of the object in a
synthetic scene is equal to the height of the bounding box of the corresponding object in
the real scene. When generating synthetic scenes without a realistic context, the height
and proportions of an object are determined by taking a random bounding box of the
desired class from the scene dataset.

A suitable model for the given size is determined by randomly selecting models of
the desired class from the model dataset and comparing the wp and lp values of the
models to the wp and lp values of the desired real bounding box. Once a model is found
where both values are within a threshold pth of the desired values, that model is selected
as a suitable one. If no suitable model is found within a maximum number of trials
ntry,max, the desired values wp and lp are swapped and the process is repeated. The
repeated matching with the swapped wp and lp is performed because some models may
not be rotated in the same way as other models of this class and because some of the
bounding boxes in the scene dataset may not be oriented correctly. If a suitable model is
found for swapped wp and lp, it is rotated 90◦ and used. However, if no suitable model
is found, a model with the best wp and lp values is selected, i.e. the mean squared error
of these values is minimized. After a model is selected, it is scaled to the desired height
h and placed on the scene.

To evaluate the contribution of the correct object size, synthetic scenes are generated
without using realistic object sizes, but by drawing the object height randomly from a
uniform distribution on the interval [hmin, hmax]. In this case, a random model of the
desired class is selected and scaled to the selected height.

Object positioning

In the ground truth based mode, the models from the model dataset are positioned in
a synthetic scene based on the positions of the bounding boxes of the corresponding
objects in a real scene.

Since the bottom of some bounding boxes in the scene dataset is not exactly on the
floor plane, the bottoms of the models are aligned with the lowest bounding box. This
step is skipped for objects whose bottom is at a predefined height bh or more from the
floor, since some objects are not supposed to be on the floor at all, e.g. bookshelves on
the wall.

To evaluate the contribution of realistic object positioning, an alternative positioning
method is used in which objects are randomly positioned. In this case, the bounding
boxes of the objects from a given scene are taken, but their positions are disregarded
and instead the objects are randomly placed on the scene, ensuring that no object is in
collision with another object. Next, an efficient method for randomly positioning objects
is described.

The object plane is defined as the horizontal plane at a certain vertical distance s rel-
ative to the camera (see Figure 3.3). Furthermore, the object reference point is defined as
the orthogonal projection of the object center onto the object plane. The approach used
for random object positioning is based on determining a set F of points that satisfy the
following conditions:

1. The point is visible in the image.

Chapter 3. Generating synthetic 3D indoor scenes 26

2. If the point is the reference point of an object, then the depths of all points of this
object are within a predefined distance range [zmin,zmax] from the camera.

3. If the point is the reference point of an object, then the object is not in collision with
other objects in the scene.

To explain the random object positioning approach, the scene reference frame is defined
with the origin at the camera viewpoint, the z-axis antiparallel to the gravity axis, and the
x- and y-axes parallel to the floor plane. Additionally, the camera reference frame is defined
with the origin at the camera viewpoint and the z-axis identical to the optical axis of the
camera. The relative orientation between these two reference frames is determined by
the extrinsic parameters of the camera, which are taken from a random scene in the scene
dataset.

Figure 3.3: An example of the reference frames: scene reference frame (Ss),
camera reference frame (Sc), and object reference frame (So).

The object reference frame is centered at the object reference point with its axes aligned
with the axes of the camera reference frame. Let O be the set of all points of an object,
zO,min and zO,max be the minimum and maximum z-coordinate of all points q ∈ O with
respect to the object reference frame. Then, if the z-coordinate of the object reference
point with respect to the camera reference frame is within the interval [zmin − zO,min,
zmax − zO,max], depths of all object points are within the interval [zmin, zmax].

Let p ∈ R3 be a vector representing the 3D coordinates of a scene point with respect
to the camera reference frame. The z-coordinate of a point, i.e. the third component of
the vector p, represents the depth of that point. The image projection of a point p can be
computed by

m = fpr(Kp), (3.1)

where fpr : R3 → R2 is a function defined by

fpr = [x1/x3, x2/x3],

K is the camera intrinsic matrix and m ∈ R2 is the coordinate vector of the point repre-
senting the image projection of the 3D point p, where m = (u, v).

Chapter 3. Generating synthetic 3D indoor scenes 27

Let A be the set of all image points computed by Equation 3.1 from 3D points p that
lie on the object plane and whose z-coordinates are within the interval [zmin − zO,min,
zmax − zO,max]. Then, each image point m ∈ A corresponds to a 3D point which satisfies
the first two conditions in the definition of the set F.

A is the set of all image points whose u coordinate lies in the interval [umin, umax], and
v coordinate lies in the interval [vmin, vmax]. Since the x-axis of Sc is parallel to the x-axis
of Ss, umin and umax are constrained by the width of the image. vmax is the projection
of the maximum value of the y-coordinate, i.e. the second component of the vector p,
onto the image. The maximum value of the y-coordinate is the y-coordinate of the line
on the object plane whose z-coordinate is equal to zmin − zO,min. Analogously, vmin is
constrained by the minimum value of the y-coordinate.

Figure 3.4: A schematic representation of calculation of the set A. β is the
tilt of the camera, determined by the extrinsic parameters. s, the distance
from the camera reference frame to the object plane, is shown in magenta.

A schematic representation of calculation of the set A is shown in Figure 3.4. a repre-
sents the maximum y-coordinate which can be projected using the pinhole camera model
to determine the value vmax:

vmax = fy
a

zmin − zO,min
+ vc, (3.2)

where fy is y-value of the focal length of the camera and vc is the second component of
the principal point. As per Figure 3.4, a can be calculated from the following equations:

a + b =
s

cos β
,

b
zmin − zO,min

= − tan β,

where s is the distance from the camera reference frame to the object plane and β is
determined by the extrinsic parameters of the camera, i.e. it is the tilt of the camera.

Plugging these into Equation 3.2, vmax can be calculated as follows:

vmax = fy

s
zmin−zO,min

+ sin β

cos β
+ vc. (3.3)

Analogously, vmin can be calculated as follows:

Chapter 3. Generating synthetic 3D indoor scenes 28

vmin = fy

s
zmax−zO,max

+ sin β

cos β
+ vc. (3.4)

Consider the third condition. If the intersection of the convex hulls of the orthogonal
projections of two objects onto any plane is an empty set, then there is no collision be-
tween these two objects. Let Oi, i = 1, 2, ..., nO be the set of objects positioned on a scene
and O0 be the new object that needs to be positioned on the scene. Also, let Oo

0 and Oo
i be

the orthogonal projections of O0 and Oi onto the object plane respectively. Furthermore,
let H0 and Hi be the convex hulls of Oo

0 and Oo
i respectively. To determine a collision-free

set of positions of O0, an approach based on the Minkowski difference is used, which is
common in robot path planning. The alternative definition of the Minkowski difference
is used in this context. For vectors A, B ∈ R2, it is defined similar to the Minkowski sum
but with vector subtraction instead of addition:

A − B = {a − b|a ∈ A, b ∈ B} = A + (−B),

The convex polygon Si obtained by the Minkowski difference of Hi and H0 is the set
of all centers of H0 for which the intersection of Hi and H0 is a nonempty set. Si is then
a set of points in which the orthogonal projection of the center of O0, Co

0, should not be
placed, i.e. if Co

0 /∈ Si, objects O0 and Oi will not be in collision. An illustration of this
process is shown in Figure 3.5.

Figure 3.5: An illustration of the Minkowski difference of the convex hulls
of Oo

i and Oo
0. The bottom middle image shows an illustration of the

Minkowski difference of hi and h0, i.e., it shows that the vertices of the
sum can be obtained by placing the center of −h0 on vertices of hi. The
bottom right image shows that placing the convex hull h0 on the edge of

the Minkowski difference doesn’t lead to a collision between hi and h0.

By computing Si for each i, and subtracting the image projections of all polygons

Chapter 3. Generating synthetic 3D indoor scenes 29

Si from A, the set of image points A f ree is obtained. Each image point m ∈ A f ree cor-
responds to a 3D point which satisfies all three conditions in the definition of the set F.
Consequently, F can be determined as the set of all points p on the object plane for which
there is a point m ∈ A f ree that satisfies (3.1).

The positioning of a new object O0 on the scene can be performed using the following
algorithm.

1. Chose a model as described in 3.2.1 and give it a random rotation about the z-axis
of the scene reference frame.

2. Compute F based on the object to be inserted (O0) and the objects already posi-
tioned.

3. Select a random point cc in F and transform this point into the scene reference
frame using the extrinsic parameters of the camera to obtain cs.

4. Position the object O0 in the scene so that its reference point is identical to cs.

An example of the described process is shown in Figure 3.6. It shows a few steps
of the process where A f ree is calculated for each step and a random point from A f ree is
selected as the orthogonal projection of the center of the object O0 onto the object plane.
Object arrangements in each step are also shown. The final object arrangement is the
result of this process and the shown depth image is a rendering of the generated scene.

Walls

Walls represent important background objects that are always present in indoor scenes.
Therefore, it can be beneficial to include them when generating synthetic scenes for 3D
object detection training. For this purpose, the information about the positions of the
walls is taken from the scene dataset and the walls are placed in the synthetic scenes in
the same position and orientation as the detected walls. However, most datasets do not
have labelled bounding boxes of walls, as is the case in SUN RGB-D (Song, Lichtenberg,
and Xiao, 2015), and the walls must be detected before being placed in a correspond-
ing synthetic scene. The scene generation approach used in this chapter involves the
detection of walls in depth images of real scenes from the scene dataset. The proposed
approach requires semantic annotation of the scene dataset, where all pixels represent-
ing walls are annotated. Since in some scenes a semantic region may represent multiple
walls, each individual wall must be detected and extracted from this region.
Detecting walls in depth images. The preprocessing step of the wall detection method
consists of extracting wall points based on the annotation contained in the scene dataset.
Walls are almost always perpendicular to the floor plane, so the detection of walls in 3D
can be limited to the planes that are perpendicular to the floor plane. Therefore, after the
preprocessing step, a 2D wall occupancy grid is created by projecting the 3D wall points
orthogonally onto the xy-plane of the scene reference frame. This grid covers a 10 m ×
10 m square area of the scene in front of the camera, which is divided into cw × cw square
cells. Each cell is assigned the number of wall points projected onto that cell. Then, the
wall map is created by detecting local maxima in the wall occupancy grid. The wall map
is a binary image where each point corresponds to a wall occupancy grid cell. The cells
with the largest value in the 5 × 5 neighborhood are assigned the value 1 in the wall
map if their value is ≥ τw,1, while the other points in the wall map have the value 0. An
example of a wall occupancy grid and a corresponding wall map is shown in Fig. 3.7.

The wall map is used as input to the Hough transform for straight line detection. Let
n be the total number of points of the wall map with value 1 and let mk, k = 1, 2, ..., n

Chapter 3. Generating synthetic 3D indoor scenes 30

Figure 3.6: An example of positioning objects and A f ree. Several steps
of calculating A f ree are shown. Each pair of images, except the bottom
right, represents one step. Yellow region represents A f ree, while the purple
region represents the pixels in the image which do not satisfy the three
conditions. Red cross is the selected center of Oo

0 which will be added
to the scene, it has to be in A f ree. Blue crosses represent the centers of
orthogonal projections of objects previously placed in the scene. The right
image in each pair shows the arrangement of the objects currently on the
scene. The last pair shows the final arrangement, and the depth image

generated from that arrangement.

Chapter 3. Generating synthetic 3D indoor scenes 31

Figure 3.7: An example of the wall detection process.

be the coordinate vectors defining the positions of these points. For each line Li, i =
1, 2, ..., m detected by the Hough transform, all points satisfying

dL(mk, Li) ≤ δw,1, (3.5)

where dL denotes the point-to-line distance and δw,1 is an experimentally determined
threshold, are identified. The orthogonal projections of these points onto Li are referred
to in this chapter as line occupancy points. The obtained set of line occupancy points is
segmented into the minimum number of line segments Λij such that two line occupancy
points with a distance ≤ δw,2 belong to the same segment. Any line segment consisting
of at least τw,2 points is considered a wall candidate.

Wall candidates are pruned using the following non-maximum suppression (NMS)
approach. Each wall candidate Λij is assigned a score γij defined by

γij = ∑
mk∈Λij

exp

(
−
(

dL(mk, Li)

σw

)2
)

, (3.6)

where σw is an experimentally determined parameter. When two wall candidates over-
lap, the one of them with the lower score γij is discarded. The overlap between two wall
candidates Λij and Λuv is measured by the similarity measure Intersection-over-Union
(IoU) defined by

IoU(Λij, Λuv) =
Λij ∩ Λuv

Λij ∪ Λuv
. (3.7)

Two wall candidates Λij and Λuv are considered overlapping if

IoU(Λij, Λuv) ≥ τw3 . (3.8)

Finally, synthetic walls are created from the wall candidates that remain after the
described NMS procedure. The points in the sets Λij used to create walls are removed
from the rest of the procedure, a new wall map is created from the remaining points and
the procedure is repeated until no more walls are created.

A synthetic wall created from a wall candidate is a cuboid that represents the bound-
ing box of the scene points assigned to it. Each wall is assigned a set of scene points
using a criterion analogous to that used to assign wall map points to line segments rep-
resenting wall candidates. In this step, however, all scene points are considered, not only
the points of the wall map. Four edges of this cuboid are parallel to the gravity axis and
four edges are parallel to the line segment from which the wall is created. The above
parameters used for wall detection are listed in Table 3.1.
Moving walls behind objects. Although the described wall detection method gives
mostly satisfactory results, it is not perfect. It relies on the semantic segmentation of
the scene dataset, which in some cases may be erroneous. Therefore, it can sometimes

Chapter 3. Generating synthetic 3D indoor scenes 32

Symbol Value
τw1 10
τw2 8
τw3 0.1
δw1 3
δw2 20
σw 0.8
ww 0.2 m
cw 0.02 m

Table 3.1: Wall Detection Parameters

produce false walls, which in some cases can obscure a large part of the scene. Further-
more, in a synthetic scene generated from a real scene in which an object touches a wall,
the synthetic object representing that real object may sink into the wall due to the inaccu-
racy of the wall detection method and the differences between the sizes of the real objects
and their representatives in the synthetic scenes. To avoid these problems, the walls are
moved behind objects in generated scenes, so that they do not overlap or occlude any
object in the scene. The algorithm, that corrects the wall positions, is described below.

