Simulacija elektroenergetske mreže simulatorom u stvarnom vremenu

Hajda, Josip

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:612635

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Sveučilišni diplomski studij

SIMULACIJA ELEKTROENERGETSKE MREŽE SIMULATOROM U STVARNOM VREMENU

Diplomski rad

Josip Hajda

Osijek, 2021

SADRŽAJ

1.	UVOD	1
	1.1 Zadatak diplomskog rada	1
2.	OPIS RT SIMULACIJA I OPAL-RT SIMULATORA	2
	2.1 Hardver	4
	2.2 Softver	5
	2.3 ePHASORISM	6
3.	MODELIEANJE ELEKTROENERGESTKE MREŽE	8
	3.1 Primjer prve mreže	8
	3.2 Primjer druge mreže	.14
	3.3 Povezivanje Excel datoteke s ePHASORSIM-om	.19
4.	PROVEDBA SIMULACIJA NA PRIMJERU MREŽE	.20
	4.1 Opis simulink modela	.21
	4.2 Izvođenje simulacije	.24
	4.3 Simulacijski scenarij 1	.25
	4.4 Simulacijski scenarij 2	.30
	4.5 Simulacijski scenarij 3	.34
	4.6 Snimke s osciloskopa	.38
5.	ZAKLJUČAK	.45
	LITERATURA	.46
	SAŽETAK	.47
	ABSTRACT	.48
	ŽIVOTOPIS	.49

1. UVOD

Ovaj diplomski rad bavit će se, kao što naslov kaže, simulacijom elektroenergetske mreže simulatorom u stvarnom vremenu. Rad se sastoji od teorijskog i praktičnog dijela. Simulacija se izvodi na OPAL-RT simulatoru pomoću programa RT-LAB, a model za simulaciju napravljen je pomoću programa Microsoft Excel i MATLAB. U drugom poglavlju opisat će se OPAL-RT simulator na kojemu se izvodi praktični dio ovog rada te program RT-LAB u koji se unose podaci za simulaciju. U trećem poglavlju bit će opisan jedan od načina unosa podataka u RT-LAB, a to je unos podataka pomoću Excelovih datoteka. OPAL-RT omogućuje i druge načine unosa podataka kao što su: PSSe (Power System Simulator for Engineering), softver za analizu energetskih sustava "CYME" i pomoću softvera Power Factory. U ovom radu obrađuje se samo unos podataka pomoću Excela. U četvrtom poglavlju nalazi se praktični dio rada u kojemu je prikazana simulacija na primjeru testne IEEE elektroenergetske mreže s 39 sabirnica ("IEEE 39 Test Node Test Network")

1.1 Zadatak diplomskog rada

Zadatak ovog diplomskog rada je opisati izradu modela za RT-LAB programski alat te unos podataka u Excel datoteku. Potrebno je odraditi simulacije na primjeru testne mreže IEEE 39 za tri različita scenarija. Nakon toga potrebno je snimiti rezultate simulacije te ih analizirati i napisati zaključak.

2. OPIS RT SIMULACIJA I OPAL- RT SIMULATORA

Simulacija elektroenergetskih sustava i povezane sekundarne opreme u stvarnom vremenu dobro je poznata i potrebna metoda u razvoju elektroenergetskih sustava, optimizaciji njihovog rada, obrazovanju itd. Tehnologija simulatora se cijelo vrijeme mijenjala i poboljšavala zajedno s razvojem tehnologija koje se koriste u našem svakodnevnom životu. Vrijeme potrebno za potpuni proces digitalnog izračuna ovisi o različitim čimbenicima kao što su: dimenzija elektroenergetskog sustava koji će se simulirati, karakteristike prijelaznih stanja koje će se proučavati, broj točaka promatranja i na kraju također jako puno o kapacitetu računala koje je rabljeno.

Zato postoje dvije vrste simulacija:

- Simulacija koja se ne odvija u stvarnom vremenu i izvodi se izvan mreže. U ovoj vrsti simulacije vrijeme izračuna svakog vremenskog koraka duže je nego što simulirani proces traje u prirodi, tako da potpuna simulacija može potrajati nekoliko sekundi ili čak minuta. Rezultati se obično spremaju u datoteke i grafički prikazuju u obliku vremenskih dijagrama za daljnja istraživanja i proračune.
- Simulacija u stvarnom vremenu u kojoj je vrijeme izračunavanja jednako ili čak kraće od svakog vremenskog koraka u simuliranom procesu. U ovoj vrsti simulacije rezultat svakog vremenskog koraka je dostupan na mreži u stvarnom vremenu jer bi proces u prirodi tekao na stvarnom elektroenergetskom sustavu. Rezultat se također može spremiti u datoteke i kasnije promatrati u grafičkom obliku ili ponoviti na različite načine, ali najveća prednost simulacije u stvarnom vremenu je mogućnost povezivanja različitog hardvera u zatvorenu petlju i proučavanje njegovih performansi kao što bi bilo instalirano izravno u stvarnom elektroenergetskom sustavu. Takva vrsta simulacije naziva se digitalna simulacija u stvarnom vremenu s zatvorenom petljom, a često se čuje i izraz "Hardver in the loop" (HIL). Jedan od vrlo važnih zahtjeva za ovu vrstu simulacije je da su vremenski koraci strogo kontrolirani i cijelo vrijeme sigurno unutar navedenih granica, u protivnom je nemoguće vjerovati dobivenim rezultatima.

Simulacije u stvarnom vremenu imaju razne primjene, a neke od njih su: zaštita releja i automatizacija energetskih sustava, upravljanje naponom i frekvencijom izvora energije, sheme zaštite integriteta sustava, upravljanje unutar energetskog elektroničkog polja kao što su HVDC, SVC, TCSC i STATCOM, izrada pametnih mreža i distribucije, edukacija i trening.

Prema [4] postoje razni proizvođači simulatora u stvarnom vremenu kao što su: "Typhoon HIL Simulator", "dSPACE SCALEXIO Systems", "Plexim RT Box", "Speedgoat", "NI HIL Testing" i "OPAL-RT Simulator". U ovom radu simulacija se izvodi na OPAL-RT simulatoru tako da će on biti detaljnije opisan.

Zbog sve većeg broja malih solarnih elektrana i vjetroelektrana elektroenergetska industrija se u posljednje vrijeme znatno mijenja s promjenom od centralizirane proizvodnje električne energije na mreže sa distribuiranim izvorima. Uz integraciju pametne tehnologije s potencijalom za pružanje mogućnosti naprednog praćenja u stvarnom vremenu, kontrole i zaštite, ovom promjenom paradigme dramatično se povećava složenost elektroenergetskih sustava. Iako nove tehnologije obećavaju povećanu pouzdanost i učinkovitost, one donose svoje vlastite tehnološke i integracijske izazove, koji se ne mogu zanemariti. Zbog toga je OPAL- RT simulator vrlo koristan alat jer se u stvarnom vremenu može simulirati neka elektroenergetska mreža ili dio mreže.

OPAL-RT je svjetski lider u razvoju PC / FPGA simulatora u stvarnom vremenu, opreme za testiranje Hardware-in-the-Loop (HIL) i Rapid Control Prototyping (RCP) sustava za dizajn, testiranje i optimizaciju upravljanja i zaštite sustava koji se koriste u elektroenergetskim mrežama, energetskoj elektronici, motornim pogonima, automobilskoj industriji, vlakovima, zrakoplovima i raznim industrijama, kao i istraživački i razvojni centri i sveučilišta. OPAL-RT je vrlo moćan alat koji nudi razne vrste simulacija, ali ovaj rad će se bazirati na elektroenergetske mreže.

OPAL-RT-ovi simulatori za elektroenergetske sustave simuliraju sve, od brze elektromagnetske pojave do tranzijentne stabilnosti velikih elektroenergetskih sustava, a istodobno omogućavaju inženjerima i znanstvenicima elektroenergetskih sustava da inoviraju ili optimiziraju sigurnost, učinkovitost i performanse te zaštitu za proizvodnju, prijenos i raspodjelu elektroenergetskih mreža.

2.1 Hardver

Simulacija se izvodi na modelu OPAL-RT simulatora OP5600 koji se spaja s host računalom. OP5600 je superračunalo koje nudi nenadmašnu razinu FPGA performansi i povezivanje optičkim kabelom te udovoljava zahtjevima najviše razine. OP5600 kombinira najnovije procesorske jezgre Intel® Xeon® Gold sa snagom Xilinx® Virtex®-7 FPGA uz podršku opsežnog popisa komunikacijskih protokola. Ima 32 kanala digitalnih ulaza i izlaza, te 32 kanala analognih ulaza i izlaza. Radi na operacijskom sustavu Linux. Na slici 2.1 je prikazan izgled simulatora, a na slici 2.2 je prikazana arhitektura simulatora.

