Upravljanje energijom u eksperimentalnom modelu kupca s vlastitom proizvodnjom s električnim vozilom

Kenjerić, Marko

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:681282

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-31

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA OSIJEK

Sveučilišni studij

Upravljanje energijom u eksperimentalnom modelu kupca s vlastitom proizvodnjom s električnim vozilom

Diplomski rad

Marko Kenjerić

Osijek, 2023.

SADRŽAJ

1.1. Zadatak diplomskog rada 1.2. Pregled područja teme 2.3. Fredem komreža 2.2. Obnovljivi izvori kod mikromreža 2.3. Fotonaponski sustavi kod mikromreža 2.4. Strategije upravljanja energijom 3. PUNIONICE ELEKTRIČNIH VOZILA 3.1. Standard ISO 15118 3.2. Vrste električnih punionica 3.3. Vrste priključaka električnih punionica 4. KUPAC S VLASTITOM PROIZVODNJOM. 4. Strajnji kupac korisnik postrojenja za samoopskrbu. 4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu 5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM. 5.1. Opis ormara mikromreže 5.2. Opis ormara EV i FN emulatora 5.3. Popis korištene opreme. 5.3.1. Izmjenjivačpunjač Multiplus Compact. 5.3.2. Izmjenjivač Phoenix 24/800 5.3.3. Regulator punjenja BlueSolar MPPT 75/15. 5.3.4. Centralna komunikacijska jedinica Vems GX 5.3.5. Nadzornik baterije BMV-702	1. UVOD	1
1.2. Pregled područja teme	1.1. Zadatak diplomskog rada	1
 MIKROMREŽE	1.2. Pregled područja teme	2
2.1. Podjela mikromreža. 2.2. Obnovljivi izvori kod mikromreža 2.3. Fotonaponski sustavi kod mikromreža 2.4. Strategije upravljanja energijom 3. PUNIONICE ELEKTRIČNIH VOZILA 3.1. Standard ISO 15118. 3.2. Vrste električnih punionica 3.3. Vrste priključaka električnih punionica 4. KUPAC S VLASTITOM PROIZVODNJOM. 4. KUPAC S VLASTITOM PROIZVODNJOM. 4.1. Krajnji kupac koji ne zadovoljava uvjete za sklapanje ugovora korisnika postrojenja za samoopskrbu 4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu 5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM. 5.1. Opis ormara mikromreže. 5.2. Opis ormara EV i FN emulatora 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 5.3.4. Centralna komunikacijska jedinica Venus GX 5.3.5. Nadzornik baterije BMV-702.	2. MIKROMREŽE	4
 2.2. Obnovljivi izvori kod mikromreža	2.1. Podjela mikromreža	5
 2.3. Fotonaponski sustavi kod mikromreža 2.4. Strategije upravljanja energijom 3. PUNIONICE ELEKTRIČNIH VOZILA 3.1. Standard ISO 15118 3.2. Vrste električnih punionica 3.3. Vrste priključaka električnih punionica 4. KUPAC S VLASTITOM PROIZVODNJOM 4.1. Krajnji kupac korisnik postrojenja za samoopskrbu 4.2. Krajnji kupac koji ne zadovoljava uvjete za sklapanje ugovora korisnika postrojenja za samoopskrbu 4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu 5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM 5.1. Opis ormara mikromreže 5.2. Opis ormara EV i FN emulatora 5.3.1. Izmjenjivać/punjač Multiplus Compact 5.3.1. Izmjenjivač Phoenix 24/800 5.3.4. Centralna komunikacijska jedinica Venus GX 5.3.5. Nadzornik baterije BMV-702 	2.2. Obnovljivi izvori kod mikromreža	5
2.4. Strategije upravljanja energijom 3. PUNIONICE ELEKTRIČNIH VOZILA. 3.1. Standard ISO 15118 3.2. Vrste električnih punionica 3.3. Vrste priključaka električnih punionica 4. KUPAC S VLASTITOM PROIZVODNJOM. 4.1. Krajnji kupac korisnik postrojenja za samoopskrbu 4.2. Krajnji kupac koji ne zadovoljava uvjete za sklapanje ugovora korisnika postrojenja za samoopskrbu 4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu 5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM 5.1. Opis ormara mikromreže 5.3. Popis korištene opreme 5.3.1. Izmjenjivač/punjač Multiplus Compact. 5.3.2. Izmjenjivač Phoenix 24/800 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 5.3.4. Centralna komunikacijska jedinica Venus GX 5.3.5. Nadzornik baterije BMV-702	2.3. Fotonaponski sustavi kod mikromreža	6
3. PUNIONICE ELEKTRIČNIH VOZILA	2.4. Strategije upravljanja energijom	9
3.1. Standard ISO 15118	3. PUNIONICE ELEKTRIČNIH VOZILA	11
3.2. Vrste električnih punionica	3.1. Standard ISO 15118	12
3.3. Vrste priključaka električnih punionica	3.2. Vrste električnih punionica	12
 4. KUPAC S VLASTITOM PROIZVODNJOM	3.3. Vrste priključaka električnih punionica	13
 4.1. Krajnji kupac korisnik postrojenja za samoopskrbu	4. KUPAC S VLASTITOM PROIZVODNJOM	16
 4.2. Krajnji kupac koji ne zadovoljava uvjete za sklapanje ugovora korisnika postrojenja za samoopskrbu	4.1. Krajnji kupac korisnik postrojenja za samoopskrbu	17
 4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu	4.2. Krajnji kupac koji ne zadovoljava uvjete za sklapanje ugovora korisnika postrojenja samoopskrbu	za 19
5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM	4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu	20
PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM	5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM	
ELEKTRIČNIM VOZILOM 2 5.1. Opis ormara mikromreže 2 5.2. Opis ormara EV i FN emulatora 2 5.3. Popis korištene opreme 2 5.3.1. Izmjenjivač/punjač Multiplus Compact 2 5.3.2. Izmjenjivač Phoenix 24/800 2 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 2 5.3.4. Centralna komunikacijska jedinica Venus GX 5 5.3.5. Nadzornik baterije BMV-702 2	PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I	
5.1. Opis ormara mikromreže 7 5.2. Opis ormara EV i FN emulatora 7 5.3. Popis korištene opreme 7 5.3.1. Izmjenjivač/punjač Multiplus Compact 7 5.3.2. Izmjenjivač Phoenix 24/800 7 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 7 5.3.4. Centralna komunikacijska jedinica Venus GX 5 5.3.5. Nadzornik baterije BMV-702 7	ELEKTRIČNIM VOZILOM	24
 5.2. Opis ormara EV i FN emulatora 5.3. Popis korištene opreme. 5.3.1. Izmjenjivač/punjač Multiplus Compact. 5.3.2. Izmjenjivač Phoenix 24/800 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 5.3.4. Centralna komunikacijska jedinica Venus GX 5.3.5. Nadzornik baterije BMV-702. 	5.1. Opis ormara mikromreže	25
 5.3. Popis korištene opreme	5.2. Opis ormara EV i FN emulatora	28
 5.3.1. Izmjenjivač/punjač Multiplus Compact	5.3. Popis korištene opreme	31
 5.3.2. Izmjenjivač Phoenix 24/800 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 5.3.4. Centralna komunikacijska jedinica Venus GX 5.3.5. Nadzornik baterije BMV-702 	5.3.1. Izmjenjivač/punjač Multiplus Compact	
 5.3.3. Regulator punjenja BlueSolar MPPT 75/15 5.3.4. Centralna komunikacijska jedinica Venus GX 5.3.5. Nadzornik baterije BMV-702 	5.3.2. Izmjenjivač Phoenix 24/800	
5.3.4. Centralna komunikacijska jedinica Venus GX5.3.5. Nadzornik baterije BMV-702	5.3.3. Regulator punjenja BlueSolar MPPT 75/15	
5.3.5. Nadzornik baterije BMV-702	5.3.4. Centralna komunikacijska jedinica Venus GX	
	5.3.5. Nadzornik baterije BMV-702	

5.3.6. Pametno brojilo ET340	
5.3.7. Victron Energy GEL 12-110 baterije	
5.3.8. Victron Energy litij-ionske 12,8V-160Ah baterije	
5.3.9. VE.bus sustav upravljanja baterijom	
5.3.10. Centralna komunikacijska jedinica Cerbo GX	41
5.3.11. VOLTCRAFT DPPS-32-30 laboratorijsko istosmjerno napajanje	41
5.3.12. Programabilno istosmjerno trošilo PeakTech P2280	
5.3.13. Ispravljač MEAN WELL MSP-300-24	
5.4. Simulacija pogona mreža, kritična potrošnja	45
5.5. Simulacija pogona mreža, FN elektrana, kritična potrošnja	
5.6. Simulacija mreža, FN elektrana, baterijski sustav pohrane energije, kritič	éna potrošnja 49
5.7. Simulacija pogona mreža, FN elektrana, kritična potrošnja, EV	
5.8. Simulacija pogona mreža, FN elektrana, kritična potrošnja, EV uz predvi	đeno vrijeme
punjenja	
6. Zaključak	60
LITERATURA	61
ŽIVOTOPIS	64

1. UVOD

U današnje vrijeme, zbog povećane razine iskorištavanja obnovljivih izvora za proizvodnju električne energije, tržište se sve više otvara prema fotonaponskim sustavima, električnim automobilima (EV) te ostalim održivim tehnologijama. Sukladno povećanom rastu tržišta, potrebno je razvijati nove tehnologije pomoću kojih bi se primjena obnovljivih izvora energije pokazala kao učinkovito rješenje. Takva rješenja za sobom povlače i brojne promjene u elektroenergetskom sustavu (u daljnjem tekstu: EES). EES sastoji se od proizvodnje, prijenosnog i distribucijskog sustava. Trenutno možda i najznačajnija promjena događa se na distribucijskoj niskonaponskoj (u daljnjem tekstu: NN) strani te se naziva mikromreža. Mikromreža omogućava obostranu komunikaciju između krajnjega korisnika i operatora distribucijskog sustava u stvarnome vremenu, a u slučaju ispada distribucijske mreže sustav se ponaša kao autonomni. Korisnik ove vrsta mreže ima potpunu kontrolu u odnosu na ostatak EES-a, odnosno, korisnik se može samovoljno odvojiti ili priključiti na EES, ovisno o vlastitim potrebama i preferencijama. Mikromreže najčešće potiču integraciju obnovljivih izvora, podržavaju održivu uporabu resursa i doprinose smanjenju negativnog utjecaja na okoliš.

