Analiza elektroenergetskog kabela primjenom računalnog programa za numeričke simulacije elektromagnetskih polja

Horvat, David

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:273259

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-02

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA OSIJEK

Preddiplomski studij

ANALIZA ELEKTORENERGETSKOG KABELA PRIMJENOM RAČUNALNOG PROGRAMA ZA NUMERIČKE SIMULACIJE ELEKTROMAGNETSKIH POLJA

Završni rad

David Horvat

Osijek, 2020.

Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom sveučilišnom studiju

Osijek, 18.09.2020.

Odboru za završne i diplomske ispite

	preduipioniskom svedcilisnom studiju							
Ime i prezime studenta:	David H	lorvat						
Studij, smjer:	Preddip	lomski sveučilišni studij Elektrotehnika i informacijska tehnologija						
Mat. br. studenta, godina upisa:	4376, 2	4376, 27.09.2019.						
OIB studenta:	769862	76986275835						
Mentor:	Izv. prot	f. dr. sc. Marinko Barukčić						
Sumentor:								
Sumentor iz tvrtke:								
Naslov završnog rada:	Analiza elektroenergetskog kabela primjenom računalnog programa za numeričke simulacije elektromagnetskih polja							
Znanstvena grana rada:	Elektroenergetika (zn. polje elektrotehnika)							
Predložena ocjena završnog rada:	Izvrstan (5)							
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjen Postign Jasnoća Razina	Primjena znanja stečenih na fakultetu: 2 bod/boda Postignuti rezultati u odnosu na složenost zadatka: 2 bod/boda Jasnoća pismenog izražavanja: 2 bod/boda Razina samostalnosti: 3 razina						
Datum prijedloga ocjene mentora:	18.09.2	020.						
Datum potvrde ocjene Odbora:								
Potpis mentora za predaju konačne verzije	e rada u	Potpis:						
Studentsku službu pri završetku studija:		Datum:						

Prijedlog ocjene završnog rada na preddiplomskom sveučilišnom studiju

IZJAVA O ORIGINALNOSTI RADA

Osijek, 19.09.2020.

Ime i prezime studenta:	David Horvat
Studij:	Preddiplomski sveučilišni studij Elektrotehnika i informacijska tehnologija
Mat. br. studenta, godina upisa:	4376, 27.09.2019.
Turnitin podudaranje [%]:	9

Ovom izjavom izjavljujem da je rad pod nazivom: Analiza elektroenergetskog kabela primjenom računalnog programa za numeričke simulacije elektromagnetskih polja

izrađen pod vodstvom mentora Izv. prof. dr. sc. Marinko Barukčić

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

Sadržaj

1. UVOD	1
1.1 Zadatak	2
2. ENERGETSKI KABELI	3
2.1. Općenito o energetskim kabelima i energetskim mrežama	3
2.2. Niskonaponski (NN) kabeli	5
2.2.1. NYY	6
2.3. Srednjenaponski (SN) kabeli	7
2.3.1. N2XS(FL)2Y, NA2XS(FL)2Y	7
2.4. Visokonaponski (VN) kabeli	7
2.4.1. 2XS(FL)2Y, A2XS(FL)2Y	8
3. ZAGRIJAVANJE KABELA	
4. ELEKTROMAGNETSKO POLJE OKO KABELA	14
5. FINITE ELEMENT METHOD MAGNETICS	16
6. ANALIZA MAGNETSKIH I ELEKTRIČNIH POLJA KABELA RAČUNALNOM PODRŠKOM	20
6 1 Niskonaponski (NN) kabel – NYY	20
6.1.1 Magnetsko polje i jedinični induktivitet i otpor NYV kabela	22
6.1.2. Električno polje NYY kabela	37
6.2. Srednjenaponski (SN) kabel – N2XS(FL)2Y	
6.2.1. Magnetsko polie i jedinični induktivitet i otpor N2XS(FL)2Y kabela	
6.2.2. Električno polie i jedinični kapacitet N2XS(FL)2Y kabela	
6.3. Visokonaponski (VN) kabel – 2XS(FL)2Y	47
6.3.1. Magnetsko polje i jedinični induktivitet i otpor 2XS(FL)2Y kabela	49
6.3.2. Električno polje i jedinični kapacitet 2XS(FL)2Y kabela	
7. ZAKLJUČAK	
LITERATURA	
SAŽETAK	60
SUMMARY	60
ŽIVOTOPIS	62
PRILOZI	63

1. UVOD

Zbog svoje konstrukcije, vodljivi dijelovi višežilnih kabela su prostorno jako blizu jedan drugome. Ovo utječe na iznose nadomjesnih elemenata kabela tj. jedinične kapacitete, induktivitete i otpore. Osim toga zbog ove blizine, javljaju se problemi i utjecaji koji utječu na temperature dijelova kabela kao i raspodjelu gustoće struje po površini poprečnog presjeka kabela (prije svega tzv. efekt blizine i skin efekt). U slučaju jednožilnih kabela obično su u istom kabelskom rovu ili razvodu i ovi kabeli blizu jedan drugom pa i ovdje (iako nešto manje) imamo izražene iste probleme. Izračun temperature kabela i pogotovo razdiobe gustoće struje je vrlo složen i ne postoje analitičke i jednostavne metode za ovo (čak i u slučaju samo stacionarnih stanja koriste se aproksimativni i eksperimentalno dobiveni izrazi). S razvojem računalne tehnike omogućena je relativno laka primjena metoda numeričke matematike koje ovakve proračune čine puno jednostavnijima i u isto vrijeme "točnijim". Jedna od takvih je i metoda konačnih elemenata (FEM - Finite Element Method) za koji ima mnoštvo dostupnih simulacijskih alata. Jedan od takvih alata korišten u ovom radu je program Finete Element Method Magnetics (FEMM).

U ovome radu biti će opisana izvedba kabela s obzirom na naponsku razinu za koju su namijenjeni te će od svake naponske razine biti uzet po jedan primjer kabela nad kojim će se vršiti daljnje simulacije.

Također, u radu će biti opisani matematički modeli i teorija zagrijavanja kabela te elektromagnetskih polja oko kabela kao i utjecaj istih na okolinu.

Nadalje, biti će opisana primjena programa FEMM zajedno sa osnovnim uputama za simuliranje s naglaskom na prikaz primjene za promatranu temu.

Praktični dio rada će prikazati same simulacije u programu FEMM. Simulirat će se magnetska polja, električna polja i izračunavat će se vrijednosti jediničnog otpora, induktiviteta i kapaciteta kabela te će na kraju biti prikaz rezultata istih.

Završni rad se sastoji od 7 poglavlja. Prvo poglavlje je ujedno i uvodno te ono sadrži opis sadržaja samog završnog rada. Drugo poglavlje sadrži pregled izvedbe elektroenergetskih kabela za svaku naponsku razinu za koju su namijenjeni. U drugom poglavlju se mogu naći primjeri kabela koju su uzeti kao predmet simulacija zajedno sa pripadajućim tehničkim podacima i podacima o strukturi samih kabela. Treće i četvrto poglavlje pokrivaju svu osnovnu teoriju i

matematiku potrebnu za bolje razumijevanje zagrijavanja kabela te magnetskih polja oko kabela. U petom poglavlju će biti ukratko opisan način rada u programu FEMM uz opis samog programa i njegovih alata. Šesto poglavlje je najbitnije jer ono donosi prikaz tijeka i detaljan opis procesa simuliranja. Sedmo poglavlje će iznijeti zaključak cijelog rada te komentar rezultata simulacija.

1.1 Zadatak

U radu je potrebno na početku prikazati izvedbu elektroenergetskih kabela za sve tri naponske razine za koju su namijenjeni te od svake uzeti po jedan primjer kabela nad kojima će se vršiti simulacije. Nakon kratkog opisa teorije i matematičkih modela zagrijavanja kabela, magnetskih polja oko kabela te opisa rada u programu FEMM, slijede same simulacije. Simulacije je potrebno odraditi za po jedan kabel od svake skupine uz uvjet da se odradi simulacija za simetrični trofazni sustav i za nesimetrični trofazni sustav te je potrebno prikazati rezultate istih.

2. ENERGETSKI KABELI

2.1. Općenito o energetskim kabelima i energetskim mrežama

Električni kabel je vod koji je sačinjen od jednog ili više vodiča od dobro vodljivog materijala koji je najčešće bakar ili aluminij. Vodiči mogu biti međusobno isprepleteni, a električni su izolirani te su objedinjeni zajedničkim vanjskim omotačem koji štiti vodiče od vanjskih utjecaja. Kabeli služe za prijenos električnih signala i energije. Kabeli moraju biti projektirani u odnosu na svoju svrhu, kabeli se koriste za napajanje uređaja, prijenos izmjenične i istosmjerne struje te se mogu čak koristiti i pod vodom (podmorski kabeli) gdje služe za komunikaciju između udaljenih područja. [1]

Vrste elektroenergetskih vodova:

1. Nadzemni elektroenergetski vodovi (zračni, dalekovodi) - Vodiči se vode iznad zemlje pričvršćeni na izolatorima na odgovarajućim nosivim konstrukcijama.

2. Kabelski elektroenergetski vodovi (kabeli) – Budući da se kabeli polažu u zemlju, vodu ili posebne kanale (zbog čega su teško dostupni), moraju biti dobro zaštićeni od mehaničkih i kemijskih utjecaja te utjecaja vlage.

Izvedba kabela ovisi o području primjene kabela, a zajedničko svim kabelima je to da sadrže vodiče i izolaciju te plašt.[1]

Ako se koristi više vodiča za jednu fazu, govori se o snopu vodiča. Ovakvi snopovi rezultiraju smanjivanjem uzdužne impedancije voda, kao i smanjivanjem električnog polja na površini vodiča uslijed čega se smanjuje efekt korone, odnosno pojava tinjavih izbijanja oko vodiča, a time se smanjuju i gubici koji pri tome nastaju. Kod nadzemnih vodova kao materijal vodiča danas u obzir dolaze gotovo isključivo aluminij i legure aluminija. Da bi se pored dobre vodljivosti aluminija postigla i dobra mehanička čvrstoća dalekovodnog užeta, koriste se kombinirani, tzv. alučel vodiči s jezgrom od čelika (koja preuzima sva mehanička naprezanja), oko koje se sukaju slojevi žica od aluminija (koji zbog znatne razlike u vodljivosti aluminija i čelika, na sebe najvećim dijelom preuzimaju vođenje struje). Primjenom legura aluminija s magnezijem i silicijem kao materijala za užeta postiže se mehanička čvrstoća usporediva s alučelom, uz znatno manju težinu, ali uz višu cijenu.

Slika 2.1. Tipovi kabela : a) homogeni b) kombinirani (čelična jezgra, aluminijski plašt)

Elektroenergetski sustav se uobičajeno dijeli na izvore, mreže te potrošače. Mreža se dijeli na prijenosnu mrežu u koju spadaju visokonaponske te vrlo-visokonaponske mreže i distributivnu u koju spadaju niskonaponske i srednjenaponske mreže. Po tehničkoj podjeli prijenosnu mrežu sačinjavaju postrojenja i vodovi nazivnog napona 110 kV i više, a ostalo je distributivna mreža. Po funkcionalnoj podjeli prijenosna je mreža onaj dio sustava, koji uz izvore sudjeluje, odnosno može sudjelovati u optimiranju vođenja tehnološkog procesa, a ostalo je distributivna mreža bez obzira na naponski nivo.

S obzirom na postojanje različitih tipova mreža koji se razlikuju u odnosu na naponske razine, koriste se i različiti vodovi odnosno energetski kabeli. Inače razlikujemo samo visoki napon i niski napon. Niski napon je do 1 kV, a visoki iznad 1 kV, no u tehničkoj praksi govorimo o niskonaponskim vodovima (NN) koji su namijenjeni za napone do 1kV, srednjenaponskim vodovima (SN) koji su namijenjeni za napone 60, 35, 20 i 10 kV, visokonaponskim vodovima (VN) koji se koriste za napone iznad 110 i 220 kV te vrlo-visokonaponskim vodovima (VVN) za napon od 400 kV i više. Mreže različitih naponskih razina se povezuju transformatorima kako bi se prešlo sa više na nižu naponsku razinu.