Slika 2.1 Fizički izgled simulatora [2]

Slika 2.2 Arhitektura simulatora [2]

2.2Softver

Za kreiranje modela simulacije koristi se program RT-LAB. RT-LAB je integrirano simulacijsko okruženje OPAL-RT-a za simulacijska rješenja kao što su eMEGASIM, ePHASORSIM i eFPGASIM. Ovaj program omogućuje inženjerima provođenje paralelnih izračuna za simulaciju velikih i složenih modela za HIL i RCP aplikacije u stvarnom vremenu. Sa svojim interaktivnim sučeljem, RT-LAB pruža sve potrebne funkcionalnosti za konfiguriranje i upravljanje funkcijama simulatora i interakcijom s pokrenutim simulacijama. Izrada modela i testiranje su vrlo jednostavni. RT-LAB je kompatibilan sa MATLAB-om tako da se modeli mogu napraviti u MATLAB Simulinku i pokrenuti u RT-LAB-u. Od gore spomenutih simulacijskih rješenja simulacija u ovom radu će se izvoditi u ePHASORISM-u.

2.3ePHASORISM

ePHASORISM izvodi simulacije tranzijentne stabilnosti u stvarnom vremenu za prijenosne i distribucijske mreže s tisućama sabirnica. Rješava probleme u fazorskoj domeni s tipičnim vremenskim korakom od nekoliko milisekundi i omogućuje izračunavanje RMS-a, iznose kuta napona i struje, aktivnu i prividnu snagu te frekvenciju za svako mjesto u sustavu.

ePHASORISM se koristi za:

- Ispitivanje interakcije između FACTS i HVDC prijenosnih sustava na principu međusobno povezanih sustava.
- Testiranje na širokom području i zaštita SCADA sustava
- Predviđanje odaziva sustava brže od stvarnog vremena
- Simulacije tranzijentne stabilnosti u rasponu od 30000 čvorova
- Algoritme procjene stanja/kontrole/zaštite širokog područja
- Dizajniranje i testiranje lokalnih kontrolera kao regulatora napona
- Razvoj naprednog mjerenja i informcijske mreže

Glavne značajke ePHASORISM-a:

• Simulacija velikih energetskih sustava u stvarnom vremenu

U ePHASORISM-u je moguće simulirati mrežu do 30 000 distribucijskih čvorova, uključujući više od 70 000 ulaznih i izlaznih priključaka, tisuće generatora, dalekovoda, kabela, potrošača i transformatora. Moguće je simulirati sinkroni generator sa stabilizatorima elektroenergetskog sustava, pobudnim sustavima, turbinskim regulatorima i raznim regulatorima napona i brzine.

• Platforma za automatizaciju ispitivanja

Moguće izvršiti automatizaciju ispitivanja pomoću Python skripti te pomoću ScopeView-a snimiti, prikazati, analizirati rezultate te mijenjati parametre dok je simulacija pokrenuta .

• Veliki izbor gotovih modela

U RT-LAB-ovoj biblioteci nalaze se gotovi modeli za generator, izvor napona, opterećenje, prijenosni vod, stabilizator elektroenergetskog sustava, reaktor, vanjski Simulink blokovi.

• Fleksibilan unos podataka

Glavno sučelje ulaznih podataka nalazi se u proračunskoj tablici Excel koju je moguće prilagoditi svojim potrebama. Modeli mreže se mogu izraditi i na druge načine ili se mogu uvesti gotovi modeli iz programa DigSilent Power Factory, PSS/E i CYME.

Uvoz modela iz DigSilent-a: ePHASORSIM može uvesti popise mreža iz PowerFactory -ove DGS datoteke samo za uravnotežene mreže. Da bi se to postiglo na kartici "Network data" maske Solver mora se izabrati format ulazne datoteke PowerFactory. ePHASORSIM za PowerFactory podržava samo simulaciju pozitivnog slijeda i isključivo se temelji na biblioteci pozitivnih sekvenci.

Uvoz modela iz PSS/E datoteke: ePHASORSIM je kompatibilan s datotekama s popisima mreža PSS/e u .raw i .dyr formatu. Za stvaranje novog modela u ePHASORSIM-u pomoću podatkovnih datoteka u PSS/e formatu potrebne su tri ulazne datoteke, od kojih su dvije u PSS/e formatu, a treća u Excelu. PSS/e RAW datoteka mora se izvesti za verziju 32. Za uvoz modela potrebno je imati RAW datoteku verzije 32, DYR datoteku i Excel datoteku da bi se postavile ulazne i izlazne priključnice.

Uvoz modela iz CYME datoteke: ePHASORSIM može uvesti liste popisa iz CYME verzije 7.x (SXST) za uravnotežene i neuravnotežene mreže. Da bi se to postiglo potrebno je izabrati format ulazne datoteke CYME na kartici "Network data" maske Solver. Da bi simulacija započela iz ustaljenog stanja, potrebni su rezultati tokova snaga ili izravno iz značajke tokova snage ePHASORsim-a ili iz CYME -a. Ako se radi o neuravnoteženoj mreži na kartici "Network data" maske Solver potrebno je označiti okvir "Unbalanced" inače Solver pretpostavi da se radi od uravnoteženoj mreži.

U ovom radu unos podataka će se raditi preko Excel proračunskih tablica, a u sljedećem poglavlju nalazi se detaljan opis unosa podataka na ovaj način.

3 MODELIEANJE ELEKTROENERGESTKE MREŽE

U ovom poglavlju nalazi se detaljan opis unosa podataka u RT-LAB pomoću Excel datoteke na dva primjera elektroenetske mreže. Opisuju se dva primjera jer prvi primjer prikazuje elektroenergetsku mrežu koja se sastoji od komponenti pozitivnog slijeda, a drugi primjer prikazuje elektroenergetsku mrežu koja se sastoji od trofaznih komponenti. Opis će se raditi iz gotovih modela koji se nalaze u bazi podataka RT-LAB-a. Tim modelima se može pristupiti iz MATLAB-a naredbom "demo blockset ephasorsim".

3.1Primjer prve mreže

Za prvi primjer uzet je sustav sabirnica IEEE 39 koji se koristi se za prikaz osnovnih značajki ePHASORsima za simulaciju prijenosnih sustava u domeni pozitivnog slijeda. Na slici 3.1 prikazana je shema te elektroenergetske mreže.

Slika 3.1 Shema elektroenergetske mreže

Na slici 3.1 prikazana je elektroenergetska mreža koja se sastoji od 10 generatora, 12 transformatora, 39 sabirnica i 20 tereta. Za svaki od tih dijelova potrebno je unjeti potrebne podatke u Excel datoteku da bi se simulacija mogla izvršiti. Na slikama ispod prikazan je i opisan izgled svakog lista Excel datoteke.

	А	В	С	D
1	Excel file version	v1.8		
2	Name	Scale1		
З	Frequency (Hz)	50		
4	Power Base (MVA)	100		
5				
6				

Slika 3.2 Prikaz prvog lista Excel datoteke (general)

Na slici 3.2 prikazan je prvi list u Excel datoteci u kojemu se nalaze opći podaci kao što su verzija Excel datoteke, ime datoteke, nazivna frekvencija koja se unosi u hercima i bazna snaga u megavolt amperima.

1	A	В	с	D	E	F	G	Н	1	J	К	L	
1	outgoing	Bus_voltage	30/Vmag	26∕√mag	29/Vmag	4∕Vmag	16/Vmag	34/Vmag	31/Vmag	32/Vmag	9/Vmag	39/Vmag	
2	outgoing	Rotor_ang	m1/delta	m2/delta	m3/delta	m 4/delta	m5/delta	m6/delta	m7/delta	m8/delta	m9/delta	m10/delta	
3	outgoing	Rotor_spd	m1/slip	m2/slip	m3/slip	m4/slip	m5/slip	m6/slip	m7/slip	m8/slip	m9/slip	m10/slip	
4	outgoing	Тар	xf1/rW1										
5	outgoing	Vref_m1	ex1/Vref										
6	outgoing	Tm_m2	m2/Tm										
7	outgoing	I_m2	m2/Imag	m2/lang									
8	outgoing	V_m2	31/Vmag	31/Vang									
9	outgoing	Load In-Out	Id2/status										
10	outgoing	line_current	In33/Imag0										
11	incoming	Fault	30/active3PGFault	2/active3PGFaul	39/active3PGFa	. 4/active3PGFau	l 7/active3PGFau	34/active3PGFa	ult				
12	incoming	Тар	xf1/rW1										
13	incoming	PQ_Id	Id4/P	ld4/Q									
14	incoming	Load In-Out	Id7/status										
15	incoming	Line In-Out	In15/status										
16	incoming	Fault-on-line	In33/faulty										
17	incoming	Fault-distance	In33/fault_distance_factor										
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28						1.1							Ŧ
14	General (PINS / Bus / S	ynchronous Machine 🛛 Exciter 🖉 PS	5 / Turbine and	Governor / Load	Line / 2W-Tr	anstormer			<u> </u>	(IIII)		1

Slika 3.3 Stranica "Pins" (priključnice) Excel datoteke

Na slici 3.3 prikazan je list "Pins" Excel datoteke na kojem se nalaze ulazne i izlazne priključnice, one predstavljaju ulazne i izlazne parametre u ephasorsim-u. Izlazne priključnice služe za mjerenje napona sabirnice, kuta rotora svih sinkronih generatora, brzinu vrtnje svih sinkronih generatora, položaj preklopke transformatora, referentni napon uzbude itd., a ulazne priključnice služe za upravljačke naredbe kao što su trofazni zemljospoj na sabirnicama, promjena položaja preklopke za transformatora, promjena radne i jalove snage za teret, udaljenost kvara itd.