1.1. Zadatak diplomskog rada

Opisati osnovne elemente, topologije i načine upravljanja energijom kod kupaca s vlastitom proizvodnjom. Napraviti pregled trenutnog razvoja i tržišta punionica električnih vozila za kupce s vlastitom proizvodnjom. Opisati regulativu za kupca s vlastitom proizvodnjom u Republici Hrvatskoj. U laboratoriju testirati eksperimentalni model električnog vozila i različite strategije upravljanja energijom na eksperimentalnom modelu kupca s vlastitom proizvodnjom. Na osnovu mjerenja izvršiti analizu performansi.

1.2. Pregled područja teme

Mikromreže se karakteriziraju kao ključni elementi naprednih elektroenergetskih mreža. Mikromreža se temelji na sposobnosti kontrole rada mreže koja nudi sve veću integraciju i distribuiranu proizvodnju, uključujući mikrogeneratore poput: mikroturbina, gorivnih ćelija i fotonaponskih elektrana, zajedno sa sustavima pohrane energije kao što su zamašnjaci, energetski kondenzatori i baterije te kontroliranim promjenjivim opterećenjima kao što su električna vozila, na distribucijskoj razini. [1]. U slučaju implementacije mikromreže, ključni element predstavljaju uređaji za pohranu energije. Sukladno tome, na tržištu su trenutno najzastupljenije baterije različitih kemijskih sastava. Kako bi se povezao baterijski sustav unutar električnih vozila sa mikromrežom, dolazi do razvoja novog komunikacijskog protokola oznake V2G [2] [3]. Razlikujemo različite vrste mikromreža sukladno njihovoj namjeni [4]. Osim različitih vrsta mikromreža, također razlikujemo i različite strategije za upravljanje mikromrežama. Sukladno svim navedenim podacima bitno je voditi brigu o tome kako implementacija mikromreže utječe na krajnjeg korisnika elektroenergetskog sustava te na koji način krajnjim korisnicima predstaviti sustav upravljanja energijom [5]. Kako bi se cijela situacija približila krajnjim korisnicima, napravljena su testiranja na različitim emulatorima električnih vozila koja komuniciraju s mrežom uz pomoć V2G protokola. Osim toga važan dio mikromreže predstavljaju fotonaponske elektrane odnosno fotonaponski panela i njihovi različiti tipovi, uključujući shingled i monokristalne panele [9] [10]. Integriranje fotonaponskih sustava s hibridnim sustavima, kao i pametno upravljanje energijom, ključni su za održivo korištenje obnovljivih izvora energije [11] [13]. Osim toga, energetski sustavi koriste različite komponente poput izmjenjivača, baterija, mjernih uređaja, punjača električnih vozila i kontrolnih sustava kako bi osigurali stabilnost i optimalno upravljanje energijom [19] [23]. Istraživanje [15] analizira utjecaj koordiniranog punjenja električnih vozila na distribucijske transformatore, pružajući dublje razumijevanje potencijalnih izazova i strategija upravljanja. Različiti modeli punionica za električna vozila prikazani su nudeći korisne smjernice za odabir optimalne infrastrukture punjenja [16]. Dokument [17] istražuje tehničke detalje specifičnih priključaka za punjenje, s posebnim fokusom na tip 2 priključak. CHAdeMO priključak omogućuje V2G komunikaciju, a osim V2G komunikacije izuzetno pridonosi i povećanju brzine punjenja [18]. Sustavi za praćenje i upravljanje poput Victron Energy rješenja omogućavaju učinkovito praćenje i kontrolu mikromreža [23] [24]. S obzirom na sve veću implementaciju obnovljivih izvora u elektroenergetski sustav[20-22] Zakon o obnovljivim izvorima energije je definirao različite kategorije: kategorija kućanstava s vlastitom proizvodnjom električne energije [22], kategorija krajnji kupac korisnik postrojenja za samoopskrbu. Zakon o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji pruža uvid u zakonodavni okvir koji potiče održivu energiju. Ovi izvori pružaju perspektivu o različitim aspektima energijske tranzicije te ulozi korisnika u uspostavi održivog energetskog sustava [22]. U cjelini, literatura pruža dublje razumijevanje koncepta mikromreža, njihovih komponenata, strategija upravljanja i primjena, istražujući kako tehnologija kao što su mikromreže, električna vozila i fotonaponski sustavi mogu zajedno stvarati održivu i pametnu energetsku budućnost.

2. MIKROMREŽE

Iako se ideja mikromreža provlači kroz povijest još od davne 1955. godine [4], značajniji napredak prema pravim dvosmjerno upravljivim, pouzdanim, fleksibilnim i sigurnim sustavima započeo je tek u posljednjem desetljeću. Mikromreža se definira kao mala autonomna mreža koja se sastoji od potrošača i lokalne proizvodnje za vlastite potrebe, a ima sposobnost odvajanja od EES-a [1]. Mikromreže su dizajnirane kao energetski učinkovite, pouzdane i održive te da mogu pružiti važnu ulogu u poboljšanju sigurnosti opskrbe energijom i smanjenju emisija stakleničkih plinova. Prilikom spajanja mikromreža na EES, nailazimo na brojne probleme od kojih su samo neki: zastarjelost EES-a, problem komunikacije niza uređaja, pouzdanost i sigurnost. Kao rezultat toga, krenulo se prema poboljšanju trenutne infrastrukture EES-a, s obzirom da je zastarjelost EES-a prikazana kao primaran problem pri integraciji obnovljivih izvora. Implementacijom mikromreža u poslovne prostore pridonosimo ekonomskoj i ekološkoj situaciji poslovanja. Poslovne opcije koje se otvaraju primjenom mikromreža uključuju [6]:

- proizvodnju na mjestu potrošnje
- infrastrukturu za punjenje električnih vozila
- pohranu električne energije
- virtualne elektrane locirane na različitim mjestima
- neprekidni izvori napajanja
- razne mjere energetske učinkovitosti
- aktivno upravljanje električnom mrežom i
- dinamički kontrolirano opterećenje.

2.1. Podjela mikromreža

Mikromreže je moguće podijeliti u nekoliko različitih kategorija kao što je prikazano na slici 1.1. Fleksibilnost mreža mora moći vršiti dvosmjernu komunikaciju i to tako da stalno kontrolira radne i jalove tokove energije uz pomoć skladištenja energije [7].

Sl 1.1. Podjela mikromreža [7]

2.2. Obnovljivi izvori kod mikromreža

Mikromreža se sastoji od NN-og izvora koji je spojen na distribucijskoj strani EES-a vidljivo na slici 1.2. Razvojem ideje mikromreže, simultano se razvijala i uporaba obnovljivih izvora. Upravo zbog toga, pri implementaciji mikromreža na distribucijsku stranu EES-a, kao izvore možemo primijetiti: fotonaponske elektrane, vjetrogeneratore, mikroturbine te gorivne ćelije. Osim izvora, moramo imati i sposobnost skladištenja energije kako bismo ju mogli koristiti kada nam je to najpotrebnije. Kao spremnike energije najčešće koristimo: baterije raznih tehnologija, superkondenzatore, zamašnjake te spremnike vodika. Osim izvora i načina skladištenja energije, važno je spomenuti i uređaje za komunikaciju. Takvi se uređaji bave nadzorom, zaštitom i komunikacijom između mreže, potrošnje i spremnika energije [1]. Zbog toga se može uvidjeti da mikromreža mora moći ispuniti zahtjeve lokalne potrošnje, raditi dok je priključena na mrežu te raditi samostalno u slučaju ispada mreže.

Sl 1.2. Primjer mikromreže [8]

Također, potrebno je ustanoviti i što se ne smatra potpunom mikromrežom, a najčešće situacije su: mikromreža bez opterećenja, nedostatak NN-og izvora, nedostatak nadzora i kontrole te nedovoljna redukcija ugljikovog dioksida.

Mikromreža bez opterećenja	Nedostatak NN izvora
Električna energija THAT SE STALLE Ugljični kredit	Električna energija
Nedostatak sustava nadzora i kontrole	Nedovoljna redukcija ugljikovog dioksida
Električna energija	Električna energija
Ugljični kredit NN izvor	Ugljični kredit NN izvor

Sl 1.3. Diferencijacija nepotpunih sustava sa mikromrežama. [1]

2.3. Fotonaponski sustavi kod mikromreža

Fotonaponski sustavi kao sastavnica mikromreža promatraju se u hibridnoj izvedbi. Odnosno, fotonaponski sustav u takvoj izvedbi sastoji se od fotonaponskih panela, hibridnog invertera, izmjeničnog (AC) ormara za zaštitu od mogućih kvarova na mreži, istosmjernog (DC) zaštitnog ormara te baterije kao sastavni dio za skladištenje energije. Fotonaponski paneli sastoje se od niza fotonaponskih ćelija koje su ispunjene P i N slojem poluvodičkog elementa silicija kod kojih se princip rada temelji na fotoelektričnom efektu, a dolaze u različitim izvedbama [9]. 6 Trenutno su najzastupljenije u monokristalnoj i polikristalnoj izvedbi u kojoj se fotonaponske ćelije spajaju u seriju pomoću metalne očice. Osim toga, sve veći ulazak na tržište ima i tehnologija pri kojoj se fotonaponske ćelije nižu jedna na drugu bez metalnih očica.

Sl 1.4. Primjer različitih vrsta panela [10] [11]

Način spajanja panela na mrežu je u ovom slučaju hibridan, odnosno, elektrana mora biti u mogućnosti raditi dok je sustav spojen na mrežu, a također i potpuno autonomno. Kod takvog spajanja razvijene su različite tehnologije, odnosno, različiti načini spajanja. Najčešće zastupljeni način izvedba je preko hibridnog invertera, koji u sebi sadrži sve potrebne komponente za takav sustav, od kojih su samo neke: regulator punjenja, data logger, tragač maksimalne snage (MPPT), itd. Kao što je vidljivo na slici 1.5., sustav sadrži svu potrebnu podršku za rad fotonaponskog sustava s baterijama spojenog na mrežu [12]. Iako takav sustav, gdje se svi elementi nalaze unutar jednog izmjenjivača, smanjuje pouzdanost sustava, najčešće se pokazuje kao i ekonomski najprihvatljivija verzija.