Slika 2.2. Tipovi električnih mreža i njihove naponske razine [16]

Budući da su elektroenergetski kabeli protjecani velikom strujom, oni se zagrijavaju te generiraju jaka elektromagnetska polja što utječe na ljude i živi svijet u blizini kabela. S obzirom na potencijalne opasnosti po zdravlje koje predstavljaju kabeli, bitno je provesti simulacije i proračune parametara kabela koristeći neki od programskih alata kao što je FEMM. Bitan cilj simulacija treba biti elektromagnetsko polje koje stvara određeni kabel budući da ono najviše može utjecati na okolinu [2]. Također, vrlo bitna analiza kabela je termalna analiza. Termalnom analizom možemo predvidjeti raspodjelu topline kroz kabel te širenje iste van kabela tj. možemo vidjeti koliko će se zemlja koja okružuje kabel zagrijavati, a sve to utječe na učinak kabela [4]. Izračun temperature kabela i gustoće struje je vrlo složen proces i ne postoji jednostavan analitički način izračunavanja istih, čak se i u slučaju stacionarnih stanja koriste aproksimativno dobiveni izrazi [15], stoga se uvijek odlučujemo primijeniti razne numeričke metode izračuna koje su točnije. Postoji više numeričkih metoda za analizu kabela. Jedna od takvih metoda je FEM. FEM metoda je numerička metoda koja dijeli geometriju modela na mnogo jednostavnih geometrijskih oblika male, ali konačne veličine. Sljedeći korak je da se definiraju diferencijalne jednadžbe za svaki element koje opisuju ponašanje elementa. Ovo je napravljeno aproksimacijom polja svakog elementa preko jednostavnih funkcija sa konačnim stupnjem slobode. Ovo daje aproksimacijski opis ponašanja elemenata setom linearnih jednadžbi [5]. Uz FEM metodu postoje još i druge (FMD, FVM, id.), jedna od takvih je MoM metoda. MoM metoda je numerička metoda kojom možemo analizirati elektromagnetska polja. Ona ,za razliku od FEM metode koja koristi diferencijalne jednadžbe, rješava integrale Maxwellovih jednadžbi [2]. Također provedbom fem analize (ili neke druge), mogu se izračunati električni parametri što je vrlo korisno u svrhu projektiranja kabela te samog elektroenergetskog sustava [5].

2.2. Niskonaponski (NN) kabeli

Elektroenergetski te signalni kabeli do 1 kV namijenjeni su za primjene u elektroenergetskim sustavima, a imaju i ulogu u elektroenergetskim i signalnim instalacijama različitih objekata. Ovakvi kabeli su teško gorivi, stoga su pogodni za izvedbu sigurnosnih i protupožarnih instalacija. Uz to što su teško gorivi, ovakvi kabeli također sprečavaju širenje vatre i dima te razvijaju minimalnu količinu korozivnih i otrovnih plinova, a to rezultira produljeni vijek kabela.

Kabeli su takve konstrukcije koja se sastoji od vodiča koji su izrađeni od bakra ili aluminija, izolacije, žila, ispune (služi za ispunjavanje prostora između vodiča), armature te plašta. [1]

Ovisno o broju žila odnosno vodiča od kojih je kabel sačinjen, kabel može biti jednožilni (jedan vodič) i višežilni (2 ili više vodiča). Jednožilni kabeli su obično crne boje dok se višežilni označavaju bojama prema HD308 normi. Bitan element kabela je i ispuna kabela koja služi kao ispuna međuprostora između žila kabela te se tako dobiva kružni oblik jezgre. Ispune mogu biti izrađene od elastomernih ili plastomernih mješavina. Použene žile sektroskih kabela se omotavaju termoplastičnim vrpcama.

Već spomenuti strukturalni element kabela je plašt, a on se, kod jednožilnih kabela postavlja preko izolacije dok se kod višežilnih kabela postavlja iznad ispune odnosno armature. Plašt se sastoji od sloja PVC mase koja može biti standardne kvalitete ili može biti takve izvedbe da bude teško goriva s dodatkom halogena ili bez halogena. Teško gorivi PVC ima ista svojstva kao i teško gorivi izolacijski PVC. Obojanost plašta ovisi o tipu plašta pa je tako crna boja za standardne kabele, siva za teško gorive kabele bez halogena i plava za teško gorive halogene kabele. [1]

2.2.1. NYY

"Energetski distribucijski i signalni kabel za statičnu upotrebu na otvorenom (sa zaštitom od direktnog ultraljubičastog zračenja), pod zemljom, u vodi, unutar objekata, u kabelskim kanalima, u betonu, u uvjetima gdje se ne očekuju teža mehanička opterećenja, pogotovo vlačna istezanja. Upotrebljava se u elektranama, trafostanicama, industrijskim pogonima, gradskim mrežama i drugim električnim postrojenjima te za povezivanje signalnih uređaja u industriji, prometu i sl." (elka.hr, <u>https://elka.hr/nyy-nayy/</u>, 11.9.2020.)

Slika 2.3. Prikaz NYY kabela te tehnički podaci i konstrukcija [8]

2.3. Srednjenaponski (SN) kabeli

2.3.1. N2XS(FL)2Y, NA2XS(FL)2Y

Ovaj kabel se koristi za polaganje u zemlju te je pogodan za uporabu na vlažnim terenima i kanalima. Koristi se na konzolama gdje se ne očekuju mehanička oštećenja ni mehanička vlačna naprezanja. U gradskim i ruralnim mrežama, koristi se kao distributivni kabel. [6]

Slika 2.6. Prikaz energetskog kabela N2XS(FL)2Y, NA2XS(FL)2Y, konstrukcija i tehnički podaci [6]

2.4. Visokonaponski (VN) kabeli

Energetski visokonaponski kabeli se u svijetu sve više koriste, a jedna od glavnih primjena im je prijenos električne energije i naročito u gusto naseljenim područjima. Mnoge su pozitivne strane korištenja visokonaponskih kabela zbog kojih se oni sve češće koriste u elektroenergetskim sustavima. Jedan od pluseva visokonaponskih kabela je taj da je širina kabelske trase uska i nije toliko vidljiva, stoga se zemljišta gdje su položeni kabeli mogu koristiti i za druge namjene. Također, budući da su kabeli položeni u zemlju, utjecaj magnetskog i električnog polja je znatno smanjen za u odnosu na dalekovode, pa su tako kabelski sustavi znatno sigurniji za ljude koji ih održavaju i za javnost. Kabelski sustavi imaju puno manje gubitke, imaju dug životni vijek, a uz

to su i jeftiniji za održavanje, no valja napomenuti da imaju i nižu pouzdanost jer su izloženi manjim oštećenjima. [9]

Struktura kabela je takva da su žile obložene u više slojeva. Žile su obložene XLPE-om, zatim poluvodljivim slojem, izolacijom i poluvodljivim slojem na izolaciji. Ekran ili zaslon kabela imaju svrhu električne zaštite, a izvodi se helikoidalno omotanim bakrenim žicama sa suprotnom spiralom u odnosu na bakrene trake. Da se postigne uzdužna vodonepropusnost, ispod i iznad žica omataju se trake sačinjene od materijala koji bubri u doticaju s vodom. [9]

Također, kako bi se postigla poprečna vodonepropusnost, polaže se aluminijska traka sa slojem kopolimera koja se lijepi na plašt. Postoji mogućnost da se u području ekrana ugrade svjetlovodne niti koje služe za prijenos podataka ili pak mjerenje temperature kabela pri radu. Na slici 2.9. može se vidjeti 400 kV XLPE kabel sa segmentiranim užetom. [9]

Slika 2.9. 400 kV XLPE kabel sa segmentiranim užetom [9]

Uobičajeno je da se plašt izrađuje od polietilena, no mogu se koristiti i drugi materijali tako da kabel može biti i bezhalogen i teško goriv. [9]

2.4.1. 2XS(FL)2Y, A2XS(FL)2Y

"Kabel je namijenjen za polaganje u zemlju, osobito vlažne terene, kanale, na konzole gdje se ne očekuju mehanička oštećenja i gdje kabel nije izložen vlačnim naprezanjima." (elka.hr, <u>https://elka.hr/2xsfl2y-a2xsfl2y/</u>, 11.9.2020.)

Slika 2.10. Prikaz energetskog kabela 2XS(FL)2Y, A2XS(FL)2Y, konstrukcija, tehnički podaci [7]

3. ZAGRIJAVANJE KABELA

Termalna analiza podzemnih elektroenergetskih kabela je vrlo bitna za određivanje maksimalnog strujnog opterećenja kabela budući da strujno opterećenje najviše ovisi o temperaturi pri kojoj kabel djeluje. Točna procjena disipacije topline kroz kabele i zemlju koja okružuje kabel omogućuje bolje iskorištenje kabela. Tradicionalna metoda prihvaćena od strane Međunarodnog elektrotehničkog povjerenstva (Internactonal Electrotehnical Commission (IEC)) i IEEE instituta (Institute of Electrical and Electronics Engineers) za računanje termalnog otpora između podzemnog elektroenergetskog sustava i okoline je i dalje temeljena na aproksimativnim jednadžbama koje su 1957. izveli Neher i McGrath pod pretpostavkom da je zemlja homogena i ima uniformiranu termalnu provodljivost. Ova metodu su kasnije poboljšali Sellers i Black, a oni su predložili ispravak procedure tako da se uzme u obzir činjenica da zemlja koja se koristi za zatrpavanje rova može imati drugačiju termalnu provodljivost od okolne zemlje. Zadnjih 20 godina, predviđanje distribucije topline oko podzemnog elektroenergetskog kabela je tema brojnih istraživanja čiji je glavni cilj bila analiza efekata raznih oblika rova, veličina, položaja kabela u rovu i različitih svojstava zemlje.

Podzemni elektroenergetski kabel se modelira kao horizontalni valjak promjera D, položen u pravokutni rov širine W i dubine H_T. Kabel je zakopan na visini H_C u sredini rova. Ispuna rova se sastoji od dva sloja ispune koja su naneseni jedan na drugi. Debljina gornjeg i donjeg sloja ispune su s_1 i s_2 dok je debljina kabela s_3 ($s_1+s_2+s_3 = H_T$). Kondukcija topline kreće od površine kabela prema površini zemlje, pretpostavka je da je temperatura površine kabela uniformna T_C dok je pretpostavljena temperatura površine zemlje manja od kabela te uniformna T_G . Pretpostavimo da duljina kabela, rova, slojeva ispune ide u beskonačnost što znači da se polje temperature može smatrati dvodimenzionalnim. Nadalje, pod pretpostavkom da su slojevi i zemlja homogeni i izotropni, sa konstantnim fizikalnim svojstvima, jednadžba protoka energije se može zapisati ovako :

$$\nabla^2 T = 0 \tag{3-1}$$

Slika 3.1. Položaj kabela u rovu [10]

Konačno rješenje jednadžbe (1) zahtjeva da se diskretni sustav postavi preko cijele domene integracije. Budući da je protok topline simetričan s obzirom na vertikalnu ravninu koja prolazi kroz os kabela, dvodimenzionalna domena integracije je uzeta kao pravokutnik koji sadrži jednu polovicu rova i proteže se do vertikalne i horizontalne pseudogranice koja je postavljena daleko od vertikalne simetrične osi i površine tla. Zbog simetrije samog sustava, upotrebljen je polarni koordinatni sustav u blizini cilindričnog kabela dok je Kartezijev koordinatni sustav upotrebljen za ostatak integracijske domene. Udaljenosti r i θ koordinata polarnog sustava se mjere od središta kabela, obrnuto od smjera kazaljke na satu odozdo. Što se tiče Kartezijevog koordinatnog sustava čije se ishodište nalazi na presjeku vertikalne simetrične osi i površine tla, x-os je horizontalna a y-os je vertikalna usmjerena prema dolje.