Each wall is assigned a reference frame whose origin is at the center of the wall’s
front surface, i.e. the wall’s surface facing the camera. The x-axis of a wall reference
frame is orthogonal to the wall’s front surface and its y-axis lies on that surface. Both x-
and y-axes are horizontal, while the z-axis is vertical, i.e. antiparallel to the gravity axis.
A top view of a simple scene is shown in Figure 3.8.

Figure 3.8: Top-down view of a simple scene consisting of one wall with
assigned reference frame and one object represented by its bounding box.
The orthogonal projection of the object bounding box onto the front sur-

face of the wall is indicated by a thick red line.

Let Wi be the set of indices of all object bounding boxes whose orthogonal projection
onto the ith wall front surface is not an empty set. An example is shown in Figure 3.8.
Furthermore, let the distance xij between the object and the wall be defined as the min-
imum x-coordinate of all vertices of the jth object bounding box with respect to the ith
wall reference frame. The wall is displaced in the direction of the x-axis of its reference
frame by the distance µi which is computed as follows

µi = min{min
j∈Wi

xij, 0}. (3.9)

By moving the i-th wall by the distance µi, situations where walls intersect or occlude
objects are avoided. If xij ≥ 0, for all j ∈ Wi, then µi = 0, which means that the ith wall
does not occlude or intersect any object and, therefore, does not need to be moved.

Chapter 3. Generating synthetic 3D indoor scenes 33

3.2.2 Rendering a scene

To render a scene, in all the considered cases, the extrinsic parameters of the camera are
taken from the scenes in the scene dataset. In the cases where context is used, the syn-
thetic scene is generated with the extrinsic parameters of the corresponding real scene,
while in the cases where context is not used, the camera extrinsic parameters of a ran-
dom scene are used. Moreover, the same intrinsic camera parameters are used for each
scene.

For rendering scenes the code provided by Stutz and Geiger, 2020 is used. No color
data is rendered, only depth. Objects are rendered one at a time using the z-buffering
technique. In addition, each pixel is labelled with the class of the object it belongs to.
After all objects are rendered, the bounding boxes of objects with fewer than nmin,vp vis-
ible pixels are discarded, since some objects in the scene may be mostly or completely
occluded. If the scene does not contain bounding boxes of the foreground classes, the
scene is discarded and the process is repeated. The floor is then rendered as a planar sur-
face whose orientation with respect to the camera is defined by the extrinsic parameters
of the camera and whose distance from the camera is defined by the lowest bounding
box. Finally, camera noise is optionally added as described in subsection 3.2.2 and the
point cloud is generated from the final depth image.

Simulating imperfect camera

To create realistic depth images, the measurement model of RGB-D cameras is used,
such as Microsoft Kinect or PrimeSense. These cameras project a pattern in the infrared
spectrum, captured by an infrared camera. Some ideas from Gschwandtner et al., 2011 in
a simplified form are used in order to create an efficient camera noise simulation module,
which operates on depth images without a need for the original mesh from which the
depth image is created. There are four main types of errors caused by imperfections of
real depth cameras:

1. depth noise - the error in depth measurement assigned to each pixel,

2. position noise – the effect that occurs at the depth discontinuities, where the sensor
assigns foreground value to background pixels and opposite,

3. holes – image regions to which no depth value is assigned due to absorption or
specular reflection of the camera projector beam,

4. shadows – image regions to which no depth value is assigned because they rep-
resent surfaces that are visible from the camera viewpoint but occluded from the
projector viewpoint.

Depth noise. The depth measurement model of the considered cameras is analogous to
the model of stereo vision systems. The approach proposed in Demirdjian and Darrell,
2001 is used. The camera measurements are represented in disparity space, where the
noise has isotropic and homogeneous behavior. The depth camera model proposed in
Khoshelham and Elberink, 2012 is used, which computes the depth z from the disparity
d according to the following equation

z =
z0

1 + γd
, (3.10)

where z0 and γ are camera constants. The depth noise is simulated by white Gaussian
noise with the standard deviation σz superimposed on the disparity value of each image
pixel with a defined depth.

Chapter 3. Generating synthetic 3D indoor scenes 34

Figure 3.9: Examples of depth images from the SUN RGB-D dataset (Song,
Lichtenberg, and Xiao, 2015) taken with different cameras and synthetic
noisy images created based on these images using different configurations

of the camera noise module.

Chapter 3. Generating synthetic 3D indoor scenes 35

Position noise. The position noise is simulated by creating a displacement map that as-
signs a small random displacement to each pixel m in the image. This displacement is
a 2D vector δ(m) whose components are drawn from a Gaussian distribution with stan-
dard deviation σxy,1 and filtered with a Gaussian low-pass filter with standard deviation
σxy,2. The displacement map is used to create a noisy depth image z′(m) from the original
depth image z(m) by

z′(m) = z(m + δ(m)). (3.11)

Holes. The probability that the camera will detect a projector beam reflected from a
given point on a surface decreases as the angle of incidence increases. Therefore, the
occurrence of holes can be viewed as a stochastic process in which the probability that a
given pixel is a hole increases monotonically with the angle of incidence. This process is
simulated by assigning the hole probability to each pixel m, which is computed as follows

Ph(m) = Ph,maxexp

(
−
(

cos θ(m)

σh,1

)2
)

, (3.12)

where θ(m) is the angle of incidence of the projector beam reflected from a scene point
and projected onto pixel m. The parameters Ph,max and σh,1 are experimentally deter-
mined constants. If the process of hole occurrence was modeled as white noise, i.e.
assuming that the hole probability of a particular pixel is not correlated with the hole
probabilities of neighboring pixels, then the holes could be simulated by making each
pixel m a hole with probability Ph(m) independently. However, by examining depth im-
ages acquired by real RGB-D cameras, it could be noticed that the holes mostly appear
as patches rather than isolated pixels with undefined depth. Therefore, the holes are
simulated by a stochastic process that produces holes in a form of small patches. First,
the algorithm selects a set of pixels, which are referred to as hole seeds. Each pixel m can
be selected as a hole seed with probability Ph(m). The hole seeds are assigned a random
value g(m) from the interval [0, 1]. For the remaining image pixels, g(m) = 0. In this
way, the hole map is created. This hole map is then filtered with a Gaussian low-pass filter
with standard deviation σh,2, to produce the filtered hole map g f (m). Finally, all pixels with
g f (m) > τh are declared as holes, where τh is an experimentally determined threshold.
Shadows. Shadows are illustrated by Figure 3.10 which shows a top view of a scene
observed by a depth camera. The depth value assigned to each image pixel represents
its z-coordinate with respect to the camera reference frame. The points on the object
surfaces, indicated by green lines, are visible from both the camera and the projector
viewpoint. Therefore, their depth can be measured. On the other hand, the points on the
object surfaces marked by red lines are visible only from the camera viewpoint, which
prevents measurement of their depth. Shadows are simulated by using an algorithm that
scans each image line from right to left and computes the projection ray for each image
point m based on its 3D coordinates p. If the scene point p′ corresponding to a subse-
quent image point m′ has a greater depth than the depth of the point q′ representing the
intersection of the projection ray of p and the camera optical ray of p′, then p′ is occluded
by p from the projector viewpoint. Therefore, the depth of p′ cannot be measured and
no depth value is assigned to the image point m′. An opposite example is the point p′′ in
Figure 3.10, whose depth can be measured because there is no scene point that occludes
p′′ from the projector viewpoint.

The average execution time for the camera noise module using an AMD Ryzen 7
5800X processor is 158 ms. Some examples of synthetic noisy images created with differ-
ent configurations of the camera noise module are given in Figure 3.9.

Chapter 3. Generating synthetic 3D indoor scenes 36

Figure 3.10: The red scene points are occluded by the green scene points
from the projector viewpoint.

class bed table sofa chair toilet desk drser nigtsd bkshf bathtub # of
scenes

total #

bed 155 83 24 218 0 107 258 436 34 0 1096 1279
table 83 989 338 2533 2 163 9 20 132 2 3271 4843
sofa 24 338 240 343 0 53 10 13 66 0 993 1321
chair 218 2533 343 3347 2 1302 37 45 206 0 4931 18974
toilet 0 2 0 2 5 0 0 0 0 51 275 280
desk 107 163 53 1302 0 523 23 16 75 0 1549 2871
drser 258 9 10 37 0 23 49 147 13 0 330 391
nigtsd 436 20 13 45 0 16 147 73 4 0 460 540
bkshf 34 132 66 206 0 75 13 4 81 1 387 494

bathtub 0 2 0 0 51 0 0 0 1 0 105 105

Table 3.2: Co-occurrences of the foreground classes in the SUN RGB-D
dataset (Song, Lichtenberg, and Xiao, 2015). Each row shows the number

of scenes an object of that particular class co-occurs with an object of
another class. An object co-occurs with an object of the same class if two
or more objects of that class are present in a scene. Additionally, the last
two columns show how many scenes contain an object of that class and

the total number of objects of that class in the dataset, respectively.

3.3 Experiments

For data generation the SUN RGB-D dataset (Song, Lichtenberg, and Xiao, 2015; Sil-
berman et al., 2012; Karayev et al., 2011; Xiao, Owens, and Torralba, 2013) is used
as the scene dataset and models from the ShapeNet and ShapeNetSem (Chang et al.,
2015; Savva, Chang, and Hanrahan, 2015) are used for the model dataset. To determine
the effectiveness of the data generation method, VoteNet (Qi et al., 2019) and FCAF3D
(Rukhovich, Vorontsova, and Konushin, 2021) are trained on the generated data and
evaluated on the SUN RGB-D dataset.

3.3.1 Datasets

The SUN RGB-D dataset consists of single-view RGB-D images with pointwise semantic
segmentation and 2D and 3D bounding box annotations with class labels. It is divided
into a training and a test dataset. The training and test dataset consist of ∼5k scenes each.
Only the training partition is used for data generation, the same partition used in Qi et
al., 2019, and only the following 10 classes are used as foreground classes: bed, table,

Chapter 3. Generating synthetic 3D indoor scenes 37

Figure 3.11: Visual representation of the co-occurrences in the SUN RGB-
D dataset. The values shown are in percentages relative to the number of
scenes in which objects of that class occur, i.e., number of co-occurrences
for each pair is divided by the number of scenes containing an object of

the class in the row.

sofa, chair, toilet, desk, dresser, nightstand, bookshelf, and bathtub. These 10 classes
are used to allow comparison of the results with those of Qi et al., 2019 and Rukhovich,
Vorontsova, and Konushin, 2021. In addition, the following three background classes
(along with the walls) are used: lamp, bag, cabinet. Mean Average Precision (mAP) is
used as the performance measure.

Table 3.2 shows the co-occurrence of the foreground classes in the whole SUN RGB-
D dataset. Each row shows in how many scenes an object of that class occurs with an
object of another class. An object can co-occur with an object of the same class if two or
more objects of that class are present on the scene. Figure 3.11 visualizes the relative co-
occurrences of the foreground classes. Each row shows the co-occurrence of the objects
of that row’s class with objects of other classes divided by the total number of scenes that
contain an object of the row’s class. The values are shown as percentages. For example,
the value 77 in the second row and fourth column shows that in 77% of the scenes where
a table shows up, at least one chair also shows up. Some expected values show up in
these co-occurrence statistics. Dressers and nightstands rarely show up without a bed,
desks are rarely in a scene where there is no chair, beds and toilets do not show up
together on any scenes and so on.
ShapeNet is a 3D model dataset with about 51k unique models distributed across 55
common object classes. Since not all classes used for data generation are found in
ShapeNet, the ShapeNetSem dataset is also used. The ShapeNetSem dataset consists
of 12k models distributed over 270 classes. A model database is created by selecting
3D models from the toilet and nightstand classes in the ShapeNetSem dataset and the
remaining eleven classes in the ShapeNet dataset.

Chapter 3. Generating synthetic 3D indoor scenes 38

Parameter Value
Focal length x 570.34
Focal length y 570.34

Principal point x 320
Principal point y 240

Image width 640
Image height 480

Minimum distance 0.7 m
Maximum distance 9.7 m

Table 3.3: Camera intrinsic parameters

Parameter Value
nobj,min

3,4 1
nobj,max

3,4 10
nw,min

3,4 0
nw,max

3,4 4
µc

3,4 1.23 m
σc

3,4 0.27 m
s2,3,4 1 m

nmin,vp* 1000
hmin

4 0.5 m
hmax

4 2 m
pth

B,1,2,3,5 0.2
ntry,max

B,1,2,3,5 500
bh

B,1,5 0.4 m
Imperfect camera simulationB,2,3,4,5

σh,1 0.2
σh,2 2

Ph,max 0.3
τh 0.1
σz 1

σxy,1 6
σxy,2 3

Table 3.4: Parameters used for data generation. Parameters denoted by a
* are used in all ablations, while parameters used in specific ablations are
denoted by the ablation numbers in superscript (B represents the baseline

case).

3.3.2 Ablation studies

For all ablation studies, the same intrinsic camera parameters were used, as shown in
Table 3.3, while the other parameters are listed in Table 3.4. For each ablation, 20000
scenes were generated. Scenes were generated using an AMD Ryzen 7 5800X processor
with 16 threads and the average execution time per scene for each ablation is shown in
Table 3.5. Specifically, the average time per scene for generating the baseline data is 221
ms.