Sl 1.5. Primjer dvije različite primjene tehnologije za hibridni sustav [13]

Nakon izbora tipa tehnologije koja će se koristiti za spajanje na mrežu, potrebno je izabrati baterije. Postoje različite tehnologije kod baterija, ali najčešće korištene su litij željezno fosfatne baterije ili gel baterije. Nakon odabira baterije, potrebno je spojiti svu potrebnu opremu za kontrolu i nadzor sustava. Zbog toga su razvijeni različiti uređaji koji se implementiraju u infrastrukturu postojeće mreže, a služe za nadziranje potrošnje te upravljanje sustavom. Odnosno, temelje se na to kada i kako puniti i prazniti baterije. Uz svu navedenu opremu, također je potrebno spojiti i sve potrebne sustave za zaštitu. Kod AC strane, potrebno je spojiti zaštitni ormar kako se eventualni kvarovi sa EES-a ne bi prenijeli na promatranu mikromrežu. Za DC stranu instaliraju se dva razdvojena sustava zaštite, u kojemu se jedan koristi za zaštitu fotonaponskih panela, a drugi štiti bateriju.

Sl 1.6. Primjer hibridnog sustava sa svim elementima zaštite [14]

2.4. Strategije upravljanja energijom

Sustav upravljanja energijom bavi se izvršnim naredbama kako upravljati energijom. Točnije, on je odgovoran za izvršne naredbe kada puniti spremnike, a kada uzimati željenu energiju iz njega. Ovakvi sustavi za sobom povlače povećanje energetske učinkovitosti, smanjenje potrošnje energije te integraciju obnovljivih izvora. Cilj upravljanja energijom je smanjiti troškove energije, smanjiti emisije stakleničkih plinova i povećati energetsku sigurnost, što izravno utječe na smanjenje negativnih utjecaja potrošnje energije na okoliš i osigurava održiviji i učinkovitiji energetski sustav. Svaki korisnik mikromreža mora osigurati optimalno iskorištavanje energije kako bi se očuvala stabilnost EES-a, optimiziralo korištenje mreže te kako bi se osigurale uštede [5].

Sl 1.7. Strategije upravljanja energijom [1]

Zbog gore navedenih razloga, razvijene su određene strategije za upravljanje energijom. Strategije su podijeljene s obzirom na ciljeve, ovisno o tome tko sudjeluje u planiranju i upravljanju energijom. Razlikujemo: tehnički cilj, ekonomski cilj, ekološki cilj te kombinirane ciljeve.

Tehnički cilj izravno se odnosi na popravljanje naponskih prilika te na smanjenje vršnih opterećenja u mreži. Točnije, korisnik EES-a koristi energiju iz mikromreže te tako reducira nastali gubitak. Ako se kao projektna ideja sustav mikromreže predimenzionira, situacija postaje rizična upravo zbog toga što može doći do povećanja gubitaka umjesto smanjenja, što izravno utječe na

stabilnost mreže. Slično kao i naponske prilike, vršna opterećenja smanjuju se, ovisno o lokaciji i veličini mikromreže.

Ekonomski cilj odnosi se na trošak električne energije, odnosno na redukciju računa električne energije usred uvođenja mikromreže. Ako je pojedinac u vlasništvu više jedinica mikromreža, također se može povezati u virtualnu elektranu te nastupiti na tržištu električne energije kao proizvođač. Glavno ograničenje je sama proizvodnja iz distribuiranih izvora. Kod ovakve strategije nisu važne naponske prilike niti smanjenje vršnih opterećenja, već samo ušteda, odnosno, dobit vlasnika.

Ekološki cilj odnosi se izravno na smanjenje emisija stakleničkih plinova. Točnije, prioritet joj je smanjenje stakleničkih plinova neovisno o ekonomskoj i tehničkoj situaciji. Ova strategija podupire se od strane regulativnih tijela. Najveći problem ove strategije predstavlja energetska amortizacija, odnosno koliko je energije potrebno za proizvodnju nekog proizvoda. Nadalje, koliko je vremena potrebno da se ta potrošena energija isplati kroz smanjenje potrošnje energije, s obzirom na to da je osnovni cilj smanjiti ugljični otisak i postići kumulativnu CO2 neutralnost kroz dugoročno održivo upravljanje resursima i smanjenje emisija stakleničkih plinova, kako bi se ublažili negativni učinci klimatskih promjena.

Kombinirani ciljevi obuhvaćaju sve tri strategije, a odnose se na povezivanje više strategija u jednu. Tako bi se, na primjer, moglo reći da se kod ekološke strategije smanjenjem stakleničkih plinova oslobađa mjesto za prodaju svoga ugljikovog dioksida tvrtkama koje su prekoračile dozvoljene granice zagađivanja. Moglo bi se reći i suprotno, koliko se prodajom energije iz obnovljivih izvora mikromreže reduciralo nastanka stakleničkih plinova. Odnosno, koliko bi se proizvelo stakleničkih plinova prilikom dobivanja te količine energije iz uobičajenih izvora.

3. PUNIONICE ELEKTRIČNIH VOZILA

Postupak punjenja vozila može se izvršiti na nekoliko načina, a glavni način je pomoću izravnog spoja vozila i kućne instalacije. Međutim, zbog velikoga kapaciteta baterije električnoga vozila cijela situacija može biti neučinkovita, odnosno sami proces punjenja može trajati predugo te tako korisniku uslijed vršnog opterećenja uskratiti mogućnost korištenja mreže. Kako bi se rizik od preopterećenja reducirao, 2001. godine Kempton et al. [3] predstavlja princip vozilo prema mreži (V2G). V2G odnosi se na tehnologiju koja omogućuje dvosmjernu komunikaciju između električnih vozila i elektroenergetske mreže. Takav sustav omogućuje da se električna vozila koriste kao mobilni spremnici energije koji mogu primati električnu energiju iz mreže tijekom punjenja, ali i vraćati višak energije natrag u mrežu kad nisu u uporabi. Ova tehnologija omogućava upravljanje energijom, s obzirom da mogu pridonijeti ravnoteži potražnje i potrošnje električnih vozila te samoj elektrifikaciji osobnih vozila, a rezultat toga ujedno će pridonijeti smanjenju emisija stakleničkih plinova i ovisnosti o fosilnim gorivima.

Sl 2.1. Infrastruktura V2G sustava [2]

Infrastruktura V2G sustava prikazana na slici 2.1. sastoji se od 5 ključnih elemenata, a to su: električno vozilo, stanica za punjenje, električna punionica, kontrolni centar te pametna mreža s kojom su sve punionice povezane. Komunikacija kod V2G tehnologija podijeljena je na prednji dio i stražnji dio. Stražnji dio komunikacije odgovoran je za interakciju između kontrolnog centra

i električnih punionica preko stanica za punjenje, dok je prednji dio odgovoran za komunikaciju između električnog vozila i električne punionice, a za to se najčešće koristi protokol ISO 15118 koji je odgovoran za V2G komunikaciju, a osim toga, daje nam uvid u stanje napunjenosti baterije EV-a, potrebnim parametrima punjenja i uvid u raspored punjenja.

3.1. Standard ISO 15118

ISO 15118 odgovoran je za komunikaciju između komunikacijskog dijela električnog vozila i komunikacijskog dijela električne punionice. Odnosno, u slučaju priključenja električnog vozila pomoću standarda, električna punionica prima informaciju da je električno vozilo priključeno te kreće s punjenjem. Glavni cilj ovog standarda uspostavljanje je komunikacijskog kanala između električnog vozila i pametne mreže. U budućim scenarijima, milijarde korisnika trebat će energiju za punjenje svojih električnih vozila, stoga će upravljanje opterećenjem mreže biti ključno kako bi se spriječilo preopterećenje [15]. U tu svrhu, ISO 15118 dopušta dinamičku razmjenu informacija između električnog vozila i električnih punionica kako bi se zadovoljile krajnje potrebe korisnika, odnosno, ako korisnik kreće na put navečer, a EV je priključio na električnu punionicu ujutro, sustav će popratiti vršna opterećenja EES-a te krenuti s punjenjem u najprikladnije vrijeme.

3.2. Vrste električnih punionica

Električna punionica definirana je kao uređaj koji se koristi za dopremanje električne energije iz EES-a do EV-a pomoću stanice za punjenje, a za njih vrijedi referentni standard IEC 61851-1. Prema međunarodnom standardu IEC 62196-2, kojeg je objavilo Međunarodno elektrotehničko povjerenstvo (IEC), razlikujemo različite vrste punionica ovisno o njihovoj snazi i brzini punjenja [16]. Kod punjača većih snaga, osim izmjenične struje razlikujemo i dodatnu komponentu istosmjerne struje, pomoću koje se povećava brzina punjenja. Ključni faktori kod punjenja baterija EV-a su kapacitet baterije, odnosno što je kapacitet veći to je potrebno duže vremena da se baterija napuni, zatim stanje napunjenosti (SoC) koje nam govori o razini napunjenosti baterije s obzirom da se baterije ne pune istom brzinom; pri 20% napunjenosti te pri 90% odnosno od 90% do 100% baterije se pune sporije nego od 20% do 80%, zatim način punjenja daje nam informaciju o količini energije koja se isporučuje baterijama te punjač baterije koji je implementiran u EV te koji pretvara izmjeničnu u istosmjernu struju u svrhu punjenja vozila.

3.3. Vrste priključaka električnih punionica

Glavna uloga priključaka električnih vozila na punionicu je sigurno i učinkovito punjenje električnih vozila. Priključnice se povezuju s vozilom putem utičnice koja se nalazi na vozilu, a utičnice u sebi imaju ugrađene sustave sigurnosti koji osiguravaju sigurno i stabilno povezivanje. Protokoli poput ISO 15118 i OCPP omogućuju razmjenu informacija između vozila i punjača kako bi se postiglo optimalno punjenje, upravljanje naplatom i praćenje potrošnje energije. U svrhu svega navedenog, razvijene su različite vrste priključaka od kojih su u Europskoj Uniji (EU) najpopularniji tip 2 popularniji kao "Mennekes", kombinirani sustav punjenja (CCS) te CHAdeMO.

Sl 2.1. Priključak Tip 2 i različite izvedbe priključnica [17]

Tip 2 priključak (naziva se još i "Mennekes" priključak) ujedno i najrasprostranjeniji priključak na europskom tržištu, namijenjen je za punjenje vozila izmjeničnom strujom. Njemačka tvrtka Mennekes, specijalizirana za proizvodnju industrijskih utikača i priključaka, razvila je ovaj tip priključka. Godine 2013., Europska komisija preporučila je tip 2 priključak kao univerzalno rješenje na europskom tržištu. Nakon što je postavljen standard, sva električna vozila su mu se priklonila te dolaze s utičnicama tip 2. Prednost ovakvog priključka je što omogućava izravan spoj izmjenične struje i električnog vozila, a moguće ga je koristiti pri različitim snagama. Zbog svoje raznolikosti može se koristiti i kod jednofaznih priključaka pri snazi od 3,7 kW, a kod trofaznih sustava može se koristiti do uključive snage od 43 kW.

