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ABSTRACT 

This thesis presents the development of a control system for Autonomous Transport Robots (ATR) 

which will be used in the Volvo Factories. The research also evaluates the timing and frequency of 

the control messages sent over the Controller Area Network (CAN) bus of the ATR. The ATR is a 

part of a cyber-physical system having control parameters over Wi-Fi and CAN communication.  

The ATR has a distributed control system with two controllers, which work simultaneously and 

interdependently. One controller is the center of the decision-control system, and the other 

controller handles peripherals, buttons, and sensors. The ATR is developed as a state machine 

having different operating states. Each operating state has its own tasks to perform and a certain set 

of state transitions. The ATR uses CAN communication to communicate with different nodes 

present on the ATR. To provide reliability of the CAN message, an interrupt service routine is 

developed for both the controllers. This interrupt service routine helps the controller to ensure that 

all the necessary CAN messages arriving on the CAN bus are received by the controller and no 

important messages are missed or lost in transmission. For Wi-Fi communication, MQTT Protocol 

is used to communicate with the edge controller. 

The response time of both the controllers as well as the response time of the ATR is calculated in all 

the ATR states and a constant response time of the ATR for every state is proposed. The frequency 

of the CAN messages is evaluated and a bus load on the CAN bus is calculated at different baud 

rates. A suitable baud rate for the CAN bus on the ATR is proposed.  

Overall, this thesis contributes to the development of a robust control system for ATR, ensuring 

reliable communication over both CAN and Wi-Fi interfaces. The analysis of response times and 

bus loads aids in optimizing the performance and efficiency of the ATR in various operational 

scenarios. 

 

 

 

Keywords: Autonomous Transport Robot, Control System, Frequency Analysis, Timing Analysis, 

CAN bus, Baud rate, Bus load, State Machine, MQTT Protocol 
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1. INTRODUCTION 

According to the reports, the Electric Vehicle share in the European market will be reaching 42 % 

in 2030. The EV global market share is expected to be 32% of all the vehicles. Even in the EV 

segment, there are several types of EVs in which the four major types are Battery electric vehicle 

(BEVs), Hybrid electric vehicle (HEVs), Plug-in hybrid electric vehicle (PHEV) and Fuel cell 

electric vehicle (FCEV). Considering the shift towards electric vehicles from the conventional ICE 

vehicles, the production of all types of vehicles will be done in the same factories which earlier only 

produced conventional vehicles. This shift is forcing the industries to come up with technological 

advancement to incorporate all kinds of vehicles including conventional and EVs in the same 

factories, under the same production lines and storage areas. The number of types of vehicle parts in 

the factories to build several kinds of vehicles are increasing rapidly [1].  

To handle such a huge number of different parts for different types of vehicles within the existing 

infrastructure of production lines and warehouses, a new technology is needed to utilize the existing 

factory area and infrastructure with having great order of flexibility. There are several Autonomous 

Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) which is seen as an approach to 

solve this problem, but all of them have a major drawback which is very high cost and flexibility of 

the system which is still not done at the operational level.  

To accommodate the production of different vehicles which include different parts at the same 

production line, a unique approach has been developed by and at Volvo Group, which is an 

automated vehicle parts delivery system called Generic Photogrammetry based Sensor System 

(GPSS) is used. The GPSS system ensures a greater flexibility as it can help to produce all variants 

on the same production line. It is also free to locate the activity anywhere in the factory which is 

beneficial as no infrastructure is needed to be at a fixed place in the factory rather it can be changed 

or moved based on the requirement. GPSS approach is a unified environment which includes 

Autonomous Transport Robots (ATRs) for delivery to production lines and robot arms / humans for 

kitting and assembly works. Overall GPSS system can help factories to increase efficiency of the 

process and increase safety by automating repetitive tasks. It has a smooth integration with ATRs, 

AGVs, forklifts, kitting, and assembly robots. 
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2. LITERATURE REVIEW 

2.1. Problem Statement 
 

The ATRs which are used in the GPSS system are developed by the Volvo Trucks. These ATR 

should have the capability to have a real time control system to react effectively to the commands 

provided to it and to efficiently analyze the control parameters for the ATR. These ATRs will be 

used for transporting parts in the Volvo factories and will be used together with more of the same 

kind of ATR in a fleet or can be used with other collaborative robots, which makes the real time 

control of the ATR extremely crucial. To have a real time control, the timing analysis of the ATR is 

quite significant. The problem that arises in autonomous robots is that the response time of the robot 

to react to the control messages is so high that it affects the smooth operation of the robot, 

generating unwanted behavior and uncontrolled movement of the robot which can hinder the safety 

requirements of the robot in a factory environment. To solve this problem, the analysis of timing 

and frequency of the control messages and response time of the autonomous robots becomes very 

critical.  

This thesis aims to come up with a control system for the ATR and perform timing and 

frequency analysis of the control messages sent over the CAN bus of the ATR. The bus load on the 

CAN bus by the CAN messages will also be analyzed in the thesis to come up with a suitable 

baudrate for the CAN bus of the ATR. This thesis work is carried out with Volvo Group Trucks 

Operations, Gothenburg, Sweden. The purpose of this ATR is to be used in Volvo Trucks 

production where it will be used in logistics to transport parts of the vehicles from one place to 

another autonomously. 

2.2. Previous Research and Related Work 

 

With the development of smart logistics systems across various fields, the importance of 

flexibility in the logistics system seems inevitable as it reduces the setup cost. In the paper [17], the 

development of an autonomous robotic logistic system is introduced for the use case of meal 

transporting hospital trolleys to be attached with these robots to carry the food ordered in a medical 

environment. ROS is used as an operating system for these robots. In the paper [18], a comparative 

study of various papers is performed by Giuseppe Fragapane et al., in which it says that the control 
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decentralization is a fundamental strategic decision which mostly depends on the use case of the 

robotic system.  

In the paper [19], Murat Köseoglu et al., have used a distributed control system. It uses two 

computers which work simultaneously and interdependently. One of the computers is the center of 

the decision-control system and the other computer is designed to control peripherals and some 

sensors. Both the computers are connected to each other via a serial connection for communication. 

This communication is based on USB.  The sensory computer sends the sensor data and other 

parameters of the robot to the decision computer which runs the robotic algorithms to generate 

resulting parameters which it sends back to the sensory computer to execute the navigation of the 

robot. The sensors are chosen based on the application of the robot whether it is indoor or outdoor 

application. In this case, the sensors were chosen based on their indoor application.   
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3. OVERVIEW OF GPSS SYSTEM 

The GPSS project controls a fleet of autonomous transport robots by using a grid of fixed 

ceiling mounted cameras with a bird eye view of the factory floor, for the purpose of transportation 

of parts in a dynamic factory environment which can be in collaboration with humans/robotic arms. 

 

Figure 3.1: Overview of GPSS System 

 

In Figure 3.1, the image stream is captured by several cameras and fed to a tag and obstacle 

detection algorithm which detects the tag placed on autonomous transport robots to get the ATR IDs 

and detect the obstacles present in the vicinity of the factory area. All these obstacles are mapped to 

a common factory coordinate which helps the computers to locate the obstacles with respect to the 

real factory distances. Then, the image is stitched together to remove the overlapping image area of 

consecutive camera views. This data is now fed to a fleet manager or sequence planner which 

checks other ATRs in the vicinity and then generates a path for the ATR. Based on the path, a 

controller generates speed commands for the ATR motors which are sent using wireless 

technologies, e.g.  WiFi-5/6 to the ATR. The ATR control system takes the speed command and 

forwards it to the motors which provide movement to the ATR. 
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Figure 3.2: Block Diagram of GPSS System 

 

The whole control system is based on three major segments which are operator side control, the 

edge cloud control, and the control on the factory floor side. The operator side control has an 

ordering system which is controlled by the operator for scheduling tasks to the ATR. The second 

segment is edge cloud control which takes care of the tag and object detection and tracking which 

takes the camera image stream to detect the tag on the ATR to get the information about the ATR 

and its modules. It also takes care of mapping the obstacles to the factory coordinates. The map 

manager takes care of it and generates the paths for the ATR based on the obstacles present. The 

fleet manager algorithm runs in the edge control which takes care of the fleets of the ATR doing 

their tasks. The ATR controller generates the speed commands for the ATR, and it is sent via WiFi-

6 to the specific ATR for the movement over the generated path. The third segment is the control on 

the factory floor side which consists of physical objects like camera and ATR. The camera is 

attached on the factory ceiling generating image streams of the factory floor and sending them to 

the obstacle detection algorithm in the edge cloud control. The speed command from the ATR 

controller in the edge is received and passed to the motors by the ATR main controller (AMC) 

which is on the ATR. 
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3.1. Cyber-Physical System 

The Cyber-Physical Systems (CPS) is currently a trending technology introduced in many 

industries having a close coordination of physical components and computational entities through 

network communication working together to carry out a process in real time. 