Slika 3.2. [10]

Sljedeći diskretizaciju koju su razvili Launder, Massey i Corcione, polarni koordinatni sustav i Kartezijev koordinatni sustav, koji su potpuno neovisni jedan o drugom, preklapaju se bez poklapanja čvorova, njihova poveznica je niz lažnih čvorova, po jedan za svaki susjedni sustav kao što je prikazano na slici 3.2.

Uvjeti granica koji su također potrebni za rješavanje jednadžbe (1) moraju biti određeni za svaku graničnu liniju koja zatvara dvodimenzionalnu integracijsku domenu. Jednom kad su pseudogranice postavljene daleko od kabela, možemo pretpostaviti da toplina ne prolazi kroz njih stoga su sljedeći granični uvjeti :

Na površini kabela (r=D/2)

$$T = T_C \tag{3-2}$$

Na lijevoj simetričnoj liniji iznad i ispod kabela (x=0)

$$\frac{\partial T}{\partial x} = 0 \tag{3-3}$$

Na površini tla (y=0)

$$T = T_G \tag{3-4}$$

Na vetikalnoj pseudogranici (x=x*)

$$\frac{\partial T}{\partial x} = 0 \tag{3-5}$$

Na horizontalnoj pseudogranici (y=y*)

$$\frac{\partial T}{\partial y} = 0 \tag{3-6}$$

Gdje su x* i y* pozicije pseudogranica. Protok topline između dva materijala računa se jednadžbom:

$$-k_i \frac{\partial T}{\partial n}|_i = -k_i \frac{\partial T}{\partial n}|_j (i = [1,4]; j = [1,4]; i \neq j)$$
(3-7)

Gdje su k_i i k_j toplinske vodljivosti i-tog i j-tog materijala, a n označava smjer normale. Što se tiče presjeka polarnog i Kartezijevog sustava, temperatura u lažnom čvoru se dobije linearnom interpolacijom vrijednosti u 4 susjedna čvora. S naznakom na simbole prikazane na desnoj strane

slike 3.2., temperatura u bilo kojem lažnom Kartezijevom čvoru ili polarnom čvoru se računa jednadžbom :

$$T_{P} = \frac{T_1 x_E y_S + T_2 x_W y_S + T_3 x_W y_N + T_4 x_E y_N}{(x_W + x_E)(y_S + y_N)}$$
(3-8)

$$T_{P} = \frac{T_1 r_E \theta_S + T_2 r_W \theta_S + T_3 r_W \theta_N + T_4 r_E \theta_N}{(r + r_E)(\theta_S + \theta_N)}$$
(3-9)

4. ELEKTROMAGNETSKO POLJE OKO KABELA

Podzemni elektroenergetski kabeli se obično koriste za prijenos električne energije od trafostanica do potrošača, pogotovo u gušće naseljenim područjima gdje se ne mogu koristiti nadzemni vodovi. Osim što se kabel zagrijava tijekom prijenosa energije, generira se i magnetsko polje oko kabela.

Da bi se energija prenijela do potrošača, potreba je mreža koja seže od samih elektrana preko prijenosne i distributivne mreže do kućanstava te se u blizini vodova generiraju elektromagnetska polja uzrokovana protokom struje kroz vodove. Elektromagnetska polja mogu imati loš utjecaj na zdravlje, a područje izloženosti navedenim poljima jest u blizini prijenosnih mreža i u kućanstvima prilikom korištenja električne energije.

Podzemni kabeli se koriste uglavnom zbog estetskih razloga , ali korištenjem istih se može smanjiti utjecaj električnog polja koje je praktički svedeno na nulu jer je kabel okružen zemljom, betonom, pijeskom itd.. Može se reći da potencijalni utjecaj magnetskog polja iz podzemnog kabela može biti veći jer se kabel nalazi na manjoj udaljenosti od čovjeka, no polje podzemnog kabela brže opada jer su kabeli bliže jedan drugom i polja se poništavaju. Polja preko $0.2 \ \mu T$ pronalazimo u kućanstvima zbog utjecaja podzemnih kabela. Razlog povećane razine polja može biti i greška u električnim instalacijama samog kućanstva (uređaji normalno rade, ali postoje velika magnetska polja).

Jedna od glavnih karakteristika elektromagnetskog vala je frekvencija (f) i valna duljina (A). Elektromagnetski spektar ima raspon svih mogućih frekvencija. Moguće su male frekvencije koje se koriste za radio komunikaciju, a moguće su i frekvencije gama zračenja. Valne duljine elektromagnetskog vala mogu poprimati veličine od djelića veličine atoma do nekoliko tisuća kilometara. Elektromagnetsko zračenje se dijeli na ionizirajuće i neionizirajuće. Ionizirajuće zračenje je štetno za zdravlje dok neionizirajuće nema dovoljan intenzitet da bi imalo štetan utjecaj na tkiva, ali zračenja pri 100 kHz mogu značajno povisiti tjelesnu temperaturu. Biološki utjecaj elektromagnetskih polja ovisi o jačini zračenja i frekvenciji. Za frekvencije od najmanjih do vidljivog svijetla, oštećenja stanica su uglavnom uzrok toplinskog utjecaja.

Električna polja oko podzemnog kabela su eliminirana zbog okruženja kabela te zbog električne zaštite koju kabel ima dok su magnetska polja i dalje prisutna. Magnetsko polje je određeno protokom struje i zbog toga se snaga magnetskog polja mijenja zbog promjena u potražnji za

električnom energijom. Snaga magnetskog polja opada udaljavanjem od kabela. Magnetsko polje generirano konstantnom strujom se može odrediti Biot-Savartovim zakonom :

$$B(r) = \frac{\mu_0}{4\pi} \int \frac{j(r') \times (r-r')}{|r-r'|^3} d^3 r'$$
(4-1)
$$J(r) d^3 r = I(r) dl$$
(4-2)

Gdje je I vektor struje, dl označava maleni dio cijele duljine voda i μ_0 je perneabilnost. Uvrštavanjem jednadžbi jedne u drugu dobijemo :

$$B(r) = \frac{\mu_0}{4\pi} \int \frac{j(l(r')) \times (r-r')}{|r-r'|^3} dl$$
(4-3)

5. FINITE ELEMENT METHOD MAGNETICS

FEMM (Finite Element Method Magnetics) je program za numeričke simulacije elektromagnetskih polja. FEMM je skup programa koju zajedno omogućuju numeričke izračune različitih varijabli elektromagnetskih polja. FEMM za izračunavanje koristi metodu konačnih elemenata. [11]

FEMM može rješavati različite elektromagnetske i termičke probleme kao što su:

- Elektrostatska polja
- Magnetostatska polja
- Raspodjela gustoće električne struje po površini poprečnog presjeka vodiča Raspodjela temperature u ustaljenom (stacionarnom) stanju. [11]

FEMM se sastoji od tri glavna dijela :

- Korisničko sučelje
- Program za mreženje implementira početni korak metode konačnih elemenata.
- Programi za rješavanje elektrostatskih i magnetskih problema te problema raspodjele topline i raspodjele strujanja električne struje. [11]

Za obavljanje simulacije u FEMM potrebno je provesti sljedeće osnovne korake:

- 1) Odabir vrste problema
- 2) Crtanje geometrije problema
- 3) Unos numeričkih podataka za pojedina svojstva i granice materijala
- 4) Spremanje problema
- 5) Pokretanje simulacije
- 6) Prikaz rezultata simulacije [11]

Kako bismo pristupili radu u FEMM-u, prvo što je potrebno napraviti jest odabrati vrstu problema, a okvir u kojem se definira vrsta problema se pojavljuje nakon što odaberemo "New" u izborniku "File".

Nakon definiranja vrste problema slijedi crtanje geometrije problema i zadavanje tipa geometrije. Za lakši daljnji rad, preporuča se da se najprije odabere vrsta prikaza u ravnini i vrsta mjernih jedinica, a to radimo odabirom izbornika "Problem".

Za crtanje geometrije mogu se koristiti sljedeći osnovni geometrijski oblici:

- točka
- crta
- luk

Vrsta oblika se može izabrati u izborniku "Operation" . Prilikom crtanja geometrije, prvo što treba napraviti jest ucrtati točke na koje će se kasnije spajati drugi oblici.

Za unos numeričkih podataka pojedinih svojstava i granice materijala, potrebno je odabrati izbornik "Properties" te se u njemu mogu odrediti :

- Svojstva materijala
- Svojstva granice
- Svojstva točkastih izvora
- Iznos ukupnog izvora elektromagnetskog polja (za magetske probleme "Circuits", za elektrostatske probleme "Conductors") [11]

Svojstvo materijala se dodjeljuje ograničenom prostoru, odnosno ograničenom dijelu površine u ravnini. Definiranje svojstava materijala se radi tako da se imenuje materijal, odnosno da se definira vrsta materijala, a to se radi odabirom na "Materials" u izborniku "Properties" te odabriom "AddProperty". Numeričke podatke vezane za određeni materijal unosimo u okvir za unos imena i podataka. Nakon definiranja materijala, isti materijal se dodjeljuje ograničenoj površini nacrtanoj u geometriji problema. [11]

Zatvorenoj površini, materijal možemo dodati tako da odaberemo ikonu za odabir te postavimo oznaku na površinu desnim klikom. Nakon što označimo zadanu površinu, pritiskom tipke "Space", otvara ze okvir za dodjeljivanje materijala. Odabirom prethodno definiranih materijala u sekciji "Block type", dodjeljuje se odabrani materijal odabranoj površini. [11]

Osim što možemo numeričke podatke ručno upisati, možemo i preuzeti podatake materijala iz baze materijala. Prebacivanje numeričkih podataka iz baze materijala u neki blok u geometriji obavlja se tako da se u izborniku "Properties" odabere opcija "Materials Libraty", što otvara prozor u kojem su prikazani materijali u bazi i materijali koje trenutno koristimo za našu geometriju. Materijal ,koji prenesemo iz baze u mapu "Model Materials", pojavljuje se u izborniku u prozoru za definiranje svojstva materijala i u prozoru za dodjeljivanje materijala nekoj geometriji. [11]

Svojstva granice se definiraju na sličan način kao što se definiraju svojstva materijala. Prvo što je potrebno napraviti je imenovanje svojstva zajedno sa pripadajućim numeričkim podacima, a zatim se definirano svojstvo dodjeljuje nekoj granici koja je nacrtana u geometriji. Granica može biti crta ili luk. Prvo se u izborniku "Properties" odabire "Boundary" te je u novootvorenom prozoru potrebno odabrati "Add property". Nakon toga imenujemo granicu te joj dodijelimo pripadajuća svojstva. [11]

Svojstva točkastih izvora mogu se dodijeliti točki, a to se radi na sličan način kao i kod prethodna dva svojstva. Prvo što je potrebno napraviti jest definirati svojstvo odabirom opcije "Point" u izborniku "Properties" te se nakon toga odaberu vrste i upišu numerički iznosi svojstava u otvorenom prozoru. Zadnje što je potrebno napraviti je dodjela svojstva točki u nacrtanoj geometriji problema. [11]

Kako bismo definirali svojstva ukupnog izvora polja moramo odabrati "Conductors" (za probleme u elektrostatici) i "Circuits" (za probleme u magnetizmu) u izborniku "Properties". Definiranjem ovih svojstava, programu dajemo do znanja koji dijelovi geometrije su protjecani strujom, odnosno koji dijelovi geometrije su izvori magnetskih i električnih polja. Kod definiranja strunog kruga ("Circuits") možemo definirati način spajanja te jačinu struje, dok kog definiranja vodiča ("Conductor") možemo odrediti naboj ili potencija. [11]

Nakon crtanja geometrije problema i definiranja svojstva materijala, granica i izvora, možemo pokrenuti simulaciju. Iako neophodno, nije loše prije pokretanja simulacije obaviti i prikazati mreženje jer time možemo provjeriti postoji li neki dio geometrije koji je ostao nedefiniran. Ako se mreženje ne obavi ručno, program će to automatski obaviti bez prikaza mreže. [11]

Rezultate izračuna možemo prikazati klikom na ikonu za prikaz rezultata čime ćemo otvoriti novi dokument za prikaz rezultata izračuna. Postoji nekoliko modova za prikaz i obradu rezultata.