Sl 2.2. Priključak CCS i različite izvedbe priključnica [18]

Kombinirani sustav punjenja kombinacija je priključnice tip 2 i dodatne priključnice koja omogućuje još dva dodatna kontakta potrebna za brzo punjenje. Ovakav priključak omogućuje, osim punjenja izmjeničnom strujom, još i dodatak istosmjerne struje predstavljen kao dodatna dva kontakta koja se nalaze pri samom dnu priključnice u svrhu brzog punjenja. Priključnica koja je namijenjena za CCS dopušta i spajanje priključka tipa 2, dok priključnica namijenjena za tip 2 ne dopušta spajanje CCS priključka.

Sl 2.3. Priključak chademo i različite izvedbe priključnica [19]

Japanska kompanija za električnu energiju u Tokiju (TEPCO) u suradnji sa Nissanom, Mitsubishijem i Fuji Heavy Industries razvila je Chademo priključak. Chademo priključak iznimno je popularan kod japanskih automobila. Također, iznimno je popularan u Europi, a najčešće dolazi kao 3 izvod priključka na punionicama u paketu sa priključcima CCS i tip2 (primjer punjača vidljiv na slici 2.4.). Chademo je trenutno jedini priključak na tržištu koji dopušta V2G komunikaciju.

Sl 2.4. Primjer priključaka na punionicama [20]

4. KUPAC S VLASTITOM PROIZVODNJOM

Zbog sve veće implementacije fotonaponskih sustava koji su priključeni na mrežu operatora distribucijskog sustava, uvodi se novi način certificiranja kupaca koji su vlastitu elektranu priključili na EES te takvi kupci poprimaju naziv: "kupac s vlastitom proizvodnjom". Preciznije, kupac s vlastitom proizvodnjom tretira se kao postojeći ili novi korisnik mreže, koji unutar vlastite elektro instalacije ima priključenu elektranu koju koristi za vlastite potrebe, a višak proizvedene električne energije predaje u EES mrežu. Kupac s vlastitom proizvodnjom može sklopiti ugovor o opskrbi i ugovor o otkupu električne energije s različitim tržišnim sudionicima [21]. Osim kupca s vlastitom proizvodnjom, razlikujemo još i kupca korisnika postrojenja za samoopskrbu. Korisnik postrojenja za samoopskrbu predstavlja krajnjeg kupca električne energije u kategoriji kućanstva koji posjeduje vlastito postrojenje za proizvodnju električne energije iz obnovljivih izvora ili visokoučinkovite kogeneracije. Ovaj kupac ima mogućnost proizvoditi vlastitu električnu energiju unutar svojih instalacija te u slučaju viškova energije tijekom obračunskog razdoblja, može tu energiju prenijeti nazad u EES mrežu i prodati je opskrbljivaču s kojim je sklopio odgovarajući ugovor. Preuzimanje viškova energije od kupaca uređuje se ugovorom o opskrbi krajnjeg kupca kojim se također regulira i otkup električne energije, a određen je zakonom o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji (NN 138/21), čime su opskrbljivači električne energije dužni preuzimati viškove električne energije od kupaca s vlastitom proizvodnjom ili korisnika postrojenja za samoopskrbu koji zadovoljavaju sljedeće uvjete (članak 51.) [21]:

- Imaju status povlaštenog proizvođača električne energije,
- Ostvarili su pravo na trajno priključenje na elektroenergetsku mrežu,
- Ukupna priključna snaga svih proizvodnih postrojenja na jednom obračunskom mjernom mjestu ne prelazi 500 kW,
- Priključna snaga u smjeru isporuke električne energije u mrežu ne prelazi priključnu snagu kao kupca,
- Isporučuje električnu energiju preko istog obračunskog mjernog mjesta preko kojeg i kupuje,
- Vodi podatke o proizvedenoj i isporučenoj električnoj energiji.

4.1. Krajnji kupac korisnik postrojenja za samoopskrbu

Opskrbljivač električne energije izdaje račun krajnjem kupcu u kategoriji kućanstvo za razliku između predane i preuzete električne energije mjerene u kilovat satima (kWh). Način obračuna obuhvaća višu i nižu tarifu te se popratno cijenama više i niže tarife formira račun. Viša tarifa u zimskom razdoblju mjeri električnu energiju u kućanstvu od 7 do 22 sata (h), dok u ljetnom razdoblju mjeri električnu energiju od 8 do 22 h. Nadalje, niža tarifa mjeri električnu energiju u zimskom razdoblju od 21 do 7 h, a u ljetnom razdoblju od 22 do 8 h. U višoj tarifi, koja za zimsko razdoblje obuhvaća vrijeme od 7 do 22 h, a za ljetno razdoblje od 8 do 22 h te u nižoj tarifi koja za zimsko vrijeme obuhvaća vrijeme od 21 do 7 h, a u ljetnom razdoblju od 22 do 8 h. Ponekad se u obračunskom razdoblju može javiti višak proizvedene električne energije u višoj ili nižoj dnevnoj tarifi. Višak proizvodnje energije predstavlja količinu proizvedene energije koja je proizvedena povrh potrošene energije na obračunskom mjernom mjestu, a cijena otkupa definirana je potpisanim ugovorom ovisno o tarifi u kojoj se kupac nalazi. Ugovor je reguliran zakonom o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji koji govori o obračunu potrošnje električne energije, kao i o naknadama za korištenje mreže te naknadama za obnovljive izvore energije i visokoučinkovitu kogeneraciju. Zakon uzima u obzir količinu električne energije koja predstavlja razliku između preuzete i isporučene energije u pojedinoj tarifi. Ako je na kraju obračunskoga razdoblja količina radne energije isporučena u mrežu u pojedinoj tarifi veća od preuzete tada je taj višak proizvedene električne energije opskrbljivač dužan preuzeti po cijeni koja se računa prema formuli 4-1 te 4-2 [22].

$$CiVT = 0.8 \cdot CpVT \tag{4-1}$$

$$CiNT = 0.8 \cdot CpNT$$

(4-2)

Gdje je:

 - CpVT = cijena ukupne električne energije preuzete iz mreže od strane krajnjeg kupca unutar obračunskog razdoblja, za vrijeme trajanja više dnevne tarife, izražena u kn/kWh

 - CpNT = cijena ukupne električne energije preuzete iz mreže od strane krajnjeg kupca unutar obračunskog razdoblja, za vrijeme trajanja niže dnevne tarife, izražena u kn/kWh – CiVT = cijena ukupne električne energije isporučene u mrežu od strane proizvodnog postrojenja u vlasništvu krajnjeg kupca unutar obračunskog razdoblja, za vrijeme trajanja više dnevne tarife, izražena u kn/kWh

– CiNT = cijena ukupne električne energije isporučene u mrežu od strane proizvodnog postrojenja u vlasništvu krajnjeg kupca unutar obračunskog razdoblja, za vrijeme trajanja niže dnevne tarife, izražena u kn/kWh.

Različite vrste tarifa obuhvaćaju različite vrste cijena, a to su:

Otkupne cijene za Tarifni model Plavi:

1) za količine proizvedene električne energije veće od potrošene električne energije u

obračunskom razdoblju

CiVT = 0,056221 €/kWh (0,4236 kn/kWh)

2) Otkupne cijene za Tarifni model Bijeli:

za količine proizvedene električne energije veće od potrošene električne energije u

obračunskom razdoblju

CiVT = 0,059831 €/kWh (0,4508 kn/kWh),

CiNT = 0,029358 €/kWh (0,2212 kn/kWh)

3) Otkupne cijene za Tarifni model Crveni:

za količine proizvedene električne energije veće od potrošene električne energije u

obračunskom razdoblju

CiVT = 0,059831 €/kWh (0,4508 kn/kWh),

CiNT = 0,029358 €/kWh (0,2212 kn/kWh)

4.2. Krajnji kupac koji ne zadovoljava uvjete za sklapanje ugovora korisnika postrojenja za samoopskrbu

U slučaju kada kupac s vlastitom proizvodnjom ne zadovoljava navedene uvjete za sklapanje ugovora korisnika postrojenja za samoopskrbu, kupac može zatražiti sklapanje ugovora o otkupu električne energije s bilo kojim tržišnim otkupljivačem, pri čemu se određuje minimalna vrijednost električne energije preuzete od krajnjeg kupca s vlastitom proizvodnjom te cijena (Ci) u obračunskom razdoblju na način prikazan kroz formule 4-3 te 4-4.

$$C_i = 0.9 \cdot PKC_i \tag{4-3}$$

ako za obračunsko razdoblje i vrijedi Epi≥Eii

$$C_i = 0.9 \cdot PKC_i \cdot \frac{E_{pi}}{E_{ii}} \tag{4-4}$$

ako za obračunsko razdoblje i vrijedi Epi<Eii,

pri čemu je:

Epi – ukupna električna energija preuzeta iz mreže od strane kupca unutar obračunskog razdoblja i, izražena u kn/kWh;

Ei – ukupna električna energija isporučena u mrežu od strane proizvodnog postrojenja u vlasništvu kupca, unutar obračunskog razdoblja i, izražena u kn/kWh;

PKCi – prosječna jedinična cijena električne energije koju kupac plaća opskrbljivaču za prodanu električnu energiju, bez naknada za korištenje mreže te drugih naknada i poreza, unutar obračunskog razdoblja i, izražena u kn/kWh.

Opskrbljivač električne energije može ponuditi krajnjem kupcu s vlastitom proizvodnjom povoljnije uvjete otkupa u odnosu na minimalno propisane uvjete Zakonom o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji.

Kod ovako potpisanih ugovora vidljivo je kako cijena opada s povećanjem proizvodnje u odnosu na potrošnju. Preciznije, cijena i višak proizvedene električne energije odnose se obrnuto proporcionalno. Također, vidljivo je kako je otkupna cijena najveća dok nema razlike između proizvedene i potrošene količine električne energije ili dok je preuzeta energija veća od predane, a u svim drugim slučajevima otkupna je cijena niža.

4.3. Primjer obračuna računa električne energije za kupca korisnika postrojenja za samoopskrbu

Krajnji obračun kupca obavlja se prema već gore navedenom principu, a u obzir uzima proizvodnju i potrošnju električne energije kupca. S obzirom da je proizvodnja fotonaponske elektrane varijabilna ovisno o vremenu, temperaturi, karakteristikama FN panela te nizu drugih faktora vidljivo na slici 4.3. neočekivano je pretpostaviti kako će elektrana u svakom trenutku zadovoljavati potrošnju. Odnosno, primarna funkcija elektrane je zadovoljiti vlastite potrebe kupca, a nakon što su te potrebe zadovoljene višak predati u mrežu.