3.1.1. Overview of Cyber-Physical System 

With the introduction of CPS in Industry 4.0, a lot of new challenges come up, like the need for 

regulations, design methods, safety, compatibility between software and hardware, transfer of data 

in real-time, protection against cyber security threats. CPS is developed on components from 

several engineering disciplines and theories which incorporate embedded systems, control theory, 

distributed control, sensor fusion and cybernetics. 

 

Figure 3.3: Block Diagram of Cyber-Physical System 

Figure 3.3 shows a view of CPS. As mentioned before, CPS has two parts working together 

which are physical and computational components. The physical components consist of a physical 

system with hardware control, sensors and actuators and other physical elements. The 

computational / cyber components have networked communication for CPS which handles sensor 

networks for communication with the computational units and for communication between 
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computational units and actuators. So, the sensor data is sent to the computational units in the 

virtual components to perform complex algorithms and provide control parameters for the actuator. 

Both the physical and computational components work together closely to perform different tasks 

by the machine. 

3.1.2. Cyber-Physical System in the GPSS Set-Up 

The GPSS Set-Up is based on the CPS. The physical components present are Arduino and 

raspberry-pi controllers, sensors, buttons, display, bumper-stop, motors, battery systems which are 

placed on the ATR whereas the computational component consists of edge-computing with 

computational units running with different algorithms such as semantic image segmentation 

algorithms for determining the factory floor and drivable areas for the ATR, object detection and 

tracking algorithms, fleet management algorithms for smooth operation of ATR fleets, complex 

calculation of speed and torque commands for running the motors of the ATR. The communication 

between the physical components like Arduino, battery system, motors, etc. are on Controller Area 

Network (CAN). The communication between the physical and computational components is done 

over WiFi-6. The data (from sensors, buttons, etc.) which is needed for performing complex 

calculations on the edge is sent by the AMC controller on the ATR to the edge and the computed 

values which are to be sent from edge to ATR are received by AMC controller over the Wi-Fi. 

 

Figure 3.4: Block Diagram of Cyber-Physical System in GPSS 
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3.2. Distributed Control System with CAN  

A distributed control system is a type of control system which is used to monitor and / or control 

complex processes. It has more than one control unit distributed in a machine where each unit is 

responsible for a specific part of the process. Distributed control system provides control in real-

time with the capability to collect and examine data from actuators, sensors and connected 

peripherals. The data is analyzed, processed, and shared between different control units, providing a 

coordinated control of the complete system. 

In GPSS ATR, the distributed control system is used as well. The ATR control systems have 

two controllers coordinating together to provide a smooth operation of the ATR. The first controller 

is called Top-Unit Controller (TUC) which has all the sensors connected to it via digital and analog 

pins, it gathers all the required data from different types of buttons, sensors, bumper-stops, 

emergency stop, joysticks, LEDs and transmits this data to the second controller called ATR Main 

Controller (AMC) via CAN bus. 

The AMC has no direct connection to any sensors, rather it receives the data from the TUC via 

the CAN Bus, or it receives the data from the edge network via Wi-Fi. AMC is like the brain of the 

ATR control as all the decision making is done by the AMC. It decides based on the input data what 

process needs to be executed in that case. AMC has wired connection via CAN bus and wireless 

connection via Wi-Fi.   



 

9 
 

 

Figure 3.5: Architecture of ATR Control in the GPSS System 
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4. HARDWARE USED IN THE ATR 

The Hardware used in the autonomous transport robots are described below. 

 

Figure 4.1: Prototype of Volvo’s Autonomous Transport Robot (ATR) 

 

4.1. Embedded Controller 

The Embedded Controller used for both AMC and TUC are Arduino MKR Wi-Fi 1010. The 

main processor of the board is a low power Arm Cortex-M0 32-bit SAMD21, like the other boards 

from MKR family. The Bluetooth and Wi-Fi connectivity is carried out with a module from u-blox, 

NINA-W10 which is a low power chipset operating in the range of 2.4GHz. The communication is 

secure by the crypto chip - Microchip ECC508 [5]. 
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Figure 4.2: Arduino MKR Wi-Fi 1010 

4.2. CAN Shield 

The CAN shield used for Arduino MKR Wi-Fi 1010 is Arduino MKR CAN Shield which 

allows interaction between Arduino and the CAN bus. A CAN bus provides the possibility to 

connect TUC and AMC with motors, batteries with BMS, battery charger, radar module and 

display. This CAN Shield uses SPI interface to connect with Arduino MKR controller and has 

Microchip MCP2515 as the CAN controller. It also uses NXP TJA1049 as the transceiver where the 

screw connectors have input of 7-24v. It includes a switchable onboard termination resistor for 

CAN bus [6]. 

                

Figure 4.3: Arduino MKR CAN Shield 

4.3. Motors 

There are two Simplex Motion SH200 BLDC motors. They are in a parallel, but not 

synchronized set-up and, consequently not either in a master-slave set-up. The motors are of type 

(type: BXW-04-10H) with a mechanical gearbox with a 1:32 ratio. On the driveline there’s a 

parking/emergency brake mounted. Each motor has a (parking) brake. The parking brake is 

activated when either power is removed or when the motor has activated the brakes. For the 

communication, the motors have SM-CAN protocol which is a CAN protocol developed by 

Simplex Motion AB for their motors which is based on Standard CAN [7]. 
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Figure 4.4: Simplex Motion SH-200 BLDC Motor 

4.4. Battery & BMS 

The VARTA Easy blade 48V battery system is installed on the ATR. Currently, there are two 

48V, 32Ah units installed in parallel. The communication between all batteries in the system is done 

via the standardized CANopen protocol (PDOs).  The batteries have an in-build BMS system. At 

normal operation, all necessary data is transmitted via PDOs in cyclic intervals. If the application 

needs more information in addition, more data can be accessed via SDO request to the master 

battery. The master-slave protocol regularly monitors and adjusts necessary components such as 

balancing of cells and distribution of temperature at cell as well as system level. Relevant battery 

data such as SoC, SoH or the cycle status can be called up through the CAN protocol. The 

battery/batteries are installed according to the VARTA manual. Plus and minus poles are connected, 

CAN link is connected and there is a termination resistor (120Ω connected at the battery between 

CANH and CANL) [8]. 

 

 

Figure 4.5: VARTA Easy blade 48V battery 
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4.5. Battery Charger 

A Delta-q Easy Charger 48 charger is installed as a permanent On-board charger. The charger is 

permanently connected to the batteries and the ATR CAN bus. No communication exists between 

e.g., the AMC or TUC with the Charger. Charger only communicates with the battery master. The 

communication between all batteries in the system and the charger is done via the standardized 

CANopen protocol. The battery master also sends the system’s requirements for charging to the 

charging device. The battery master will initialize the charger to the appropriate voltage and current 

needed to charge the battery system. The voltage and current values requested from the charger will 

be sent every 100ms. In case of a fully charged battery, the battery will set its “fully charged” flag 

in the battery information status register and open its charge FET. When all batteries of the system 

are fully charged, the master sets its “fully charged” flag and sets the charger to a standby value for 

the next 5 minutes. After this delay, the battery system will shut down [9]. 

 

Figure 4.6: Delta-q Easy Charger 48 Charger 

4.6. Display 

A Winstar 5-inch-high brightness IPS TFT Smart CAN series display is used for GUI of the 

ATR. The display runs on the CANopen protocol to render display content on the screen and return 

touch event data with protocol objects. It has Built-in flash memory to store the font and Object 

Dictionary Data and has a capacitive touch panel. The Smart display can acquire the data that it 

displays either using the CANopen SDO protocol or using the CANopen PDO protocol [10]. 
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Figure 4.7: Winstar 5-inch-high brightness IPS TFT Smart CAN series Display 

4.7. Top Unit Box 

There is a Top Unit Box (TUB) which is mounted on the pushrod of the ATR. The TUB 

consists of 5 LEDs, 1 Emergency-stop button, 2 joysticks, 2 push buttons and 1 bi-stable switch to 

turn On/Off the ATR. The LEDs are used to communicate the state of the ATR. The TUB also 

houses the AMC and TUC on it. A bumper stop which is placed in the front of the ATR also is 

connected with the TUB. 