For VoteNet, the network architecture, training, and inference steps are the same as
in Qi et al., 2019, except that the networks were trained with a batch size of 12 on a
single GeForce RTX 2080 Ti GPU. FCAF3D is also trained with the same parameters as
in Rukhovich, Vorontsova, and Konushin, 2021, except with a batch size of 4 on a single
GeForce RTX 3080 GPU. Since the data generation method does not generate RGB data,
the RGB data is, instead, filled with the value 0.5. The trained networks are tested with
IoU thresholds of 0.25 and 0.5. The results of all ablations are shown in Table 3.5
Baseline. For the baseline case, all the modules described in Section 3.2 are used to
obtain as realistic images as possible, creating a baseline to which a series of ablations
is applied by changing the mode of individual modules or removing them. Using this

Chapter 3. Generating synthetic 3D indoor scenes 39

Baseline Baseline† Ablation 1 Ablation 2 Ablation 3 Ablation 4 Ablation 5
Noise + + - + + + +

Position + + + - - - +
Context + + + + - - +

Size + + + + + - +
Background + + + + + + -

Time(ms) 221 221 173 249 295 299 209

mAP@0.25
VoteNet 37.0 51.7 25.0 21.9 16.6 4.1 20.7
FCAF3D 42.2 64.3 33.0 23.5 25.4 19.6 27.7

AR@0.25
VoteNet 78.7 86.9 70.6 69.3 77.0 69.9 67.9
FCAF3D 88.0 92.9 79.7 72.6 76.6 71.5 79.1

mAP@0.5
VoteNet 17.9 26.9 8.7 8.6 4.8 0.0 7.1
FCAF3D 27.5 43.0 18.8 13.3 13.8 11.2 15.6

AR@0.5
VoteNet 38.3 47.9 25.2 25.1 27.1 5.6 22.4
FCAF3D 54.9 65.0 42.9 37.6 39.5 36.8 41.1

Table 3.5: Average computation time per scene and mean average preci-
sion scores of each ablation with IoU thresholds 0.25 and 0.5 on the SUN
RGB-D test set. Ablations which use ground truth based modes of the size,
context and position modules are marked with +, while ablations which
use the random modes are marked with -. Ablations are marked with +
or - for the noise modules depending on whether they use them or not.
The background module is marked with + if an ablation uses background
objects and with - if it does not. Baseline† uses the same model as Baseline

but the model is tested on scenes with background objects removed.

baseline method for generating annotated images, mAP@0.25 of 37.0 and 42.2 is achieved
with VoteNet and FCAF3D, respectively. These networks achieve mAP@0.25 of 59.1 and
64.2 when trained with real data. While these results are not as good as the results
achieved with real data, they are still suitable results considering they are achieved using
only synthetic data. This shows that this method can be considered an adequate method
for synthetic data generation.
Ablation 1. With the first ablation, the importance of simulating camera imperfections
is investigated. To generate data for this ablation, no camera noise is added to the gen-
erated depth images. Table 3.5 shows a significant drop in the performance of both
networks with this ablation, from 37.0 to 25.0 mAP@0.25 or 32.4% (VoteNet) and from
42.2 to 33.0 mAP@0.25 or 21.8% (FCAF3D), indicating that the network does not learn
well with point clouds generated using the model of an ideal camera. This is expected
since the networks are trained using perfect data and it is hard for them to perform well
when realistic, noisy data is used as input. Since FCAF3D works with voxels instead of
points, this drop in performance is somewhat smaller for this network.
Ablation 2. This ablation does not use the ground truth object positions from the SUN
RGB-D dataset. The significant reduction of mAP@0.25 from 37.0 to 21.9 or 40.8%
(VoteNet) and from 42.2 to 23.5 or 44.3% (FCAF3D) suggests that object positioning is
very important in complex scenes. For example, if a chair is heavily occluded by a table
and only a small part of the chair is visible, it can still be concluded that this small visi-
ble part is the chair just because it is next to the table, which is a common arrangement
of these objects in real scenes. In the case of VoteNet, it is to be expected that the posi-
tioning is important due to the underlying feature extraction network, PointNet++ (Qi
et al., 2017b). This network generates feature vectors at the highest level of abstraction
by collecting information from nearby object points in the range of 1.2m. Thus, when
two objects are positioned at a greater distance, they provide no context to each other
even though they appear in the same scene.
Ablation 3. The purpose of this ablation is to examine the importance of the context.
Since it makes little sense to use the positioning of the objects without the context, neither
the context nor the object position from the ground truth scenes are used in this ablation.

Chapter 3. Generating synthetic 3D indoor scenes 40

However, the correct size of the objects is used, which is extracted from the ground truth
data as explained in subsection 3.2.1. This ablation results in a decrease in mAP@0.25
from 21.9 to 16.6 or 24.2% for VoteNet. As shown in Figure 3.11, objects of some classes
are rarely present without objects of some other classes and not learning this context
from the training dataset can have a negative impact on the final model when tested on
real data. This performance degradation is significant, but smaller than that resulting
from neglecting object position information (Ablation 2). Interestingly, there is a slight
increase in mAP@0.25 from 23.5 to 25.4 or 8.1% for FCAF3D. This suggests that FCAF3D
relies less on the context of the scene when information about the real object arrangement
is not used.
Ablation 4. The purpose of this ablation is to investigate the importance of the realistic
object size. From the obtained results, it is evident that the correct size plays an important
role for VoteNet. The mAP@0.25 decreases from 16.6 to only 4.1 from Ablation 3 to
Ablation 4, which is a difference of 75.3%. The mAP@0.5 even decreases to 0. The drop
for FCAF3D is smaller, going from 25.4 to 19.6, which is only 22.8% drop, indicating that
this network is not as affected by object size as VoteNet.
Ablation 5. For this ablation, data is generated in the same way as in the baseline case,
but the background classes are not included in the data, so the generated scenes consist
only of the foreground objects. The drops in mAP@0.25 are still high in this case, drop-
ping to 20.7 or 44.1% for VoteNet and to 27.7 or 34.4% for FCAF3D. This indicates that
the presence of background objects in the training data can help with detection of fore-
ground objects as well. This is supported by the fact that, in addition to mAP, average
recall drops in this ablation as well.
Baseline tested without background objects. To test the influence of background ob-
jects, an experiment is conducted in which the point clouds from the test dataset are pro-
cessed by removing all points that were neither within one of the ground truth bounding
boxes of foreground objects nor belonged to the floor. The floor plane was set as the up-
per bound of the lowest 1% of the points, and the points located at most 10 cm above
the floor plane were considered to belong to the floor. The baseline models were tested
with these modified point clouds and they achieved mAP@0.25 of 51.7 for VoteNet and
64.3 for FCAF3D. This is a large increase compared to the tests with the original data,
indicating that the presence of background objects in the test data has a large impact on
detector performance.

The AR@0.25 remains relatively high for most ablations, slightly below 70 for Abla-
tions 2, 4, and 5 for VoteNet and never below 70 for FCAF3D. The relative changes of
mAP@0.5 and AR@0.5 are higher than those of mAP@0.25 and AR@0.25 for all ablations
for VoteNet and for most ablations for FCAF3D, indicating that the object localization
precision achieved by the networks is strongly influenced by the factors considered since
the high IoU threshold requires the model to localize objects much better.

Examples of scenes generated for each ablation are given in Figure 3.12. The origi-
nal scene consists of a table, three chairs, and the background. In the baseline synthetic
scene, the original objects are replaced by randomly selected models of the same class.
The corresponding example for Ablation 1 is the depth image and point cloud of the
same scene as captured by an ideal camera. The example for Ablation 2 consists of ob-
jects of the same classes as the baseline scene, but randomly positioned. In the examples
for Ablation 3 and 4, objects of random classes are placed in the scene. Since these ab-
lations do not use the context of the scene, they only share the extrinsic parameters of
the camera with other ablations. In the example of Ablation 4, the sizes of all objects are
random. For example, a large chair appears next to a small sofa. The Ablation 5 example
has no wall or cabinet in the background like the baseline scene. Depth images of five
more examples are shown in Figure 3.13.

Chapter 3. Generating synthetic 3D indoor scenes 41

Original scene Baseline Ablation 1 Ablation 2

Ablation 3

Depth images

Depth images

Point clouds

Point clouds

Ablation 4 Ablation 5

Figure 3.12: An example of a scene from the SUN RGB-D dataset (Song,
Lichtenberg, and Xiao, 2015) (Original scene) and the scenes generated
from it using the baseline method and the methods obtained by the con-
sidered ablations. The depth image and its corresponding point cloud

with bounding boxes of foreground objects are shown for each scene.

3.3.3 Pretraining with synthetic data

Synthetic datasets are often used for pretraining as a way of improving performance
of a neural network. In this section, the results of pre-training FCAF3D (Rukhovich,
Vorontsova, and Konushin, 2021) on a synthetic dataset generated by the proposed
method and subsequent fine-tuning on real data from the SUN RGB-D dataset (Song,
Lichtenberg, and Xiao, 2015) are reported. FCAF3D trained on real RGB-D data achieved
mAP@0.25 of 64.2 and mAP@0.5 of 48.9. Since the data generation method produces
only depth data, FCAF3D is also trained without the RGB data to better compare the
fine-tuning with regular training. With such training, mAP@0.25 of 62.6 and mAP@0.5
of 46.9 is achieved. Although the results obtained by training FCAF3D with only syn-
thetic images generated by the presented method are not as good as the results of this
network trained with real images, it is shown in this subsection that pretraining this 3D
object detector with synthetic data improves its performance. In addition, this is tested
with different amounts of synthetic scenes and with different amounts of real data. All
variants are trained on synthetic data for 12 epochs without learning rate decay and then
fine-tuned for another 12 epochs with the same parameters as described above. The re-
sults of these experiments are shown in Tables 3.6 and 3.7.

First, consider the case where 20,000 synthetic scenes are generated and all real data is
used for both data generation and fine-tuning. This approach increases the mAP@0.25 by
0.9 and mAP@0.5 by 3.0 compared to training with only the real data. Additionally, using
less real data for both data generation and fine-tuning is examined. When training with
only half of the real data and 20,000 synthetic scenes, the results are only slightly worse
than the baseline, with decreases of 1.8 and 0.4 in mAP@0.25 and mAP@0.5, respectively.
Compared to training with the same real data alone, mAP@0.25 increases by 2.5 and

Chapter 3. Generating synthetic 3D indoor scenes 42

Baseline

Original scene

Ablation 1

Ablation 2

Ablation 3

Ablation 4

Ablation 5

Figure 3.13: A few examples of scenes from the SUN RGB-D dataset (Orig-
inal scene) and the scenes generated from them using the baseline method

and the methods obtained by the considered ablations.

Chapter 3. Generating synthetic 3D indoor scenes 43

real data % # of synthetic scenes bathtub bed bkshf chair desk drser nigtstd sofa table toilet mAP
100% 0 75.8 87.6 31.2 80.6 32.1 36.8 70.7 69.0 51.7 90.8 62.6
100% 20k 78.3 87.3 29.6 82.0 38.4 33.7 69.6 71.5 54.3 90.4 63.5

50% 0 69.2 86.6 26.0 78.8 25.6 29.1 66.3 65.1 48.5 88.0 58.3
50% 2563† 72.1 86.1 26.3 79.3 30.0 30.9 69.7 68.8 49.8 87.8 60.1
50% 20k 70.2 87.3 27.1 80.6 33.5 31.9 70.0 68.6 50.8 87.4 60.8

20% 0 52.0 81.8 19.1 76.3 20.6 14.8 60.9 55.7 44.7 86.6 51.2
20% 4228† 60.4 84.3 21.0 77.8 29.3 19.1 60.1 66.3 46.3 85.2 55.0
20% 20k 56.8 83.8 20.0 78.3 30.1 17.0 58.6 65.5 46.5 83.5 54.0

100% 10k 79.8 87.6 31.1 80.9 34.5 32.4 70.3 72.2 53.3 92.2 63.4
100% 50k 79.1 88.1 31.2 82.3 38.3 39.0 72.8 71.6 54.5 90.6 64.8

Table 3.6: Per-class mAP@0.25 on the SUN RGB-D test set with FCAF3D
(Rukhovich, Vorontsova, and Konushin, 2021) with different amounts of
real and synthetic data. Values denoted by † are chosen to make the total
number of scenes used for training equal to the total number of scenes

present in the real training dataset.

real data % # of synthetic scenes bathtub bed bkshf chair desk drser nigtstd sofa table toilet mAP
100% 0 59.0 69.5 10.8 67.2 12.0 29.3 58.9 56.4 33.9 72.0 46.9
100% 20k 66.5 69.8 13.0 69.3 19.9 25.8 58.8 62.3 36.8 76.7 49.9

50% 0 45.9 65.6 5.9 64.4 8.1 19.8 54.1 49.9 28.5 68.0 41.0
50% 2563† 56.6 66.1 8.5 66.0 11.8 24.3 57.0 56.2 30.9 73.0 45.0
50% 20k 55.8 69.8 11.3 67.9 15.1 24.4 57.6 58.5 31.9 72.8 46.5

20% 0 21.7 58.0 3.3 60.0 4.6 6.4 48.3 38.8 22.6 61.5 32.5
20% 4228† 40.5 66.5 8.8 62.8 11.5 13.5 49.0 54.3 28.1 69.2 40.4
20% 20k 38.1 66.7 9.0 64.7 13.5 13.1 46.7 55.8 29.6 67.3 40.4

100% 10k 67.2 72.9 12.8 68.4 17.0 23.2 59.7 61.9 35.7 73.0 49.2
100% 50k 71.7 72.2 14.0 70.2 19.3 30.3 61.3 60.9 36.9 77.0 51.4

Table 3.7: Per-class mAP@0.50 on the SUN RGB-D test set with FCAF3D
(Rukhovich, Vorontsova, and Konushin, 2021) with different amounts of
real and synthetic data. Values denoted by † are chosen to make the total
number of scenes used for training equal to the total number of scenes

present in the real training dataset.

mAP@0.5 by 5.5.
A synthetic dataset containing only 2,563 scenes was also prepared, so that the total

number of scenes equals the total number of scenes in the original real training set. As
expected, the results of this experiment are intermediate between the results obtained
using only real data and using 20,000 synthetic images for pretraining. When only 20%
of the real data is used for generation and fine-tuning, the results are significantly worse:
mAP@0.25 drops from 63.5 to 54.0 and mAP@0.5 drops from 49.9 to 40.4. Despite this
significant drop in performance, the results are much better than when training with
only 20% of the real data. In comparison, mAP@0.25 increases by 2.8 and mAP@0.5 by
7.9, which equates to a 19.6% improvement.