Sl 4.3. Proizvodnja fotonaponske elektrane vršne snage 10 kW za mjesec svibanj

Zbog gore navedenih razloga krajnji kupac dobiva obračun obavljen na mjesečnoj razini na kojemu je vidljiva ukupna proizvodnja i potrošnja za promatrani mjesec (primjer računa na slici 4.4.). Na računu je vidljivo kako je ukupni višak energije odnosno razlika između potrošnje i proizvodnje u nekom trenutku za mjesec svibanj za višu tarifu iznosio 1084 kWh, a za nižu tarifu

56 kWh. U tablici je vidljiv i detaljan uvid u potrošnju te se može zaključiti kako je količina preuzete energije u trenutku kada elektrana nije mogla zadovoljiti potrebe kupca za mjesec svibanj za višu tarifu iznosila 187 kWh, a za nižu potrošnju 166 kWh. Uzevši u obzir gore navedene podatke, u ovom je slučaju elektrana predala EES-u ukupno 1140kWh, od čega je 1084 kWh u višoj tarifi, a 56 kWh u nižoj tarifi. Ako se u obzir uzme preuzeta energiju, onda se ukupni rezultat u višoj i nižoj tarifi promatra kao razlika između predane i preuzete količine električne energije. Točnije, za višu tarifu promatrano iz slike 4.4. sumarni rezultat iznosi -897 kWh, što znači da je EES-u predano ukupno 897 kWh, a kod niže tarife sumarni rezultat iznosi 110 kWh što označava da je kod niže tarife iz EES-a preuzeto ukupno 100 kWh. Ako se ti rezultati iskontroliraju s rezultatima iz slike 4.7. vidljivo je kako je ukupna potrošnja iznosila 583 kWh te ako taj rezultat umanjimo za 110 kWh kojih je potrebno platiti, dobit ćemo sumarno promatranu količinu energije koja je predana mreži, a iznosila je kao što je prije navedeno 897 kWh.

Na računu je vidljiv i ukupan rezultat za tu godinu, prikazan kao isječak iz računa na slici 4.5.

					UPLATE		
					prethodni račun dospio: 26 iznos prethodnog računa:	.05.2023 42,38	
					uplaćeno na dan: 31.05.2023.	3	28,61
OBRAČUN OPSKRBE					ukupno uplaćeno	2	8,61
Obračun 01.05.2023 31.05.2023			Popusti		ΟζΙΤΑΝΙΙΑ		
Opis	Potrošak Izno	s EUR	Opis	Iznos EUR	OCITANJA		
viša tarifa po 0,059831 EUR/kWh	-897	0,00	popust na solidarnu naknadu	-0,44	razdoblje: 01.05.2023 31. brojilo: projzvodnja	05.2023.	
niža tarifa po 0,036697 EUR/kWh	110	4,04			kanal vt nt	vt -	nt -
viša tarifa - potrošnja	187				31.05.23 D 18013,5 17140,1	19846	861
niža tarifa - potrošnja	166				01.05.23 D 17826,1 16974,3	18761	806
viša tarifa - proizvodnja	1084				30.04.23 D 17826,1 16974,3	18761	806
niža tarifa - proizvodnja	56						
solidarna naknada po 0,003982 EUR/kWh	110	0,44					
obnovljivi izvori po 0,013936 EUR/kWh	110	1,53			Outstanding and statistic	tes Bardan	
opskrbna naknada po 0,982 EUR/mjesec	1	0,98			Oslobođeno od plačanja sukladno članku 105. stavku Zakona o trožarinama	8. točki	5.
Ukupan iznos za opskrbu				6,55	Krajnji kupac račun može plati	ti uplatom	na
Ostvarena je proizvodnja 897 kWh, što i	znosi 53,67 EUR				žiro-račun Opskrbljivača uz p odobrenja istaknutog na rai	oziv na b Sunu, SE	roj PA
OBRAČUN ZA KORIŠTENJE I	MREŽE		tarifni model: E-K-N-BIJ1		putern mobilne aplikacije m-he	iom uplate pi.	m
Obračun 01.05.2023 31.05.2023					Informacije o mjerama	energet	ske
Opis	Potrošak Izno	s EUR			sastavu HEP grupe. Više o t	ome može	ete
viša tarifa po 0,051762 EUR/kWh	-897	0,00			www.hep.hr/esco	suani	ce.
niža tarifa po 0,022563 EUR/kWh	110	2,48			Informativni alat za uspor	edbu cije	ina
naknada za mjernu uslugu (br.mjeseci) po 1,54	0 EUR 1	1,54			opskrbljivača električnom pronadite na internetski brote br/alat za usporrdhu	energijom oj strar) hici
Ukupan iznos za korištenje mrež	Ð			4,02	Note:ni/alai-za-usporedou.		
					25/13, 93/14,55/16) ako ne is obvezu po ovom računu dospijeća, ovlašteni smo pok na temelju ovog računa kao v isprave.	punite svi do da renuti ovrl rjerodosto	ju ina hu jne
					Prigovor možete podnijeti j adresu iz zaglavlja, e-poštom hepi@hep.hr ili faksom na bri 952. Prigovor na račun možet roku od 20 dana od dana izdav	ooštom n na adre oj: 01/63 2 e podnijet vanja raču	ia su: 23- ju na.

Sl 4.4. Primjer računa za električnu energiju za mjesec svibanj

Sl 4.5. Isječak računa za električnu energiju za mjesec svibanj gdje je vidljiva ukupna godišnja proizvodnja i potrošnja

Sl 4.6. Ukupna proizvodnja elektrane

Nakon obrade svih zadanih podataka elektrane nazivne snage 10kW za mjesec svibanj, evidentno je kako je elektrana proizvela ukupno 1370 kWh vidljivo na slici 4.7., od čega je 230 kWh potrošeno izravno za opskrbu trošila u kućanstvu, a ukupni višak predan prema mreži iznosio je 1140 kWh. Ukupna energija preuzeta iz EES-a iznosila je 353 kWh

Sl 4.7. Primjer ukupne proizvodnje i potrošnje

5. EKSPERIMENTALNI POGON MODELA KUPCA S VLASTITOM PROIZVODNJOM S BATERIJSKIM SUSTAVOM POHRANE ENERGIJE I ELEKTRIČNIM VOZILOM

Eksperimentalni dio rada sastoji se od pet scenarija za koje će biti provedena mjerenja, obrada i analiza rezultata. Pet scenarija kojih se odnose na različite topologije kupca s vlastitom proizvodnjom za koja će biti provedena mjerenja su:

- Scenarij 1: mreža i kritična potrošnja
- Scenarij 2: mreža, FN elektrana i kritična potrošnja
- Scenarij 3: mreža, FN elektrana, baterijski sustav pohrane energije i kritična potrošnja
- Scenarij 4: mreža, FN elektrana, kritična potrošnja i EV
- Scenarij 5: mreža, FN elektrana, kritična potrošnja i EV uz predviđeno vrijeme punjenja

Za svih pet scenarija kroz analizu će biti promatrani rezultati vezani uz struju i napon kroz razmjenu snage s mrežom, proizvodnju iz FN sustava, snagu razmjene s baterijom, snagu kritične potrošnje te stanja napunjenosti baterije. Sve simulacije odvijat će se u trajanju od 24 h, odnosno jednog dana. Sve simulacije kreću s početkom dana u 00:00 h. Kroz različite simulacije koristimo različitu opremu unutar promatranog ormar te se sukladno promjeni simulacije mijenja i način povezivanja opreme. Praktični dio izvodio se u Laboratoriju za obnovljive izvore na Fakultetu elektrotehnike računarstva i informacijskih tehnologija u Osijeku pomoću sastavljenih ormara. gdje je princip spajanja prikazan na slici 5.1.

Sl 5.1. Tokovi energije kod spoja ormara

5.1. Opis ormara mikromreže

Ormar mikromreže prikazan slikom 5.2. sastoji se od izmjenjivača/punjača Multiplus Compact, izmjenjivača Phoenix 24/800, regulatora punjenja BlueSolar MPPT 75/15, centralne komunikacijske jedinice Venus GX, nadzornika baterije BMV-702, Victron Energy GEL 12-110 baterija, mjerača energije ET340, programabilnog trošila PeakTech P2280 te ispravljača MEAN WELL MSP-300-24. Shema ormara vidljiva je na slici 5.3.

Sl 5.2. Ormara mikromreže

Sl 5.3. Shema ormara mikromreže

Ormar u sebi sadrži dva različita dijela, a to su: otočni pogon uz pomoć izmjenjivača Phoenix 24/800 te mrežno vezani pogon uz pomoć izmjenjivača/punjača Multiplus Compact. Osim izmjeničnog pogona, ormar se sastoji i od istosmjernog pogona koji je vezan uz pomoć regulator punjenja. Kroz simulaciju koristit ćemo se mrežno vezanim pogonom.

Otočni izmjenjivač povezan je na sabirnice DC dijela mreže čiji napon iznosi 24 V, odnosno može uzimati energiju iz izmjenjivača punjača, energiju iz baterija ili energiju iz fotonaponskog sustava. Kao izlaznu vrijednost, izmjenjivač ima izvedenu jednofaznu utičnicu AC napona vrijednosti 230V, a kao komunikacijski dio ovoga pogona izmjenjivač je spojen pomoću centralne komunikacijske jedinice Venus GX.