                                

Figure 4.8: Top unit box placed on the pushrod of the ATR 
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5. STATE MACHINE AND STATE DEFINITIONS OF THE ATR 

5.1. State Machine 

A State Machine has a finite number of states, in which only a single state is selected as current 

state at a time, whereas the change of the state is initiated by a condition or an event [11]. A 

decision-making mechanism can be used to change the states for taking different actions in a 

particular state. This mechanism should be able to consider different parameters that sums up user 

and environment status to take the required action according to the state transition rules that have 

been defined. 

A state machine contains a state variable which executes its state, and commands, which 

changes its state. Each command is executed by some program that modifies the state variables to 

produce some output. The state variable of the state machine makes a request to initiate a change of 

the state to execute a state [12].  

A program can sometimes have invalid states, and in conventional software, the variables are 

scrutinized carefully and changed in such a way that these invalid states don’t happen. A state 

machine is a way of imitating a state, instead of interpreting independent variables, a machine is 

modeled to handle what states are possible, and when a machine is a given state, what next state is 

permitted.  Understanding state machines is similar to understanding state charts.  

5.2. State definitions of the ATR 

The ATR acts as a “State machine”. It operates in different states or different modes. That is 

essentially a way to structure the ATR behavior, both from a user perspective as well as for 

engineering. In this chapter, the States will be described from a user perspective. It can be used as a 

guide for instructing operators and maintenance staff but is mainly intended for engineering. The 

ATR states are seen in Figure 5.1. 
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Figure 5.1: ATR States Transition Diagram 
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There are several ATR States and their priorities (lower value of the priority represents higher 

state priority) shown in Table 5.1.  

Table 5.1: ATR States and priority of the states 

ATR States  Value (hex)  Value (dec)  Priority  Comment  

Start-up  - - -   Starting state 

Idle 0x10 16 1   - 

Manual move 0x11 17 2   - 

Pre- Maneuvering 0x12 18 3   - 

Maneuvering 0x13 19 3   - 

Transport 0x14 20 3   - 

Line Follower 0x15 21 3  Introduced later  

Charging 0x16 22 1   - 

Shutdown Preparation 0x17 23 2   - 

Shutdown 0x18 24         -  - 

Error 0x19 25 0   - 

Emergency Stop Activated 0x20 26 0   - 

 

The state definitions are described below:  

5.2.1. Start-up State 

The start-up state is the first state when you turn on the ATR where all the starting up of the 

ATR takes place. This state only runs once during one power cycle while starting up the ATR. The 

transition back to this state is not allowed. The ATR is ready to be started in this state. CAN bus and 

MQTT Protocol is initialized in this state. 

5.2.2. Idle State 

When the Start-up state is completed and the ATR has an established connection to the Edge 

controller, the ATR enters the Idle state. The ATR brakes are locked and are now ready for use. If 

an error occurs during the first two states, or if the on-board E-stop is pressed, or if the front bumper 

stop is affected, the ATR will not go into Idle state, instead ending up in either Error, E-stop 

activated. This state has a priority 1 which is a medium priority. 
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When in Idle state, the ATR can transition to charging state, manual move state and Pre-

maneuvering state. 

5.2.3. Manual Move State 

In general, one can only activate the state Manual when the ATR is in state Idle. If an operator 

presses the button marked “Manual” on the push-rod box, the ATR brakes are released and it can be 

either pushed manually, or by using the linear joysticks, located on the pushrod box.  The joysticks 

can be used for both forward and reverse control. This state has a priority 2 which is a low priority. 

If an error occurs during this state, the ATR will go into Error state. If the on-board E-stop or 

bumper stop is activated, the ATR will go into “E-stop Activated” state. When the ATR is in 

Manual mode it is not responding to any messages from the Edge controller. i.e., a contact with the 

Edge controller is not necessary Although, a contact with the Edge controller is needed for going 

into Idle mode. 

5.2.4. Pre-Maneuvering State 

This state is activated when the ATR has got an order from the Edge to go in the Pre-

Maneuvering state. This state can only be reached from the Idle state. In this state, the ATR needs to 

wait 3 seconds before moving. It needs to wait 3 seconds, so that the humans working nearby know 

that ATR is about to move. The brakes are applied to the ATR during this state. Pre-Maneuvering is 

the first state ATR enters when in autonomous mode. This state has priority 3 which is the lowest 

priority. If an error occurs during this state, the ATR will go into Error state. If the on-board E-stop 

or bumper stop is activated, the ATR will go into “E-stop Activated” state. When in Pre-

Maneuvering state, the ATR can transition into either Idle state or Maneuvering state.  

5.2.5. Maneuvering State 

Maneuvering is a state entered from Pre-Maneuvering when the ATR is in autonomous mode. 

The transition to this state is only initiated by the edge controller. The ATR can achieve a maximum 

speed of 0.3 m/s in this state. When the ATR is in the Maneuvering state it is allowed to move close 

to people and fixed installations in the factory. The ATR leaves this state when it either has received 

its destination or when the circumstances allow the ATR to speed up (i.e., entering Transport 

mode). This state has priority 3 which is the lowest priority. If an error occurs during this state, the 

ATR will go into Error state. If the on-board E-stop or bumper stop is activated, the ATR will go 
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into “E-stop Activated” state. When in Maneuvering state, the ATR can transition into either Idle 

state or Transport state. 

5.2.6. Transport State 

The ATR can achieve a maximum speed of 1.5 m/s in this state. The ATR leaves this state when 

it either gets closer to the destination or when the circumstances force the ATR to slow down. If that 

happens it enters the “Maneuvering” state. This state has priority 3 which is the lowest priority. If 

an error occurs during this state, the ATR will go into Error state. If the on-board E-stop or bumper 

stop or the Virtual stop from the edge controller is activated, the ATR will go into “E-stop 

Activated” state. 

5.2.7. Charging State 

The ATR enters the charging state when the ATR is plugged into charging. Charging State can 

be only entered from Idle state and can only transition to the Idle State. In this state, the brakes are 

applied, and the ATR stays into the charging state until the ATR is unplugged from the charging. 

This state has a priority 1 which is a medium priority. 

5.2.8. Maintenance State 

The ATR enters this state when in Idle state and the Maintenance symbol on the display is 

pressed. The ATR remains on with brakes applied and the maintenance engineer is able to do 

preliminary fault seeking and calibration through guidance from the display. E.g., presented on the 

display are several running data like state of health of the battery, total run time since last 

maintenance. Also, it is possible to do some simple adjustments like getting real time data from 

radar sensors. When leaving the maintenance state, the ATR always returns to Idle state. 

5.2.9. Error State 

The ATR enters the Error State if either an internal Error is detected or if there is an anomaly in 

the communication with the Edge controller or on the CAN bus. If the ATR goes into Error mode, it 

stops, and the brakes are applied. There are error codes assigned for the defined possible errors so 

that it can help the maintenance engineer to rectify the error. The error codes can be seen on the 

ATR display when in the maintenance state. This state has a priority 0 which has the highest 

priority. The Error State will be initiated in case of any state transition collision statements. 
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5.2.10. Emergency Stop (E-Stop) Activated State 

The ATR can enter an Emergency stop activated state from any of the previous states except 

start-up, error, and maintenance state. ATR can enter this state if either the local E-stop button 

situated on the push-rod box is pressed, or a nearby virtual E-stop is activated by the edge 

controller, or the Bumper stop situated at the front of the ATR is activated. If the ATR goes into E-

stop activated mode, it stops hastily. The ATR brakes are applied and will remain applied until 

leaving the E-stop state. This state has a priority 0 which has the highest priority.  
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6. SOFTWARE ARCHITECTURE OF THE ATR 

The software architecture of the ATR works as a state machine. The ATR as a whole is seen as 

a state machine having different states of operation. At a time only execution of one state is 

permitted. The ATR is started-up and initialization starts. 