A	А	В	С	D	E
1	Bus	Base Voltage	(V) Voltage (V, pu)	Angle (deg)	Туре
2	1	1000	1,03297	-9,3761	PQ
3	2	1000	1,01107	-6,5836	PQ
4	3	1000	0,97373	-9,6291	PQ
5	4	1000	0,9327	-10,4775	PQ
6	5	1000	0,91852	-9,0155	PQ
7	6	1000	0,9188	-8,1528	PQ
8	7	1000	0,86315	-10,6842	PQ
9	8	1000	0,88084	-11,4079	PQ
10	9	1000	0,98072	-11,2091	PQ
11	10	1000	0,93851	-5,4052	PQ
12	11	1000	0,9305	-6,3356	PQ
13	12	1000	0,9123	-6,3741	PQ
14	13	1000	0,9362	-6,2589	PQ
15	14	1000	0,93615	-8,2553	PQ
16	15	1000	0,9391	-8,7854	PQ
17	16	1000	0,95674	-7,1671	PQ
18	17	1000	0,9664	-8,3608	PQ
19	18	1000	0,96767	-9,3332	PQ
20	19	1000	0,97919	-1,8354	PQ
21	20	1000	0,98066	-3,2817	PQ
22	21	1000	0,97306	-4,4866	PQ
23	22	1000	1,00987	0,3478	PQ
24	23	1000	1,00805	0,1165	PQ
25	24	1000	0,96783	-7,0433	PQ
26	25	1000	1,02018	-5,1214	PQ
27	26	1000	1,00002	-6,3872	PQ
28	27	1000	0,97808	-8,5778	PQ

Slika 3.4 Podaci za sabirnice

Na slici 3.4 prikazan je Excel list "Bus" na kojemu se unose podaci za sabirnice ove elektroenergetske mreže. U tablicu se unose sljedeći podaci: A- broj sabirnice, B- bazni napon sabirnice (koristi se samo pri računanju tokova snaga), C- izmjereni napon (kod distribucijskih mreža se upisuje u voltima a kod prijenosnih mreža upisuje se u p.u.), D- fazni kut napona na sabirnici i E- vrsta čvora (može biti PV, PQ ili SLACK odnosno referentni čvor).

	А	В	С	D	E	F	G	н
1	Bus	Туре	ID	Status	Pg (MW)	Qg (MVAr)	Qmin	Qmax
2	30	SM_T3	m1	1	250	216,192	-500	500
З	31	SM_T3	m2	1	572,93	550,596	-500	500
4	32	SM_T3	m3	1	650	265,198	-500	500
5	33	SM_T3	m 4	1	632	123,851	-500	500
6	34	SM_T3	m5	1	508	175,201	-300	400
7	35	SM_T3	m6	1	650	317,879	-500	500
8	36	SM_T3	m7	1	560	245,844	-500	500
9	37	SM_T3	m8	1	540	52,019	-500	500
10	38	SM_T3	m9	1	830	158,226	-500	500
11	39	SM_T3	m10	1	1011,777	342,702	-1000	1000
1	1	J	K	L	M	N	0	P
1	Sbase (MVA)	H (s)	D	x_d (pu)	x_q (pu)	x'_d (pu)	x'_q (pu)	x"_d (pu)
2	1000	4,2	0	1	0,69	0,29	0,31	0,2
З	1000	3,03	0	2,95	2,82	0,691	0,697	0,2
4	1000	3,58	0	2,495	2,37	0,53	0,531	0,2
5	1000	2,86	0	2,62	2,58	0,43	0,436	0,2
6	1000	2,6	0	6,7	6,2	1,1	1,32	0,2
7	1000	3,48	0	2,54	2,41	0,49	0,5	0,2
8	1000	2,64	0	2,95	2,92	0,48	0,49	0,2
9	1000	2,43	0	2,9	2,8	0,57	0,571	0,2
10	1000	3,45	0	2,106	2,05	0,57	0,572	0,2
11	1000	50	0	0,2	0,19	0,06	0,061	0,02
	Q	R	S	Т	U	V	W	Х
1	x_l (pu)	Ra (pu)	T'_do (s)	T"_do (s)	T'_qo (s)	T"_qo (s)	\$10	\$12
2	0,125	0	10,2	0,03	1,5	0,04	0,4	0,8
З	0,19	0	6,56	0,03	1,5	0,04	0,4	0,8
4	0,19	0	5,7	0,03	1,5	0,04	0,4	0,8
5	0,15	0	5,69	0,03	1,5	0,04	0,4	0,8
6	0,17	0	5,4	0,03	0,44	0,04	0,4	0,8
7	0,18	0	7,3	0,03	0,4	0,04	0,4	0,8
8	0,17	0	5,66	0,03	1,5	0,04	0,4	0,8
9	0,19	0	6,7	0,03	0,41	0,04	0,4	0,8
10	0,12	0	4, 79	0,03	1,96	0,04	0,4	0,8
11	0,019	0	7	0,03	0,7	0,04	0,4	0,8

Slika 3.5 Podaci za sinkrone generatore

Na slici 3.5 prikazan je Excel list "Synchronus Machine" na kojemu se nalaze podaci za sinkrone generatore. U tablicu se unose sljedeći podaci: A- broj sabirnice na kojoj se nalazi generator, B- tip generatora, C- oznaka generatora, D- status (1- uključen, 0- isključen), E- radna snaga generatora, F- jalova snaga generatora, G- minimalna jalova snaga, H- maksimalna jalova snaga, I- bazna prividna snaga, J- inercija, K- faktor prigušenja, L- uzdužna sinkrona reaktancija, M- poprečna sinkrona reaktancija, N- prijelazna reaktancija d-osi, O- prijelazna reaktancija q-osi, P- početna reaktancija d-osi, Q- reaktancija propuštanja statora, R- otpor statora, S- prijelazna vremenska konstanta d-osi, T- početna ili subtranzijentna vremenska konstanta d- osi, U- prijelazna vreneska konstanta q-osi, V- početna ili subtranzijentna vremenska konstanta q-osi, W- vrijednost funkcije zasićenja za 1 p.u. i X- vrijednost funkcije zasićenja za 1.2 p.u..

1	A	В	С	D	E	F	G	Н
1	Туре	ID	Machine ID	ка	кс	KF	TR (s)	TA
2	EX_T2	ex1	m1	20	0	0,01	0,01	0,05
З	EX_T2	ex2	m2	20	0	0,01	0,01	0,05
4	EX_T2	ex3	m3	20	0	0,01	0,01	0,05
5	EX_T2	ex4	m 4	20	0	0,01	0,01	0,05
6	EX_T2	ex5	m5	20	0	0,01	0,01	0,05
7	EX_T2	ex6	m6	20	0	0,01	0,01	0,05
8	EX_T2	ex7	m7	20	0	0,01	0,01	0,05
9	EX_T2	ex8	m8	20	0	0,01	0,01	0,05
10	EX_T2	ex9	m9	20	0	0,01	0,01	0,05
1	1	J	К	L	M	N	0	P
1	ТВ	TC	TF	VR_max	VR_min	VI_max	VI_min	
2	0,05	3,00E-03	1	1000	-1000	1000	-1000	
З	0,05	3,00E-03	1	1000	-1000	1000	-1000	
4	0,05	3,00E-03	1	1000	-1000	1000	-1000	
5	0,05	3,00E-03	1	1000	-1000	1000	-1000	
6	0,05	3,00E-03	1	1000	-1000	1000	-1000	
7	0,05	3,00E-03	1	1000	-1000	1000	-1000	
8	0,05	3,00E-03	1	1000	-1000	1000	-1000	
9	0,05	3,00E-03	1	1000	-1000	1000	-1000	
10	0,05	3,00E-03	1	1000	-1000	1000	-1000	

Slika 3.6 Podaci za uzbuđivač

Na slici 3.6 prikazan je list "Exciter" u Excel datoteci na kojemu se unose podaci za uzbuđivač sinkronog generatora. U tablici se nalaze sljedeći podaci: A- tip uzbuđivača, B- naziv uzbuđivača, C- naziv generatora, D- pojačanje Ka, E- faktor opterećenja ispravljača Kc, F- pojačanje Kf, G- vremenska konstanta niskopropusnog filtera Tr, H- vremenska konstanta Ta, I- vremenska konstanta lead-lag kompenzatora Tb, J- vremeska konstnta lead-lag kompenzatora Tc, K- vremenska konstanta Tf, L- gornja izlazna granica naponskog regulatora, M- donja izlazna granica naponskog regulatora, N- gornja ulazna granica naponskog regulatora, O- donja ulazna granica naponskog regulatora. Pojačanje Ka i vremenska konstanta Ta zajedno predstavljaju glavni regulator, a pojačanje Kf i vremenska konstanta Tf predstavljaju povratnu informaciju o brzini promjene pogreške.