Modovi za prikaz rezultata su:

- prikaz silnica polja
- grafički prikaz iznosa modula polja
- prikaz vektora polja.

Modovi za obradu rezultata su:

• točka,

- krivulja (kontura)
- blok (zatvorena površina). [11]

U modu krivulje, nad njom se obavljaju operacije crtanja promjene određene varijable uz izračun krivuljnog integrala duž zadana krivulje. [11]

U modu bloka nad odabranim blokom moguće je obaviti izračun plošnog integrala određene varijable.

Uz navedene modove, moguće je i računati elemente nadomjesne sheme kao što su induktivitet, kapacitet, otpor, struja te napon. Računanje elemenata nadomjesne sheme se radi tako da se klikne na ikonu nadomjesnog kruga. [11]

6. ANALIZA MAGNETSKIH I ELEKTRIČNIH POLJA KABELA RAČUNALNOM PODRŠKOM

U ovome poglavlju će biti prikazane odrađene simulacije u programu FEMM kojima će se prikazati proračuni

- magnetskih polja kabela
- jediničnih induktiviteta i otpora kabela
- električnih polja kabela
- jediničnih kapaciteta kabela

Predmeti simulacija će biti po jedan kabel i svake skupine kabela s obzirom na visinu napona za koju su namijenjeni pa će tako za niskonaponske (NN) kabele biti uzet NYY kabel, za srednjenaponske (SS) kabele će biti uzet N2XY(FL)2Y kabel te će za visokonaponske (VN) kabele biti uzet 2XS(FL)2Y kabel.

6.1. Niskonaponski (NN) kabel - NYY

Kao predmet svih simulacija za niskonaponske (NN) kabele biti će uzet NYY kabel. Strukturu i tehničke podatke smo mogli vidjeti na slici 2.3., a tablica presjeka je prikazan na slici 6.1..

	∨ Presjeci (tablica)												
N	YYY, NAYY, NYY-TG	ł											
	Nazivni presjek (n x mm ²)	Debljina izolacije (mm)	Debljina plašta (mm)	Vanjski promjer (mm)	Težina NYY (kg/km)	Težina NAYY (kg/km)	Dužina (m)	Bubanj (tip)					
	4x4	1,0	1,8	15,4	405	-	1000	BD-10					

Slika 6.1. Presjeci NYY kabela [12]

Simulacije ćemo raditi tako što ćemo u programu Matlab generirati po jedan valni oblik trofaznog simetričnog sustava napona i struja te jedan valni oblik nesimetričnog trofaznog sustava struja. Na našim valnim oblicima definirati ćemo tri različita trenutka u vremenu (t_1, t_2, t_3) , a simulacije ćemo vršiti za te trenutke t_1 i t_3 (jer su t_1 i t_2 simetrični pa im rezultati izgledaju isto). Struja opterećenja kabela je uzeta iz kataloga kabela od elka.hr (slika 6.2.) te je ta

vrijednost korištena pri generiranju valnih oblika struje, dok je za napon uzet nazivni napon od 1 kV.

	STRUJNO OPTEREĆENJE (A) / CURENT RATINGS (A)												
Nazivni presjek vodiča mm² / Nominal Cross-Section		1-žilni ka Single-Cor	abel / e Cable		2-žilni k 2-Core (abel / Cable	3 i 4-žilni kabel / 3 and 4-Core Cable						
of Conductor mm ²	u zemlji	/ in earth	uzraki	u/inair	u zemlji / in earth	uzraku/ <i>in air</i>	u zemlji / in earth	u zraku / in air					
	۲	&	•	00									
1,5	41	30	27	21	30	17	27	19,5					
0.5		00	05	00	14	20	00	00					
4	71	50	47	37	53	37	46	34					
Û	30	02	- 55	47	00	40	50	40					
10	124	83	81	64	88	65	78	59					
16	160	107	107	84	115	87	101	78					
25	208	138	144	114	150	118	132	105					
35	250	164	176	139	183	149	159	129					
50	296	195	214	169	-	-	188	157					
70	365	238	270	213	-	-	232	199					
95	438	286	334	264	-	-	280	246					
120	501	325	389	307	-	-	318	285					
150	563	365	446	352	-	-	359	326					
185	639	413	516	406	-	-	406	374					
240	716	479	618	483	-	-	473	445					
300	845	539	711	552	-	-	535	510					

Slika 6.2. Prikaz strujnog opterećenja NYY kabela (46 A) [12]

Kod generiranja valnih oblika struja i napona simetričnog trofaznog sustava, valni oblici nisu generirani za neutralni vodič budući da su napon i struja jednaki 0. Valni oblici struja i napona su prikazani na slikama 6.3.-6.5..

Slika 6.3. Prikaz valnog oblika napona simetričnog trofaznog sustava

Slika 6.4. Prikaz valnog oblika struje simetričnog trofaznog sustava

Slika 6.5. Prikaz valnog oblika struje faza (crvena, zelena, plava) i neutralnog vodiča (žuta) nesimetričnog trofaznog sustava

Kao što se može vidjeti na slikama valnih oblika, na valne oblike postavljene su točke čije xkoordinate odgovaraju vremenskim trenutcima koje smo već definirali (t_1, t_2, t_3) , a u prozoru pored svake točke se može vidjeti vrijednost napona ,odnosno struje, u toj točki tj. u tom vremenskom trenutku. Točke čije su x-koordinate različite od t_1, t_2 ili t_3 , pokazuju vršne vrijednosti napona, odnosno struja, pojedine faze i neutralnog vodiča.

6.1.1. Magnetsko polje i jedinični induktivitet i otpor NYY kabela

Kako bismo započeli sa simulacijama, klikom na "New" u izborniku "File", potrebno je kreirati problem tako da se u okviru za definiranje problema definira problem, a u našem slučaju potrebno je definirati "Magnetics problem".

Slika 6.6. Prikaz izbornika ''File'' u kojemu je potrebno kliknuti na ''New'' da bi se otvorio okvir za definiranje problema

Create a new problem		×
Magnetics Problem		•
	ОК	Cancel

Slika 6.7. Prikaz okvira za definiranje problema

Nakon definiranja problema, potrebno je kliknuti na izbornik "Problem" kako bismo definirali preference kao što je preferirana mjerna jedinica za duljinu, planarni tip problema, dubinu te frekvenciju. Definiranjem frekvencije, zapravo definiramo radi li se o istosmjernom (f=0 Hz) ili o izmjeničnom (f≠0 Hz) sustavu. Za potrebe ovog problema, frekvenciju ćemo ostaviti na 0 budući da, kasnije kada budemo definirali strujne krugove, nećemo moći unijeti fazni pomak struja, stoga ćemo struje pojedine faze u određenom trenutku tretirati kao istosmjerne struje koje se razlikuju u smjeru i iznosu.

Slika 6.8. Prikaz okvira za definiranje preferenci problema

Sljedeće što je potrebno napraviti jest nacrtati geometriju problema, a to radimo tako da kliknemo na ikonu čvora (node) prikazanu na slici 6.9. te pritiskom na tipku "Tab" otvorimo prozor za definiranje koordinata čvorova na koje će se vezati drugi dijelovi geometrije (lukovi).

🔓 femm -	[Untitled]	
👩 File	ait view Problem Grid Operation	Prop
00	i 🗖 🖌 🔊 🞯 🚰 🔣 💞 📢	æ
<u> </u>	Enter Point X	1
Ð	x-coord 1.48	
9	y-coord 5.37	
0	OK Cancel	
Û		
V 11		

Slika 6.9. Prikaz prozora za definiranje koordinata čvorova

Nakon niza definiranja čvorova, dobijemo geometriju prikazanu na slici 6.10., a ona prikazuje skup svih čvorova geometrije koje je potrebno povezati nizom lukova kako bismo dobili geometriju kabela.

1000	femi	m - [I	nyy i	abel0	ILFEM	1																							
100	File	Ec	fit	View	Prob	ilem	Grid	Oper	ation	Prop	perties	Me	h i	Analys	is V	Vindow	v He	lp											
1		2		1	n	0	đ		61	2	0	::: O	6	26		θľΓ	×	0											
·····	1			1.1	1.	1.	10				10	1		1.		1	1	10	1	1	÷		1	1	1	1	1	1	1
2																													
0																													
1	í																												
ł	1														ċ														
4																													
-												•		۰.								-							
*																													
grid Size																۰.		00		•.•									
	1																												
	I																												

Slika 6.10. Prikaz čvorova geometrije

Čvorovi se vežu lukovima tako da se klikne na ikonu luka (arc) te se označe dva čvora koja želimo povezati lukom. Ovisno o redoslijedu označavanja čvorova, odabiremo koji luk ćemo nacrtati odnosno hoćemo li nacrtati gornji (označavamo s desna na lijevo) ili donji luk (označavamo s lijeva na desno). Nakon što označimo oba čvora, otvara se prozor u kojem definiramo svojstva luka (slika 6.11.), a kako bismo nacrtali luk takav da mu je radijus u svakoj točki jednak, potrebno je u sekciji "Arc Angle" unijeti kut od 180 stupnjeva.

 (\cdot)	÷			1		÷.	÷				÷			-	÷
۰				1						•	•		•		
1	÷			(\cdot, \cdot)		÷	÷			÷					÷
		-	۰.	. "	•	. "		•	•						÷
		Arc se	egmen	t prope	erties					×					
$\left \cdot \right $	÷	Arc A	ngle	ſ	180			_							÷
	ł	Max. Degri	segme ees	nt, [1			_				ł			ł
	÷.	Boun	dary co	nd. <	None>				•						÷.
					OK		0	:an	cel						
÷			1		1		÷			1					÷

Slika 6.11. Prikaz prozora za definiranje svojstava luka

Nakon što se čvorovi spoje odgovarajućim lukovima, dobije se geometrija koja prikazuje presjek NYY kabela sa presjecima navedenim na slici 6.1., a prikaz geometrije se može vidjeti na slici 6.12..

Slika 6.12. Prikaz geometrije NYY kabela

Sljedeće što je potrebno napraviti je odabrati materijale za pojedine dijelove geometrije. To se radi tako da se u izborniku "Properties" odabere "Materials Library" te se nakon toga otvara prozor za odabir materijala koji se odnose na naš problem.

Slika 6.13. Prikaz izbornika ''Properties'' zajedno sa opcijom ''Materials Library'' koju je potrebno odabrati

U novootvorenom prozoru za odabir materijala (slika 6.14.) možemo primijetiti mnogo vrsta materijala sortiranih u mape, no u defaultnoj biblioteci materijala, materijali PVC i XLPE ne postoje, stoga je potrebno kreirati novi materijal koji ćemo imenovati po našim traženim materijalima i za koje ćemo definirati relativnu dielektričnost koja odgovara PVC-u i XLPE-u. Novi materijal kreiramo tako da desnim klikom miša otvorimo izbornik u kojem odabiremo opciju "Add New Material". Odabirom na "Add New Material", u listi materijala se pojavljuje novi materijal sa imenom "New Material".

Slika 6.14. Prikaz prozora za odabir materijala zajedno sa opcijom ''Add New Material'' te prikazom novonastalog materijala ''New Material'' na listi

Duplim klikom miša na "New Material" otvaramo novi prozor u kojem definiramo ime i svojstva materijala (slika 6.15.). Stvorit ćemo 2 nova materijala te ćemo jednom nadjenuti ime "PVC" i relativnu permeabilnost 4.5 te drugom ime "XLPE" i relativnu permeabilnost 2.5.