 

Figure 6.1: Flow Chart of ATR control Software Architecture 
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During initialization, the ATR sets up connection with the Edge controller through MQTT 

Protocol via Wi-Fi. ATR sends up initializing data to the edge about the ATR-ID, type of ATR and 

the parameters related to the specific ATR like measurements of the ATR which will be helpful for 

the edge to calculate speed commands which will be later send to ATR from edge for driving ATR 

autonomously. The internal error checks on the ATR are done during initializing which includes 

checking available nodes on the CAN bus through a heartbeat check function. If even one of the 

nodes on the CAN bus doesn’t respond, the ATR goes into Error state.  If all the nodes respond, the 

ATR internal check is passed. Now, the ATR is ready to receive the data from the edge controller 

and the CAN bus. The data required to run the ATR such as wheel speed, the request to change 

ATR state, virtual stop state, charging request and other variables are received on the ATR and are 

updated and manipulated according to the ATR’s requirement. The data are received on an interrupt 

basis and are updated at the callback. These data are stored in a variable in the ATR and are updated 

in every loop. The CAN frames are also received on the interrupt with a callback function with an 

Interrupt Service Routine (ISR). The ISR for the CAN message is shown Figure 6.2. 

 

Figure 6.2: Interrupt Service Routine for CAN Messages 
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The CAN messages are received on an interrupt and each message received is time-stamped 

with its CAN-ID, DLC and the payload. This message format is created as soon as the ATR 

receives a CAN message. In the ISR, two lists are created namely IRQ List and Working List. The 

IRQ list is the list in which the time-stamped CAN frames are put while being on Interrupt. The 

working list is the list with which the CAN frame payload data is put into the desired variable in the 

ATR. The working list updates each message in the list by moving pointers on the list so no CAN 

message is missed. After each loop, the IRQ list consists of several CAN messages. These CAN 

messages are copied to the working list while detaching interrupt, so no new CAN message arrives 

in the IRQ list while copying the messages. After copying the messages to the working list, the 

interrupt is again attached to the IRQ list. Once all the messages from the IRQ list are copied to the 

working list. Each message from the working list is read and the data is assigned to the relevant 

variables on the ATR controller. With the help of this ISR for CAN messages, it is secured that no 

CAN frame is missed, all the frames are serviced, and relevant variables are updated which are 

necessary for the ATR operation.  

 

Once all the variables are updated from CAN Bus and edge controller via MQTT, with the 

help of these variables the state transition requirements are evaluated. To transition from one state 

to another state, there are state transition requirements. These state transition requirements are 

verified and if the transition requirements are met, the state is changed. If these state transition 

requirements are not met, the same state is executed again. Each state has separate state transition 

requirements as only defined states can be transitioned from a particular state. For example, If in the 

maneuvering state, there will be three transition requirements for transitioning to Idle state or Pre-

maneuvering state or to transport state. If none of these transition requirements are met, the ATR 

stays in the maneuvering state.  

New State initiation can be done from either the specific ATR, or from the Edge controller. 

Edge controller acknowledges on all state changes but do also initiate the following transitions:  

• Idle State → Pre-maneuvering State 

• Pre-maneuvering State → Maneuvering State 

• Maneuvering State → Transport State 

• Pre-maneuvering State → Idle State 
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• Maneuvering State → Idle State 

• Maneuvering State → Pre-maneuvering State 

• Transport State → Maneuvering State 

 

All other transitions are initiated by the ATR, but they are acknowledged by the edge controller 

and the edge needs to accept the state change. When a new state transition is identified locally on 

the ATR, Next State is defined in the ATR according to transition conditions and a state change 

request (Next State) is sent to the Edge. The Edge controller acknowledges by sending Current State 

value (that is the previous Next State value) back to the ATR. Once acknowledgement is received 

from the edge, the ATR changes its state. It performs the tasks required to be executed in that 

specific state. For example, In Maneuvering state, the new motor control parameters, relevant mode 

of the motor and the speed commands for the wheels are sent to the motors. Once the state specific 

tasks are executed, the updated variables during this loop are sent on the CAN bus and to the edge 

controller via MQTT from the ATR. Once again, the next loop continues from reading and updating 

variables sent by edge controller and CAN bus. 

6.1. Software Architecture of the ATR Main Controller (AMC) 

The software architecture of AMC is based on a state machine. The AMC’s embedded computer 

is Arduino MKR Wi-Fi 1010 used with a CAN shield. The AMC is connected with both CAN bus 

as well as Wi-Fi. When the ATR is started-up, the AMC starts initializing communication with 

CAN bus and setting up MQTT protocol over the Wi-Fi. Once communication is set-up, the CAN 

frames are received by using interrupt service routine of CAN messages shown in Figure 6.2. These 

CAN frames are read and populated to AMC specific variables. For example, A message with state 

of buttons is received from the TUC, these states of buttons are transferred into an AMC specific 

variable like Manual button or Ready button or E-stop with states true or false based on whether the 

button is pressed or not. 

Similarly, the data sent by the edge is received via MQTT protocol over Wi-Fi. These data are 

combined in a form of a topic and are published to the broker. The AMC subscribes to the specific 

topic to receive data. Arduino JSON data format is used by the AMC to get the data via MQTT. The 

data are stored in the AMC specific variables. Based on these variables, the state transition 
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requirements are evaluated. The state change can be initiated by the Edge controller as well as 

locally by evaluating the transition requirements. After evaluating the transition requirements, the 

ATR next state is selected. If the ATR next state is the same as the current state, the ATR remains 

in the same state but if the ATR next state is not the same as the ATR current state, a state 

synchronizing message is sent to the edge to acknowledge the state change. 

 

Figure 6.3: Flow Chart of AMC Software Architecture 
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When the edge acknowledges the state change initiated by the ATR, the ATR changes its 

current state to the ATR next state. If the acknowledge is not received, the ATR waits for the edge 

to send the acknowledge and only after receiving it, changes its state. As soon as the ATR state is 

changed, an ATR state message is sent on the CAN bus carrying the current state of the ATR and an 

order for TUC to change its state also similar to AMC. This is done to ensure AMC and TUC are 

synchronized as they must have the same state at a particular time.  

After AMC and TUC are synchronized with the same current states, the specific-state tasks 

in the AMC are performed and executed. Then, the MQTT messages are sent on the topic to the 

broker with the relevant data for the edge controller. The CAN messages are also framed to be sent 

on the CAN bus with the updated value from the loop. The AMC after this continues back to the 

receiving of CAN and MQTT messages for the next loop.  

A heartbeat check is designed which runs in the background and keeps track if all the nodes 

are alive. The heartbeat messages generally have only one byte data frame which means its DLC is 

one. This byte provides the status of the CAN nodes. The CAN nodes could be in Pre-operational 

state (7F16), Operational state (0516), or Stopped state (0416). In Operational state, all CAN functions 

are provided. The heartbeat messages are checked continuously throughout the run-time of the 

AMC, if any of the heartbeat messages is not received for 3 seconds consecutively, an error on that 

node is flagged with an error code. Even if any of the nodes send the message that the node has 

stopped working that means it is in stopped state (0416), an error on that node is also flagged with 

another error code.  

The heartbeat messages are received by the AMC from the TUC, both the motors, the BMS and 

the display. The charger heartbeat is also visible when the charger is connected to the ATR. This 

heartbeat check is performed in every loop cycle, and it helps in determining internal error on the 

CAN bus. The error on the ATR initiates the Error state and the ATR is stopped and requires 

maintenance. The error code for that particular error is assigned so it can be provided to the 

maintenance engineer to ease the fault seeking and debugging of the error. 
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6.2. Software Architecture of the Top Unit Controller (TUC) 

The TUC is also seen as a state machine. The TUC is like the sensory organ of the ATR which 

only cares about the external interfaces with the controller. The software architecture of TUC is 

similar to the AMC but with different functionalities. The TUC has Arduino MKR Wi-Fi 1010 as 

the embedded controller. The TUC is only connected to a CAN bus through CAN shield and has no 

connection to the edge controller via Wi-Fi. TUC only communicates to the AMC through the CAN 

bus. The TUC is connected to all the input-output peripherals through its I/O pins. The Bumper-

stop, E-stop, Ready button, Manual Button, Joysticks, ON/OFF Button and indicating LEDs, all are 

connected to TUC through the I/O pins. 

 

Figure 6.4: Flow Chart of TUC Software Architecture 
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When the ATR is started-up, the TUC starts initializing the communication on the CAN bus. 

After the CAN communication is set-up, the TUC starts polling and reading the I/O pins of the 

Arduino to get the attached button / peripheral state and this state is updated in specific variables. 

These different variables with I/O pin states are bound together to create a CAN frame namely TUC 

heartbeat message and this frame is sent on the CAN bus to be received by the AMC where AMC 

evaluates ATR state based on these I/O pin state values. As the AMC evaluates its next state, the 

AMC sends a message to TUC to change its state. This message contains the next state the TUC 

needs to go in. 