4	А	В	С	D	E	F	G	н	1	J	К
1	Туре	ID	Machine ID	Kstab	TW (s)	T1 (s)	T2 (s)	T3 (s)	T4 (s)	Vs_max (pu)	Vs_min (pu)
2	PSS_T2	pss1	m1	10	10	5	1	0,6	1	0,2	-0,2
3	PSS_T2	pss2	m2	5	10	5	1	0,4	1	0,2	-0,2
4	PSS_T2	pss3	m3	5	10	3	1	0,2	1	0,2	-0,2
5	PSS_T2	pss4	m4	20	10	1	1	0,1	1	0,2	-0,2
6	PSS_T2	pss5	m5	10	10	1,5	1	0,2	1	0,2	-0,2
7	PSS_T2	pss6	m6	40	10	0,5	1	0,1	1	0,2	-0,2
8	PSS_T2	pss7	m7	75	10	0,2	1	0,02	1	0,2	-0,2
9	PSS_T2	pss8	m8	20	10	1	1	0,2	1	0,2	-0,2
10	PSS_T2	pss9	m9	20	10	1	1	0,5	1	0,2	-0,2

Slika 3.7 Podaci za PSS (Power system stabilizer)

Na slici 3.7 prikazan je list "PSS" u Excel datoteci na kojemu se unose podaci za stabilizator elektroenergetskog sustava. U tablici se nalaze sljedeći podaci: A- tip stabilizatora, B- naziv stabilizatora, C- naziv generatora, D- pojačanje stablizatora Kstab, E- "washout" vremenska konstanta Tw, F- prva vremenska konstanta "lead" kompenzatora T1, G- prva vremenska konstanta "lag" kompenzatora T2, H- druga vremenska konstanta "lead" kompenzatora T3, I- druga vremenska konstanta "lead" kompenzatora T3, I- druga stabilizatora T4, J- maksimalni izlazni napon stabilizatora (maksimalna stabilizacija), K- minimalni izlazni napon stabilizatora (minimalna stabilizacija).

1	А	В	С	D	E	F	G	Н	1	J
1	Туре	ID	Machine ID	R	T1 (s)	V_max (pu)	V_min (pu)	T2 (s)	T3 (s)	Dt (pu)
2	TG_T2	tg1	m1	0,05	0,4	1,1		0 1	.,8	6 0,2
3	TG_T2	tg2	m2	0,05	0,4	1,1		0 1	.,8	6 0,2
4	TG_T2	tg3	m3	0,05	0,4	1,1		0 1	.,8	6 0,2
5	TG_T2	tg4	m4	0,05	0,4	1,1		0 1	.,8	6 0,2
6	TG_T2	tg5	m5	0,05	0,4	1,1		0 1	.,8	6 0,2
7	TG_T2	tg6	m6	0,05	0,4	1,1		0 1	.,8	6 0,2
8										

Slika 3.8 Podaci za turbinu i regulator turbine

Na slici 3.8 prikazan je list "Turbine and Governor" u Excel datoteci na kojemu se unose podaci za turbinu i regulator turbine. U tablici se nalaze sljedeći podaci: A- tip turbine i regulatora, B- naziv turbine i regulatora, C- naziv generatora, D- "permanent droop", E- vremenska konstanta servo motora F- maksimalna brzina otvaranja vrata, G- minimalna brzina otvaranja vrata, H- vremenska konstanta turbine T2, I- vremenska konstanta turbine T3 ,J- faktor prigušenja.

Na drugom primjeru bit će prikazan unos ostalih podataka.

3.2Primjer druge mreže

Za drugi primjer koristi se distribucijski sustav od 13 čvorova napajan sa jedne strane. Sustav sadrži trofazni izvor napona, 2 transformatora, 10 nadzemnih vodova, 9 tereta, 2 shunta i 1 prekidača. U ovom primjeru bit će prikazan unos podataka za vodove, transformatore, terete, shuntove i prekidač. Unos ostalih podataka prikazan je u primjeru 1. Na slici 3.9 prikazana je shema sustava.

Slika 3.9 Shema elektroenergetskog sustava

	А	В	C	D	E	F	G		н		1
1	From1	From	2 From3	To1	To2	To3	ID	м	ode	Length (le	ength_unit)
2	632_a	632_b	632_c	671_a	671_b	671_c	LN_632_	671 fu	II	0,3787878	18
3	671_a	671_k	671_c	680_a	680_b	680_c	LN_671_	.680 fu	11	0,189394	
4	651_a	651_k	651_c	632_a	632_b	632_c	LN_651_	.632 fu	11	0,378788	
5	632_a	632_k	632_c	633_a	633_b	633_c	LN_632_	.633 fu	11	0,094697	
6	692_a	692_k	692_c	675_a	675_b	675_c	LN_692_	.675 fu	11	0,094697	
7	645_b	645_c		646_b	646_c		LN_645_	.646 fu	11	0,0568182	
8	632_b	632_c	2	645_b	645_c		LN_632_	.645 fu	ll –	0,094697	
9	684_c			611_c	8.9		LN_684_	.611 fu	11	0,0568182	
10	684_a			652_a			LN_684_	.652 fu	11	0,1515152	
11	671_a	671_c		684_a	684_c		LN_671_	684 fu	11	0,0568182	
14	Р		Q	R	S	Т	U		V	W	Х
1	r11 (ohm	/lengt	x11 (ohm/	l r21 (ohm	/ x21 (ohm/	[/] r22 (ohn	n/l x22 (ot	nm/l+r31 (ohm/loc	1 (ohm/h	r32 (ohm/t
2	0,3465	or	1,0179	0,156	0,5017	0,3375	1,0478	0,15	ЭО,	4236	0,1535
З	0,3465		1,0179	0,156	0,5017	0,3375	1,0478	0,15	з О,	4236	0,1535
4	0,3465		1,0179	0,156	0,5017	0,3375	1,0478	0,15	з О,	4236	0,1535
5	0,7526		1,1814	0,158	0,4236	0,7475	1,1983	0,15	5 0,	5017	0,1535
6	0,7982		0,4463	0,3192	0,0328	0,7891	0,4041	0,28	49 -0	,0143	0,3192
7	1,3238		1,3569	0,2066	0,4591	1,3294	1,3471				
8	1,3238		1,3569	0,2066	0,4591	1,3294	1,3471				
9	1,3292		1,3475								
10	1,3425		0,5124								
11	1,3238		1,3569	0,2066	0,4591	1,3294	1,3471				
	Y	8	Z	AA	AB	AC	AD	AE	AF	AG	AH
1	x32 (ohm	/lengt	h r33 (ohm,	/l x33 (ohn	n/l b11 (u\$/l	b21 (u\$/	l b22 (u\$/l	eb31 (uS/	(b32 (u\$/	/l b33 (u\$;	/ Status
2	0,3849		0,3414	1,0348	6,2998	-1,9958	5,9597	-1,2595	-0,7417	5,6386	1
3	0,3849		0,3414	1,0348	6,2998	-1,9958	5,9597	-1,2595	-0,7417	5,6386	1
4	0,3849		0,3414	1,0348	6,2998	-1,9958	5,9597	-1,2595	-0,7417	5,6386	1
5	0,3849		0, 7436	1,2112	5,699	-1,0817	5,1795	-1,6905	-0,6588	5,4246	1
6	0,0328		0, 7982	0,4463	96,8867	0	96,8867	0	0	96,8867	1
7			_		4,6658	-0,8999	4,7097				1
8	-				4,6658	-0,8999	4,7097				1
9					4,5193	_					1
10					88,9699	Constant of the State of the State	Stanson and		_	_	1
11					4,6658	-0,8999	4,7097				1