Mrežno vezani pogon vezan je uz pomoć izmjenjivača/punjača Multiplus Compact, centralne komunikacijske jedinice Venus GX, nadzornika baterije BMV-702, Victron Energy GEL 12-110 baterija i pametnog brojila ET340. Točnije, izmjenjivač/punjač Multiplus Compact spojen je na sabirnice DC mreže koje su postavljene unutar razvodnih kutija, a na te sabirnice vezane su dvije GEL baterije spojene u seriju kako bi im se povećao napon na 24 V. Nadalje, na te iste sabirnice imamo i dolazni kabel sa MPPT-a na kojega su spojene priključnice 4mm DC load te PV In. Na baterije se priključuje i nadzornik baterija BMV-702 koji nam daje detaljniji uvid u trenutne vrijednosti karakteristika baterija. Kod AC dijela izmjenjivača/punjača na ulaz je spojen pametno brojilo ET340 koji nam daje detaljniji uvid u tokove energije, a nakon brojila kabel se spaja na

osigurače unutar razvodnog ormara te iz tog ormara imamo odlaz prema jednofaznim utičnicama PV In te AC in. Kod AC izlaza imamo direktan spoj s razvodnim ormarom iz kojega ponovno imamo odlazni kabel prema jednofaznim utičnicama koje nose naziv: AC critical load te AC non critical load. AC critical load predstavlja kritičnu potrošnju, odnosno uređaje koji moraju biti pod konstantnim napajanjem, a AC non critical load predstavlja trošila koja mogu ostati bez napajanja. Komunikacija kompletno vezanog mrežnog pogona ostvarena je uz pomoć centralne komunikacijske jedinice Venus GX koja nam omogućuje vezu s VRM portalom. Na komunikacijsku jedinicu spojeni su svi gore navedeni uređaji. Izgled veze s VRM portalom moguće je vidjeti na slici 5.4. Komunikacija programabilnog trošila sa ormarom mikromreže odrađena je pomoću komunikacijskog protokola RS232 uz pomoć programskog jezika *Python.*

Sl 5.4. Izgled VRM portala za ormar mikromreže

5.2. Opis ormara EV i FN emulatora

Ormar EV i FN emulatora prikazan slikom 5.5. sastoji se od izmjenjivača/punjača Multiplus Compact, nadzornika baterije BMV-702, centralne komunikacijske jedinice Cerbo GX, 5.1.9. VE.bus sustav upravljanja baterijom, Victron Energy litij-ionske 12,8V-160Ah baterije te VOLTCRAFT DPPS-32-30 laboratorijskog istosmjernog napajanje. Shema ormara vidljiva je na slici 5.6.

Sl 5.5. Ormar FN i EV emulatora

Sl 5.6. Shema ormara EV i FN emulatora

Ormar EV i FN emulatora u sebi sadrži dva odvojena sustava, a to su EV i FN emulator. EV emulator sastoji se od izmjenjivača/punjača Multiplus Compact koji je spojen na dvije serijski spojene LiFePO4 baterije koje rezultiraju krajnjim DC naponom od 24V. Na baterije se spaja nadzornik baterije BMV-702 koji nam daje detaljniji uvid u karakteristike baterija u stvarnom vremenu. Osim nadzornika baterija, na baterije se još spaja i VE.bus sustav upravljanja baterijom. Kod AC dijela ormara razlikujemo AC input i AC output jednofazne utičnice koje su spojene na izmjenjivač/punjač preko osigurača koji se nalaze u razvodnom ormaru. Komunikacija sustava odvija se preko centralne komunikacijske jedinice Cerbo GX, a na nju su spojeni svi navedeni uređaji. Cerbo GX omogućuje nam spajanje sa VRM portalom, a izgled veze s VRM portalom moguće je vidjeti na slici 5.7. Komunikacija između ormara PV i EV emulatora sa ormarom mikromreže odrađena je uz pomoć *Modbus* protokola koji koristi programski jezik *Python*.

۳ ۳	Search installations	FERIT RESLAB EV	Last updated:	Status: Local time:
🛞 ୍ କ୍ 🎝 🔨	BACK Dashboard Advanced Device list Settings +	E Grid 3 W	O W	
	Remote Console Notes Photos Share	87.9 %		
0	Alarm logs Event logs Reporting +	Installation data	Show forecast System overview	✓
	🕛 Log out			

Sl 5.7. Izgled VRM portala za dio ormara koji predstavlja EV emulator

FN emulator sastoji se od izmjenjivača/punjača Multiplus Compact koji je spojen na dva paralelno spojena VOLTCRAFT DPPS-32-30 laboratorijska istosmjerna napajanja koji rezultiraju krajnjim DC naponom od 24V. Kod AC dijela ormara razlikujemo AC input i AC output jednofazne utičnice koje su spojene na izmjenjivač/punjač preko osigurača koji se nalazi u razvodnom ormaru. Komunikacija sustava odvija se preko centralne komunikacijske jedinice Cerbo GX, a na nju su spojeni svi navedeni uređaji. Cerbo GX nam omogućuje spajanje sa VRM portalom, a izgled veze s VRM portalom moguće je vidjeti na slici 5.8.

Sl 5.8. Izgled VRM portala za dio ormara koji predstavlja PV emulator

5.3. Popis korištene opreme

Kroz svih pet simulacija korištena su oba ormara koja se sastoje od niza opreme, a to su: izmjenjivači, baterije, nadzornik baterija, regulatora punjenja, pametno brojilo, programabilnog istosmjerno trošila, istosmjerno labaratorijskog napajanje, ispravljača te centralnih komunikacijskih jedinica.

5.3.1. Izmjenjivač/punjač Multiplus Compact

MultiPlus Compact korišten je u hibridnoj AC/DC mikromreži i prikazan je na slici 5.9. Ovu vrstu izmjenjivača/punjača možemo vidjeti u promatranim ormarima u dvije izvedbe, a to su: 24 | 800 | 16 te 24 | 1600 | 40. u kojima prvi broj predstavlja ulazni napon, drugi broj predstavlja snagu, a treći broj predstavlja struju punjenja. Ovaj uređaj može raditi na dva načina: kao izmjenjivač i punjač ili samo kao punjač.

Sl 5.9. Multiplus Compact

U praktičnom dijelu ovaj izmjenjvač/punjač koristi se kao sastavni dio mikromreže te kao ključni dio EV i FN emulatora, a primjenjuje se kao izmjenjivač/punjač ili samo kao punjač. Kada se koristi kao punjač razlikujemo nekoliko vrsta razina punjenja: *bulk, absorption, float i storage*. Vrste punjenja mogu se objasniti kao :

- *Bulk* razina: Punjenje maksimalnom dozvoljenom strujom kako bi se baterija što prije napunila.
- Absorption razina: Održavanje konstantnog napona dok se struja postupno smanjuje kako se baterija približava punom kapacitetu. Ova razina završava kada struja punjenja padne ispod 1A.
- *Float* razina: Održavanje baterije na punom kapacitetu. Napon se prilagođava kako bi se održao pun kapacitet baterije.
- *Storage* razina: Ova razina nastupa ako unutar 24 sata nije došlo do pražnjenja baterije ili potrošnje pohranjene energije. Tada se dodatno smanjuje napon *float* razine.

Tehnički podaci ovog izmjenjivača punjača dani su u tablici 5.1.

Multiplus Compact	24/800/16	24/1600/40
Raspon ulaznog napona (U_{DC}) [V]	19-33	19-33
Izlazni napon (U_{AC}) [V]	230 +/- 2%	230 +/- 2%
Frekvencija (f) [Hz]	50 +/- 0,1%	50 +/- 0,1%
Maksimalna prividna snaga na AC priključnicama pri 25°C (S _{AC}) [VA]	800	1600
Maksimalna radna snaga na AC priključnicama pri 25°C/40°C/65°C (<i>P_{AC}</i>) [W]	700/650/400	1300/1200/800
Vršna snaga (<i>P_{max}</i>) [W]	1600	3000
Maksimalna učinkovitost (η) [%]	94	94
Vlastita potrošnja [W]	10	10
Raspon ulaznog napona (U_{AC}) [V]	187-265	187-265
Raspon ulazne frekvencije (f) [Hz]	45-65	45-65
Napon punjenja (absorption) [V]	28,8	28,8
Napon punjenja (float) [V]	27,6	27,6
Napon na razini storage [V]	26,4	26,4
Struja punjenja baterije [A]	16	40
Senzor za mjerenje temperature baterije	Da	Da

Tablica 5.1. Tehničke karakteristike izmjenjivača/punjača Multiplus Compact [23]

5.3.2. Izmjenjivač Phoenix 24/800

Izmjenjivač Phoenix koristi se u ormaru mikromreže. Spojen je tako da su mu na DC ulazu priključene baterije, a kao izlaz ima jednu jednofaznu AC utičnicu. Ovaj izmjenjivač radi isključivo u otočnom načinu rada. Prikazan je na slici 5.10., a njegovi tehnički podaci dani su tablicom 5.2.

Sl 5.10. Izmjenjivač Phoenix 24/800

Tablica 5.2. Tehničke karakteristike izmjenjivača Phoenix 24/800 [24]

Phoenix	24/800
Maksimalna prividna snaga na AC priključnicama pri 25°C (SAC) [VA]	800
Maksimalna radna snaga na AC priključnicama pri 25°C/40°C (P _{AC}) [W]	650/560
Vršna snaga (P_{max}) [W]	1500
Izlazni AC napon (U_{AC}) [V]	230 +/-3%
Raspon ulaznog napona (U_{DC}) [V]	18,4-34,0
Maksimalna učinkovitost (η) [%]	90
Vlastita potrošnja [W]	7

5.3.3. Regulator punjenja BlueSolar MPPT 75/15

Regulator punjenja transportira energiju proizvedenu od FN panela do baterija koje su na njega priključene. Regulator povezuje fotonaponske panele, istosmjerno opterećenje i baterije. Glavne karakteristike ovog uređaja su MPPT te mogućnost spajanja na mrežu preko komunikacijskoga sučelja kako bismo mogli dobiti očitanje podataka u stvarnom vremenu. Regulator je prikazan na slici 5.11.

Sl 5.11. Regulator punjenja BlueSolar MPPT 75/15

Tehnički podatci regulatora punjenja vidljivi su u tablici 5.3.

Tablica 5.3. Tehničke karakteristike regulator punjenja BlueSolar MPPT 75	5/15 [25]
BlueSolar MPPT	75/15

BlueSolar MPPT	75/15
Napon baterije [V]	24
Struja punjenja [A]	15
Nazivna snaga FN panela [W]	440
Maksimalna struja kratkog spoja FN panela [A]	15
Maksimalni napon praznog hoda FN panela [V]	75
Vlastita potrošnja [mA]	15
Napon punjenja (absorption) [V]	28,8
Napon punjenja (float) [V]	27,6
Maksimalna konstantna struja opterećenja [A]	15

5.3.4. Centralna komunikacijska jedinica Venus GX

Venus GX omogućava dvosmjernu komunikaciju s krajnjim korisnikom, odnosno omogućava potpunu kontrolu sustava. Komunikacija se odvija tako što se niz uređaja povezuje žičano na centralnu komunikacijsku jedinicu koristeći jedan od niza komunikacijskih protokola te se ta komunikacijska jedinica pravovremeno povezuje s internetom kako bi olakšala kompletno upravljanje sustavom. Venus GX podržava niz jezika te se automatski sam nadograđuje nakon što je prvi put povezana na internet. Mogućnosti spajanja uključuju RJ 45, VE.direct te USB komunikaciju. Nakon što je uređaj spojen sa internetom, komunikacija se odvija pomoću web preglednika ili pomoću mobilne aplikacije. Venus GX vidljiv je na slici 5.12.

Sl 5.12. Centralna komunikacijska jedinica Venus GX

Tehnički podaci vidljivi u tablici 5.4.