The TUC does not decide its own state, rather the AMC directs TUC to change its state to be 

synchronized with the ATR state as a whole unit. As this state message is received from the AMC, 

TUC changes its state as well. The TUC then updates its state and binds this state variable and sends 

it back to the AMC within the same TUC heartbeat message. Based on the new state, the tasks 

defined in the particular state are executed. For example, If the TUC goes into Manual State, the 

yellow LED needs to be turned on and rest all other LEDs are to be turned off. After this the loop 

continues with reading the I/O pins for any change in the button states placed on the top-unit box. 

The AMC and TUC work together to provide a complete function to the ATR. The ATR has 

most of its control communication via CAN bus and a lot of calculations and algorithms are run on 

the edge controller to provide us with commands to run the ATR. Although all the major control of 

the ATR stays locally on its own controllers.  
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7. ATR COMMUNICATION 

7.1. CAN Communication 

The Controller Area Network bus also known as CAN bus is a serial communication protocol 

widely used in automotive, rail transportation, aerospace, and other industry to allow controllers and 

other devices (nodes) to communicate with each other without a central computer controlling the 

communication. It was developed by Robert Bosch, a German company in the late 1980’s which 

later eventually became an international standard – ISO 11898 [13]. It is currently one of the most 

widely used field buses. CAN bus has the advantage to operate reliably in harsh environments such 

as variation in temperature or large noises caused by electromagnetic instability. The protocol is 

also fault-tolerant and has advantages of error handling and error detection mechanism. CAN is a 

priority-based bus which supports real-time communication. Every CAN message on the bus is 

assigned a priority and the message transmission follows a deterministic order decided by the 

priorities given to the messages [14]. 

The CAN bus is a two-wired bus consisting of twisted pairs of wires that carry power as well as 

data. It uses a differential signal naming CANH and CANL to transmit data, which means it can 

transmit data at high speeds with low signal noise. CAN uses the OSI model to transfer data among 

nodes connected in a network. Every node like AMC, TUC, Battery, Motor, display, and others has 

a controller which is a small and low-cost computer. Messages in CAN are sent in a format called 

CAN frames. A frame is a defined structure, carrying a sequence of meaningful bits of data on the 

bus.  

In GPSS, Standard CAN is used. The standard CAN and SM-CAN both use standard CAN 

frames to communicate with other nodes. CAN communication is used on the ATR to communicate 

between AMC, TUC, motors, battery, charger, and display. 

 

Figure 7.1: Standard CAN Frame Format 
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The standard CAN frame uses a 11-Bit Identifier also known as CAN-ID which is unique to 

every single CAN frame. No two CAN frames should have the same CAN-ID, otherwise error 

occurs on CAN bus. The CAN-ID includes priority of the CAN frame, lower the CAN-ID higher 

the priority of the message. CAN frame can carry 8 bytes of data in one message. The number of 

bytes to be used in the message is selected by DLC which could be a maximum of 8 bytes. CAN 

consists of error frames in case any node is communicating error on the bus. 

 

7.2. ATR CAN Nodes 

There are several ATR CAN Messages which are used for communication between all the CAN 

nodes on the ATR. There are eight CAN nodes on the CAN bus which are shown below with the 

Node-IDs. All these CAN nodes are on the same CAN bus and hence, all the nodes have their 

unique Node-IDs. 

Table 7.1: ATR CAN Nodes with Node-IDs 

Name  Abbreviation  Node ID (Dec)  Node ID (hex)  

Battery Management 

System 

BMS 27 0x1B 

ATR Main Controller AMC 40 0x28 

ATR Top Unit Controller TUC 50 0x32 

Right Motor Controller RMC 61 0x3D 

Left Motor Controller LMC 62 0x3E 

Radar Sensor Controller RSC 70 0x46 

Display Unit DU 80 0x50 

Battery Charger BCC 100 0x64 
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7.3. CAN Messages from the Battery Management System 

7.3.1. BMS Master Voltage Current Message 

The General description:  

BMS Master Voltage Current message is sent from BMS on the CAN Bus. It is received by AMC. 

It contains information regarding Master Voltage and Master Current values. This message’s CAN-

ID is 0x19B and Node-ID is 27. The DLC for this message is 8. 

 

Figure 7.2: BMS Master Voltage Current Message Structure 

Repetition rate: 1 second  

Arbitration field:  

• Bit 0-10 = 00110011011    

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains:  

• Battery information status register  

• Battery warning status register  

 

7.3.2. BMS Temperature Design Capacity Message 

The General description:  

BMS Temperature Design Capacity message is sent from BMS on the CAN Bus. It is received by 

AMC. It contains information regarding battery temperatures and master design capacity values. 

This message’s CAN-ID is 0x29B and Node-ID is 27. The DLC for this message is 8. 
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Figure 7.3: BMS Temperature Design Capacity Message Structure 

Repetition rate: 1 second  

Arbitration field:  

• Bit 0-10 = 01010011011    

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains:  

• Max. Battery FET Temperature 

• Max. Battery Cell Temperature 

• Master Design Capacity  

7.3.3. BMS Charge Capacity Message 

The General description:  

BMS Charge Capacity message is sent from BMS on the CAN Bus. It is received by AMC. It 

contains information regarding Charge Capacity values. This message’s CAN-ID is 0x39B and 

Node-ID is 27. The DLC for this message is 8. 

 

Figure 7.4: BMS Charge Capacity Message Structure 

Repetition rate: 1 second  
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Arbitration field:  

• Bit 0-10 = 01110011011    

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains:  

• Master Full Charge Capacity  

• Master Remaining Capacity 

 

7.3.4. BMS Status Message 

The General description:  

BMS Status message is sent from BMS on the CAN Bus. It is received by AMC. It contains 

information regarding flag and status values of the BMS. This message’s CAN-ID is 0x49B and 

Node-ID is 27. The DLC for this message is 8. 

 

 

Figure 7.5: BMS Status Message Structure 

Repetition rate: 200 ms 

Arbitration field:  

• Bit 0-10 = 10010011011    

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  
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Data field contains:  

• Master Information Status Register  

• Master Warning Status Register 

• Master Error Status Register  

• Master Charge Control Status Register  

7.3.5. BMS Charging Message 

The General description:  

BMS Charging message is sent from BMS on the CAN Bus. It is received by Charger. It contains 

information regarding charge control and battery status values of the BMS. This message’s CAN-ID 

is 0x264 and Node-ID is 100. The DLC for this message is 8. 

 

Figure 7.6: BMS Charging Message Structure 

Repetition rate: 100 ms 

Arbitration field:  

• Bit 0-10 = 01001100100    

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains:  

• Charge Control 

• State of Charge (SoC) 

• Master Warning Status Register 

• Master Error Status Register  

• Battery Status 
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7.4. CAN Messages from the ATR Main Controller (AMC) 

7.4.1. AMC State Control Message 

The General description:  

AMC State Control message is sent from AMC on the CAN Bus. It is received by TUC. It contains 

information regarding the AMC current state and the state TUC should go in. This message’s CAN-

ID is 0x264 and Node-ID is 40. This message has a priority of 1 and the DLC is also 1. 

 

Figure 7.7: AMC State Control Message Structure 

Repetition rate: 100 ms 

Arbitration field:  

• Bit 0-2 = 001 (Priority is 1) 

• Bit 0-10 = 00101001000       

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 0001 (1) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains: ATR Current State 

7.4.2. Common Motor Drive Parameter Message 

The General description:  

Common Motor Drive Parameter message is sent from AMC on the CAN Bus. It is received by left 

and right motors. It contains information about the common parameters required for driving the 

motors. This message’s CAN-ID is 0x265 and Node-ID is 40. This message has a priority of 2 and 

the DLC is 8. 
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Figure 7.8: Common Motor Drive Parameter Message Structure 

Repetition rate: 100 ms 

Arbitration field:  

• Bit 0-2 = 010 (Priority is 2)   

• Bit 0-10 = 01001100101   

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

Data field contains:  

• Maximum Torque 

• Maximum Ramp Speed 

• Maximum Ramp Acceleration 

• Maximum Ramp Deceleration 

7.4.3. State Specific Motor Mode Message 

The General description:  

State Specific Motor Mode message is sent from AMC on the CAN Bus. It is received by left and 

right motors. It contains information about the mode in which motors have to go. This message’s 

CAN-ID is 0x166 and Node-ID is 40. This message has a priority of 1 and the DLC is 8. 