Block Property		\times							
Name	PVC								
B-H Curve	Linear B-H Relationship								
Linear Material F	Properties								
Relative $\mu_{_{\chi}}$	4.5 Relative µ 4.5								
$\pmb{\phi}_{hx}$, deg	0 Ø _{hy} ,deg 0								
Nonlinear Material Properties									
Edit I	B-H Curve Phmax , deg 0								
Coercivity	Electrical Conductivity								
H , A/m	0 σ, MS/m 0								
Source Current	Density								
J, MA/m^2	0								
Special Attribute	es: Lamination & Wire Type								
Not laminated	l or stranded 📃 💌								
Lam thickness, m	m 0 Lam fill factor 1								
Number of strand	ds 0 Strand dia, mm 0								
	OK Cancel								

Slika 6.16. Prikaz prozora za definiranje svojstava materijala (PVC)

Nakon definiranja svojstava novih materijala (PVC i XLPE), potrebno je sve materijale koji se odnose na naš model prebaciti u desni dio prozora u mapu "Model Materials". U našem slučaju to će biti bakar (odabran iz mape "Copper Metric Magnet Wire", žici odgovarajućeg promjera promijenjeno je ime u "bakar"), PVC, XLPE i zrak (Air) (slika 6.13.).

Slika 6.17. Prikaz svih materijala dodanih u mapu ''Model Materials''

Prije nego što dodijelimo materijale pojedinim dijelovima geometrije, moramo definirati strujne krugove kako bismo mogli programu dati do znanja koji dijelovi geometrije su protjecani strujom. Potrebno je u izborniku "Properties" izabrati opciju "Circuits" te se otvara prozor za definiranje strujnog kruga (slika 6.18.).

Slika 6.18. Prikaz opcije ''Circuits'' u izborniku ''Properties'' zajedno sa prozorom za dodavanje strunog kruga

U novootvorenom prozoru, potrebno je odabrati opciju "Add Property" kako bi se otvorio novi prozor za definiranje imena strujnog kruga, definiranje je li krug serijski ili paralelni te definiranje jačine struje (slika 6.19.). Budući da u našem slučaju imamo četverožilni kabel sa 3 faze i neutralnim vodičem, moramo definirati 4 strujna kruga koja ćemo imenovati ("krug-Ut_i", "krug-Vt_i", "krug3-Wt_i" i "krug-Nt_i", i=(1,3)), a jačina i smjer struje pojedine faze će biti prema valnom obliku iz Matlaba te će se razlikovati ovisno o trenutku za koji radimo simulaciju i o

tome radimo li simulaciju pri simetričnom trofaznom sustavu ili nesimetričnom trofaznom sustavu.

Circuit Propert	y	×
Name New	Circuit	
C Parallel	Circuit Current, Amps	ſ
	OK Cancel	

Slika 6.19. Prikaz prozora za definiranje svojstava strujnog kruga

Kada smo definirali strujne krugove, možemo definirati materijale za sve dijelove geometrije te im također pridružiti strujni krug ako su protjecani strujom. To radimo tako da označimo ikonu za odabir te označimo sve dijelove geometrije kojima želimo dodijeliti materijal (slika 6.20.).

Slika 6.20. Prikaz ikone za odabir te geometrija sa označenim dijelovima kojima dodjeljujemo materijale

Nakon označavanja geometrije, slijedi dodjeljivanje materijala označenoj geometriji. Potrebno je desnim klikom označiti postavljenu oznaku i pritiskom na tipku "Space" otvoriti prozor za dodjeljivanje materijala i strujnog kruga geometriji (slika 6.21.).

roperties for se	lected block	×							
Block type	<none></none>	•							
Mesh size	0								
☑ Let Triangle choose Mesh Size									
In Circuit	<none></none>	•							
Number of Turns	1								
Magnetization Direction	0								
In Group	0								
🔲 Block label l	poated in an exte	ernal region							
🔲 Set as defa	ult block label								
	ОК	Cancel							

Slika 6.21. Prikaz prozora za dodjeljivanje materijala i strujnog kruga geometriji

U prozoru je potrebno u sekciji "Block type" odabrati koji materijal želimo dodijeliti odabranog geometriji te u sekciji "In Circuit" odabrati strujni krug ako je odabrana geometrija protjecana strujom (slika 6.22.). Ovisno o smjeru struje pojedine faze, u sekciju "Number of Turns" upisujemo 1 ili -1, u našem slučaju za referentni pozitivan smjer struje uzeta je vrijednost 1, a za negativni -1.

المحاجب والمحاجب والمحاجب	
Properties for selected block X	Properties for selected block 🛛 🗙
Block type <pre></pre> <pre></pre>	Block type bakar 💌
Mesh size <no mesh=""> XLPE VC Air</no>	Mesh size 0 V Let Triangle choose Mesh Size
bakar In Circuit Number of Turns Magnetization Direction	In Gircuit <none> Number of Krug-Ut1 Turns Krug-Ut2 Magnetization Krug-Vt3 Direction Krug-Vt1</none>
In Group	krug-Vt2 In Group krug-Vt3 krug-Wt1 Block label iqkrug-Wt2
Set as default block label	Set as default block label
OK Cancel	OK Cancel

Slika 6.22. Prikaz sekcija "Block type" i "In Circuit"

Nakon što definiramo sve materijale i strujne krugove za pojedine dijelove geometrije, dobijemo model prikazan na slici 6.23..

Slika 6.23, Prikaz geometrije NYY kabela zajedno sa materijalima i strujnim krugovima (za trenutak t_1)

Sljedeća stvar koju treba napraviti je nacrtati i definirati granice. Granice definiramo tako da u izborniku "Properties" odaberemo opciju "Boundary" te se otvara prozor za dodavanje granica (slika 6.24.).

Operation	Properties Mesh Analysis	Window		
🙁 😻 🤕	Materials	()	Property Definition	×
	Boundary		- Property Name	
	Point			_
$(A_{i}) = (A_{i})$	Circuits	1.0	1	
	Exterior Region		Add Property	
	Materials Library	Ť .	Delete Property	ОК
	a a a afa a	/	Modify Property	

Slika 6.24. Prikaz izbornika ''Properties'' i opcije ''Boundary'' zajedno sa prozorom za dodavanje granica

Odabirom opcije "Add Property" otvaramo prozor za definiranje imena i svojstava granice. U novootvorenom prozoru ćemo nadjenuti ime granici "granica" te ćemo ostala svojstva ostaviti po defaultu i stisnuti na "OK" (slika 6.25.).

Boundary Property	×
Name granica	OK Caprel
BC Type Prescribed A	•
Small skin depth parameters μ , relative 0 σ , MS/m 0 Mixed BC parameters c c _ coefficient 0	Prescribed A parameters A 0 0 A 1 0 A 2 0 M deg 0
I coefficient 0 Air Gap parameters 0 Inner Angle, Deg 0 Outer Angle, Deg 0	Ø, deg 0

Slika 6.25. Prikaz prozora za definiranje imena i svojstava granica

Nakon definiranja imena i svojstava granica, potrebno je nacrtati granice. Granice crtamo na isti način kao što smo crtali geometriju. Granica ima oblik kružnice a nacrtana je tako da su definirana dva čvora jednako udaljena od središta geometrije kabela te su spojeni sa dva luka (slika 6.26.).

Slika 6.26. Prikaz geometrije kabela zajedno sa pripadajućim granicama problema

Nacrtanim granicama je potrebno dodijeliti svojstva granica, a to radimo tako da desnim klikom miša označimo lukove i pritiskom na tipku "Space" otvorimo prozor za dodjelu svojstava. U prozoru u padajućem izborniku sekcije "Boundary cond." odabiremo naše svojstvo granica "granica" te stisnemo na "OK" (slika 6.27.).

Arc segment pro	operties	Х
Max. segment, Degrees	1	
Boundary cond.	aranica	•
Hide arc in postp	rocessor 🔲	
In Group	0	
	OK Cancel	

Slika 6.23. Prikaz prozora za dodjelu svojstava granica

Prije pokretanja same simulacije, potrebno je još spremiti problem. Spremanje se izvršava odabirom opcije "Save As" u izborniku "File".

Kada smo spremili problem, možemo pokrenuti simulacije. Simulacije se pokreću pritiskom na tipku za pokretanje prikazanu na slici 6.24., a rezultati se prikazuju pritiskom na tipku pored (ikona sa simbolom naočala), također prikazana na slici 6.24..

Slika 6.24. Prikaz ikone za pokretanje i ikone za prikaz rezultata

Kada provedemo simulacije, klikom na ikonu za prikaz rezultata, rezultati se prikazuju tako da možemo vidjeti silnice magnetskog polja te klikanjem miša na određene točke u geometriji, u dialogu sa strane možemo vidjeti vrijednosti magnetske indukcije, jakosti magnetskog polja, gustoće struje i električnog polja u odabranoj točki (slika 6.25.).

FEMM Output	×
Point: $x=7.4$, $y=-0.1$ A = 1.81432e=005 Wb/m [B] = 0.0221244 T BX = 0.0168298 T BY = -0.0143614 T [H] = 7042.43 A/m HX = 5357.08 A/m HY = -4571.38 A/m mu_X= 2.5 (rel) E = 77.9049 J/m^3 J = 0 MA/m^2	

Slika 6.25. Dialog sa vrijednostima magnetske indukcije, jakosti magnetskog polja itd.

Kako bismo zornije mogli vidjeti gustoću magnetskih silnica, potrebno je odabrati ikonu prikazanu na slici 6.26.a čime nam se otvara prozor u kojemu možemo definirati što želimo da

na FEMM prikaže. Osim gustoće magnetskog polja, možemo i prikazati jakost magnetskog polja te gustoću struje (slika 6.26.b), a odabirom na opciju "Show Density Plot" (slika 6.26.c), rezultate prikazujemo različitim bojama što omogućuje zorniji prikaz.

Slika 6.26. a) ikona b) padajući izbornik sa opcijama prikaza rezultata c) opcija ''Show Density Plot''

Rezultati simulacija (za sve trenutke u vremenu) će biti prikazani u obliku gustoće magnetskog polja te grafičkog prikaza gustoće magnetskog polja uz što će biti prikazane vrijednosti jediničnog induktiviteta i otpora koje će biti uspoređene za vrijednostima iz kataloga od elka.hr.

Rezultati za simetrični i nesimetrično trofazni sustav struja u trenutku t_1 su prikazani na slikama 6.27.-6.33. te tablici 6.1..

Slika 6.27. Prikaz silnica magnetskog polja NYY kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav trenutku t₁

Slika 6.28. Prikaz gustoće magnetskog polja NYY kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₁

Raspodjelu gustoće magnetskog polja (ili neke druge veličine) možemo prikazati pomoću grafa tako da nacrtamo liniju koja prolazi kroz kabel te crtamo graf duž te linije tako da stisnemo na ikonu za crtanje grafa (slika 6.29.).

Slika 6.29. a) Prikaz ikone za crtanje linije (lijevo) i ikone za crtanje grafa (desno), b) linija duž koje crtamo graf

Nakon pritiska na ikonu, otvara se prozor u kojemu u sekciji "Plot type" odabiremo što želimo prikazati na grafu (slika 6.30.). U našem slučaju na grafu ćemo prikazati raspodjelu gustoće magnetskog polja kroz kabel.

B	(Magnitude of flux density)	-
Poter	ntial	
B B.n B.t H H.n H.t	(Magnitude of flux density) (Normal flux density) (Tangential flux density) (Magnitude of field intensity) (Normal field intensity) (Tangential field intensity)	

Slika 6.30. Prikaz različitih opcija crtanja grafa u sekciji "Plot type"

Slika 6.31. Grafički prikaz modula gustoće magnetskog polja NYY kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₁

Jedinične vrijednosti induktiviteta (Flux/Current) i otpora (Voltage/Current) možemo vidjeti u prozoru koji se pojavljuje pritiskom na ikonu prikazanu na slici 6.32.