Similar to the experiments with 50% of the real data, 4,228 synthetic scenes were
used for pretraining, bringing the total number of scenes to the number in the original
real training set. However, in this experiment, the results are similar to those obtained
using 20,000 synthetic images for pretraining. This suggests that using large amounts of
synthetic data is not particularly useful when very small amounts of real data are used,
and that smaller amounts of synthetic data may be sufficient to achieve similar results.

In addition, the network is pretrained with different amounts of synthetic data before
fine-tuning on real data. Pretraining on 10,000 synthetic scenes results in slightly worse
outcomes than pretraining on 20,000 synthetic scenes but still outperforms the baseline
trained only on real data. Pretraining on 50,000 synthetic scenes results in mAP@0.25 of
64.8 and mAP@0.5 of 51.4, both of which are higher than the results obtained when the
network is trained on real RGB-D data only.

Chapter 3. Generating synthetic 3D indoor scenes 44

3.4 Conclusion

This chapter provides insight into the process of generating synthetic data and the dif-
ferent factors involved. For this purpose, a modular method for generating single-view
synthetic depth images of indoor scenes was developed. The modular architecture of
the method allows data to be generated for a specific purpose and enables good analy-
sis of the importance of the following five factors in generating synthetic data: camera
noise, presence of background objects, positioning of objects, context of scenes, and ob-
ject sizes. Through experiments, the importance of these factors is analysed. Although
the object detector trained with only synthetic data does not perform as well as the one
trained with real data, it’s shown that pre-training with synthetic data and then fine-
tuning with real data improves the performance of the network. The method presented
in this chapter has been published in Džijan et al., 2023.

This work serves as a good starting point for further research into synthetic 3D data
generation and what areas to focus on when designing methods for synthetic data gen-
eration. One future research option is to investigate the improvement of object detection
performance by introducing more realistic backgrounds and clutter in synthetic scenes,
e.g. small objects on tables, shelves, and other flat surfaces. Another option would be
to investigate other factors in the generation of synthetic data, e.g., simulating differ-
ent reflectance properties of object surfaces and adding texture to objects. Furthermore,
since the research in 3D object detection is moving toward using coloured point clouds,
it would be worth exploring generating RGB data together with the depth which would
add even more complexity to the whole process.

45

4 Furniture opening classification

Once objects have been detected in a scene, a robot can have a clearer understanding
of the scene and may interact with the detected object. Another important ability of a
service robot designed for use in indoor environments is the ability to open doors and
other openable objects. This ability enables the robot to perform many tasks such as
reaching behind closed doors or opening drawers to access the contents inside them.

Traditionally, cabinets and drawers are opened by grabbing and pulling the handle
that is attached to the front of this furniture. Therefore, there are various algorithms
which have been developed for handle detection and grasping. However, in modern en-
vironments, it has become increasingly common to see cabinet and drawer doors with-
out visible handles on their outer surface. These types of doors are usually opened by
pressing on the outer surface near a spring mechanism located inside the door, as shown
in Figure 4.1b. When this spring, shown in Figure 4.1a, is pressed, it stretches and pushes
the door from the inside, allowing it to be opened. This mechanism is often called the
push latch mechanism. On the other hand, there are also cabinet doors that are opened
by grasping the edges of the front surface of the door, as shown in Figure 4.1c, which are
referred to in this paper as hidden handle doors.

As the current methods deal with doors and drawers with visible handles suitable for
grasping, it is important to develop methods which deal with these other types of open-
ing types. This chapter focuses on the first step in this process, which is the classification
of the opening type. One of the challenges we identified when attempting to classify the
opening type of these doors is that when the regular handle is not present on the door
surface, it can be difficult to determine the correct method for opening the door. In some
cases, doors with hidden handles may resemble those with a push mechanism, making
it difficult to distinguish between the two. However, when a human opens a door with
a push mechanism, they typically press the door surface with their spread palm. On
the other hand, when a human opens a door with a hidden handle, their fingers usually
bend to grip the edge of the surface.

To tackle this issue, methods based on human demonstration were developed. To
test the developed approach, a new dataset needed to created which would feature an-
notated images of such furniture. The dataset (Šimundić et al., 2023) consists of RGB-D
images of various cabinets and drawers in their natural environments. It is described in

(a) A push mechanism (b) An example of opening of
the push mechanism door

(c) An example of opening of the
door with hidden handle

Figure 4.1: Opening doors without handles

Chapter 4. Furniture opening classification 46

detail in Section 4.1.
The proposed methods use both the information available just from an image of an

object and information available from an image of a human demonstrating the approach
to opening of the object. It is described in detail in Section 4.2. Section 4.3 covers the
experiments which were conducted in order to test the effectiveness of the proposed
methods. The experiments show the importance of utilizing human demonstration for
this task.

4.1 Dataset

For this task, a new dataset was created called HoDoor (Hands on Door) dataset
(Šimundić et al., 2023). The dataset consists of RGB-D images of annotated doors, draw-
ers, cabinet doors and closet doors of various opening types. The resolution of the im-
ages in the dataset is 640×480 pixels and the RGB and depth images are aligned. While
the method presented in this chapter utilizes only the RGB data, the dataset also con-
tains depth data making it suitable for evaluating methods which require depth data as
well. Intrinsic camera parameters are included in the dataset. Some examples of various
furniture found in this dataset are shown in Figure 4.2.

The dataset consists of three classes that differ in the way they are operated: push,
pull, and handle. The push class describes doors without regular handles that need to be
pressed on the front surface to open, while the pull class describes doors without regular
handles that have some sort of indentation on one of the sides that provides space for
fingers to grab and open the door. The pull class is also referred to as the hidden handle
class. In contrast to the other two classes, the handle class represents ordinary doors
with a regular handle on the front. The object instances are also divided into 4 categories
of objects that can be opened: cabinet, closet, door and drawer. All of the objects were
captured from one or more viewpoints.

The number of viewpoints is not the same for each object, as is the pose with respect
to the camera. Poses of the camera between different viewpoints are not included in the
dataset. For each viewpoint of the object, several images are captured. The first image
represents the baseline image of the object where it is not occluded by a human hand.
The other images were taken from the same viewpoint but with a hand grasping several
different interaction spots of the object. Interaction spots refer to spots on an object where
the object can be opened. These can be a regular handle on the door, edges of the front
surface of the door, or a part of the outer surface around which the push mechanism is
located inside the door. The method of capturing the images with hands consisted of
a person naturally touching or holding the interaction spots at various locations on the
object, trying to occlude the object as little as possible while still maintaining the natural
opening approach.

Each image is annotated with a 2D bounding box of the object of interest. These
objects are near the center of the images. The bounding boxes are referred to as Regions
of Interest (RoIs). Figure 4.3 shows some examples of the annotations. The top row in
the figure contains the baseline images with the corresponding bounding boxes, while
the bottom row contains images taken from the same angle but with a hand placed on
interaction spots.

Figure 4.4 shows several examples of the images in the dataset described. The figure
is divided into three parts, each containing an object from the three classes described
above. For each class, two viewpoints of the object are shown in separate rows. The first
image in the row is the baseline image, while the other images contain hands placed on
the interaction spots. Since this is a real-world dataset, the images were taken at multiple

Chapter 4. Furniture opening classification 47

Figure 4.2: Examples of various furniture found in the HoDoor dataset
(Šimundić et al., 2023).

Chapter 4. Furniture opening classification 48

Figure 4.3: Sample images with annotations of the door of the object. Top
row: images without human demonstration; Bottom row: corresponding
images with human demonstration. The images in the bottom row were

captured from the same angle as the top row.

Push Pull Handle All
Instances 43 104 77 224
Viewpoints 72 186 151 409

Images 489 1311 771 2571

Table 4.1: Distribution of object instances, viewpoints and images per
class.

locations, and their scenes vary in complexity. This scene complexity varies depending
on the number of objects in the image, clutter, and occlusion.

4.1.1 Statistics

The dataset consists of a total of 2571 images representing 409 viewpoints with 224 differ-
ent object instances. A comparison of the number of instances, viewpoints, and images
per class is shown in Table 4.1. The push class had the least amount of data collected
because it is less common in households compared to the other two classes. The largest
amount of data was collected for the pull class, as handleless kitchen objects that can be
opened by pulling on one of the sides are widely used today.

The distribution of object instances among categories can be seen in Figure 4.5. Of
the total 224 object instances, 109 instances are in the cabinet category, 101 in the drawer
category, 13 in the closet category, while the door category, which includes ordinary
doors, has 1 instance. The closet and door categories have a small number of instances
because there are not many instances that belong to the push or pull classes.

In Table 4.2, a distribution of the number of viewpoints across the three classes is
shown. The objects are mostly captured from 2 viewpoints, as this covers most of the
object’s environment, giving it enough context. If an object is placed in an area where
it will be partially obscured or difficult to reach at most desired recording angles, that
object is only captured from one angle. Objects were rarely captured from three angles,
mainly because the third angle does not provide much new information about the object
and the environment is very similar to the other viewpoints.

Figure 4.6 shows the distribution of the number of images with the baseline image
and the images with hands in the viewpoints per class and overall. While there is one
viewpoint with 20 images in the pull class, most viewpoints in all classes have 5 to 8
images, which are sufficient to describe how to open the respective doors with the pose
of the hand. The handle class has a lower median number of images in the viewpoints

Chapter 4. Furniture opening classification 49

pu
ll

pu
sh

ha
nd
le

Figure 4.4: Sample images from the HoDoor dataset representing the three
types of handling considered. Left: Baseline images of the same object
captured from different angles. Right: images with a human demonstrat-

ing the type of opening.

XXXXXXXXXXXViewpoints
Class

Push Pull Handle

1 14 24 5
2 29 78 70
3 0 2 2

Table 4.2: Distribution of viewpoints across classes.

Chapter 4. Furniture opening classification 50

Figure 4.5: Distribution of object instances per category.

since the area of the handle is usually smaller than the area covered by interaction spots
of other classes. This limits the number of possible hand poses on the handle.

4.1.2 Partitions

While there are 224 object instances in the dataset, there are a lot of sets of objects of
interest which are actually parts of the same piece of furniture. For example, multiple
doors and drawers might belong to the same cabinet. This makes it difficult to simply
partition the dataset into train, validation, and test sets. If done randomly, similar objects
could end up in different partitions, leading to a classifier that is not properly evaluated
due to the overlap between the sets. To ensure meaningful evaluation, it is crucial to
partition the dataset in a way that keeps related object parts within the same partition.
Some objects are grouped as parts of the same piece of furniture even though they are not
because they are part of the same kitchen or furniture set. Additionally, there are many
similar objects, specifically, there are a lot of white kitchens and white cabinets in the
dataset. For these reasons, the dataset is partitioned manually to ensure each partition is
as diverse as possible, making sure that the test partition is representative of real-world
data.

The dataset is divided into 45 different large objects which have various numbers of
objects of interests, viewpoints, and images in total. The distribution of number of ob-
jects of interest per piece of furniture per class is shown in Figure 4.7. While some pieces
of furniture have only a single object of interest, most have multiple, with the high-
est number being 20. After partitioning, the training set consists of 25 of these pieces

Chapter 4. Furniture opening classification 51

Figure 4.6: Distribution of images in the viewpoints per class and overall.

of furniture, the validation set consists of 9, and the test set consists of 11. The num-
ber of object instances, viewpoints, and images for each partition is shown in Table 4.3,
which also displays the distribution of viewpoints and images for each class. Note that
the number of images without human demonstration equals the number of viewpoints,
while the shown number of images represents those with human demonstration.

4.2 Method

In this chapter, four methods of furniture opening classification are presented. Even
though the dataset consists of RGB and depth data, only the RGB data is utilized for
these methods. As previously mentioned, three types of handling are considered: reg-
ular handles (handle), hidden handles (pull), and push mechanisms (push). The goal is
to classify regions of RGB images representing doors or drawers into one of these cat-
egories. As stated earlier, two sets of images are available: those with a human hand
demonstrating the opening type and those without. Before an object can be classified,
it first needs to be selected. This can be done by manually selecting a Region of Interest
(RoI) or by utilizing an object detection network to detect the RoI which contains the
object which needs to be classified.