Tablica 5.4. Tehničkem karakteristike centralna komunikacijska jedinica Venus GX [26]			
VENUS	GX		
Raspon ulaznog napona (U_{DC}) [V]	8-70		
Nazivna Struja[mA]	210@12V 110@24V 60@48V		

5.3.5. Nadzornik baterije BMV-702

BMV-702 je visoko precizni mjerač stanja baterije. Osnovna funkcija mjerača baterije je izračunavanje potrošenih amper-sati i stanja napunjenosti baterije. Potrošeni amper-sati se izračunavaju integriranjem struje koja teče u ili iz baterije. Nadzornik nam daje povratnu informaciju o nizu varijabli kao što su: napon, struja, snaga, stanje napunjenosti, moguće vrijeme korištenja baterije pod zadanim opterećenjem. Kako bi nadzornik baterije mogao obavljati zadane funkcije uz njega dolaze popratni uređaji, a to su *shunt* i senzor temperature. Prije prvog korištenja, potrebno je izvršiti programiranje, unijeti potrebne podatke i uskladiti nadzornik baterije sa sustavom. Spajanje sa *shuntom* ostvaruje se putem telefonskog kabela RJ12, a model BMV-702 sadrži dodatni ulaz koji omogućuje mjerenje napona, temperature (za što je potreban temperaturni senzor) ili napona srednje točke. Nadzornik baterije BMV-702 vidljiv je na slici 5.13.

SI 5.13. Nadzornik baterije BMV-702 Tehnički podaci vidljivi su u tablici 5.5.

Tablica 5.5. Tehničke karakteristike nadzornik baterije BMV-702 [27]			
Nadzornik baterije	BMV-702		
Raspon napona napajanja	6,5-95 V-DC		
Vlastita potrošnja	<4 mA		
Raspon ulaznog napona	6,5-95 V-DC		
Kapacitet baterija	1-9999 Ah		
Razlučivost i preciznost	+/- 0,01 A +/- 0,01 V		

36

5.3.6. Pametno brojilo ET340

Pametno brojilo koristi se u sustavima za pohranu energije kao bi mjerili snagu i energiju u glavnom razvodnom ormariću. Također, može se koristiti i za mjerenja izlaza FN izmjenjivača te obrađivati rezultate pomoću GX uređaja i VRM portala. Pametno brojilo ET340 vidljivo je na slici 5.14.

Sl 5.14. Pametno brojilo ET340

Tehnički podaci vidljivi su u tablici 5.6.

	 J 0.	
Pametno brojilo		ET340
Broj fazi		3

Tablica 5.6. Tehničke karakteristike mjerača energije ET340 [28]

Broj fazi	3
Najveća dopuštena struja mjerenja [A]	65 po fazi
Vrsta komunikacijskog protokola	RS485
Vrijeme osvježavanja podataka[ms]	2000

5.3.7. Victron Energy GEL 12-110 baterije

Gel Baterije pružaju najbolju izdržljivost dubokog ciklusa pražnjenja i ukupni duži vijek trajanja. Uslijed upotrebe visokopropusnih materijala, olovne kalcijeve rešetke osiguravaju da se baterije neće isprazniti tijekom dugog razdoblja bez punjenja. Baterije su u skladu s CE i UL specifikacijama. Kod ormara mikromreže koriste se dvije ovakve baterije međusobno povezane u seriju s ukupnim iznosom napona 24 V i kapaciteta 110 Ah. Ako se baterije koriste u ciklusima, razlikuje se krivulja za tri različite razine punjenja, a to su: *bulk, float i absorption*. Različite krivulje razine punjenja vidljive su na slici 5.15., a baterija je prikazana slikom 5.16.

Sl 5.15. Različite krivulje razine punjenja [29]

Sl 5.16. Victron Energy GEL 12-110 baterije

5.3.8. Victron Energy litij-ionske 12,8V-160Ah baterije

Litij-željezofosfatne baterije (LiFePO4) baterije su pametne litij ionske baterije tvrtke Victron energy, a dolaze u različitim izvedbama ovisno o naponu 12,8 V ili 25,6 V. Ove baterije omogućavaju serijsko ili paralelno povezivanje. Maksimalan broj baterija koje je dozvoljeno povezati iznosi 20, što rezultira različitim razinama pohrane energije. Baterija se sastoji od niza litij-željeznofosfatnih ćelija, u kojima jedna ćelija ima nazivni napon od 3,2 V. Broj serijski povezanih ćelija ovisi o naponu baterije, a za 12,8 V bateriju iznosi 4. U eksperimentu se koriste dvije baterije povezane u seriju kod EV emulatora. Baterija je vidljiva na slici 5.17.

Sl 5.17. Victron Energy litij-ionske 12,8V-160Ah baterije

Tehnički podaci vidljivi su u tablici 5.7.

Tablica 5.7. Tehničke karakteristike Victron Energy litij-ionske 12,8V-160Ah baterije [30]		
Victron Energy litij-ionske	12,8V-160Ah baterije	
Nazivni napon [V]	12,8	
Nazivni kapacitet na 25°C [Ah]	160	
Nazivni kapacitet na 0°C [Ah]	130	
Nazivni kapacitet na -20°C [Ah]	80	
Nazivni energija na 25°C [Wh]	2048	
Maksimalna struja pražnjenja [A]	320	
Maksimalna struja punjenja [A]	320	

5.3.9. VE.bus sustav upravljanja baterijom

Svaka pojedinačna ćelija LiFePO4 baterije mora biti zaštićena od previsokog napona, preniskog napona i previsoke temperature. Baterije imaju integrirano balansiranje, kontrolu temperature i napona te se povezuju na VE.Bus BMS pomoću dva skupa kružnih konektora. Takav sustav omogućava spajanje do pet baterija paralelno te do četiri baterije u seriju. BMS sustav ima mogućnost isključiti opterećenje u slučaju preniskog napona ćelije, smanjiti struju punjenja ako je napon punjenja previsok te u potpunosti prekinuti proces punjenja baterije. VE.bus BMS vidljiv je na slici 5.18.

SI 5.18. VE.bus BMS

Tehnički podaci vidljivi su u tablici 5.8.

Tablica 5.8. Tehničke karakteristike VE.bus BMS [31]		
VE.bus	BMS	
Raspon ulaznog napona (U_{DC}) [V]	9-70	
Nazivna Struja[mA]	10	
Vrsta komunikacijskog protokola	2xRJ45	

5.3.10. Centralna komunikacijska jedinica Cerbo GX

Ova centralna komunikacijska jedinica omogućava izravno spajanje na VRM portal ili izravan pristup pomoću GX touch uređaja ili aplikacije VictronConnect zahvaljujući dodanoj bluetooth mogućnosti. Ovaj najnoviji dodatak GX-seriji kombinira sve najbolje od povezanosti i ponovno definira pametna rješenja za napajanje na svaki mogući način. Koristi se kod FN i EV emulatora. Cerbo GX vidljiv je na slici 5.19.

Sl 5.19. Centralna komunikacijska jedinica Cerbo GX

Tehnički podaci vidljivi u tablici 5.9.

Tablica 5.9. Tehničke karakteristike centralna komunikacijska jedinica Cerbo GX [32]		
Cerbo	GX	
Raspon ulaznog napona (U_{DC}) [V]	8-70	

5.3.11. VOLTCRAFT DPPS-32-30 laboratorijsko istosmjerno napajanje

VOLTCRAFT DPPS-32-30 jedinica je za napajanje visokih performansi. Izlazni napon može se izvesti s prednje strane pomoću 4 mm sigurnosnog utikača jačine struje do 5A, a s utičnicama sa stražnje strane može postići maksimalnu struju do 30A. Ovaj uređaj koristimo kao izvor istosmjerne struje kod FN emulatora. VOLTCRAFT DPPS-32-30 laboratorijsko istosmjerno napajanje vidljivo je na slici 5.20.

SI 5.20. VOLTCRAFT DPPS-32-30 laboratorijsko istosmjerno napajanje

Tehnički podaci uređaja vidljivi su u tablici 5.10.

Tablica 5.10. Tehničke karakteristike VOLTCRAFT DPPS-32-30 laboratorijsko istosmjerno napajanje [33]		
VOLTCRAFT	32-30	
Izlazni napon U _{DC} [V]	1-32	
Izlazna struja [A]	0-30	
Ulazni napon U _{AC} [V]	200-240	
Ulazna frekvencija	50/60	
Izlazna snaga [W]	960	

5.3.12. Programabilno istosmjerno trošilo PeakTech P2280

Programabilno istosmjerno trošilo koje omogućava povezivanje s PC sučeljem. PC sučelje omogućuje implementaciju slobodno programabilnih testnih sekvenci s evaluacijom podataka. Programabilno trošilo može se koristiti za testiranje izvora napajanja i upravljačkih jedinica, baterija, gorivnih stanica i fotonaponskih ćelija. Za precizno upravljanje opterećenjem u različite svrhe, ovaj uređaj nudi upravljanje opterećenjem putem konstantnog napona (CV), konstantne struje (CC), konstantnog opterećenja otpora (CR) ili konstantne snage (CP) s visokom preciznošću od 1mW, 1mV, 1mΩ i 1mA. U eksperimentu ga koristimo kao programabilno trošilo koje predstavlja kritičnu potrošnju krajnjeg kupca električne energije. Programabilno trošilo PeakTech P2280 vidljivo je na slici 5.21.

Sl 5.21. Programabilno trošilo PeakTech P2280

Tehnički podaci uređaja vidljivi su u tablici 5.11.

Tablica 5.11. Tehničke karakteristike Programabilno trošilo PeakTech P2280 [34]

PeakTech	P2280
Struja programabilnog trtošila [A]	30A
Do istosmjernog napona [V]	360V
Ulazna snaga [W]	300
Vrsta komunikacijskog protokola	RS232

5.3.13. Ispravljač MEAN WELL MSP-300-24

Ispravljači su elektronički uređaji koji se koriste za pretvaranje električne energije iz jednog oblika u drugi. Njihova svrha je pretvaranje AC struje u DC i obrnuto. U eksperimentu se koristi kako bi izravno povezao istosmjerno programabilno trošilo i ormar mikromreže. Ispravljači imaju široku primjenu u različitim industrijama i svakodnevnim uređajima. Na primjer, ispravljači se koriste u napajanjima za računalne sustave, kućanske aparate, električna vozila, industrijsku opremu i mnoge druge uređaje koji zahtijevaju istosmjernu struju za rad. Ispravljač vidljiv na slici 5.22.

Sl 5.22. Ispravljač MEAN WELL MSP-300-24

Tehnički podaci uređaja vidljivi su u tablici 5.12.