 

Figure 7.9: State Specific Motor Mode Message Structure 

Repetition rate: 100 ms 
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Arbitration field:  

• Bit 0-2 = 001 (Priority is 1)   

• Bit 0-10 = 00101100110  

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

Data field contains: Motor Mode 

7.4.4. Target Speed/Torque Command Message 

The General description:  

Target Speed/Torque Command message is sent from AMC on the CAN Bus. It is received by left 

and right motors. It contains information about the target Speed / Torque commands for driving the 

motors. This message’s CAN-ID is 0x167 and Node-ID is 40. This message has a priority of 1 and 

the DLC is 8. 

 

Figure 7.10: Target Speed/Torque Command Message Structure 

Repetition rate: 100 ms 

Arbitration field:  

• Bit 0-2 = 001 (Priority is 1)   

• Bit 0-10 = 01001100111   

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains:  

• Right Motor Target Speed / Torque Register Value 
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• Left Motor Target Speed / Torque Register Value 

 

7.5. CAN Message from Top-Unit Controller (TUC) 

7.5.1. Top-Unit Box Status Message 

The General description:  

Top-Unit Box Status Message is sent from TUC on the CAN Bus. It is received by AMC. It 

contains information about the button values, joystick values and the TUC state. This message’s 

CAN-ID is 0x174 and Node-ID is 50. This message has a priority of 1 and the DLC is 8. 

 

Figure 7.11: Top Unit Box Status Message Structure 

Repetition rate: 50 ms 

Arbitration field:  

• Bit 0-2 = 001 (Priority is 1)   

• Bit 0-10 = 00101110100   

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

Data field contains:  

• TUC Local Error Status 

• TUC Button Status  

• Joystick Values 

• TUC Status 
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7.6. CAN Messages from the Motors 

7.6.1. Right Motor Status Message 

The General description:  

Right Motor Status Message is sent from Right Motor on the CAN Bus. It is received by AMC. It 

contains information about the current motor speed and torque. This message’s CAN-ID is 0x141 

and Node-ID is 61. This message has a priority of 1 and the DLC is 8. 

 

Figure 7.12: Right Motor Status Message Structure 

Repetition rate: 50 ms 

Arbitration field:  

• Bit 0-2 = 001 (Priority is 1)   

• Bit 0-10 = 00101000001   

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

 

Data field contains:  

• Current Speed Register Value 

• Current Torque Register Value 

7.6.2. Left Motor Status Message 

The General description:  

Left Motor Status Message is sent from Left Motor on the CAN Bus. It is received by AMC. It 

contains information about the current motor speed and torque. This message’s CAN-ID is 0x143 

and Node-ID is 61. This message has a priority of 1 and the DLC is 8. 
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Figure 7.13: Left Motor Status Message Structure 

Repetition rate: 50 ms 

Arbitration field:  

• Bit 0-2 = 001 (Priority is 1)   

• Bit 0-10 = 00101000011   

• Bit 11 = 0 (RTR always 0)  

• Bit 12-15 = 1000 (8) Data length Code, DLC. Indicates the number of payload bytes.  

Data field contains:  

• Current Speed Register Value 

• Current Torque Register Value 

7.7. CAN Internal Message on the Bus 

There are also some internal CAN messages which are always on the CAN bus though they are 

used internally by the nodes and are not used for any applicational use. 
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Table 7.2: CAN Internal Messages on the bus 

 

These CAN messages include the heartbeat messages from each node and internal CAN 

messages which are used by individual batteries which are stacked in parallel. Here, we have two 

batteries in parallel, so both batteries internally communicate to each other over the CAN bus. 

These CAN messages help the multiple battery modules to be stacked together and still have the 

same voltage and charging current. These internal CAN messages have a fixed priority, DLC and 

the repetition rate predefined by the battery manufacturer. These CAN messages are always present 

on the CAN bus. 

 

7.8. MQTT Protocol via Wi-Fi Communication 

The MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe based message 

protocol that is designed for use in IoT and M2M contexts. MQTT design principles are to minimize 

bandwidth and device resource requirements while having high reliability and assurance of delivery to some 

degree. MQTT was developed originally by IBM in the late 1990’s for monitoring oil pipelines. In 2014, 
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MQTT became standardized with the release of version 3.1.1. an open standard maintained by OASIS. This 

open standard is now widely used for wireless communication protocol across various industries [15]. 

 

Figure 7.14: Structure diagram of MQTT 

In Figure 7.14, MQTT has two parts which are MQTT message broker and MQTT clients. The 

MQTT clients are connected through a common MQTT message broker. The MQTT client needs a 

central MQTT message broker to publish data on a topic, which can be subscribed by another client 

on the same topic. Multiple clients can publish a topic to the same broker and subscribe to a topic 

from the same broker. MQTT broker acts like a central unit which collects all data and sends the 

data to the devices which request for it based on a predefined set of rules. MQTT works over the 

TCP / IP protocol. It uses port 1883 which is the default port assigned by IANA, but technically 

MQTT can use any port. Mosquitto and HiveMQ are some of the local MQTT brokers [16]. MOTT 

supports three levels of QoS for message delivery, QoS 0 which provides at most once delivery of 

the message, QoS 1 which provides at least once delivery of the message and QoS 2 which provides 

exactly once delivery of the message. 

 

Figure 7.15: MQTT fixed header message 

The MQTT message structure consists of: 

• Fixed header. It contains information about the type of message and the level of QoS, and 

other flags. Fixed header is always present in the message and takes up two bytes. 

• Variable header. This is an optional part of the message and length of the variable header 

depends on the type of the message and the level of QoS. This part contains information like 

the ID of the message, the name of the topic, and other message specific data. 

• Payload. This is the data which is actually being transmitted in the message. 



 

43 
 

In GPSS, the MQTT protocol is used to send applicable ATR data which is used to drive the 

ATR autonomously with the help of the cameras in the ceiling and computing at edge. 

 

7.9. ATR MQTT Message 

The MQTT messages are sent to the edge controller and received from the edge controller over 

the Wi-Fi. The MQTT protocol runs on top of a TCP/IP using a publish-subscribe topology. MQTT 

is an event driven protocol. There is no periodic or ongoing data transmission. It allows the 

transmission to be minimum. The information is only sent when a client publishes the data, and a 

broker only sends out information to subscribers when new data arrives. 

The ATR AMC controller sends MQTT messages to the edge controller with information regarding 

the ATR. The AMC sends the odometry information from the motors to the Edge. The current state 

of the ATR is sent along with it with the same message on the same topic.  This message is sent 

every 100 ms to the edge. 

The Edge also sends MQTT messages based on the event driven basis to the AMC with information 

about state change information and / or the wheel speed commands from the edge in the 

autonomous transport states. 
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8. RESPONSE TIME ANALYSIS OF THE ATR 

The Response time of the ATR includes the time response for both AMC and TUC. The 

response time of the whole ATR will have loop time of the AMC and loop time of the TUC. The 

loop time of the AMC was evaluated. The AMC has a loop time of approximately 5 ms when the 

AMC is in Idle state, Pre-Maneuvering state, Charging state, Shutdown Preparation state, 

Emergency stop activated state and Error stop. These states have a shorter loop time as most of the 

tasks in this particular state are very less time consuming and do not include the task of running the 

motor.  

Table 8.1: Loop time in different AMC States 

 

The loop time of the AMC is more when it is in mobile states like Manual Move state, 

Maneuvering state and Transport state. The Manual Move state takes almost 55 ms to run though 

the loop while being in that state. The Manual Move States includes running the motor which 

consists of more CAN messages for the motor which makes the loop time a bit more. The 

Autonomous states like Maneuvering state and Transport states also take like 25 ms to go through 

the loop. The loop time of the AMC varies in different states. This is because the tasks in different 

states vary as in some states the tasks AMC has to do are simpler and executed faster while in other 

states the tasks are complex and take more time in execution. 

While, in the TUC, almost all the states have a loop time of approximately 40 ms. This is 

because the TUC has almost similar tasks in all the states. The most common task in all the states is 

to poll the controller pins for the incoming signals from buttons, joysticks, emergency stops and, to 
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send them to AMC by framing it in a CAN message and, to light and unlight the LEDs on the top 

unit box based on the ATR state.   