Four methods of classification are proposed in this chapter. One method which uses
only an image without human demonstration as input, one method which uses only an
image with human demonstration as input, and two methods which use both images as
input. The first two methods serve as baselines to check how well can classifiers perform
with just one type of data. As the objects of the push and pull classes are very visually
similar, it is expected that the first method might have issues differentiating those two
classes. On the other hand, the second method might have issues differentiating objects

Chapter 4. Furniture opening classification 52

Figure 4.7: Distribution of objects of interest per piece of furniture per
class.

partition
train validation test all

in
st

an
ce

s push 30 (73.17%) 4 (9.76%) 9 (21.95%) 41
pull 72 (69.23%) 11 (10.58%) 21 (20.19%) 104

handle 56 (72.73%) 7 (9.09%) 14 (18.18%) 77
all 158 (70.54%) 22 (9.82%) 44 (19.64%) 224

vi
ew

po
in

ts push 50 (69.44%) 7 (9.72%) 15 (20.83%) 72
pull 128 (68.82%) 18 (9.68%) 40 (21.51%) 186

handle 108 (71.52%) 15 (9.93%) 28 (18.54%) 151
all 286 (69.93%) 40 (9.78%) 83 (20.29%) 409

im
ag

es

push 272 (65.23%) 47 (11.27%) 98 (23.5%) 417
pull 816 (72.53%) 81 (7.2%) 228 (20.27%) 1125

handle 417 (70.68%) 61 (10.34%) 112 (18.98%) 590
all 1535 (71.0%) 189 (8.74%) 438 (20.26%) 2162

Table 4.3: Distribution of instances, viewpoints, and images with human
demonstration for all partitions. The percentages shown in parentheses
represent are relative to the all column. For example, 50 (69.44%) in the

7th row and 2nd column means that 69.44% of all viewpoints of the push
class are in the train partition.

Chapter 4. Furniture opening classification 53

of the pull and handle classes since the human approach to opening of these types of ob-
jects can be similar. The latter two methods combine the information from both types of
data. The input RoIs are optionally squarified before being used as inputs to the networks
to reduce distortion, as explained in the following section.

4.2.1 Squarification

Since the RoIs can have very different width-to-height ratios, it can be useful to first
squarify the RoIs to decrease the distortion of the input for the classification networks.
Given a minimum size of a RoI dimmin and the input ROI’s width and height, a new
dimension w is determined by selecting the largest among width, height and dimmin,
and increasing it by a given percentage dimincrease. The RoI is increased as to capture
more context which can be useful for classifier networks. More context might also be
needed for better hand detection. Given the center of the original RoI and w, a new RoI
is determined using w both as its width and height. This RoI is then cropped to the sides
of the image. Since the RoI is cropped to the image, that ROI may still not be a square
but will be close to a square and the distortion as a result of resizing will be decreased.
In addition to this, due to the increase of the RoI, this process can provide additional
context for the classifier. A few examples of squarification are shown in Figure 4.8.

0.0 0.2 0.5 0.8 1.0

example 1

example 2

dimincrease

Figure 4.8: Examples of squarification with different values of dimincrease.
The ground truth bounding boxes are shown in magenta, while the squar-

ified bounding boxes are shown in blue.

4.2.2 Classification

The following four methods of classification are proposed. The first method, referred to
as methodRGB, is a standard classifier based on CNN which takes an image without hu-
man demonstration as input and outputs one of the three classes. The second method,
methodheatmaps, uses a hand pose detection network to detect the hand present on the im-
age with human demonstration. This network outputs heatmaps, sometimes referred to
as belief maps or confidence maps in the literature, for hand keypoints. The proposed
method uses OpenPose (Cao et al., 2019) for hand pose detection. This network outputs
22 heatmaps. The first 21 heatmaps are used for the 21 keypoints of a hand (pictured in
Figure 4.9), where the peak of each heatmap predicts the position of the corresponding
keypoint. The 22nd heatmap is a belief map for the background. Belief maps for the
background refer to the probability maps that indicate the likelihood of each pixel be-
longing to the background rather than to a hand. An example of a well predicted and
an example of a poorly predicted hand pose and a few of the corresponding heatmaps
are shown in Figure 4.10. These heatmaps are then fed to a CNN classifier to obtain the
handling type. This network for hand pose detection is used instead of just using the

Chapter 4. Furniture opening classification 54

Figure 4.9: The 21 keypoints of a hand (Simon et al., 2017).

RGB data as input for the classifier because the available dataset is not very large and
there are only a few different hands demonstrating the opening type. On the other hand,
a network trained on a large dataset of hand poses should be more robust to images
with different types of hands, environments, and conditions, thus making the proposed
method more robust as well.

The last two methods combine the aforementioned methods. The third method,
dubbed HoDoorNet (Figure 4.11), uses the feature extractors used for the first two meth-
ods, concatenates the features they output and classifies the set of images. As input this
method, thus, requires both an image without human demonstration and the heatmaps
for hand keypoints extracted from the image with human demonstration. The fourth
method, referred to as methodhierarchical (Figure 4.12), utilizes the fact that the handle can
be easily detected on images without human demonstration so it can be expected that
a classifier network would be able to differentiate between cabinets with handles and
those without. This is confirmed by the conducted experiments. Furthermore, it is also
very hard to differentiate between objects of pull and push classes based solely on the
image of the object. However, the hand gestures used for opening these two types of
objects are very different. Motivated by these assumptions, a hierarchical classifier is
proposed. For this method, a binary classifier is first used to determine if an object has
a handle or not. This classifier uses only the image without human demonstration as
input. If the object does not have a handle, another binary classifier is then used to de-
termine if the handleless object is of the push or pull class. This classifier, on the other
hand, uses only the heatmaps for hand keypoints as input.

Chapter 4. Furniture opening classification 55

detected
hand pose

heatmap 20 heatmap 21 heatmap 22

(a)

(b)

Figure 4.10: Two examples of results from hand pose detection using
OpenPose. In (a) a well predicted hand pose is shown, while in (b) a
poorly predicted hand pose is shown. When the predictions are good, the

heatmaps 1-21 have well defined keypoints.

Hand pose
detection network

Concatenated
feature vector⧺ Class

RGB
feature extractor

Heatmaps
feature extractor

Figure 4.11: Scheme of the HoDoorNet method of classification. The top
feature extractor accepts a regular RGB image without human demonstra-
tion as input, while the bottom feature extractor accepts the predicted
heatmaps of hand keypoints as input. These features are then concate-
nated and ran through a fully connected layer to obtain the object class.

Chapter 4. Furniture opening classification 56

Hand pose
detection network

Classifier network

Classifier network

Handle/Other

Push/Pull

Other

Figure 4.12: Scheme of the methodhierarchical . The top classifier extractor
accepts an RGB image without human demonstration as input and out-
puts whether the RoI is of the handle class or not. If the region is deter-
mined not to be of the handle class, the bottom classifier uses the predicted
heatmaps of hand keypoints as input and outputs whether the object is of

push or pull class

4.3 Experiments

To test the effectiveness of the proposed methods, several experiments are conducted.
For all the experiments, preprocessing described in Section 4.3.1 is used. Networks are
trained, validated, and tested on partitions described in Section 4.1.2. Further experi-
ments are conducted to test the consistency of the proposed methods which is described
in Section 4.3.5. Finally, experiments with an object detector network are conducted. The
results of these are shown in Section 4.3.6.

4.3.1 Preprocessing

As previously described, the dataset is arranged into scenes containing images of the
same furniture. The dataset is split into training, validation, and test sets such that no
images of the same furniture are put into different partitions, as described in Section
4.1.2.

Each region of interest, regardless if it is with human demonstration or without, is
first optionally squarified as described in Section 4.2.1. In the case of images with human
demonstration, these RoIs are then fed to OpenPose (Cao et al., 2019; Simon et al., 2017)1.

1Instead of the code provided by the authors, the following pytorch implementation of the network is
used: https://github.com/Hzzone/pytorch-openpose, accessed on 24 January 2023

Chapter 4. Furniture opening classification 57

The network outputs 22 heatmaps of size 92 × N, where N depends on the original as-
pect ratio of the input RoI. The heatmaps are then resized to the size 92 × 92. Exactly
because of this step the ROIs are squarified, so as to prevent high levels of distortion in
the heatmaps. Additionally, the heatmaps are augmented for training to reduce overfit-
ting. The following transformations are used with the probability of each of 0.5:

• translation with maximum factor of 0.05,

• scaling with maximum factor of 0.15, and

• rotation with maximum angle of 25◦.

The regions without human demonstration are preprocessed similarly. They are first
rescaled to size 128 × 128 instead of 92 × 92. For training, the following transformations
are used:

• translation with maximum factor of 0.05,

• scaling with maximum factor of 0.05,

• rotation with maximum angle of 15◦,

• color shift with maximum value change of 15 for each color,

• brightness change with maximum factor of 0.2, and

• contrast change with maximum factor of 0.2.

The probability for each of these transformations is set to 0.5. Additionally, the input
ROIs are normalized with mean and standard deviation of ImageNet (Deng et al., 2009)
both for training and evaluation.

4.3.2 Experimental setup

For all four aforementioned methods, different combinations of squarification parame-
ters and feature extractor networks are used. For squarification, dimmin is set to 50, and
dimincrease is from the set 0.0, 0.2, 0.5, 0.8, 1.0. Additionally, using only the original RoI
without squarification is also one of the setups 2. This results in 6 total setups for RoI
preprocessing. This value for dimmin is selected to ensure that the hand is visible and
can be detected in the picture. The dimincrease is there to give more context for hand pose
detection. For feature extraction, 4 different ResNet (He et al., 2016) structures are used:
ResNet18, ResNet34, ResNet50, and ResNet152.

Each network is trained for 100 epochs with batch size of 32. The networks are
trained using the Adam optimizer with learning rate equal to 10−4 and L2 regulariza-
tion with λ = 10−4. They are trained on a single RTX 3080 GPU. The checkpoint with
the highest F1 value on the validation set is chosen as the best one and used for evalua-
tion on the test set.

For HoDoorNet, the feature extractors from the trained methodRGB and methodheatmaps
are used. The last layer of each of the networks is removed and the final linear layer is
added. The network is then trained for another 100 epochs as described above.

The binary networks which are part of the hierarchical classifier are trained sepa-
rately. The first network uses the whole training dataset and classifies the regions into
two categories, handle and no-handle. The second network uses only the subset of the
dataset which contains regions of the push and pull categories.

2This is denoted as none in the following tables

Chapter 4. Furniture opening classification 58

4.3.3 Validation

All the networks are evaluated on the validation dataset to obtain the best models for
further evaluation on the test dataset. The results of all 24 combinations of network
architectures and RoI preprocessing setups for methodRGB and methodheatmaps on the val-
idation set are shown in Tables 4.4 and 4.5, respectively. The tables show the F1 scores in
percentage on the validation set. It can be seen that the methodRGB works best when there
is no RoI preprocessing, i.e. when the original region of interest is used as input, with-
out squarification. On the other hand methodheatmaps works better with higher values of
dimincrease and does not work very well when there is no RoI preprocessing. This is most
likely due to the fact that the demonstrating hand is often not entirely inside the original
RoI and more context is needed for the hand detection network to detect the hand well.
It can be seen that the methodRGB performs slightly better with the best model having F1
score of 84.98%, while the best methodheatmaps model has 80.90% F1 score. methodRGB re-
sults are also more consistent across the different combinations of network architecture
and RoI preprocessing setups.

`````````````̀network
dimincrease none 0.0 0.2 0.5 0.8 1.0

resnet18 83.91 80.89 69.45 76.10 72.04 73.92
resnet34 81.90 77.37 63.36 63.52 69.07 72.46
resnet50 84.98 78.86 74.99 77.32 75.37 75.70

resnet152 80.77 79.95 75.65 75.70 76.60 69.51

Table 4.4: F1 score in percentage on the validation set with different
combinations of network architecture and dimincrease parameter using the

methodRGB.

`````````````̀network
dimincrease none 0.0 0.2 0.5 0.8 1.0

resnet18 59.90 67.04 76.99 79.15 80.00 76.70
resnet34 59.01 68.79 77.67 79.50 79.11 80.90
resnet50 65.18 68.51 77.07 77.18 78.92 77.52

resnet152 57.25 71.74 76.97 76.28 77.93 77.41

Table 4.5: F1 score in percentage on the validation set with different
combinations of network architecture and dimincrease parameter using

methodheatmaps.

The best 3 models of each method are shown in bold. The feature extractors of these
models are chosen for HoDoorNet. All 9 combinations of these feature extractors are
used for training HoDoorNet and the results on the validation set are shown in Table 4.6.
The results are much better using this method, reaching 96.20% F1 score. This suggests
that using the combination of the data without human demonstration and the data with
human demonstration greatly improves the performance of a classifier.

Chapter 4. Furniture opening classification 59

XXXXXXXXXXXRGB
heatmaps

resnet18 @ 0.8 resnet34 @ 0.5 resnet34 @ 1.0

resnet18 @ none 92.65 89.46 92.65
resnet34 @ none 93.17 93.95 96.20
resnet50 @ none 96.10 91.31 94.26

Table 4.6: F1 score in percentage on the validation set with different
combinations of network architectures and dimincrease parameter for the

feature extractors of HoDoorNet. The combinations are denoted as
network @ dimincrease. Different combinations for the feature extractor
from images without human demonstration (RGB) are shown in rows
while the feature extractors from images with human demonstration

(heatmaps) are shown in columns.

Table 4.7 shows the results of the binary classifier differentiating between RoIs with
handles and those without on the whole validation dataset. Most configurations have
the perfect accuracy on the validation dataset, indicating that the network can easily rec-
ognize which RoIs contain handles and which don’t. Table 4.8, on the other hand, shows
the results of the binary classifier differentiating between the push and pull classes on a
subset of the validation dataset. These networks are evaluated only on the RoIs of the
push and pull classes. While these networks do not reach perfect scores, they still have
really high accuracies, the best one having 96.88% accuracy.

`````````````̀network
dimincrease none 0.0 0.2 0.5 0.8 1.0

resnet18 100.0 100.0 100.0 100.0 97.88 93.12
resnet34 100.0 100.0 100.0 96.3 96.83 96.3
resnet50 97.88 100.0 100.0 100.0 100.0 100.0

resnet152 97.35 100.0 100.0 100.0 100.0 96.83

Table 4.7: Accuracy in percentage on the validation set with different
combinations of network architecture and dimincrease parameter using

only the image without human demonstration. The images are
categorizes into handle and no-handle categories.