Slika 3.10 Podaci za vodove

Na slici 3.10 prikazan je list "Multiphase Line" Excel datoteke. Kod višefaznih vodova podaci se unose za svaku fazu. U tablicu se unose sljedeći podaci: u stupcima A, B i C unosi se podatak o sabirnici od koje vod dolazi za faze a, b i c, u stupcima D, E i F unosi se podatak o sabirnici prema

kojoj vod ide za faze a, b i c, stupac G- ime voda, H- mod, I- duljina voda, parametri r_{ij} i x_{ij} predstavljaju elemente matrice impedancije, a parametri b_{ij} predstavljaju elemente matrice admitancije, u stupac AH unosi se status voda (1- uključen, 0-isključen)

A	,	В			С		D		E		F		G		н
				windi	ng From	1									
ID		Number of pl	hases	Bus 1		Bus 2		Bus	3	V	(kV)	` \$_I	oase (kVA)	R (pu)
TR1_633_	634	3		633_a	1	633_	b	633	с	4,1	.6	500)	0,0	0055
TR1_650_	651	3		650_a		650_	b	650	_c	4,1	.6	500	00	0,0	00000498
Í.		J		К			L		M		N		0		Р
		windingTo													
Conn. typ	oe 🕺	Bus1	Bu	us2		Bus3		√ (kV)	s_b	ase (kVA)	R (p	u)	Co	nn. type
wye		634_a	63	34_b		634_c		0,48		500		0,00	55	wy	e
wye		651_a	65	51_b		651_c		4,16		500	D	0,00	000498	wy	e
Q		R	S	6)		Т		U	V	i -	W		Х		Y
Mutual in	претар :	1 Ta	ip 2		ТарЗ		Lowes	t Tap	Highest	Гар	Min Rang	e (%)	Max Range	(%)	X (pu)
)	0	0			0		-16		16		10		10		0,02
)	0	0			0		-16		16		10		10		0,0001
Z		АА		A	З		4C		AD		AE		AF		AG
ZO leakag	ge (pu)	Z1 leakage (p	ou) X()/R0		X1/R1		No Lo	ad Loss (k	v Stat	us				
										1		1			
										1		1			

Slika 3.11 Podaci za transformatore

Na slici 3.11 prikazan je list "Multiphase Transformer" na kojemu se nalaze podaci za 2 transformatora koji se nalaze u sustavu. Kao kod vodova i ovdje se podaci unose za svaku fazu. U tablicu se unose sljedeći podaci: A- naziv transformatora, B- broj faza transformatora, u stupce C, D i E unose se nazivi sabirnica svake faze primarne strane transformatora, F- linijski napon primara, G- bazna snaga transformatora, H- otpor namota primara, I- tip spoja transformatora (wye = Yg, delta = D), J, K i L- imena sabirnica svake faze sekundarne strane transformatora, Q- zajednička impedancija, R, S i T- položaj preklopke transformatora za svaku fazu, U- minimalni položaj preklopke, V- maksimalni položaj preklopke, W- maksimalni pal napona, X- maksimalni porast napona, Y- reaktancija transformatora, Z- nulta impedancija, AA- direktna impedancija, AB- odnos nulte reaktancije prema otporu, AC- odnos direktne reaktancije prema otporu, AE- status (1-uključen, 0- isključen).

	A	В	С	D	E	F	G	н	1	J
1	Bus1	Bus2	Bus3	ID	Туре	P1(kW)	Q1(kVAr)	P2 (kW)	Q2 (kVAr)	P3(kW)
2	634_a	634_b	634_c	LD_634	ZIP	160	110	120	90	120
З	671_a	671_b	671_c	LD_671	ZIP	385	220	385	220	385
4	675_a	675_b	675_c	LD_675	ZIP	485	190	68	60	290
5	632_a	632_b	632_c	LD_632	ZIP	17	10	66	38	117
6	645_b			LD_645	ZIP	170	125			
7	646_b			LD_646	ZIP	230	132			
8	652_a			LD_652	ZIP	128	86			
9	692_c			LD_692	ZIP	170	151			
10	611_c			LD_611	ZIP	170	80			
A	К	L	M	N	0	P	Q	R	S	
1	Q3 (kVA	ur) V (kV)	Bandwi	dtl Conn. ty	p K_z	K_i	К_р	Status	Use initia	l voltage?
2	90	0,48	0,2	wye	0	0	1	1	0	
З	220	4,16	0,2	wye	0	0	1	1	0	
4	212	4,16	0,2	wye	0	0	1	1	0	
5	68	4,16	0,2	wye	0	0	1	1	0	
6		4,16	0,2	wye	0	0	1	1	0	
7	1	4,16	0,2	wye	1	0	0	1	0	
8		4,16	0,2	wye	1	0	0	1	0	
9		4,16	0,2	wye	0	1	0	1	0	
10		4.16	0.2	wve	0	1	0	1	0	

Slika 3.12 Podaci za teret

Na slici 3.12 prikazan je list "Multiphase Load" u Excel datoteci na kojemu se unose podaci za teret. U tablicu se unose sljedeći podaci: u stupce A, B i C se unose imena sabirnica svake faze na koje je spojen teret, stupac D- naziv tereta, E- tip tereta, F- radna snaga prve faze, G- jalova snaga prve faze, H- radna snaga druge faze, I- jalova snaga druge faze, J- radna snaga treće faze, K- jalova snaga treće faze, L- linijski napon tereta, M- propusnost odnosno prekidni napon za pretvorbu u teret konstantne impedancije, N- tip spoja, O- postotak konstante impedancije, P- postotak konstantne struje, Q- postotak konstantne snage, R- status (1- uključen, 0- isključen), S- određuje temelji li se dodijeljena snaga na nominalnom ili početnom naponu (1- početni napon, 0- nominalni napon).

	A	В	С	D	E	F	G
1	Bus1	Bus2	Bus3	ID	P1(kW)	Q1(kVAr)	P2 (kW)
2	675_a	675_b	675_c	cap675	0	-200	0
З	611_c			cap611	0	-100	
	н	1 I	J	К	L	M	N
1	Q2 (kVAr)	P3(kW)	Q3 (kVAr)	kV (ph-gr	Status1	Status2	Status3
2	-200	0	-200	2,4018	1	1	1
З				2,4018	1		

Slika 3.13 Podaci za shunt

Na slici 3.13 prikazan je list "Multiphase Shunt" u Excel datoteci na kojemu se unose podaci za shunt. U tablicu se unose sljedeći podaci: u stupce A, B i C unose se imena sabirnica svake faze na koje je spojen shunt, stupac D- naziv shunta, E- radna snaga prve faze, F- jalova snaga prve faze, G- radna snaga druge faze, H- jalova snaga druge faze, I- radna snaga treće faze, J- jalova snaga treće faze, K- fazni napon, L- status prve faze, M- status druge faze, N- status treće faze (1- uključen, 0- isključen).

1	А	В	С	D	
1	From Bus	To Bus	Switch Name	Status	
2	671_a	692_a	SW_671_692_a	1	
З	671_b	692_b	SW_671_692_b	1	
4	671_c	692_c	SW_671_692_c	1	
5					

Slika 3.14 Podaci za prekidač

Na slici 3.14 prikazan je list "Switch" u Excel datoteci na kojemu se unose podaci za prekidač. U tablicu se unose sljedeći podaci: A- naziv dolazne sabirnice, B- naziv odlazne sabirnice, C- naziv prekidača, D- status (0- otvoren, 1- zatvoren).

Nakon što su svi podaci unešeni u Excel datoteku, datoteka se spremi i može se uvesti u ePHASORSIM pomoću MATLAB-a i može se početi sa simulacijom.

3.3 Povezivanje Excel datoteke s ePHASORSIM-om

Da bi se Excel datoteka koristila u ePHASORSIM-u potrebno je prvo pripremiti simulink model u MATLAB-u. Prije svega potrebno je u MATLAB-u promjeniti radni direktorij u praznu mapu na intuitivnom mjestu na primjer: C:\OPAL-RT\ePHASORSIM. Ta se mapa koristi kroz cijeli proces. Zatim se otvori Simulink biblioteka i odabere RT-LAB/ePHASORSIM. Blok "Solver" se odvuče u prozor novi model, model se spremi u gore navedenu mapu te se otvori "maska" i imenuje se "Solver". Potrebno je odabrati Excel u polju "Input file format" te odznačiti "Use UDB" jer ta značajka još nije dostupna za Excel datoteke. Unese se ime Excel datoteke u polje "Complete network" i označi "Refresh netlist only when the simulation starts". Excel datoteka također mora biti u radnom direktoriju. Na slici 3.15 prikazan je izgled prozora u koji se unose navedeni podaci.