Table 8.2: Loop time in different TUC States 

 

The loop time is almost constant in all the states in TUC but the loop time in different states 

differs in the AMC. So, to have a constant loop time in AMC as well, delays are added to make the 

loop time of AMC to be 100 ms. By doing this, we secure that the loop time in all the states in 

AMC also is constant. Having a constant loop time helps in synchronizing the time taken to run the 

AMC in any state. A delay of 10 ms is also added to make the TUC to have a loop time of 50 ms in 

all the states. This ensures that the TUC loop runs twice until the AMC is running once, securing 

that AMC does not miss any messages sent from TUC over the CAN bus. 

            

Figure 8.1: Bar Graph of Loop time for AMC and TUC  
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The response time for a particular state is depending on the data flow from TUC to AMC and 

back to TUC. Generally, all the input from the top unit box is taken by TUC which takes 50 ms to 

poll the TUC I/O pins and bind the data received from pins in a CAN message and send it to AMC. 

Then AMC takes 100 ms to run the loop and perform all the tasks in that state and send the AMC 

state as a CAN message to the TUC. The TUC again takes 50 ms to go into commanded state from 

AMC and light up the relevant LEDs for that state.  

So, the maximum response time from switching the states is 200 ms. Although staying in the 

same state without changing the state could have even shorter response time than 200 ms. By doing 

this we secure that the response time is not more than 200 ms in any state. 
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9. ANALYSIS OF LOADING OF CAN BUS OF THE ATR 

The bus load on a CAN bus is affected by following factors: 

• Number of Messages on CAN bus: The total number of CAN messages on the CAN bus 

affects the bus load. Higher number of CAN messages transmitted on CAN bus will require 

higher bandwidth which in turn increases the bus load. 

• Frequency of Messages on CAN bus: The repetition rate of a CAN message or the 

frequency at which CAN message affects the bus load. Higher frequency of CAN messages 

requires more frequent bus utilization which in turn increases the bus load. 

• Length of CAN Message (DLC): The length of CAN messages which is defined by Data 

length code of the message affects the bus load. Longer the message, it occupies more time 

on the bus thus requires more bandwidth which in turn increases the bus load on the CAN 

bus. 

• Bit Rate of the CAN Bus: The operating bit rate of the CAN bus affects the bus load. 

Higher bit rate gives faster transmission of data on CAN bus, but faster transmission also 

increases the amount of data to be transmitted in a defined time, which results in higher bus 

load. 

• Arbitration of the CAN bus: CAN bus works on priority-based arbitration mechanism, 

where CAN messages with higher priority have higher preference on the bus. The bus load 

can be affected by the number of CAN messages contending for bus access and their 

priorities. 

• Bus utilization efficiency: The efficiency of CAN message transmission on the bus affects 

the bus load. Inefficient utilization of CAN messages, such as a large number of message 

collisions or re-transmission of the messages, increases the bus load. 

To have a smooth operation on the CAN bus, the bus load should be only 50 % of available 

bandwidth. The bus load on the CAN bus can be more than 50 % for a short period of time but the 

average bus load should not exceed over 50 %.  However, overloading the CAN bus can lower the 

performance, increase the latency, and can lead to data corruption. So, a suitable designing and 

monitoring of the CAN bus system are significant to maintain reliable and efficient communication. 

It is important to calculate the necessary transmission speed which is also known as baudrate of the 

CAN bus to reduce the communication as much as possible. Communication should be designed to 
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communicate as little as possible but as much as necessary. Higher baudrate on the CAN bus can 

also generate faster switching, which can cause increased electromagnetic emissions and be 

vulnerable to external interference. This interference can disrupt communication and reduce the 

reliability of the CAN bus.  

Table 9.1: Percentage bus load at different baudrate 
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Table 9.1 shows all the CAN messages on the CAN bus. Some of the messages are predefined 

by the manufacturer of the battery and the charger and the rest of them are defined based on the 

application of the ATR. All the application messages are provided with the priority. The lower the 

priority value, the higher the priority of the message. The priority-based arbitration mechanism is 

used on the CAN bus. Lower the CAN-ID of the message higher the priority of the message. The 

data length code (DLC) is also chosen based on the transmitted data in a CAN message. The DLC 

can be from 1 to 8 bytes as one CAN message can hold up to 8 bytes or 64 bits of information data. 

The frequency of CAN messages is also selected based on the requirement of data by the receiving 

nodes. 

9.1. Percentage Bus Loading by Individual CAN Messages 

Here, the percentage bus load occupied by individual CAN messages are calculated on different 

baudrate of CAN bus. The formula used to calculate the bus load by individual message is: 

% 𝐵𝑢𝑠 𝐿𝑜𝑎𝑑 𝑏𝑦 𝑎 𝐶𝐴𝑁 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 =
𝑓𝑟 ∗ 8 ∗ 𝐷𝐿𝐶

𝐵𝑑
∗ 100 

where, fr = frequency of the CAN message, DLC = Data length Code and Bd = baudrate of 

the CAN bus. 

For each message on the CAN bus, the percentage bus load by individual message is 

calculated at a baudrate of 125 Kbits/s, 250 Kbits/s, 500 Kbits/s and 1 Mbits/s. The baudrate affects 

the bus load on the CAN bus which can be seen in the fig. The individual CAN message shows a 

higher bus load when then the baudrate is lower. All the individual CAN messages show the highest 

bus load at 125 Kbits/s and the lowest bus load at 1 Mbits/s. By increasing the baudrate of the CAN 

bus, the bus load by the individual message is decreasing.  

The maximum percentage bus load by a message is 1.024% at 125 Kbits/s, 0.512% at 250 

Kbit/s, 0.256% at 500 Kbits/s and 0.128% at Mbits/s which is acquired by top-unit box status 

message (tuc_HB_msg), right motor drive status message (right_motor_drive_status_msg) and left 

motor drive status message (left_motor_drive_status_msg). As the frequency of these messages is 

the highest, which is 20 Hz (0.05 ms), the bus load occupied by these messages is maximum. 
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Figure 9.1: Bar Graph of Bus Loading by Individual CAN Messages 
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The minimum percentage bus load by a message is 0.0064% at 125 Kbits/s, 0.0032% at 250 

Kbit/s, 0.0016% at 500 Kbits/s and 0.0008% at Mbits/s which is acquired by charger heartbeat 

message (charger_HB_msg). As the frequency of this message is lowest which is 1 Hz (1 sec) and 

the data length code for this message is only 1, which is 1 byte of data to be transmitted on the bus 

in one CAN message, that’s why the bus load occupied by this message is minimum. It shows that 

the bus load depends on the frequency of the message and the data length code of the CAN 

message. 

There are some messages which are always available on the CAN bus like the messages 

transmitted by the battery which includes battery internal messages between the individual batteries 

and the battery application messages which are the messages sent by the BMS system which 

combines all the individual batteries as a whole BMS unit. The AMC state control message 

(amc_state_contol_msg), top-unit box status message (tuc_HB_msg), right motor drive status 

message (right_motor_drive_status_msg) and left motor drive status message 

(left_motor_drive_status_msg) are also always present on the CAN bus. 

The remaining messages on the CAN bus are transmitted based on the application and 

requirements in the different states. The CAN messages like charger heartbeat message 

(charger_HB_msg) and BMS charging message (batt_to_charging_msg) are only available on the 

CAN bus when the ATR is connected to the charger. The CAN messages like common motor drive 

parameter message (common_motor_drive_param_msg), state-specific motor mode message 

(state_specific_motor_mode_msg) and target speed/torque command message 

(target_speed_torque_cmd_msg) are only available when the ATR is in driving mode, can be 

manual driving mode with joysticks or in the autonomous mode. 

9.2. Total Maximum Percentage Bus Loading by all the CAN Messages at 

different Baudrate 

The total percentage of bus load differs at different baudrate of CAN bus. In the below fig., on 

the x-axis, it has maximum bus load at a baudrate of 125 Kbits/s, 250 Kbits/s, 500 Kbits/s and 1 

Mbits/s whereas on the y-axis, it has bus load in percentage.  The total maximum bus load at 125 
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Kbits/s is 6.9184 %, at 250 Kbits/s is 3.4592%, at 500 Kbits/s is 1.7296% and at 1 Mbits/s is 

0.8648%. The bus load at 125 Kbit/s is the highest while the bus load at 1 Mbits/s is the lowest. 

 

Figure 9.2: Bar Graph of Total percentage CAN Bus Load at different baudrate 

This trend shows that when the baudrate is lower, the bus load is higher and while increasing the 

baudrate, the bus load on the CAN bus is decreasing. 
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9.3. Total Maximum Percentage Bus Loading by all the CAN Messages at 

different Baudrate in various State 

The below table shows the maximum percentage bus load by the CAN messages at various ATR 

States. The bus load was calculated at different baudrate like 125 Kbits/s, 250 Kbits/s, 500 Kbits/s 

and 1 Mbits/s at various ATR states. 