`````````````̀network
dimincrease none 0.0 0.2 0.5 0.8 1.0

resnet18 80.47 82.03 93.75 93.75 92.97 95.31
resnet34 78.12 87.5 92.97 96.09 93.75 96.88
resnet50 78.12 85.16 93.75 93.75 91.41 93.75

resnet152 75.78 90.62 94.53 92.97 95.31 94.53

Table 4.8: Accuracy in percentage on the validation set with different
combinations of network architecture and dimincrease parameter using
only the image with human demonstration. Only the images without

handles are used and they are categorizes into push and pull categories.

The best 3 binary classifiers for both handle/no-handle and push/pull classification
are chosen for the hierarchical classifier. Since there are many models which have 100%
accuracy for handle/no-handle classification, the models with the fewest parameters are
chosen, i.e. ResNet18. Since there are 4 ResNet18 models which have 100% accuracy, 3
are chosen arbitrarily. All 9 combinations of the hierarchical classifier are then evaluated

Chapter 4. Furniture opening classification 60

on the validation dataset and the results are shown in Table 4.9. Since all 3 models of the
first classifier work perfectly on the validation dataset, the results only differ depending
on the second classifier performance. The best of these classifiers reached F1 score of
97.76%, which is slightly better than the best HoDoorNet result on the validation dataset.

XXXXXXXXXXXRGB
heatmaps

resnet18 @ 1.0 resnet34 @ 0.5 resnet34 @ 1.0

resnet18 @ none 96.76 97.19 97.76
resnet18 @ 0.0 96.76 97.19 97.76
resnet18 @ 0.5 96.76 97.19 97.76

Table 4.9: F1 score in percentage on the validation set with different
combinations of network architecture and dimincrease parameter for the

binary classifiers of the hierarchical model. The combinations are
denoted as network @ dimincrease. Different combinations for the binary
classifier on images without human demonstration (RGB) are shown in
rows while the binary classifiers on images with human demonstration

(heatmaps) are shown in columns.

4.3.4 Testing

The best three models of each methodRGB and methodheatmaps are chosen to be evaluated
on the test dataset. Furthermore, all 9 aforementioned models of HoDoorNet and all
9 combinations of the hierarchical classifier are also evaluated on the test dataset. The
results are shown in Table 4.10. This table shows the accuracy, average precision for all
classes and per-class precision for each class, average recall for all classes and per-class
recall for each class, and the F1 score.

Table 4.10: Results of various methods on the test dataset. The table shows the accuracy,
average precision on the whole dataset followed by precision for each class,
average recall on the whole dataset and for each class separately, and the F1
score. The configurations for HoDoorNet and methodhierarchical are shown as
follow <RGB feature extractor ResNet>-<heatmaps feature extractor ResNet>
@ <RGB dimincrease> & <heatmaps dimincrease>. e.g. 18-34 @ none & 0.5 means
that the feature extractor for the image without human demonstration is
ResNet18 and there is no RoI preprocessing, while the feature extractor for
the RoI with human demonstration is ResNet34 and RoI is squarified with
dimincrease = 0.5.

methodRGB

resnet18 @ none 60.24 48.61 12.5 60.00 73.33 50.91 6.67 67.50 78.57 49.74

resnet34 @ none 68.67 54.86 20.0 67.44 77.14 58.53 6.67 72.50 96.43 56.64

resnet50 @ none 63.86 51.19 12.5 65.22 75.86 53.41 6.67 75.00 78.57 52.28

methodheatmaps

resnet18 @ 0.8 66.21 64.63 74.53 67.61 51.76 64.38 80.61 73.25 39.29 64.51

resnet34 @ 0.5 66.67 66.56 76.74 69.49 53.45 64.88 67.35 71.93 55.36 65.71

resnet34 @ 1.0 71.46 73.56 89.16 68.29 63.24 66.62 75.51 85.96 38.39 69.92

network acc prec push pull handle rec push pull handle F1

Continued on next page

Chapter 4. Furniture opening classification 61

Table 4.10: Results of various methods on the test dataset. The table shows the accuracy,
average precision on the whole dataset followed by precision for each class,
average recall on the whole dataset and for each class separately, and the F1
score. The configurations for HoDoorNet and methodhierarchical are shown as
follow <RGB feature extractor ResNet>-<heatmaps feature extractor ResNet>
@ <RGB dimincrease> & <heatmaps dimincrease>. e.g. 18-34 @ none & 0.5 means
that the feature extractor for the image without human demonstration is
ResNet18 and there is no RoI preprocessing, while the feature extractor for
the RoI with human demonstration is ResNet34 and RoI is squarified with
dimincrease = 0.5. (Continued)

HoDoorNet

18-18 @ none & 0.8 70.09 71.52 66.04 66.90 81.63 63.78 35.71 84.21 71.43 67.43

18-34 @ none & 0.5 73.52 74.98 70.37 71.64 82.93 68.43 58.16 86.40 60.71 71.55

18-34 @ none & 1.0 84.93 84.97 77.42 84.10 93.40 83.34 73.47 88.16 88.39 84.15

34-18 @ none & 0.8 72.83 75.10 86.76 75.70 62.82 72.92 60.20 71.05 87.50 73.99

34-34 @ none & 0.5 77.40 77.82 81.43 78.92 73.10 76.67 58.16 77.19 94.64 77.24

34-34 @ none & 1.0 70.32 71.01 79.52 71.43 62.10 69.49 67.35 72.37 68.75 70.24

50-18 @ none & 0.8 74.66 75.00 63.64 71.58 89.80 67.92 35.71 89.47 78.57 71.29

50-34 @ none & 0.5 69.86 73.43 77.55 66.44 76.29 63.31 38.78 85.09 66.07 67.99

50-34 @ none & 1.0 68.72 69.50 69.64 67.29 71.55 64.14 39.80 78.51 74.11 66.71

methodhierarchical

18-18 @ none & 1.0 79.45 79.82 79.82 78.75 80.90 78.65 88.78 82.89 64.29 79.23

18-34 @ none & 0.5 76.94 77.67 76.34 75.78 80.90 73.94 72.45 85.09 64.29 75.76

18-34 @ none & 1.0 78.08 81.16 88.31 74.26 80.90 74.09 69.39 88.60 64.29 77.46

18-18 @ 0.0 & 1.0 76.03 77.48 84.47 88.20 59.77 81.30 88.78 62.28 92.86 79.35

18-34 @ 0.0 & 0.5 72.83 74.41 82.56 80.90 59.77 76.15 72.45 63.16 92.86 75.27

18-34 @ 0.0 & 1.0 74.20 77.68 93.15 80.10 59.77 76.45 69.39 67.11 92.86 77.06

18-18 @ 0.5 & 1.0 74.66 74.21 82.22 80.56 59.85 74.12 75.51 76.32 70.54 74.16

18-34 @ 0.5 & 0.5 71.92 70.98 75.31 77.78 59.85 69.84 62.24 76.75 70.54 70.41

18-34 @ 0.5 & 1.0 73.52 75.66 90.77 76.35 59.85 70.48 60.20 80.70 70.54 72.98

network acc prec push pull handle rec push pull handle F1

As was expected, the results of methodRGB and methodheatmaps are worse than those
of the other two methods across different metrics. methodRGB performs well on pull and
handle classes but both recall and precision on the push class are really bad. This is due
to the fact that the networks often confuse RoIs of push and pull class which look very
similar without the help of human demonstrator. This can be seen in Figure 4.13 which
shows the confusion matrix of the ResNet34 model. The network is good at predicting
the handle class but often confuses the other two classes, rarely classifying anything
as the push class. On the other hand, methodheatmaps performs better on the push and
pull classes, but not as well on the handle class. It still performs better on the handle
class than the methodRGB does on the push class. The confusion matrix of ResNet34 with
dimincrease = 1.0 is shown in Figure 4.14. This method also overpredicts the pull class,
but it also underpredicts the handle class, unlike the previous method. Exactly because

Chapter 4. Furniture opening classification 62

each method performs poorly on one of the classes and not on the same one, the other
two methods, HoDoorNet and methodhierarchical , are needed.

Figure 4.13: Confusion matrix on the test dataset of the methodRGB
ResNet34 model.

Figure 4.14: Confusion matrix on the test dataset of the methodheatmaps
ResNet34 model with dimincrease = 1.0.

With almost all configurations, HoDoorNet outperforms the previous two meth-
ods. The results are volatile and sometimes worse than those of the methodheatmaps.
However, one of the configurations, where the feature extractor for the image without
human demonstration is ResNet18 and there is no squarification, and the feature ex-
tractor for the image with human demonstration is ResNet34 with squarification with
dimincrease = 1.0, obtains the best results of all methods on the test dataset with F1 score
of 84.15%. The high volatility of the results suggests that there are some images in the

Chapter 4. Furniture opening classification 63

test dataset which are much different than what the network has learned on the training
set. Furthermore, seeing how there is no such volatility on the validation set, it suggests
that there is no such problem between the validation and training sets. Some overfitting
is, of course, expected due to the small size of the dataset. The confusion matrix of the
best model is shown in Figure 4.15. The model predicts the handle class very well and
differentiates it from the other two classes, which is seen in the high precision and re-
call of that class. It is very good at predicting the other two classes as well, but it does
sometimes confuse the two.

Figure 4.15: Confusion matrix on the test dataset of the HoDoorNet 18-34
@ none & 1.0 configuration.

While methodhierarchical does perform more consistently than HoDoorNet when look-
ing at the metrics for all three classes, there is some volatility when looking at the results
on each class separately. For instance, precision for the handle class is sometimes around
60%, and sometimes around 80%. This is affected only by the first binary classifier, the
one working on the images without human demonstration, and the results show that the
ResNet18 without RoI preprocessing has the best precision on the handle class. How-
ever, this same classifier underpredicts the handle class causing the recall of that class to
be low. The opposite is often true for the other handle/no-handle classifiers. It is harder
to look at the results on the other two classes in isolation because those depend on both
binary classifiers. The best performing configuration achieves F1 score of 79.35%, which
is better than all the other methods except the best result of HoDoorNet. The confusion
matrix of this model is shown in Figure 4.16. As can be seen from the confusion matrix
and the precision of the handle class, this method overpredicts the aforementioned class.
As is the case with all of these methods, there is little or no confusion between the handle
and push classes. This is to be expected as these classes are very different both as just
images of the objects and when looking at human’s approach to opening these objects.

Chapter 4. Furniture opening classification 64

HoDoorNet Expt. 1 Expt. 2 Expt. 3 Expt. 4 Avg. F1 F1 SD no pt
18-18 @ none & 0.8 67.43 74.84 68.06 78.30 72.16 4.58 64.21
18-34 @ none & 0.5 71.55 67.04 67.53 71.24 69.34 2.07 54.83
18-34 @ none & 1.0 84.15 66.74 61.33 71.17 70.85 8.43 62.01
34-18 @ none & 0.8 73.99 62.37 62.34 69.56 67.06 4.96 73.17
34-34 @ none & 0.5 77.24 59.18 69.74 70.34 69.12 6.45 59.27
34-34 @ none & 1.0 70.24 69.78 66.96 73.17 70.04 2.20 73.33
50-18 @ none & 0.8 71.29 64.13 71.03 65.25 67.93 3.26 70.34
50-34 @ none & 0.5 67.99 74.43 55.20 67.96 66.40 6.98 59.97
50-34 @ none & 1.0 66.71 74.01 65.20 69.46 68.84 3.35 59.34

Table 4.11: F1 scores on the test set in percentage of multiple training
experiments for the HoDoorNets. The third and second to last columns
show the average F1 score and the standard deviation of F1 (F1 SD) in
these experiments, respectively. The last column (no pt) shows the F1

scores for the experiment where the feature extractors were not
pretrained.

Figure 4.16: Confusion matrix on the test dataset of the methodhierarchical
18-18 @ 0.0 & 1.0 configuration.

4.3.5 Testing variance

To check how consistent these methods are, further training experiments were done.
The same HoDoorNet configurations as reported in subsection 4.3.4 were trained 4 more
times, three times with separate pretraining of the feature extractors as previously de-
scribed and once without this pretraining. The extractor for the RGB image without hu-
man demonstration is still pretrained on the ImageNet dataset. Additionally, the same
methodhierarchical configurations were trained 3 more times. The results of all of these are
shown in Tables 4.11 and 4.12.

It is evident from these results that the methodhierarcical is much more consistent than
HoDoorNet, i.e., HoDoorNet’s testing variance is higher. This is most likely due to the
fact that methodhierarcical splits the task of ternary classification into two simpler, binary
classification tasks. Due to the size of the HoDoor dataset, a deeper network such as

Chapter 4. Furniture opening classification 65

methodhierarchical Expt. 1 Expt. 2 Expt. 3 Expt. 4 Avg. F1 F1 SD
18-18 @ none & 1.0 79.23 75.19 76.59 71.96 75.74 2.62
18-34 @ none & 0.5 75.76 77.38 79.24 76.45 77.21 1.31
18-34 @ none & 1.0 77.46 74.11 75.19 73.38 75.04 1.54
18-18 @ 0.0 & 1.0 79.35 76.78 79.81 77.34 78.32 1.29
18-34 @ 0.0 & 0.5 75.27 79.10 81.99 80.81 79.29 2.54
18-34 @ 0.0 & 1.0 70.41 74.60 79.48 73.71 74.55 3.25
18-18 @ 0.5 & 1.0 74.16 72.59 76.74 69.82 73.33 2.51
18-34 @ 0.5 & 0.5 77.06 75.98 78.47 79.07 77.65 1.21
18-34 @ 0.5 & 1.0 72.98 71.87 76.23 71.86 73.24 1.79

Table 4.12: F1 scores on the test set in percentage of multiple training
experiments for the methodhierarchical . The second to last column and the
last column show the average F1 score and the standard deviation of F1

(F1 SD) in these experiments, respectively.