Slika 6.32. Ikona za prikaz vrijednosti jediničkog induktiviteta, otpora

Circuit Properties	×
Circuit Name	
krug-Vt1	•
Results Total current = 56.34 Amps Voltage Drop = 0.000483124 Volts Flux Linkage = 7.43659e-008 Webers Flux/Current = 1.31979e-009 Henries Voltage/Current = 8.57516e-006 Ohms Power = 0.0272192 Watts	
	ОК

Slika 6.33. Prikaz prozora sa vrijednostima jediničnog induktiviteta i otpora (pr. faza ''v'' u trenutku t₁)

Vrijednosti jediničnog induktiviteta i otpora koje je FEMM izračunao su prikazane u tablici 6.1.. Budući da se simulacije rade nad linearnim materijalima, vrijednosti induktiviteta i otpora će biti jednake u svakom trenutku. U tablici 6.1., vrijednosti induktiviteta i otpora faze "u" i neutralnog vodiča "n" nisu prikazane jer ih FEMM nije mogao izračunati, budući da struja u trenutku t_1 iznosi 0, no one su jednake vrijednostima faza "v" i "w".

Tablica 6.1. Vrijednosti jediničnog induktiviteta i otpora u FEMM-u u trenutku t₁

	L [H/m]	R [Ω/m]
u	-	-
v	$1.31979 \cdot 10^{-9}$	$8.57516 \cdot 10^{-6}$
W	$1.3198 \cdot 10^{-9}$	$8.57516 \cdot 10^{-6}$
n	-	-

Otpor kabela računamo po formuli :

$$R_{\vartheta} = R_{20} [1 + \alpha_{20} (\vartheta - 20)] \tag{6-1}$$

gdje je :

- R_{20} vrijednost otpora vodiča pri temperaturi od 20
- α_{20} temperaturni koeficijent otpora (za bakar iznosi 3.93 * 10³)

Rezultati za simetrični i nesimetrično trofazni sustav struja u trenutku t_3 su prikazani na slikama 6.34.-6.71..

Slika 6.34. Prikaz silnica magnetskog polja NYY kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav trenutku t₃

Slika 6.35. Prikaz gustoće magnetskog polja NYY kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav trenutku t₃

Slika 6.36. Grafički prikaz modula gustoće magnetskog polja NYY kabela za simetrični (desno) i nesimetrični (lijevo) trofazni sustav u trenutku t₃

6.1.2. Električno polje NYY kabela

Simulacije električnog polja u FEMM-u se obavljaju na gotovo isti način kao i kod simulacija magnetskog polja, uz neke manje razlike. U prozoru za definiranje problema, potrebno je odabrati opciju "Electrostatics Problem". Nakon definiranja problema ostaje nam da napravimo sve potrebne korake kao što smo radili kod simulacija magnetskog polja uz razliku da se ne definiraju strujni krugovi, nego vodiči kod kojih definiramo vrijednost napona za određeni trenutak. Valni oblik napona NYY kabela za simetrični trofazni sustav smo mogli vidjeti na slici 6.5., a simulacije će se obavljati za iste trenutke kao i kod simulacija magnetskih polja (t_1, t_3). Simulacije neće biti odrađene za nesimetrični trofazni sustav napona, budući da je taj slučaj jako rijedak tj. mreža nastoji "držati" simetričan napon.

Rezultati simulacija (za sve trenutke u vremenu) će biti prikazani u obliku gustoće napona i jakosti električnog polja. Jedinični kapacitet za ovaj primjer neće biti izračunat budući da je kod višežilnih kabela potrebno računati parcijalne kapacitete što je vrlo složen proces.

Rezultati za simetrični trofazni sustav napona u trenutku t₁ su prikazani na slikama 6.37. i 6.38..

Slika 6.37. Prikaz električnog polja (lijevo) i napona (desno) NYY kabela za simetrični trofazni sustav u trenutku t₁

Slika 6.38. Grafički prikaz električnog polja (lijevo) i napona (desno) NYY kabela za simetrični trofazni sustav u trenutku t₁

Rezultati za simetrični trofazni sustav napona u trenutku t₃ su prikazani na slikama 6.39. i 6.40.

Slika 6.39. Prikaz električnog polja (lijevo) i napona (desno) NYY kabela za simetrični trofazni sustav u trenutku t₃

Slika 6.40. Grafički prikaz električnog polja (lijevo) i napona (desno) NYY kabela za simetrični trofazni sustav u trenutku t₃

6.2. Srednjenaponski (SN) kabel - N2XS(FL)2Y

Kao predmet svih simulacija za srednjenaponske (SN) kabele biti će uzet N2XS(FL)2Y kabel. Strukturu i tehničke podatke smo mogli vidjeti na slici 2.6., a tablica presjeka je prikazana na slici 6.41..

🗸 Presjeci (tablica)							
N2XS(FL)2Y, NA2XS(FL)2Y 12/20/24 kV								
Presjek	Promjer vodiča	Debljina izolacije	Promjer preko izolacije	Debljina plašta	Promjer kabela	Težina kabela Cu	Težina kabela Al	Najmanji polumjer savijanja
(nxmm ² /mm ²)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg/km)	(kg/km)	(mm)
1x50/16	8,3	5,5	21,4	2,5	29	1255	965	430

Slika 6.41. Struktura, tehnički podaci i presjeci N2XS(FL)2Y kabela [13]

Simulacije nad N2XS(FL)2Y kabelom su rađene po uzoru na simulacije za NYY kabel. Ponovo su u Matlabu generirani valni oblici napona i struja za simetrični trofazni sustav i za nesimetrični trofazni sustav. Za struju opterećenja kabela, uzeta je vrijednost iz kataloga od elka.hr (slika 6.42.), a za napon je uzeta vrijednost od 12 kV.

Mjesto polaganja i	z	emlja /	Ground	1		Zrai	k / Air		Zemlj	a / Ground	Zr	ak / Air
vrsta vodiča / Place of laying and conductor type	Baka Copp	ar / ber	Alum Alumi	inij / nium	Bak Cop	ar / per	Alumi Alumi	inij / nium	Bakar / Copper	Aluminij / Aluminium	Bakar / Copper	Aluminij / Aluminium
Način polaganja / Way of laying	000	&	000	&	000	&	000	&	\odot	\odot	\odot	\odot
Presjek vodiča / Conductor cross-section					Strujr	no opte	erećenje	/ Curre	ent rating	s		
mm ²							A					
25	180	165	140	130	175	160	130	125	150	115	135	110
35	215	200	165	155	210	190	170	150	180	140	165	130
50	250	235	195	180	255	230	205	180	215	165	200	155
70	310	290	240	225	320	285	255	220	265	205	250	195
95	370	345	290	270	385	345	305	270	315	245	305	240
120	420	395	325	305	440	400	350	310	360	280	350	275
150	460	440	360	340	500	455	390	355	400	315	400	315
185	530	500	410	385	580	525	450	410	455	355	460	360
240	610	580	480	455	680	625	530	490	525	415	550	425
300	690	650	545	510	780	725	615	560	600	470	630	480
400	780	750	625	590	890	850	710	665				
500	890	840	700	670	990	940	805	750				

Slika 6.42. Prikaz strujnog opterećenja N2XS(FL)2Y kabela (250 A) [134

Također ponovo su definirana tri trenutka u vremenu (t_1, t_2, t_3) za koje ćemo raditi simulacije (bez t_2) i prikazivati rezultate. Vrijednosti napona i struja za navedene trenutke su prikazane u tablici 6.2..

Tablica 6.2. Vrijednosti struja i napona u trenutcima t ₁ , t ₂ , t ₃ za simetrični i nesimet	rični
trofazni sustav struja te simetrični trofazni sustav napona	

Simetrični	Simetrični trofazni sustav struja i napona							
		t ₁	t ₂	t ₃				
u	$i(t) = 230 * \sqrt{2} \sin(2\pi 50 t)$	0	0	325.3				
V	$i(t) = 230 * \sqrt{2}sin(2\pi 50t + 120)$	281.7	-281.7	-162.6				
W	$i(t) = 230 * \sqrt{2}sin(2\pi 50t - 120)$	-281.7	281.7	-162.6				
u	$u(t) = 1200 * \sqrt{2} \sin(2\pi 50)$	0	0	1697				
V	$u(t) = 1200 * \sqrt{2} \sin (2\pi 50 + 120)$	1470	-1470	-848.5				
W	$u(t) = 1200 * \sqrt{2} \sin (2\pi 50 - 120)$	-1470	1470	-848.5				
Nesimetrič	ni trofazni sustav struja	-	-	-				
u	$i(t) = 230 * \sqrt{2} \sin(2\pi 50t)$	0	0	325.3				

v	$i(t) = 200 * \sqrt{2}sin(2\pi 50t + 75)$	273.2	-273.2	73.21
W	$i(t) = 185 * \sqrt{2}sin(2\pi 50t - 90)$	-261.6	261.6	0

Budući da je N2XS(FL)2Y jednožilni kabel, on se polaže u zemlju pored još tri kabela gdje su tri kabela faze (u,v,w) i jedan neutralni (n), tako su i u FEMM-u nacrtani po 4 kabela jedni pored drugih. Geometrija N2XS(FL)2Y kabela nacrtana u FEMM-u, prikazana je na slici 6.43..

Slika 6.43. Prikaz geometrije N2XS(FL)2Y kabela u FEMM-u

6.2.1. Magnetsko polje i jedinični induktivitet i otpor N2XS(FL)2Y kabela

Rezultati simulacija N2XS(FL)2Y kabela za simetrični i nesimetrični trofazni sustav struja u trenutku t_1 prikazani su na slikama 6.44.-6.46. te tablici 6.3..

Slika 6.44. Prikaz silnica magnetskog polja N2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₁

Slika 6.45. Prikaz gustoće magnetskog polja N2XS(FL)2Y kabela za simetrični (gore) i nesimetrični (dolje) trofazni sustav u trenutku t₁

Slika 6.46. Grafički prikaz gustoće magnetskog polja N2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₁

Tablica 6.3. V	rijednosti	jediničnog	induktiviteta	i otpora u	FEMM-u u	trenutku t ₁
----------------	------------	------------	---------------	------------	----------	-------------------------

	L [H/m]	R [Ω/m]
u	-	-
V	$8.06562 \cdot 10^{-10}$	$3.18675 \cdot 10^{-7}$
W	$8.06321 \cdot 10^{-10}$	$3.18675 \cdot 10^{-7}$

n	-	-

U tablici 6.3., vrijednosti induktiviteta i otpora faze u i neutralnog vodiča n nisu prikazane jer ih FEMM nije mogao izračunati, budući da struja u trenutku t_1 iznosi 0, no one su jednake vrijednostima faza v i w. Vrijednosti induktiviteta (iz kataloga kabela od elka.hr) za srednjenaponski kabel presjeka 50 mm² su prikazane na slici 6.47..

Provide the different		Nazivni napon kabela U _o /U / Nominal voltage of cables U _o /U										
Presjek vodica /	6/10 kV			12/20 k	V	18/3) kV	20/35 kV				
Conductor cross-section	\odot	000	&	000	&	000	&	000	&			
mm ²		Induktivitet (mH/km) / Inductance (mH/km)										
25	0,44	0,65	0,46	0,68	0,51	-	-	-	-			
35	0,42	0,63	0,45	0,66	0,49	0,69	0,51	0,76	0,53			
50	0,40	0,61	0,43	0,64	0,46	0,66	0,49	0,73	0,50			
70	0,38	0,59	0,41	0,61	0,43	0,63	0,47	0,69	0,47			
95	0,37	0,57	0,39	0,59	0,41	0,61	0,44	0,67	0,45			
120	0,36	0,55	0,37	0,58	0,40	0,59	0,43	0,65	0,44			
150	0,35	0,54	0,36	0,56	0,39	0,57	0,42	0,63	0,43			
185	0,34	0,53	0,35	0,55	0,39	0,56	0,40	0,61	0,41			
240	0,33	0,52	0,34	0,53	0,36	0,54	0,38	0,59	0,39			
300	0,33	0,51	0,33	0,52	0,35	0,53	0,37	0,58	0,38			
400	0,32	0,49	0,31	0,50	0,34	0,51	0,36	0,55	0,37			
500	0,32	0,47	0,30	0,49	0,33	0,50	0,34	0,52	0,36			

Slika 6.47. Prikaz tablice vrijednosti jediničnog induktiviteta za SN kabele [13]

Vrijednosti R₂₀ otpora (iz kataloga od elka.hr) za srednjenaponski kabel presjeka od 50 mm2 se mogu vidjeti na slici 6.48..