Table 9.2: Percentage Bus load at different baudrate in various ATR states  

 

In Figure 9.3, on the x-axis, it has various ATR states, and, on the y-axis, it has bus load in 

percentage. These bus loads are calculated at various baudrates which can be seen as with different 

color lines.  

The bus load at 125 Kbits/s is the highest in all the states while the bus load at 1 Mbits/s is the 

lowest in all the states. The bus load is the highest in all the ATR driving states like Manual Move 

state, Maneuvering state and Transport states because the number of CAN messages transmitted on 

CAN bus in these states are also more as all the driving parameter CAN messages are transmitted in 

these states. The bus load fluctuation on the lower baudrate is also high as on 125 Kbits/s, the bus 

load fluctuates approximately between 5% to 7% whereas on the higher baudrate, the bus 

fluctuation is very low as on 1 Mbits/s, the bus load fluctuates approximately between 0.6% to 

0.8%. 
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Figure 9.3: Line Graph of Percentage Bus load in ATR States at different baudrate 

9.4. Selection of Baudrate for the CAN Bus of the ATR 

The baudrate for the CAN bus is selected to be 250 Kbits/s. This particular baudrate was 

selected for the CAN bus keeping in mind that the maximum bus load at 250 Kbits/s is just 

3.4592% which is quite low and good as it leaves a lot of room for addition of more CAN messages 

in the future on the ATR. At this baudrate, the speed of message transmission on the bus is fast 

enough for smooth operation of the motors, when the motor speed commands are sent from the 

AMC node over the CAN bus. All the nodes on the CAN bus are also compatible with the 250 

Kbits/s baudrate. At this baudrate, the interrupt service routine for the incoming CAN messages to 

AMC and TUC is not overcrowded. If the baudrate is increased more like 500 Kbits/s or 1 Mbits/s, 
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there could be abnormal behavior because of hardware constraints of the AMC and TUC controllers 

as higher baudrate can generate more processing burden on the controllers and can have signal 

integrity issues because it could have higher noise content or reflections in the signal. If the 

baudrate is decreased to 125 Kbits/s, there is a higher bus load fluctuation across different states. 

Hence, a baudrate of 250 Kbits/s seems to have less fluctuation in bus load and still have decent bus 

transmission speed to run the motors without any issue. So, choosing the baudrate as 250 Kbit/s is 

the best choice. 
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10.  CONCLUSION 

In this thesis, a distributed control system for the ATR is developed. One of the benefits of using 

a distributed control system is that it reduces the response time of the system. The load on each 

controller in the distributed control system is also reduced as the total load of the machine is shared 

between different controllers. In the case of GPSS, the ATR computational load is distributed 

between the AMC and TUC controllers as in where AMC does most of the decisive computation 

like deciding the state of the ATR while TUC does more of the sensory computation like reading 

and writing the peripherals and I/O pins.  

The ATR is working as a state machine in which several operating states are defined. It is 

important for the ATR to be in only one state at a time otherwise a conflict can occur if ATR is in 

two different states at the same time. To eliminate this problem of having conflict among the 

different states claiming the ATR state at the same time, a priority-based state transition is 

developed where all the states have been assigned with a priority value as which state has higher 

significance over the other states like the emergency states (E-Stop Activated state or Error State) 

are prioritized over the driving states (Maneuvering state or Transport State) keeping in mind the 

safety regulations.  

An interrupt service routine is developed for AMC and TUC controllers. This interrupt service 

routine helps the controller to ensure that all the necessary CAN messages arriving on the CAN bus 

are received by the controller and no important messages are missed or lost in transmission. A IRQ 

list and a working list is introduced to ensure receiving all the CAN messages. The IRQ list 

regularly gets filled by the data from incoming CAN messages and is copied to the working list. 

The working list is used for reading with received data from the CAN bus while the IRQ list is 

receiving all the incoming data during that time. Once the working list is read completely, the IRQ 

list which was receiving all the incoming data during that time is copied, halted and copied to the 

working list. The IRQ list is then cleared and is ready to receive new CAN message data. This 

interrupt service routine helps to ensure that all the CAN messages on the bus are received even 

while reading the CAN message parallelly. 

The CAN bus is selected to run at a baudrate of 250 Kbits/s. The maximum bus load of the ATR 

is 3.4592% which leaves a lot more room for additional CAN messages to be added in future if 



 

57 
 

needed. Priority-based arbitration is used for all the CAN messages to avoid message collision on 

the CAN bus. The frequency or the repetition rate of the CAN messages are defined based on the 

needs of the individual nodes like motors requiring the Target speed/torque command message 

(target_speed_torque_cmd_msg) more frequently at 20 Hz than the BMS charge capacity message 

(bms_charge_cap_msg) which is required at 1 Hz to update the SoC of the batteries. 

The maximum response time of the ATR is secured to be 200 ms. The maximum loop time in 

all the states of the AMC is stabilized to be 100 ms by adding appropriate delays in various states 

which is done to have a constant AMC loop time irrespective of its state. The TUC also has a 

maximum loop time of 50 ms in all the states. The loop time of TUC is kept almost half of the 

AMC to ensure that the TUC loop runs twice while the AMC is running once ensuring that even if 

AMC misses one top-unit box status message, it can get the next one. The general flow of the 

control is that the input data is received by TUC I/O and sent as a CAN message to AMC which 

takes 50 ms. The AMC receives and reads the message from TUC, then it evaluates the state change 

conditions and based on that changes the state and performs state specific tasks which takes about 

100 ms. Then it orders TUC to change its states and light up the state relevant LEDs on the top unit 

box, this also takes 50 ms. All these three steps occur when most of the state transition occurs. By 

defining a fixed loop time of AMC and TUC, the maximum response time of the ATR is assured to 

not exceed more than 200 ms. 
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ABSTRACT 

This thesis presents the development of a control system for Autonomous Transport Robots (ATR) 

which will be used in the Volvo Factories. The research also evaluates the timing and frequency of 

the control messages sent over the Controller Area Network (CAN) bus of the ATR. The ATR is a 

part of a cyber-physical system having control parameters over Wi-Fi and CAN communication.  

The ATR has a distributed control system with two controllers, which work simultaneously and 

interdependently. One controller is the center of the decision-control system, and the other 

controller handles peripherals, buttons, and sensors. The ATR is developed as a state machine 

having different operating states. Each operating state has its own tasks to perform and a certain set 

of state transitions. The ATR uses CAN communication to communicate with different nodes 

present on the ATR. To provide reliability of the CAN message, an interrupt service routine is 

developed for both the controllers. This interrupt service routine helps the controller to ensure that 

all the necessary CAN messages arriving on the CAN bus are received by the controller and no 

important messages are missed or lost in transmission. For Wi-Fi communication, MQTT Protocol 

is used to communicate with the edge controller. 

The response time of both the controllers as well as the response time of the ATR is calculated in all 

the ATR states and a constant response time of the ATR for every state is proposed. The frequency 

of the CAN messages is evaluated and a bus load on the CAN bus is calculated at different baud 

rates. A suitable baud rate for the CAN bus on the ATR is proposed.  

Overall, this thesis contributes to the development of a robust control system for ATR, ensuring 

reliable communication over both CAN and Wi-Fi interfaces. The analysis of response times and 

bus loads aids in optimizing the performance and efficiency of the ATR in various operational 

scenarios. 

 

 

 

Keywords: Autonomous Transport Robot, Control System, Frequency Analysis, Timing Analysis, 

CAN bus, Baud rate, Bus load, State Machine, MQTT Protocol 
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ANNEXES 

ANNEX A: Percentage Bus load in Start-Up State at various Baudrate  
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ANNEX B: Percentage Bus load in Idle State at various Baudrate  
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ANNEX C: Percentage Bus load in Manual State at various Baudrate  
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ANNEX D: Percentage Bus load in Pre-Maneuvering State at various Baudrate  
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ANNEX E: Percentage Bus load in Maneuvering State at various Baudrate  
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ANNEX F: Percentage Bus load in Transport State at various Baudrate  
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ANNEX G: Percentage Bus load in Charging State at various Baudrate  
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ANNEX H: Percentage Bus load in E-Stop Activated State at various Baudrate  
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ANNEX I: Percentage Bus load in Shutdown Preparation State at various Baudrate  

 

 

 