HoDoorNet cannot consistently perform well on test data which is different than the
training data.

While the network performs well on training, the network is inconsistent on test
data. The illustration shown in Figure 4.17 demonstrates how a model can fit to training
data well in various different ways, but due to the small amount of training data, it
can be somewhat random how well it will perform on test data. These results indicate
overfitting and there are various techniques to fix this issue. As previously described,
regularization and data augmentation were employed in these experiments to alleviate
the issue. Another way to fix this issue would be to provide more training data. Results
of the methodhierarchical show that simplifying the task can alleviate the issue somewhat.

4.3.6 Classifying detected regions

An important usecase for the proposed methods would be classifying automatically
detected objects. For this purpose, an object detection network, YOLOv7 (Wang,
Bochkovskiy, and Liao, 2022), was used. This network takes an RGB image as input
and outputs a set of object predictions. These predictions are in the form of bounding
boxes, which can be used as RoIs for the classifiers. Since the HoDoor dataset is not
large enough to train a robust object detector, another dataset needed to be used. Fur-
thermore, annotations in the HoDoor dataset are not adequate for object detection task
since there’s only one annotated object per image.

The DoorDetect dataset (Arduengo, Torras, and Sentis, 2021) consists of annotated
images taken from the Open Images Dataset containing doors and handles. The door
class is split into three classes so there are four annotated classes in total: door, cabinet
door, which also includes drawers, refrigerator door, and handle. The authors trained
a YOLO v3 detector (Redmon and Farhadi, 2018) on this dataset and achieved mAP of
0.45, but it is unclear at what IoU this mAP was calculated at.

For this experiment, YOLO v7 was trained on the DoorDetect dataset with the hyper-
parameters the same as in (Wang, Bochkovskiy, and Liao, 2022), except batch size, which
was 8. The network is trained on a single RTX 3080 GPU. The results on the DoorDetect
validation set are shown in Table 4.13.

The detector is then used on the HoDoor dataset to detect the RoIs. Only the images
without human demonstration are used for this experiment. Since the HoDoor dataset
does not include annotations of all the cabinet doors and drawers in each scene, but only
a single bounding box per scene, it is illogical to evaluate the detector based on mAP.

Chapter 4. Furniture opening classification 66

Figure 4.17: An illustration of different classifier models performing per-
fectly on the training set but sometimes not performing perfectly on the
test set. The illustration represents a binary classification task with only

two input dimensions.

Class Labels Precision Recall mAP@.5 mAP@.5:.95
door 73 0.755 0.548 0.624 0.379

handle 388 0.683 0.521 0.579 0.193
cabinet door 334 0.813 0.766 0.834 0.462
fridge door 106 0.840 0.604 0.683 0.472

all 901 0.772 0.609 0.680 0.376

Table 4.13: Results of object detection with YOLOv7 on the DoorDetect
validation set.

Chapter 4. Furniture opening classification 67

Instead, only the recall of the detector is evaluated. Any bounding box classified as
door, cabinet door or fridge with IoU with the ground truth annotation of 0.5 or higher
is considered a true positive detection. It achieves recall of 93.64% on the whole HoDoor
dataset and 89.16% on the test partition of the dataset, i.e., it correctly identifies 74 out of
the 83 RoIs.

The classifiers presented in Section 4.3.4 are then used on the true positive detections.
The results are shown in Table 4.14. It is apparent that the results are similar to those
presented in Table 4.10 showing that the proposed methods perform well with detected
RoIs as well. In some cases, the performance is slightly better on detected RoIs. This can
be due to the fact that the classifiers are tested only on the positive detections. The best
classifier achieved F1 score of 80.92% compared to the best classifier on GT RoIs which
achieved F1 score of 84.15%.

Table 4.14: Results of the networks presented in Section 4.3.4 on the bounding boxes
detected by YOLO v7 trained on the DoorDetect dataset. Notation is the same
as in Table 4.10.

methodRGB

resnet18 @ none 56.76 51.04 33.33 60.53 59.26 50.14 25.00 63.89 61.54 50.59

resnet34 @ none 70.27 64.80 50.00 71.05 73.33 61.54 25.00 75.00 84.62 63.12

resnet50 @ none 66.22 60.83 40.00 67.50 75.00 59.19 33.33 75.00 69.23 60.00

methodheatmaps

resnet18 @ 0.8 65.73 62.99 74.23 67.70 47.06 65.47 92.31 73.91 30.19 64.21

resnet34 @ 0.5 62.92 61.90 70.27 68.25 47.17 61.13 66.67 69.57 47.17 61.51

resnet34 @ 1.0 71.36 73.51 90.14 68.32 62.07 67.50 82.05 86.47 33.96 70.37

HoDoorNet

18-18 @ none & 0.8 75.19 74.24 78.48 79.41 64.81 74.60 79.49 78.26 66.04 74.42

18-34 @ none & 0.5 71.10 69.80 63.29 73.09 73.02 65.14 64.10 87.92 43.40 67.39

18-34 @ none & 1.0 76.98 75.55 65.18 90.26 71.20 81.57 93.59 67.15 83.96 78.44

34-18 @ none & 0.8 72.12 74.31 85.71 79.21 58.00 73.14 69.23 68.12 82.08 73.72

34-34 @ none & 0.5 73.40 75.03 85.94 77.20 61.94 73.60 70.51 71.98 78.30 74.31

34-34 @ none & 1.0 66.24 66.45 73.33 72.62 53.38 70.18 84.62 58.94 66.98 68.26

50-18 @ none & 0.8 80.56 81.72 86.36 79.37 79.41 78.33 73.08 85.51 76.42 79.99

50-34 @ none & 0.5 71.61 70.90 76.62 73.97 62.11 69.85 75.64 78.26 55.66 70.37

50-34 @ none & 1.0 72.63 72.37 75.95 74.16 66.99 72.30 76.92 74.88 65.09 72.33

methodhierarchical

18-18 @ none & 1.0 74.94 73.91 71.15 78.06 72.53 77.02 94.87 73.91 62.26 75.43

18-34 @ none & 0.5 76.47 75.59 75.90 78.34 72.53 75.05 80.77 82.13 62.26 75.32

18-34 @ none & 1.0 77.49 79.70 91.04 75.54 72.53 75.16 78.21 85.02 62.26 77.37

18-18 @ 0.0 & 1.0 76.98 77.16 75.56 93.10 62.82 81.62 87.18 65.22 92.45 79.33

18-34 @ 0.0 & 0.5 77.49 78.26 82.86 89.09 62.82 79.28 74.36 71.01 92.45 78.76

network acc prec push pull handle rec push pull handle F1

Continued on next page

Chapter 4. Furniture opening classification 68

Table 4.14: Results of the networks presented in Section 4.3.4 on the bounding boxes
detected by YOLO v7 trained on the DoorDetect dataset. Notation is the same
as in Table 4.10. (Continued)

18-34 @ 0.0 & 1.0 79.03 81.60 93.55 88.44 62.82 80.24 74.36 73.91 92.45 80.92

18-18 @ 0.5 & 1.0 76.98 74.66 69.32 84.02 70.64 76.53 78.21 78.74 72.64 75.58

18-34 @ 0.5 & 0.5 78.01 75.47 71.62 84.13 70.64 75.04 67.95 84.54 72.64 75.25

18-34 @ 0.5 & 1.0 79.80 80.63 89.47 81.78 70.64 75.64 65.38 88.89 72.64 78.05

network acc prec push pull handle rec push pull handle F1

4.4 Conclusion

The problem with which this chapter deals is an important step in robotic manipulation
of various types of articulated furniture. After localization of doors and drawers, the
classification of their opening type is the next step toward manipulation. The methods
presented in this chapter provide an insight into the feasibility of accomplishing this
task using modern classifier networks. While the networks are sometimes inconsistent,
the experiments show that even with the small amount of available data, the classifier
network can perform well.

Furthermore, the experiments show that the addition of human demonstration in the
classification process greatly improves the performance of classifiers. Without human
demonstration, the classifiers have issues differentiating between push and pull classes
which are usually difficult even for humans to differentiate on the first look. By using
a combination of an image without human demonstration and an image with human
demonstration, the classifiers are able differentiate well between all the three classes.

While this is a great step towards robotic manipulation of these kinds of furniture,
there are still areas which can be improved. One of them being collection of additional
data and, possibly, collection of data with different kinds of cameras and in different
environments. One way of doing this would be annotating already available data. An-
other direction of further research could be fully automating the whole process, i.e., the
localization of a RoI where a human demonstrates the opening type together with the
proposed classification. Such a system could then be used in an environment where a
robot could passively learn from humans without need for manual annotation by study-
ing regular human interaction with furniture.

69

5 Conclusion

This thesis deals with two issues relating to use of service robots in household envi-
ronments. The first issue is trying to explain the field of synthetic 3D data generation
and how some factors of realism present in this process can affect the performance of
an object detector trained on synthetic datasets. For this purpose, a modular method
for synthetic data generation was developed. The method includes modules which have
two modes of operation, one which produces more realistic scenes and one which pro-
duces less realistic scenes. The modularity of this method is essential in order to make it
possible to study the effect some factors of realism can have on an object detector. The
following five factors of realism in synthetic 3D data generation are considered: realistic
camera noise, presence of background objects, sizes of objects, context of a scene, and
positioning of objects.

It is very important that the baseline synthetic dataset is realistic for the ablation
study described in this thesis. If the dataset is not realistic at all, it is not feasible to
determine the importance of factors of realism. The experiments show that the baseline
dataset created by this synthetic 3D data generation method can be used to improve
performance of a 3D object detector (Rukhovich, Vorontsova, and Konushin, 2021). The
detector pretrained on this dataset and finetuned on uncoloured real data outperforms
the same detector trained on coloured real data only. This, together with the good results
obtained when training only on the synthetic data, indicates that the generated synthetic
dataset is at least somewhat realistic. This is further confirmed by visual inspection of
the scenes the method generates.

The ablation study provides insight into the five aforementioned factors of realism.
The experiments show that, depending on the network, the most important factor of
realism can be the positioning of objects or the realistic sizes of objects. The CNN-based
network, FCAF3D (Rukhovich, Vorontsova, and Konushin, 2021), is affected the most
by realistic positioning, followed up by the presence of background objects. On the
other hand, the PointNet-based network, VoteNet (Qi et al., 2019), is affected by the
realistic object sizes substantially more than by any other factor of realism. This network
is greatly affected by the presence of background objects as well.

These results indicate that realistic object size can be very important for synthetic
scene generation, which is promising for future methods, as ensuring realistic object
sizes is relatively easy to achieve. Furthermore, the presence of background objects
is very important for both detectors. This indicates that including background objects
is very important. The proposed method could be improved by including more back-
ground objects such as small objects on tables, more walls and so on. The results show
that realistic camera noise is also very important, and further research into realistic cam-
era noise could be beneficial to the field of synthetic 3D data generation.

The method could be further improved by including color in the generated point
clouds. This would, however, require a 3D model dataset with textured and coloured
models. Other than the proposed improvements to the baseline generation method,
some further research options include studying the importance of other factors of real-
ism, such as color, texture and reflectance properties of objects, and studying how these
factors affect various different 3D object detectors.

Chapter 5. Conclusion 70

The second issue tackled in this thesis is the classification of furniture opening type,
specifically, the openable objects are split into the following categories: push, pull, and
handle. Because the classes push and pull can hardly be distinguished by only looking
at an image of an object, the proposed method also utilizes human demonstration for
classification. Methods which utilize only images of the objects, only images of a human
demonstrating how to open these objects, or a combination of these two are proposed in
this thesis.

The experiments conducted using these methods show that using only images with-
out demonstration leads to difficulty in distinguishing between push and pull classes
as was hypothesized. However, using only images with human demonstration leads to
confusion between pull and handle classes. Finally, the experiments show that using the
combination of these two types of input leads to significantly better results on the test
dataset. Furthermore, experiments on bounding boxes which were detected by an object
detector (Wang, Bochkovskiy, and Liao, 2022) show that the methods perform well even
when the regions of interest are not annotated perfectly. These results are very promising
considering the small amount of available data for this task.

Further research in this field should include collecting more data. This includes col-
lecting data in new environments, with different cameras and so on. Furthermore, the
current method utilizes bounding boxes which were annotated by a human or which
were detected and then chosen by humans. Excluding human intervention in this step
would make the method fully automatic so research into this is also one of the possible
directions of future research.

71

6 Curriculum Vitae

Matej Džijan was born in 1997 in Vinkovci, Croatia. He graduated from Ivan Goran Ko-
vačić Elementary School and Matija Antun Reljković Gymnasium, both in Vinkovci. In
2018, he obtained a Bachelor’s degree in Computer Engineering from the Faculty of Elec-
trical Engineering, Computer Science, and Information Technology Osijek (FERIT) at the
J. J. Strossmayer University of Osijek, Croatia. In 2020, he earned a Master’s degree in
Computer Engineering with a focus on Information and Data Science from the same fac-
ulty. That same year, he received the Dean’s Award for his academic excellence. In 2020,
he enrolled in the Postgraduate Doctoral Study in Electrical Engineering and Computer
Science at FERIT. He is currently employed as a teaching and research assistant at FERIT,
where he is involved in research on the application of artificial intelligence in robotics.

Matej Džijan
in Osijek, Croatia, August 16, 2024

72

Bibliography

Arduengo, Miguel, Carme Torras, and Luis Sentis (July 2021). “Robust and Adaptive
Door Operation with a Mobile Robot”. In: Intelligent Service Robotics 14.3, pp. 409–
425. ISSN: 1861-2784. DOI: 10.1007/s11370-021-00366-7.

Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao (Apr. 2020). YOLOv4:
Optimal Speed and Accuracy of Object Detection. DOI: 10.48550/arXiv.2004.10934.
arXiv: 2004.10934 [cs, eess].

Bousmalis, Konstantinos et al. (2017). “Unsupervised Pixel-Level Domain Adaptation
with Generative Adversarial Networks”. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 95–104. DOI: 10.1109/CVPR.2017.18.

Caesar, Holger et al. (2020). “nuscenes: A multimodal dataset for autonomous driving”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11621–11631.

Cao, Zhe et al. (May 2019). OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part
Affinity Fields. DOI: 10.48550/arXiv.1812.08008. arXiv: 1812.08008 [cs].

Carion, Nicolas et al. (2020). “End-to-end object detection with transformers”. In: Euro-
pean conference on computer vision. Springer, pp. 213–229.

Chang, Angel X. et al. (2015). ShapeNet: An Information-Rich 3D Model Repository. Tech.
rep. arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University — Toyota
Technological Institute at Chicago.

Cheng, Bowen et al. (2021). “Back-tracing representative points for voting-based 3d ob-
ject detection in point clouds”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8963–8972.

Community, Blender Online (2018). Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam. URL: http://www.blender.
org.

Dai, Angela et al. (2017). “Scannet: Richly-annotated 3d reconstructions of indoor
scenes”. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 5828–5839.

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients for human detection”.
In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). Vol. 1, 886–893 vol. 1. DOI: 10.1109/CVPR.2005.177.

Demirdjian, David and Trevor Darrell (2001). “Motion estimation from disparity im-
ages”. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV
2001. Vol. 1. IEEE, pp. 213–218.

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee, pp. 248–255.

Džijan, Matej et al. (2023). “Towards fully synthetic training of 3D indoor object detec-
tors: Ablation study”. In: Expert systems with applications 232, p. 120723.

Felzenszwalb, Pedro F et al. (2009). “Object detection with discriminatively trained part-
based models”. In: IEEE transactions on pattern analysis and machine intelligence 32.9,
pp. 1627–1645.

https://doi.org/10.1007/s11370-021-00366-7
https://doi.org/10.48550/arXiv.2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/CVPR.2017.18
https://doi.org/10.48550/arXiv.1812.08008
https://arxiv.org/abs/1812.08008
http://www.blender.org
http://www.blender.org
https://doi.org/10.1109/CVPR.2005.177

73

Geiger, Andreas, Philip Lenz, and Raquel Urtasun (2012). “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on Computer
Vision and Pattern Recognition (CVPR).

Geiger, Andreas et al. (2013). “Vision meets Robotics: The KITTI Dataset”. In: Interna-
tional Journal of Robotics Research (IJRR).

Girshick, Ross (2015). “Fast r-cnn”. In: Proceedings of the IEEE international conference on
computer vision, pp. 1440–1448.

Girshick, Ross et al. (2014). “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 580–587.

Gschwandtner, Michael et al. (2011). “BlenSor: Blender sensor simulation toolbox”. In:
International Symposium on Visual Computing. Springer, pp. 199–208.

Gwak, JunYoung, Christopher Choy, and Silvio Savarese (2020). “Generative sparse de-
tection networks for 3d single-shot object detection”. In: Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16.
Springer, pp. 297–313.

Handa, Ankur et al. (2016). “Understanding RealWorld Indoor Scenes with Synthetic
Data”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4077–4085. DOI: 10.1109/CVPR.2016.442.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hu, Yuan-Ting et al. (2019). “Sail-vos: Semantic amodal instance level video object
segmentation-a synthetic dataset and baselines”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 3105–3115.

Johnson-Roberson, Matthew et al. (2017). “Driving in the Matrix: Can virtual worlds re-
place human-generated annotations for real world tasks?” In: 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 746–753.

Karayev, S et al. (2011). “A category-level 3-D object dataset: putting the Kinect to
work”. In: Proceedings of the IEEE International Conference on Computer Vision Work-
shops, pp. 1167–1174.

Khoshelham, Kourosh and Sander Oude Elberink (2012). “Accuracy and resolution of
kinect depth data for indoor mapping applications”. In: sensors 12.2, pp. 1437–1454.

Koonce, Brett and Brett Koonce (2021). “EfficientNet”. In: Convolutional neural networks
with swift for Tensorflow: image recognition and dataset categorization, pp. 109–123.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information process-
ing systems 25.

Landau, Michael J., Benjamin Y. Choo, and Peter A. Beling (2016). “Simulating Kinect
Infrared and Depth Images”. In: IEEE Transactions on Cybernetics 46.12, pp. 3018–3031.
DOI: 10.1109/TCYB.2015.2494877.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324.

Leonardi, Rosario et al. (2022). “Egocentric Human-Object Interaction Detection Ex-
ploiting Synthetic Data”. In: International Conference on Image Analysis and Processing.
Springer, pp. 237–248.

Lin, Tsung-Yi et al. (2014). “Microsoft coco: Common objects in context”. In: Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13. Springer, pp. 740–755.

Liu, Shu et al. (2018). “Path aggregation network for instance segmentation”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768.

https://doi.org/10.1109/CVPR.2016.442
https://doi.org/10.1109/TCYB.2015.2494877

74

Liu, Wei et al. (2016). “SSD: Single Shot MultiBox Detector”. In: vol. 9905, pp. 21–37. DOI:
10.1007/978-3-319-46448-0_2. arXiv: 1512.02325 [cs].

Liu, Ze et al. (2021). “Group-free 3d object detection via transformers”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 2949–2958.

McCormac, John et al. (2017). “SceneNet RGB-D: Can 5M Synthetic Images Beat Generic
ImageNet Pre-training on Indoor Segmentation?” In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 2697–2706. DOI: 10.1109/ICCV.2017.292.

Misra, Ishan, Rohit Girdhar, and Armand Joulin (2021). “An end-to-end transformer
model for 3d object detection”. In: Proceedings of the IEEE/CVF international conference
on computer vision, pp. 2906–2917.

Planche, Benjamin et al. (2017). “DepthSynth: Real-Time Realistic Synthetic Data Gener-
ation from CAD Models for 2.5D Recognition”. In: 2017 International Conference on 3D
Vision (3DV), pp. 1–10. DOI: 10.1109/3DV.2017.00011.

Qi, Charles R et al. (2017a). “Pointnet: Deep learning on point sets for 3d classification
and segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660.

Qi, Charles R et al. (2018). “Frustum pointnets for 3d object detection from rgb-d data”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 918–
927.

Qi, Charles R. et al. (2019). “Deep Hough Voting for 3D Object Detection in Point
Clouds”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 9276–9285. DOI: 10.1109/ICCV.2019.00937.

Qi, Charles Ruizhongtai et al. (2017b). “PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space”. In: Advances in Neural Information Processing Systems.
Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc. URL: https://proceedings.
neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.

Redmon, Joseph and Ali Farhadi (Dec. 2016). YOLO9000: Better, Faster, Stronger. arXiv:
1612.08242 [cs].

— (Apr. 2018). YOLOv3: An Incremental Improvement. DOI: 10 . 48550 / arXiv . 1804 .
02767. arXiv: 1804.02767 [cs].

Redmon, Joseph et al. (June 2016). “You Only Look Once: Unified, Real-Time Object De-
tection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Las Vegas, NV, USA: IEEE, pp. 779–788. ISBN: 978-1-4673-8851-1. DOI: 10.1109/CVPR.
2016.91.

Ren, Shaoqing et al. (Jan. 2016). Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. DOI: 10.48550/arXiv.1506.01497. arXiv: 1506.01497
[cs].

Ros, German et al. (2016). “The synthia dataset: A large collection of synthetic images
for semantic segmentation of urban scenes”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3234–3243.

Rukhovich, Danila, Anna Vorontsova, and Anton Konushin (2021). “FCAF3D: Fully
Convolutional Anchor-Free 3D Object Detection”. In: arXiv preprint arXiv:2112.00322.

Saleh, Fatemeh Sadat et al. (2018). “Effective use of synthetic data for urban scene se-
mantic segmentation”. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 84–100.

Savva, Manolis, Angel X. Chang, and Pat Hanrahan (2015). “Semantically-Enriched 3D
Models for Common-sense Knowledge”. In: CVPR 2015 Workshop on Functionality,
Physics, Intentionality and Causality.

Shi, Shaoshuai et al. (2020). “Pv-rcnn: Point-voxel feature set abstraction for 3d object
detection”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10529–10538.

https://doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1512.02325
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/3DV.2017.00011
https://doi.org/10.1109/ICCV.2019.00937
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://arxiv.org/abs/1612.08242
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497

75

Shi, Weijing and Raj Rajkumar (2020). “Point-gnn: Graph neural network for 3d object
detection in a point cloud”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1711–1719.

Shrivastava, Ashish et al. (2017). “Learning from Simulated and Unsupervised Images
through Adversarial Training”. In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 2242–2251. DOI: 10.1109/CVPR.2017.241.

Silberman, Nathan et al. (2012). “Indoor segmentation and support inference from rgbd
images”. In: European conference on computer vision. Springer, pp. 746–760.

Simon, Tomas et al. (2017). “Hand Keypoint Detection in Single Images using Multiview
Bootstrapping”. In: CVPR.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Šimundić, Valentin et al. (2023). “Introduction to door opening type classification based
on human demonstration”. In: Sensors 23.6, p. 3093.

Song, Shuran, Samuel P. Lichtenberg, and Jianxiong Xiao (2015). “SUN RGB-D: A RGB-D
scene understanding benchmark suite”. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 567–576. DOI: 10.1109/CVPR.2015.7298655.

Stutz, David and Andreas Geiger (2020). “Learning 3d shape completion under weak
supervision”. In: International Journal of Computer Vision 128.5, pp. 1162–1181.

Sun, Pei et al. (2020). “Scalability in perception for autonomous driving: Waymo open
dataset”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 2446–2454.

Sweeney, Chris, Greg Izatt, and Russ Tedrake (2019). “A Supervised Approach to Pre-
dicting Noise in Depth Images”. In: 2019 International Conference on Robotics and Au-
tomation (ICRA), pp. 796–802. DOI: 10.1109/ICRA.2019.8793820.

To, Thang et al. (2018). NDDS: NVIDIA Deep Learning Dataset Synthesizer. https : / /
github.com/NVIDIA/Dataset_Synthesizer.

Tremblay, Jonathan, Thang To, and Stan Birchfield (2018). “Falling things: A synthetic
dataset for 3d object detection and pose estimation”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pp. 2038–2041.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neu-
ral Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Asso-
ciates, Inc. URL: https : / / proceedings . neurips . cc / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Viola, Paul and Michael Jones (2001). “Rapid object detection using a boosted cascade of
simple features”. In: Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001. Vol. 1. Ieee, pp. I–I.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao (July 2022). YOLOv7:
Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. DOI:
10.48550/arXiv.2207.02696. arXiv: 2207.02696 [cs].

Wang, Chien-Yao, Hong-Yuan Mark Liao, and I-Hau Yeh (2022). “Designing network
design strategies through gradient path analysis”. In: arXiv preprint arXiv:2211.04800.

Wang, Chien-Yao et al. (2020). “CSPNet: A new backbone that can enhance learning ca-
pability of CNN”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 390–391.

Xiang, Yi, Haoran Sun, and Wenting Tu (2023). “HDResNet: Hierarchical-Decomposition
Residual Network for Hierarchical Time Series Forecasting”. In: 2023 International
Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Xiao, Jianxiong, Andrew Owens, and Antonio Torralba (2013). “Sun3d: A database of big
spaces reconstructed using sfm and object labels”. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1625–1632.

https://doi.org/10.1109/CVPR.2017.241
https://doi.org/10.1109/CVPR.2015.7298655
https://doi.org/10.1109/ICRA.2019.8793820
 https://github.com/NVIDIA/Dataset_Synthesizer
 https://github.com/NVIDIA/Dataset_Synthesizer
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/arXiv.2207.02696
https://arxiv.org/abs/2207.02696

76

Yan, Yan, Yuxing Mao, and Bo Li (2018). “Second: Sparsely embedded convolutional
detection”. In: Sensors 18.10, p. 3337.

Yang, Zetong et al. (2020). “3dssd: Point-based 3d single stage object detector”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11040–11048.

Zhang, Zaiwei et al. (2020). “H3dnet: 3d object detection using hybrid geometric primi-
tives”. In: European Conference on Computer Vision. Springer, pp. 311–329.

Zhou, Yin and Oncel Tuzel (2018). “Voxelnet: End-to-end learning for point cloud based
3d object detection”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4490–4499.

	Acknowledgements
	Abstract
	Sažetak
	List of Figures
	List of Tables
	Introduction
	Contributions
	Organization of the thesis

	Object detection
	2D Object Detection
	Traditional Methods
	Deep Learning-Based Object Detection Methods
	Detection Transformers (DETR)

	3D object detection
	Data Collection Methods
	Types of 3D Data
	Feature Extractors for 3D Data
	PointNet-Based Methods
	3D Convolution-Based Methods
	Other Methods

	Evaluating 3D Object Detectors
	Intersection over Union (IoU)
	Mean Average Precision (mAP)
	Additional Evaluation Metrics
	Benchmark Datasets

	Generating synthetic 3D indoor scenes
	Existing methods for synthetic 3D data generation
	Method
	Scene modeling
	Rendering a scene

	Experiments
	Datasets
	Ablation studies
	Pretraining with synthetic data

	Conclusion

	Furniture opening classification
	Dataset
	Statistics
	Partitions

	Method
	Squarification
	Classification

	Experiments
	Preprocessing
	Experimental setup
	Validation
	Testing
	Testing variance
	Classifying detected regions

	Conclusion

	Conclusion
	Curriculum Vitae
	Bibliography