🚰 Function Bloc	k Parameter	s: Solver		3
ePHASORSIM S	olver (mas	<) (link)		
ePHASORSIM is transient stabilit	OPAL-RT's sy simulatio	solution for both r	eal-time and	l off-line
Configure these	tabs to use	e the solver:		
Network data: g Library: declare Simulation settir Scripting: activa	ets the inp s the FMU's ngs: define ites Python	ut files to import to path s time-step and ch API	o solver ooses the ty	pe of study
Network data	Library	Simulation settin	igs Script	ting
Name System				
Input file format	Excel			-
Use UDB (trial Complete netw	l version: e ork	xclusively with PSS	i/e input dat	a and no FMU)
'Template.xls'		1	Select	Open
Open an empty ☑ Refresh netlis	r <u>template (</u> t only wher	latest version) n simulation starts		

Slika 3.15 Izgled Simulink prozora u koji se unose podaci

4 PROVEDBA SIMULACIJA NA PRIMJERU MREŽE

U ovom poglavlju prikazana je izrada modela za simulaciju te rezultati simulacije. Simulacija će se izvesti na primjeru mreže IEEE39, shema ove mreže prikazana je na slici 3.1. Model ove mreže se sastoji od Simulink modela napravljenog u MATLAB-u i Excel tablice iz koje se čitaju podaci o elementima mreže. Za izradu modela i provedbu simulacija korišteni su gotovi primjeri koji su nadograđeni za provedbu simulacijskih scenarija simuliranih u ovom radu. Na slici 4.1 prikazan je izgled OPAL-RT simulatora na kojemu je provedena simulacija.

Slika 4.1 Izgled OPAL-RT simulatora

4.1 Opis Simulink modela

Simulink model mora se sastojati od dvije maske naziva sm_master i sc_console, na početnom zaslonu modela se ne smiju nalaziti drugi elementi. Maska modela iz primjera IEEE39 prikazana je na slici 4.2.

Slika 4.2 Maska modela

Kada se otvori maska vidi se od kojih se elemenata model sastoji. Od kojih elemenata će se model sastojati ovisi o ulaznim i izlaznim priključnicama (Pins) navedenim u Excel datoteci. Sm_master se sastoji od dva glavna bloka "OpComm" i "Solver". OpComm je komunikacijski blok koji preuzima podatke iz Excel datoteke, svi ulazi moraju proći kroz ovaj blok prije nego se spoje. U ovom slučaju se nalazi 7 ulaza i svaki od njih predstavlja događaj koji se odvija tokom simulacije (npr. kvar na sabirnici, isključenje trošila, kvar na vodu itd.). Na izlaze komunikacijskog bloka spojeni su blokovi "Goto" koji šalju signale u blokove sa istim nazivom. Kada se blok "Solver" pripremi kao što je objašnjeno u prethodnom poglavlju na njemu se pojavi broj ulaza i izlaza u skladu sa brojem ulaznih i izlaznih priključnica u Excel datoteci. Na ulaze se spajaju blokovi "Goto" koji preuzimaju signale sa izlaza komunikacijskog bloka, a na izlaze se mogu spojiti blokovi "Goto,

Outport, Dispay ili Scope" ovisno o tome kako želimo prikazati rezultate. Na slici 4.3 prikazana je blok shema sm_master-a.

Slika 4.3 Blok shema sm_master-a

Sm_console se sastoji od komunikacijskog bloka "OpComm" i blokova koji stvaraju uvjete za događaje koji nastupaju u simulaciji. Ulazi komunikacijskog bloka spojeni su sa izlazima iz sm_mastera, a na izlaze komunikacijskog bloka spojeni su "Scope-ovi" na kojima se mogu vidjeti rezultati simulacije. Da bi se modelirao događaj kvar na sabirnici potrebna su tri bloka "Constant" koji se spajaju na blok "Bus", a blok "Bus" se spaja na blok "Outport". Blokovi "Constant" služe da bi se odredile vrijednosti prije događaja, vrijeme kada nastupa događaj i vrijednosti nakon događaja. Na isti način se modeliraju i događaji promjena preklopke transformatora te isključenje opterećenja. U Excel datoteci određujemo na kojem elementu će događaj nastupiti. Svi izlazi (Outporti) sc_console spojeni su na ulaze (Inporte) sc_mastera što se vidi na slici 4.2. Na slici 4.4 prikazana je blok shema sc_console.

Slika 4.4 Blok shema sc_console

4.2 Izvođenje simulacije

Simulacija se izvodi tako da se prvo pokrene OPAL-RT, zatim "host" računalo na kojemu se nalazi program RT-LAB. Kod pokretanja RT-LAB-a prvo se odabere radni direktorij odnosno "Workspace", zatim se napravi novi projekt i uvede se napravljeni Simulink model i Excel datoteka. Simulink model se može urediti ako je potrebno, a kada je model spreman klikne se na "Build the model". Prilikom izgradnje modela Simulink model se rastavlja te se generira C kod koji se tada učitava na server odnosno na OPAL-RT simulator te se odradi proračun tokova snaga. Ako nema nikakvih grešaka i model se uspješno učita na server postavljaju se parametri izvršenja simulacije, zatim se klikne na "Load the model" te "Execute the model" nakon čega se otvori sc_console u kojoj se mogu otvoriti "Scope-ovi" da bi se prikazala mjerenja simulacije. U sc_console se može odrediti kada će neki događaj nastupiti i koji će događaji nastupiti, ali nakon svake izmjene se mora otići na "Reset the model" pa ponovno na "Load" i "Execute". Na slici 4.5 prikazan je izgled dijela RT-LAB-a u kojemu se radi s modelom za simulaciju.

Slika 4.5 RT-LAB

4.3 Simulacijski scenarij 1

U simulacijskom scenariju 1 korišten je gotovi model IEEE 39 mreže pri čemu su u scenarij uključeni sljedeći tehnički događaji u mreži: kvar (kratki spoj) na sabirnici 30 u drugoj sekundi, promjena preklopke transformatora sa 1 na 0.9 u četvrtoj sekundi te isključenje tereta 7 u sedmoj sekundi. Tokom simulacije se mjere naponi na sabirnicama 30, 26, 29, 14 i 5, kutevi rotora na generatorima m1, m2, m3, m4 i m5, struja na vodu ln33 te radna i jalova snaga na generatoru m2.

Modeliranje ovih događaja i mjerenja u simulaciji obavljeno je promjenama u korištenom Simulink modelu i Excel datoteci. U Simulink modelu pod maskom sm_master su osim postojećih "Outporta" abs_V i delta dodani "Outporti" struja, radna snaga i jalova snaga te su spojeni sa maskom sc_console. Pod maskom sc_console dodani su "Scope-ovi" za snimanje gore navedenih signala te su postavljena vremena nastupanja događaja. U Excel datoteci promjenjen je list "Pins" u kojemu je određeno na kojim elementima će se mjeriti određeni signali i na kojim elementima će nastupiti određeni događaji. Izmjenjeni model prikazan je na slikama 4.6, 4.7 i 4.8.

Slika 4.6 Promjene u sm_master-u

Slika 4.7 Promjene u sc-console

outgoing	Bus_voltage	30/Vmag	26∕√mag	29∕∨mag	14∕√mag	5/Vmag
outgoing	Rotor_ang	m1/delta	m2/delta	m3/delta	m4/delta	m5/delta
outgoing	Rotor_spd	m1/slip	m2/slip	m3/slip	m4/slip	m5/slip
outgoing	Тар	xf1/rW1				
outgoing	Vref_m1	ex1/Vref				
outgoing	Tm_m2	m2/Tm				
outgoing	1_m2	m2/Imag	m2/lang			
outgoing	V_m2	31/Vmag	31/Vang			
outgoing	Load In-Out	ld2/status				
outgoing	line_current	In33/Imag0				
incoming	Fault	30/active3PGFault	2/active3PGFa	aul 39/active3PG	Fau 4/active3PGF	aul 7/active3PGFaul
incoming	Тар	xf1/rW1				
incoming	PQ_ld	ld4/P	ld4/Q			
incoming	Load In-Out	ld7/status				
incoming	Line In-Out	In15/status				
incoming	Fault-on-line	In33/faulty				
incoming	Fault-distance	In33/fault_distance_factor				

Slika 4.8 Promjene u Excel datoteci

Na sljedećim slikama prikazani su rezultati simulacije za simulacijski scenarij 1:

Slika 4.10 Kutevi rotora

Slika 4.11 Struja na vodu ln33

Slika 4.12 Radna snaga generatora m2

Slika 4.13 Jalova snaga generatora m2

Ovi rezultati snimljeni su na Scope-ovima u sc_console koja je generirana u RT-LAB-u. Ovi podaci nisu 100% točni zbog toga što OPAL-RT simulaciju izvodi u realnom vremenu i šalje veliku količinu podataka na "Host" računalo putem Ethernet kabela pa dolazi do gubitka podataka zbog brzine prijenosa. Zbog toga se na grafovima vidi da je događaj nastupio otprilike 1.2 sekunde ranije nego što je zadano u simulaciji. Bez obzira na to ovi grafovi daju dobar uvid o tome što se događa u mreži prilikom određenog događaja. Na slici 4.9 vidi se da kada nastupi kvar (kratki spoj) na sabirnici 30 njen napon pada na nulu, a napon na ostalim sabirnicama padne na 0.8 p.u. Također se vide skokovi napona na sabirnicama kada nastupe drugi i treći događaj. Na slici 4.11 prikazana je struja na vodu ln33. Kada nastupi prvi događaj dolazi do najvećeg skoka struje na generatoru zbog pada napona u mreži, kada nastupe drugi i treći događaj dolazi do manjih poremećaja struje koja se kasnije stabilizira. Na slikama 4.12 i 4.13 prikazane su radna i jalova snaga generatora m2. Iz grafova se može vidjeti da nakon na stupanja prvog događaja radna snaga naglo padne, a jalova snaga poraste te se kasnije stabiliziraju.