Presjek vodiča / Conductor cross-section	mm²		25	35	50	70	95	120	150	185	240	300	400	500
Istosmjerni otpor na 20 °C /	Ohm/km	Cu	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601	0,0470	0,0366
Direct resistance at 20 °C		AI	1,20	0,868	0,641	0,443	0,320	0,253	0,206	0,164	0,125	0,100	0,0778	0,0605

Slika 6.48. Prikaz tablice vrijednosti R_{20} otpora za SN kabele [13]

Rezultati simulacija N2XS(FL)2Y kabela za simetrični i nesimetrični trofazni sustav struja u trenutku t₃ prikazani su na slikama 6.49.-6.51..

Slika 6.49. Prikaz silnica magnetskog polja N2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₃

Slika 6.50. Prikaz gustoće magnetskog polja N2XS(FL)2Y kabela za simetrični (gore) i nesimetrični (dolje) trofazni sustav u trenutku t₃

Slika 6.51. Grafički prikaz gustoće magnetskog polja N2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₃

6.2.2. Električno polje i jedinični kapacitet N2XS(FL)2Y kabela

Rezultati simulacija N2XS(FL)2Y kabela za simetrični trofazni sustav napona u trenutku t_1 prikazani su na slikama 6.52. i 6.53. te tablici 6.4..

Slika 6.52. Prikaz električnog polja (gore) i napona (dolje) N2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₁

Slika 6.53. Grafički prikaz električnog polja (lijevo) i napona (desno) N2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₁

	U [V]	Q [C]	C = Q/U [F]
u	0	0	-
V	1470	$-5.78338 \cdot 10^{-7}$	$3.9343 \cdot 10^{-10}$
W	-1470	$-1.58709 \cdot 10^{-7}$	$1.0797 \cdot 10^{-10}$
n	0	0	-

U tablici 6.4., vrijednosti kapaciteta faze "u" i neutralnog vodiča "n" nisu prikazane jer ih FEMM nije mogao izračunati, budući da napon u trenutku t_1 iznosi 0, no one su jednake vrijednostima faza "v" i "w". Vrijednosti kapaciteta (iz kataloga kabela od elka.hr) za srednjenaponski kabel presjeka 50 mm2 su prikazane na slici 6.54..

Presjek vodiča /	Nazivni	napon kabela U _o /U / No	minal voltage of cables, U₀/U	<i>U</i> _o / <i>U</i>						
Conductor cross-section	6/10 kV	12/20 kV	18/30 kV	20/35 kV						
mm²										
25	0,208	0,149		-						
35	0,236	0,161	0,126	0,118						
50	0,246	0,175	0,137	0,127						
70	0,284	0,202	0,156	0,144						
95	0,365	0,215	0,166	0,153						
120	0,342	0,233	0,178	0,164						
150	0,371	0,251	0,190	0,175						
185	0,401	0,272	0,205	0,188						
240	0,450	0,302	0,226	0,207						
300	0,492	0,327	0,243	0,223						
400	0,551	0,376	0,277	0,253						
500	0,629	0,413	0,303	0,276						

Slika 6.54. Prikaz tablice vrijednosti jediničnog kapaciteta za SN kabele [13]

Rezultati simulacija N2XS(FL)2Y kabela za simetrični trofazni sustav napona u trenutku t_3 prikazani su na slikama 6.55. i 6.56.

Slika 6.55. Prikaz električnog polja (gore) i napona (dolje) N2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₃

Slika 6.56. Grafički prikaz električnog polja (lijevo) i napona (desno) N2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₃

6.3. Visokonaponski (VN) kabel - 2XS(FL)2Y

Kao predmet svih simulacija za visokonaponske (VN) kabele biti će uzet 2XS(FL)2Y kabel. Strukturu i tehničke podatke smo mogli vidjeti na slici 2.10., a tablica presjeka je prikazana na slici 6.57.. Sve simulacije su rađene kao i kod NYY i N2XS(FL)2Y kabela.

∨ Presjeci (tab	lica)						
2XS(FL)2Y							
Nazivni presjek (n x mm ² /mm ²)	Promjer vodiča (mm)	Debljina izolacije (mm)	Promjer preko izolacije (mm)	Promjer kabela (mm)	Težina kabela (kg/km)	Najmanji polumjer savijanja (m)	Maksimalna sila povlačenja (kN)
1x150/95	14,1	18	54,9	64,9	5035	0,97	7,5

Slika 6.57. Prikaz tablice presjeka [13]

Za strujno opterećenje je uzeta vrijednost iz kataloga od elka.hr, a prikazana je na slici 6.58.. Za vrijednost napona uzeta je vrijednost od 64 kV.

Vrsta vodiča / Conductor type		Ba	kreni v	odič /	Coppe	er con	ductor		4	Jumin	ijski v	odiĉ / A	Numir	nium c	onduc	tor	
Mjesto polaganja / Place of laying	z	emlja	/ Grou	nd		Zra	k / Air		Zemlja / Ground					Zrak / Air			
Način polaganja / Way of laying	linija © (/line ∋⊙	troku triang	t/	linija ⊙ (/line ∋⊙	trokut triang	t/ ne 📀	linija ⊙ (/line ∋⊙	troku triang	le 🗞	linija ⊙⊙	/line ∋⊙	troku triang	kut / 💮	
Način uzemljenja / Way of grounding		++	+	++	÷	++	+	++	÷	++	÷	++	÷	++	+	++	
Presjek vodiča / Conductor cross-section						Struji	no opte	erećenj	e / Cu	rrent	rating	5					
mm ^e								1	4								
150	435	406	410	406	551	515	478	473	335	325	320	320	431	415	373	373	
185	490	448	465	453	630	574	546	538	380	363	360	358	494	465	425	423	
240	570	505	540	519	740	659	645	628	445	416	420	416	583	541	504	499	
300	640	535	610	580	805	685	710	685	495	445	475	460	625	565	550	540	
400	720	595	690	650	915	775	820	785	565	500	540	525	715	640	640	625	
500	825	650	785	730	1060	860	945	895	645	555	620	595	835	725	745	720	
630	940	705	890	810	1235	950	1085	1010	740	610	710	670	975	820	865	830	
800	1055	755	1000	885	1415	1040	1235	1130	845	665	805	745	1130	910	995	940	
1000									950	720	900	820	1295	1005	1135	1058	
1200									1025	755	970	870	1420	1070	1235	1140	

Slika 6.58. Prikaz tablice vrijednosti strujnog opterećenja VN kabela [14]

Definirana su tri trenutka u vremenu (t_1, t_2, t_3) za koje ćemo raditi simulacije (bez t_2) i prikazivati rezultate. Vrijednosti struja za simetrični i nesimetrični trofazni sustav te napona za simetrični trofazni sustav napona u trenutcima t_1, t_2, t_3 prikazani su u tablici 6.5..

Tablica 6.5. Vrijednosti struja i napona u trenutcima t ₁ , t ₂ , t ₃ za simetrični i nesimetrič	Śni
trofazni sustav struja te simetrični trofazni sustav napona	

Simetrični trofazni sustav struja i napona						
		t ₁	t ₂	t ₃		
u	$i(t) = 435 * \sqrt{2}sin(2\pi 50t)$	0	0	615.2		
v	$i(t) = 435 * \sqrt{2}sin(2\pi 50t + 120)$	532.8	-532.8	-307.6		

W	$i(t) = 435 * \sqrt{2}sin(2\pi 50t - 120)$	-532.8	532.8	-307.6
u	$u(t) = 64000 * \sqrt{2} \sin(2\pi 50)$	0	0	90510
V	$u(t) = 64000 * \sqrt{2} \sin(2\pi 50 + 120)$	78380	-78380	-45250
W	$u(t) = 64000 * \sqrt{2} \sin(2\pi 50 - 120)$	-78380	78380	-45250
Nes	simetrični trofazni sustav struja	-	-	-
u	$i(t) = 435 * \sqrt{2}sin(2\pi 50t)$	0	0	615.2
V	$i(t) = 400 * \sqrt{2}sin(2\pi 50t + 40)$	363.6	-363.6	433.3
W	$i(t) = 380 * \sqrt{2}sin (2\pi 50t - 105)$	-519.1	519.1	-139.1

Geometrija 2XS(FL)2Y kabela nacrtana u FEMM-u, prikazana je na slici 6.59..

Slika 6.59. Prikaz geometrije 2XS(FL)2Y kabela u FEMM-u

6.3.1. Magnetsko polje i jedinični induktivitet i otpor 2XS(FL)2Y kabela

Rezultati simulacija 2XS(FL)2Y kabela za simetrični i nesimetrični trofazni sustav struja u trenutku t_1 prikazani su na slikama 6.60.-6.62. te tablici 6.6..

Slika 6.61. Prikaz silnica magnetskog polja 2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₁

Slika 6.62. Prikaz gustoće magnetskog polja 2XS(FL)2Y kabela za simetrični (gore) i nesimetrični (dolje) trofazni sustav u trenutku t₁

Slika 6.63. Grafički prikaz gustoće magnetskog polja 2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₁

U tablici 6.6., vrijednosti induktiviteta i otpora faze "u" i neutralnog vodiča "n" nisu prikazane jer ih FEMM nije mogao izračunati, budući da struja u trenutku t_1 iznosi 0, no one su jednake vrijednostima faza "v" i "w". Vrijednosti induktiviteta (iz kataloga kabela od elka.hr) za visokonaponski kabel presjeka 150 mm² su prikazane na slici 6.64..

	L [H/m]	R [Ω/m]
u	-	-
v	$9.22313 \cdot 10^{-10}$	$1.10425 \cdot 10^{-7}$
W	$9.22085 \cdot 10^{-10}$	$1.10425 \cdot 10^{-7}$
n	-	-

Tablica 6.6. Vrijednosti jediničnog induktiviteta i otpora u FEMM-u u trenutku t₁

Presjek vodiča i ekrana / Cross-section of conductor and screen	Otpor vodiča / Conductor resistance		Otpor ekrana / Screen resistance of eletric	Maksimalni iznos električnog polja /	faksimalni iznos lektričnog polja / Kapacitet / aximum amount Capacity f eletrical field	Induktivitet trokut - linija razmak 2D / Inductance triangle - line	Maksimalna struja kratkog spoja / Maximal Short-Circuit Current		
				Maximum amount of elctrical field			Vodič / Conductor		Ekran /
	DC 20 °C	AC 90 °C	DC 20 °C	or electrical neid		interspace 2D	65 °C	90 °C	Screen
mm²	Ω/km	Ω/km	Ω/km	kV/mm	µF/km	mH/km	kA/1s	kA/1s	kA/1s
1x150/95	0,124	0,1586	0,215	6,4	0,11	0,50 - 0,68	23,5	21,5	15
1x185/95	0,0991	0,1272	0,215	6,5	0,12	0,48 - 0,67	29,0	26,5	15
1x240/95	0,0754	0,0972	0,215	6,5	0,14	0,47 - 0,65	37,6	34,3	15

Slika 6.64. Prikaz vrijednosti jediničnog induktiviteta i kapaciteta te otpora R₂₀ za VN kabele [14] Vrijednosti R₂₀ otpora (iz kataloga od elka.hr) za visokonaponski kabel presjeka od 150 mm2 se također mogu vidjeti na slici 6.64..

Rezultati simulacija 2XS(FL)2Y kabela za simetrični i nesimetrični trofazni sustav struja u trenutku t₃ prikazani su na slikama 6.65.-6.67..

Slika 6.65. Prikaz silnica magnetskog polja 2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₃

Slika 6.66. Prikaz gustoće magnetskog polja 2XS(FL)2Y kabela za simetrični (gore) i nesimetrični (dolje) trofazni sustav u trenutku t₃

Slika 6.67. Grafički prikaz gustoće magnetskog polja 2XS(FL)2Y kabela za simetrični (lijevo) i nesimetrični (desno) trofazni sustav u trenutku t₃

6.3.2. Električno polje i jedinični kapacitet 2XS(FL)2Y kabela

Rezultati simulacija 2XS(FL)2Y kabela za simetrični trofazni sustav napona u trenutku t_1 prikazani su na slikama 6.68. i 6.69. te tablici 6.7..

Slika 6.68. Prikaz električnog polja (gore) i napona (dolje) 2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₁

Slika 6.69. Grafički prikaz električnog polja (lijevo) i napona (desno) 2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₁

U tablici 6.7., vrijednosti kapaciteta faze "u" i neutralnog vodiča "n" nisu prikazane jer ih FEMM nije mogao izračunati, budući da napon u trenutku t_1 iznosi 0, no one su jednake vrijednostima faza "v" i "w". Vrijednosti kapaciteta (iz kataloga kabela od elka.hr) za visokonaponski kabel presjeka 150 mm2 su prikazane na slici 6.64..

Tablica 6.7. Vrijednosti jediničnog kapaciteta u FEMM-u u trenutku t₁

	U [V]	Q [C]	C = Q/U [F]
u	0	0	-
v	78380	$-2.53353 \cdot 10^{-5}$	$3.2324 \cdot 10^{-10}$
W	-78380	$-2.94694 \cdot 10^{-6}$	$3.7598 \cdot 10^{-10}$
n	0	0	-

Rezultati simulacija 2XS(FL)2Y kabela za simetrični trofazni sustav napona u trenutku t_3 prikazani su na slikama 6.70. i 6.71..

Slika 6.70. Prikaz električnog polja (gore) i napona (dolje) 2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₃

Slika 6.71. Grafički prikaz električnog polja (lijevo) i napona (desno) 2XS(FL)2Y kabela za simetrični trofazni sustav u trenutku t₃

7. ZAKLJUČAK

Elektroenergetski kabeli imaju sve veću upotrebu u za prijenos i distribuciju električne energije do krajnjeg korisnika. Pred proizvodni proces energetskih kabela stavljena je velika odgovornost kako bi se proizveli kabeli koji mogu zadovoljiti potrebe distribucije i prijenosa u sve nepovoljnijim uvjetima. S obzirom da je elektroenergetski sustav podijeljen na dva, odnosno tri dijela, NN; SN; VN, na isti način podijeljeni su i kablovi. U svaku skupinu kabela spada više kabela različitih po fizikalnoj strukturi, ali i električnim i magnetskim parametrima te mehaničkim svojstvima.

Budući da se kabeli sve više koriste, sve više se polažu u zemlju što zbog estetskih razloga što zbog potencijalnog utjecaja na zdravlje ljudi. Budući da elektromagnetska polja mogu imati loš utjecaj na zdravlje, dobro je rješenje polagati kabele u zemlju. Na prvi pogled se čini da kabel položen u zemlju može više utjecati na ljude nego nadzemni kabel (zbog manje udaljenosti kabela i čovjeka), no polje podzemnog kabela opada jer se polja podzemnih kabela poništavaju. Bitan faktor u ovoj priči je i samo okruženje kabela, a to je zemlja. Zemlja radi dobar posao ublažavanja utjecaja elektromagnetskih polja.

Kao što možemo vidjeti na rezultatima simulacija, gustoća magnetskog polja, a time i jakost magnetskog polja, i jakost električnog polja opada udaljavanjem od kabela. Na slikama rezultata se to jasno može vidjeti. Kada uzmemo u obzir da je pri simulacijama kao okolni medij kabela bio uzet zrak, možemo zaključiti da bi utjecaj elektromagnetskih polja van kabela bio još slabiji budući da ga u stvarnosti okružuje zemlja te su prisutni i drugi kabeli što doprinosi poništavanju magnetskih polja.

Osim utjecaja elektromagnetskih polja na okolinu kabela, mogli smo vidjeti i raspodjelu gustoće magnetskog polja, električnog polja i napona kroz kabel. Također u prilogu su priloženi i rezultati raspodjele gustoće struje, jakosti magnetskog polja kao i graf modula jakosti magnetskog polja koji zapravo pokazuje raspodjelu jakosti magnetskog polja (odnosno gustoću magnetskog polja) kroz kabel.

Ovaj rad osim što prikazuje rezultate simulacija magnetskih i električnih polja te utjecaj istih na okolinu, pokazuje i rad u samom programu FEMM. Završni rad je strukturiran tako da zajedno sa simulacijama pokaže cjelokupnu proceduru korištenja programa kao i njegove osnovne alate

te mogućnosti prikazivanja rezultata te time može poslužiti nekome ,tko želi koristiti FEMM, kao polazna literatura.

Prilikom izrade simulacija potrebno je paziti na sve korake kako ne bi došlo do pogreške a time i pogrešno predstavljene simulacije.

LITERATURA

[1] M. Barišin, Niskonaponski električni kabeli, završni rad – Elektrotehnički fakultet Osijek, 2016.

[2] S. Conti; E. Dilettoso; S. Agatino Rizzo, Electromagnetic and Thermal Analysis of High Voltage Three-Phase Underground Cables Using Finite Element Method, IEEE International, Palermo, 2018

[3] M. Shafieipour; Z. Chen; A. Menshov; J. De Silva; V. Okhmatovski, Efficiently computing the electrical parameters of cables with arbitrary cross-sections using the method of moments, Electric Power Systems Research, Vol. 162, str. 37-49, 2018.

[4] S. Dubitsky; G. Greshnyakov; N. Korovkin, Multiphysics Finite Element Analysis of Underground Power Cable Ampacity, International Conference on Energy, Environment and Material Science, str. 84-88, Saint Petersburg, 2014.

[5] A.W. Cirino; H. de Paula; R.C. Mesquita; E. Saraiva, Cable parameter determination focusing on proximity effect icvlusion using finite element analysis, Brazilian Power Electronics Conference, str. 402-409, Bonito-Mato Grosso do Sul, Brazil, 2009.

[6] Energetski srednjenaponski kabeli za napone do 36 kV - N2XY(FL)2Y, dostupno na : https://elka.hr/n2xsfl2y-na2xsfl2y/ (pristup 5.9.2020.)

[7] Energetski visokonaponski kabeli - 2XS(FL)2Y, dostupno na : <u>https://elka.hr/2xsfl2y-</u> <u>a2xsfl2y/</u> (pristup 5.9.2020.)

[8] Energetski kabeli 1-30 kV – NYY, dostupno na: <u>http://www.tim-</u> kabel.hr/content/view/272/343/lang,hrvatski/ (pristup 5.9.2020.)

[9] J. Harhaj, Visokonaponski električni kabeli, završni rad – Elektrotehnički fakultet Osijek, 2016.

[10] G. T. Hasan, Measurements of Electromagnetic Radiations Generated by 11kv Underground Distribution Power Cables, Tikrit Journal of Engineering Sciences, Vol. 20, str. 41-52, Tikrit University, 2013.

[11] M. Miličić, Simulacija veličina električnog i magnetskog polja programom femm, završni rad – Elektrotehnički fakultet Osijek, 2015.

[12] Katalog NN kabela, Elka.hr, dostupno na : <u>http://elka.hr/wp-</u> <u>content/uploads/2017/03/Energetski-kabeli-do-1-kV-Power-cables-up-to-1-kV.pdf</u> (pristup 5.9.2020.)

[13] Katalog SN kabela, Elka.hr, dostupno na : <u>http://elka.hr/wp-</u> <u>content/uploads/2017/03/Energetski-srednjenaponski-kabeli-do-36-kV-Power-cables-up-to-36-</u> <u>kV.pdf</u> (pristup 5.9.2020.)

[14] Katalog VN kabela, Elka.hr, dostupno na : <u>http://elka.hr/wp-</u> <u>content/uploads/2017/03/Energetski-visokonaponski-kabeli-High-Voltage-Cables_resized.pdf</u> (pristup 5.9.2020.)

[15] T. Asada; Y. Baba; N. Nagaoka, A. Ametani; J. Mahseredjian; K. Yamamoto, A study on basi characteristics of the proximitiy effect on condutors, IEEE Trans. Power Deliv., 32, 2017.

[16] S. Blumsack, Major Players in the Electric Power Sector, The College of Earth and Mineral Sciences, University Park, Pennsylvania, 2020., dostupno na : <u>https://www.e-education.psu.edu/ebf483/node/641</u> (pristup 5.9.2020.)

SAŽETAK

U ovom završnom radu, predstavljeno je izvođenje simulacija magnetskog polja i električnog polja te izračun jediničnog induktiviteta, otpora i kapaciteta u programu FEMM. Simulacije su odrađene na tri primjera kabela, a svaki je predstavljao skupinu kabela namijenjenu za određenu naponsku razinu (niskonaponski, srednjenaponski, visokonaponski). Kod simulacije za niskonaponski NYY kabel, predstavljen je detaljan proces odrađivanja simulacija tj. predstavljeni su koraci koji prethode simulaciji, sama simulacija te rezultati. Ovaj rad je predstavljen kroz nekoliko poglavlja kroz koja su predstavljena osnovna svojstva kabela, prikazani su primjeri kabela koji su bili predmet simulacija, opisana je teorija zagrijavanja kabela te magnetskog polja te je prije samih simulacija ukratko opisano korištenje FEMM programa. Program čini slojevit i strukturalni način izračuna jednostavnijih primjera polja i time je jedan od boljih programa za učenje i shvaćanje električnog i magnetskog polja u praktičnom dijelu.

Ključne riječi: simulacija, električno polje, magnetsko polje, FEMM, kabel, analiza, visokonaponski, srednjenaponski, visokonaponski, NYY, N2XY(FL)2Y, 2XS(FL)2Y

SUMMARY

In this final thesis, simulation of magnetic field and electric field is presented along with calculations of unit inductance, resistance and capacitance by using software FEMM. Simulations are done on three examples of the cable and every cable represents cable group which is intended for specific voltage level (low voltage cables, medium voltage cables, high voltage cables). In part which shows simulations over NYY cable, detailed procedure of simulating is presented that is all steps which procede simulations, simulations by it self and results. This final thesis is presented through few chapters in which are described fundamental properties of cables, examples of cables which were subjects of simulations, theoretical description of thermal distribution through cable and magnetic field and before simulations, it is shown how to use FEMM. The program makes layered and structured method of calculation of simple examples of fields and thus it is one of the best programs for learning and understanding of electric and magnetic fields in the practical part.

Key words: simulation, electric field, magnetic field, FEMM, cable, analysis, high voltage, medium voltage, low votlage, NYY, N2XY(FL)2Y, 2XS(FL)2Y

ŽIVOTOPIS

Rođen 8.7.1998. u Osijeku. Nakon završenog osnovnoškolskog obrazovanja u OŠ Josipa Antuna Ćolnića u Đakovu, upisuje opću gimnaziju Antuna Gustav Matoša u Đakovu. Tijekom života sudjelovao na brojnim državnim, evropskim i svjetskim natjecanjima u brazilskoj jiu-jitsi. Nakon srednjoškolskog obrazovanja polaže ispit državne mature i 2017. upisuje Fakultet elektrotehnike, računarstva i informacijskih tehnologija u Osijeku. Trenutno živi u Đakovu. Student treće godine preddiplomskog studija smjera elektroenergetika te se služi engleskim jezikom u govoru i pismu.

David Horvat

PRILOZI

Uz završni rad priložen je CD sa završnim radom u pdf i docx formatu zajedno sa ostalim rezultatima simulacija :

- Gustoća struje
- Jakost magnetskog polja
- Graf modula jakosti magnetskog polja

Rezultati su dostupni za svaki od 3 kabela te za svaki trenutak t_1, t_2, t_3 simetričnog i nesimetričnog trofaznog sustava struja i napona.