4.4 Simulacijski scenarij 2

U simulacijskom scenariju 2 korišten je isti Simulink model kao u simulacijskom scenariju 1 jer nastupaju isti događaji. Ovaj scenarij se razlikuje po tome što je generator m6 je zajedno sa transformatorom premješten sa sabirnice 22 na sabirnicu 14 te se struja, radna i jalova snaga više ne mjere na generatoru m2 nego se mjere na generatoru m6. Generator m6 spojen je na primarni namot transformatora xf9 preko sabirnice 35, a sekundarni namot transformatora spojen je na sabirnicu 22. Premještanje generatora zajedno sa transformatorom se postiže tako što se u Excel datoteci na stranici "2W-Trasformer" promjeni broj sabirnice na koju je spojen sekundarni namot transformatora. Promjena mjerenja struje, radne i jalove snage postiže se na stranici "Pins" tako što se na ulaznim priključnicama promjeni broj generatora ili broj sabirnice na koju je spojen generator. Nakon toga je potrebno ponoviti postupak za izvođenje simulacije. Na slikama 4.14 i 4.15 prikazane su izmjene načinjene u Excel datoteci.

outgoing	Bus_voltage	30/\/mag	26∕∨mag	29∕√mag	14/√mag	5/Vmag
outgoing	Rotor_ang	m1/delta	m2/delta	m3/delta	m4/delta	m5/delta
outgoing	Rotor_spd	m1/slip	m2/slip	m3/slip	m4/slip	m5/slip
outgoing	Тар	xf1/rW1				
outgoing	∨ref_m1	ex1/Vref				
outgoing	Tm_m2	m2/Tm				
outgoing	I_m2	m6/Imag	m6/lang			
outgoing	∨_m2	35∕√mag	35/Vang			
outgoing	Load In-Out	ld2/status				
outgoing	line_current	In33/Imag0				
incoming	Fault	30/active3PGFault	2/active3PGF	aul 39/active3P0	GFal 4/active3PGF	aul 7/active3PGFaul
incoming	Тар	xf1/rW1				
incoming	PQ_ld	Id4/P	ld4/Q			
incoming	Load In-Out	Id7/status				
incoming	Line In-Out	In15/status				
incoming	Fault-on-line	In33/faulty				
incoming	Fault-distance	In33/fault_distance_factor				

Slika 4.14 Izmjene na stranici "Pins"

	A	В	C	D	E	F
1	From bus	To bus	ТҮРЕ	ID	R (pu)	XI (pu)
2	2	30	XF_OLTC	xf1	0	0,0181
3	6	31	XF_2W	xf2	0	0,025
4	10	32	XF_2W	хfЗ	0	0,02
5	11	12	XF_2W	xf4	0,0016	0,0435
6	12	13	XF_2W	xf5	0,0016	0,0435
7	19	20	XF_2W	xf6	0,0007	0,0138
8	19	33	XF_2W	xf7	0,0007	0,0142
9	20	34	XF_2W	xf8	0,0009	0,018
10	14	35	XF_2W	xf9	0	0,0143
11	23	36	XF_2W	xf10	0,0005	0,0272
12	25	37	XF_2W	xf11	0,0006	0,0232
13	29	38	XF_2W	xf12	0,0008	0,0156

Slika 4.15 Izmjene na stranici "2W-Transformer"

Na sljedećim slikama prikazani su rezultati simulacije za simulacijski scenarij 2:

Slika 4.16 Naponi na sabirnicama

Slika 4.17 Kutevi rotora

Slika 4.18 Struja na vodu ln33

Slika 4.19 Radna snaga generatora m6

Slika 4.20 Jalova snaga generatora m6

Iz rezultata simulacije se može vidjeti da nema velike razlike u odnosu na prvi slučaj jer nastupaju isti događaji. Naponi na sabirnicama 14, 26 i 5 su malo porasli jer im je generator bliže i radna snaga generatora m6 je veća nego radna snaga generatora m2.

4.5 Simulacijski scenarij 3

U simulacijskom scenariju 3 također korišten je gotovi model IEEE 39 mreže koji je izmjenjen da bi se u scenarij uključili sljedeći tehnički događaji u mreži: isključen je kvar (kratki spoj) na sabirnicama, dolazi do promjene preklopke transformatora u drugoj sekundi, na teretu ld4 je promjenjena radna snaga na 500 MW i jalova snaga na 1500 MVAr te dolazi do kvara na vodu ln19 na 60% njegove duljine.

Tokom simulacije se mjere naponi na sabirnicama 30, 26, 29, 14 i 5, kutevi rotora na generatorima m1, m2, m3, m4 i m5, struja na vodu ln33 te radna i jalova snaga na generatoru m2. Pošto se mjere iste veličine kao u simulacijskom scenariju 1, Excel datoteka se ne mora mijenjati. U Simulink modelu mijenjaju se samo postavke pod maskom sc_console. Na slici 4.21 može se vidjeti da su događaji označeni plavim kvadratima isključeni jer su im vrijednosti prije i poslije nastupanja događaja iste, a događaji označeni crvenim kvadratima su uključeni i odvijaju se tokom simulacije.

Slika 4.21 Promjene u sc_console

Slika 4.22 Naponi na sabirnicama

Slika 4.23 Kutevi rotora generatora

Slika 4.25 Radna snaga generatora m2

Slika 4.26 Jalova snaga generatora m2

Iz rezultata simulacije može se primjetiti kako su naponi na sabirnicama na početku simulacije opali za 0.15 p.u. zbog promjene opterećenja i kvara na vodu ln19, ali se kasnije stabiliziraju. Promjena preklopke transformatora nema velikog utjecaja na napone. Struja na vodu ln33 je zbog promjene opterećenja i kvara na vodu ln19 naglo skočila te se kasnije stabilizira. Radna snaga generatora tokom cijele simulacije oscilira, a jalova snaga generatora na početku simulacije pada skoro na nulu a kasnije raste do nazivne vrijednosti.

4.6 Snimke s osciloskopa

Da bi se mogli vidjeti stvarni signali koje generira OPAL-RT bez kašnjenja i gubljenja podataka, na simulator je spojen osciloskop. Osciloskop je spojen na analogne izlaze OPAL-RT simulatora putem BNC kabela i također je spojen na "Host" računalo putem Ethernet kabela. Na "Host" računalu je pokrenut program Ultra Sigma pomoću kojeg se mogu kontrolirati sve funkcije osciloskopa. U Simulink modelu potrebno je dodati "OpCtrl" blok u kojem se definiraju .bin i .conf datoteke te ime OPAL-RT simulatora kako bi RT-LAB znao za koji "hardware" priprema podatke. Nakon toga potrebno je dodati blok Analog Out iz biblioteke od OPAL-RT-a i pomoću njega proslijediti signal na analogni izlaz OPAL-RT simulatora gdje ga se s osciloskopom može mjeriti. Podaci snimljeni osciloskopom se mogu spremiti kao .csv datoteka ili kao snimka zaslona osciloskopa. Kada se podaci spreme kao .csv datoteka ona se može učitati u MATLAB i u MATLAB-u se može napraviti graf iz tih podataka. Na sljedećim slikama prikazani su neki od signala snimljeni osciloskopom i grafovi napravljeni u MATLAB-u. U grafovima je na y-osi prikazan napon u p.u., ali je signal pojačan 7 puta da bi se dobila bolja slika na osciloskopu. Snimani su signali za pojedinačne događaje kako bi se prikazalo što se točno dogodi sa naponom ili strujom u trenutku nastupanja nekog događaja.

Na slici 4.27a prikazani naponi na sabirnici 30 (žuta linija) i sabirnici 26 (plava linija) u trenutku kvara (kratkog spoja) na sabirnici 30 snimljeni osciloskopom, a na slici 4.27b isti naponi su prikazani pomoću grafa napravljenog u MATLAB-u iz .csv datoteke. Na slikama se može primjetiti da je pad napona u trenutku kvara je manje izražen na sabirnici 26 jer je udaljena od mjesta kvara.

Slika 4.27a Kvar (kratki spoj) na sabirnici 30 (snimka s osciloskopa)

Slika 4.27b Kvar (kratki spoj) na sabirnici 30 (graf iz .csv datoteke)

Slika 4.28a prikazuje napon na sabirnici 26 u trenutku kvara (kratkog spoja) na vodu ln22 snimljen osciloskopom, a slika 4.28b prikazike graf izrađen u MATLAB-u iz podataka spremljenih u .csv datoteci. Sa slika se može vidjeti da i kod ove vrste kvara dolazi do značajnog pada napona na sabirnici, ali se brzo vraća na nazivnu vrijednost.

Slika 4.28a Kvar (kratki spoj) na vodu ln22 (snimka s osciloskopa)

Slika 4.28b Kvar (kratki spoj) na vodu ln22 (graf iz .csv datoteke)

Na slici 4.29a prikazana je struja na generatoru m6 u trenutku kvara (kratkog spoja) na vodu ln22 snimljena s osciloskopom, a na slici 4.29b prikazana je ista struja pomoću grafa napravljenog u MATLAB-u. Na slikama se može primjetiti kako struja na generatoru u trenutku događaja struja naglo skoči te oscilira neko vrijeme dok se sustav ne stabilizira.

Slika 4.29a Kvar (kratki spoj) na vodu ln22 (snimka s osciloskopa)

Slika 4.29b Kvar (kratki spoj) na vodu ln22 (graf iz .csv datoteke)

Na slici 4.30a prikazan je napon na sabirnici 30 u trenutku promjene radne i jalove snage tereta ld4 snimljen osciloskopom, a na slici 4.30b isti napon je prikazan pomoću grafa napravljenog u MATLAB-u. Radna snaga tereta podešena je na 600 MW, a jalova snaga tereta podešena je na 1600 MVa. Na slikama se može vidjeti da promjena opterećenja ne utječe znatno na napon sabirnice, dolazi do malog pada napona koji se vraća na nazivnu vrijednost.

Slika 4.30a Promjena opterećenja ld4 (snimka s osciloskopa)

Slika 4.30b Promjena opterećenja ld4 (graf iz .csv datoteke)

Snimke s osciloskopa daju točnije podatke o tome što se događa na kojoj sabirnici jer prikazuju promjene na snimanim signalima u trenutku kada nastupi neki događaj tokom izvođenja simulacije. Može se primjetiti da su valni oblici signala snimljeni na "Scope-ovima" u sc-console za određeni događaj isti kao i valni oblici signala snimljeni osciloskopom, jedino što nisu prikazani i točno vrijeme nastupanja događaja.

5 ZAKLJUČAK

Tema ovog diplomskog rada je Simulacija elektroenergetske mreže simulatorom u realnom vremenu. Simulacija se izvodi na OPAL-RT simulatoru OP5600. OPAL-RT je kanadska tvrtka i oni su svjetski lider u razvoju PC / FPGA simulatora u stvarnom vremenu. OP5600 je superračunalo koje nudi razna simulacijska rješenja kao što su eMEGASIM, ePHASORSIM i eFPGASIM, a u ovom radu se simulacija izvodi u ePHASORSIM-u. ePHASORISM izvodi simulacije tranzijentne stabilnosti u stvarnom vremenu za prijenosne i distribucijske mreže s tisućama sabirnica. Simulacija u ovom radu se izvodi na primjeru IEE39 čija mreža se sastoji od 10 generatora, 12 transformatora, 39 sabirnica i 20 tereta. Za simulaciju je prvo potrebno napraviti model. Model se sastoji od Excel datoteke i Simulink modela napravljenog u programu MATLAB. Za svaki element mreže potrebno je unjeti podatke u Excel datoteku. U radu je detaljno objašnjeno kako se unose podaci u Excel datoteku i što koji podatak predstavlja. Prikazan je izgled Simulink modela i objašnjen je svaki blok u modelu. U zadnjem poglavlju prikazan je postupak izvođenja simulacije pomoću programa RT-LAB te rezultati simulacije snimljeni pomoću "Scope-ova" u RT-LAB-u i rezultati snimljeni pomoću osciloskopa. Izrada modela nije komplicirana, ali zahtjeva dosta vremena i pažnje jer se i zbog najmanje greške simulacija neće moći pokrenuti dok se ta greška ne pronađe i ne ispravi. OPAL-RT je vrlo moćan i koristan alat koji može izvoditi simulacije puno većih elektroenergetskih sustava. Ovaj diplomski rad može poslužiti kao polazne upute za stvaranje modela raznih elektroenergetskih mreža.

LITERATURA

[1] OPAL-RT Technologies – SUPPORT, <u>https://www.opal-rt.com/support-knowledge-base/</u>, zadnja posjeta: 10.09.2021.

[2] OPAL-RT Technologies - PRODUCTS & SERVICES, <u>https://www.opal-rt.com/simulator-platform-op5600/</u>, zadnja posjeta: 10.09.2021.

[3] DIGITAL SUBSTATION, <u>http://digitalsubstation.com/en/2013/12/02/real-time-simulation-of-electric-power-systems/</u>, zadnja posjeta: 25.09.2021

[4] EE POWER – Technical Articles, <u>https://eepower.com/technical-articles/hardware-in-the-loop-simulation-tools-and-implementation-part-2/</u>, zadnja posjeta: 25.09.2021

[5] MATLAB Documentation/ PHASOR-01: Excel input file (transmission systems)

[6] MATLAB Documentation/ PHASOR-08: Modified IEEE 13node system

[7] Help - RT-LAB/ ePHASORSIM User Documentation

SAŽETAK

Cilj ovog diplomskog rada bio je objasniti postupak izrade modela za simulaciju elektroenergetske mreže na OPAL-RT simulatoru te objasniti postupak izvođenja simulacije u programu RT-LAB i prikazati rezultate simulacije na primjeru jedne elektroenergetske mreže. Na početku rada opisane su dvije vrste simulacija i opisan je "hardverski" i "softverski" dio OPAL-RT simulatora na kojemu se izvodi simulacija, zatim je detaljno objašnjen unos podataka u Excel datoteku na dva primjera elektroenergetske mreže. U praktičnom dijelu rada opisani su blokovi od kojih se sastoji Simulink model te je objašnjen postupak izvođenja simulacije. Prikazani su rezultati simulacije na primjeru mreže IEEE39 za tri različita scenarija. Rezultati su prikazani na dva načina: kao snimke sa "Scope-ova" u sc-console generiranoj u programu RT-LAB i kao snimke sa osciloskopa spojenog na OPAL-RT simulator.

Naslov: Simulacija elektroenergetske mreže simulatorom u realnom vremenu

Ključne riječi: elektroenergetska mreža, model, OPAL-RT, simulacija

ABSTRACT

The aim of this thesis was to explain the process of creating a model for simulation of the power grid on the OPAL-RT simulator and to explain the process of performing the simulation in the program RT-LAB and also to show the simulation results on the example of a power grid. At the beginning of the paper, two types of simulations are described and the "hardware" and "software" part of the OPAL-RT simulator on which the simulation is performed is described, and then the data entry in the Excel file on two examples of the power grid is explained in detail. The practical part of the paper describes the blocks that make up the Simulink model and explains the procedure for performing the simulation. The simulation results are presented on the example of the IEEE39 network for three different scenarios. The results are presented in two ways: as images from the "Scopes" in the sc-console generated in the RT-LAB program and as images from the oscilloscope connected to the OPAL-RT simulator.

Title: Simulation of the electric power grid on a simulator in real – time. **Keywords:** power grid, model, OPAL-RT, simulation

ŽIVOTOPIS

Josip Hajda rođen je 25. lipnja 1996. godine u Virovitici. Živi u mjestu Sirač nedaleko Daruvara. Završio je Osnovnu školu Sirač u Siraču sa odličnim uspjehom te srednju školu Tehnička škola Daruvar, smjer elektrotehničar. Nakon završetka srednje škole upisao je preddiplomski sveučilišni studij elektrotehnike na Fakultetu elektrotehnike, računarstva i informacijskih tehnologija u Osijeku. Nakon završetka preddiplomskog studija upisuje diplomski studij na istome fakultetu, smjer energetika DEA.