MEAN WELL	MSP-300-24
Grupa	AC-DC
Snaga [W]	336
Dimer	Bez
IP zaštita	Bez
Ulazni napon U _{AC} [V]	85-264
Broj izlaza	1
PFC	Da
Hlađenje	Ventilator

Tablica 5.12. Tehničke karakteristike MEAN WELL MSP-300-24 [35]

5.4. Simulacija pogona mreža, kritična potrošnja

Prva simulacija prati 24-satni model potrošnje kućanstva s kritičnom potrošnjom. Simulacija je odrađena tako što se na ormar mikromreže spaja programabilno istosmjerno trošilo pomoću ispravljača AC *out*. Promatrani model potrošnje učitava se na programabilno trošilo uz pomoć RS232 komunikacije preko skripte pisane programskim jezikom *Python*. Očitani podaci zapisuju se pomoću pametnog brojila i centralne komunikacijske jedinice, a vrijeme sinkronizacije podataka odvija se svake minute.

Sl 5.24. Struja i napon kritične potrošnje

U ovoj simulaciji promatrani su: napon, struja, snaga mreže i potrošnje s obzirom da se ostale komponente ormara ne koriste. Simulacija povezuje izvor mreže i kritičnu potrošnju koju glumi programabilno trošilo, a iz grafova koji su prikazani na slikama 5.23 i 5.24 vidljivo je kako napon i struja mreže prate kritičnu potrošnju što izravno utječe na ukupnu snagu sustava.

Sl 5.26. Snaga kritične potrošnje

Maksimalna snaga mreže (slika 5.25) iznosila je 640 W u 11:20 h. Vrijednost prati maksimalan iznos napona i struje, dok je snaga kritične potrošnje za taj isti period (slika 5.26) iznosila 614 W. Minimalna snaga mreže (slika 5.25) iznosila je 32 W u 01:29 h, a snaga kritične potrošnje u to je vrijeme iznosila 28 W. Razlika između mreže i potrošnje rezultat je pokrivanja gubitaka potrebnih za napajanje sustava, kao što su opskrba pretvarača, napajanje svih ostalih komponenti ormara koji se koriste za nadzor sustava te gubici u vodovima.

5.5. Simulacija pogona mreža, FN elektrana, kritična potrošnja

Druga simulacija prati 24-satni model potrošnje kućanstva s kritičnom potrošnjom i FN elektranom. Simulacija je odrađena na način da se na ormar mikromreže spaja programabilno istosmjerno trošilo pomoću ispravljača na priključnicu AC *out*. FN izmjenjivač integriran je unutar ormara mikromreže , a pomoću njega učitavamo profil proizvodnje preko *Modbus-a* uz pomoć *Python* skripte. Promatrani model potrošnje učitava se na programabilno trošilo uz pomoć RS232 komunikacije preko skripte pisane programskim jezikom *Python*. Očitani podaci zapisuju se pomoću pametnog brojila i centralne komunikacijske jedinice, a vrijeme sinkronizacije podataka odvija se svake minute.

U ovoj simulaciji promatrani parametri za mrežu, kritičnu potrošnju i FN elektranu su: napon, struja i snaga. Simulacija povezuje izvor mreže, kritičnu potrošnju koju glumi programabilno trošilo i FN elektranu, a iz grafova koji su prikazani na slikama 5.27 i 5.28 moguće je vidjeti kako napon i struja mreže prate kritičnu potrošnju u ovisnosti o FN elektrani što izravno utječe na ukupnu snagu sustava. Slike 5.27 i 5.28 izravno su vezane sa slikama 5.30 i 5.31

Sl 5.31. Snaga FN elektrane

Maksimalna snaga mreže (slika 5.29) iznosila je 428 W u 11:21 h. Ta vrijednost prati i maksimalan iznos napona i struje, dok je snaga kritične potrošnje za taj isti period (slika 5.31) iznosila 618 W, a FN elektrana u tom trenutku proizvodi 200W. Nastala razlika od 10 W koristi se za pokrivanje napajanja uređaja. Minimalna snaga mreže (slika 5.29) u 00:01 h iznosila je 40 W, a snaga kritične potrošnje u isto je vrijeme iznosila 28 W. FN elektrana u tom trenutku nema proizvodnje. Razlika između mreže i potrošnje rezultat je pokrivanja gubitaka potrebnih za napajanje sustava, kao što su opskrba pretvarača, napajanje svih ostalih komponenti ormara koji se koriste za nadzor sustava te gubici u vodovima. Maksimalna snaga proizvodnje FN elektrane (slika 5.31) u 14:01 h iznosila je 235 W, a minimalna proizvodnja u 20:49 h iznosila je -5 W što je predstavljeno kao mjerna 48 pogreška instrumenta. Za periode kada je snaga mreže negativna moguće je vidjeti kako se višak proizvodnje iz FN predaje u mrežu.

5.6. Simulacija mreža, FN elektrana, baterijski sustav pohrane energije, kritična potrošnja

Treća simulacija prati 24-satni model potrošnje kućanstva s kritičnom potrošnjom, FN elektranom i baterijskim sustavom za pohranu energije. Simulacija je odrađena tako što se na ormar mikromreže spaja programabilno istosmjerno trošilo pomoću ispravljača na priključnicu AC out. FN izmjenjivač integriran je unutar ormara mikromreže, a pomoću njega učitavamo profil proizvodnje preko Modbus-a uz pomoć Python skripte. U simulaciji se još koristi i baterijski sustav za pohranu energije (BESS). Promatrani model potrošnje učitava se na programabilno trošilo uz pomoć RS232 komunikacije preko skripte pisane programskim jezikom Python. Očitani podaci zapisuju se pomoću pametnog brojila i centralne komunikacijske jedinice, a vrijeme sinkronizacije podataka odvija se svake minute. Simulacija je podešena tako da joj je cilj minimizirati razmjenu energije s mrežom odnosno želi postići razmjenu s mrežom od 0 W, razmjena energije je bila minimizirana sve dok je proizvodnja FN elektrane bila veća od potrošnje, a u slučaju razlike između potrošnje i proizvodnje dodatnu potrošnju je zadovoljio BESS. U slučaju da je proizvodnja bila veća od potrošnje dodatna energija se koristila za punjenje BESS, a ako BESS nije imao dovoljno energije kako bi zadovoljio potrošnju onda je potrebna razlika bila zadovoljena energijom iz mreže.

Sl 5.32. Struja i napon kritične potrošnje

U ovoj simulaciji promatrani parametri za mrežu, kritičnu potrošnju, BESS i FN elektranu su: napon, struja, snaga te stanje napunjenosti baterije BESS-a. Simulacija povezuje izvor mreže, kritičnu potrošnju koju glumi programabilno trošilo, FN elektranu i BESS, a iz grafova koji su prikazani na slikama 5.32, 5.33 i 5.34 vidljivo je kako napon i struja mreže prate kritičnu potrošnju u ovisnosti o FN elektrani i BESS što izravno utječe na ukupnu snagu sustava. Slike 5.32, 5.33 i 5.34 izravno su vezane sa slikama 5.36, 5.37 i 5.38.

Maksimalna snaga mreže (slika 5.35) u 11:20 h iznosi 404 W. Vrijednost isto tako prati i maksimalan iznos napona i struje. Suprotno tomu, snaga kritične potrošnje za taj isti period (slika 5.36) iznosi 599 W, snaga FN elektrane iznosi 203 W, a snaga BESS-a -5 W. Minimalna snaga mreže (slika 5.35) u 04:14 h iznosi -15 W, dok snaga kritične potrošnje u isto vrijeme iznosi 124 W, FN elektrana u to vrijeme ne radi. Ovdje je vidljivo kako je kritična potrošnja potrebnu snagu zadovoljila uz pomoć BESS-a, s obzirom da je snaga BESS-a (slika 5.37) u tom trenutku iznosila -157 W, što znači da je u tom trenutku došlo do pražnjenja baterije te je čak i određeni dio energije predan u mrežu. Snaga razmjene s mrežom opet započinje u 14:19 odnosno ona više ne iznosi 0 W zbog toga što SOC pada ispod 65% te nadzornik baterije zabranjuje daljnje pražnjenje. Točnije potrebna energija se uvozi iz mreže. Nadalje, na slici 5.39 vidljivo je da u 08:20 h BESS kreće s punjenjem baterija s obzirom da se mijenja predznak snage u tom trenutku. Sukladno tome, u 13:10 h snaga punjenja baterije prikazana je kao +166 W, što je vidljivo i na slikama 5.35 i 5.36, s obzirom da snaga mreže u tom trenutku iznosi 259 W, a snaga kritične potrošnje iznosi 69 W.

Razlika između mreže, potrošnje i BESS-a rezultat je pokrivanja gubitaka potrebnih za napajanje sustava, kao što su: opskrba pretvarača, napajanje svih ostalih komponenti ormara koji se koriste za nadzor sustava te gubici u vodovima. Maksimalna snaga proizvodnje FN elektrane sa slike 5.40 u 11:23 h iznosila je 238 W, a minimalna proizvodnja u 03:12 h iznosila je -10 W što je predstavljeno kao mjerna pogreška instrumenta.

Sl 5.39. Stanje napunjenosti baterije

Na slici 5.39. vidljivo je kako BESS mijenja stanja punjenja i pražnjenja. Pražnjenje počinje samim početkom simulacije te traje do 08:20 h, nakon čega nastupa punjenje koje traje sve do 10:46 h. Tijekom simulacije ovakva je situacija ponovljena nekoliko puta, a osim punjenja i pražnjenja baterija se nekoliko puta nalazila i u stanju mirovanja. Nadzornik baterija sprječava daljnje pražnjenje baterija ispod 65% zbog preniskog napona odnosno ponaša se kao sustav zaštite baterija.

5.7. Simulacija pogona mreža, FN elektrana, kritična potrošnja, EV

Četvrta simulacija prati 24-satni model potrošnje kućanstva s kritičnom potrošnjom, FN elektranom i električnim vozilom. Simulacija je odrađena tako što se na ormar mikromreže spaja programabilno istosmjerno trošilo pomoću ispravljača na priključnicu AC *out*. FN izmjenjivač integriran je unutar ormara mikromreže, a pomoću njega učitavamo profil proizvodnje preko *Modbus-a* uz pomoć *Python* skripte. EV je spojen preko EV emulatora je upravljan uz pomoć *Modbus-a* pomoću *Python* skripte na priključnicu ormara mikromreže koja nosi naziv *non critical load*. Promatrani model potrošnje učitava se na programabilno trošilo uz pomoć RS232 komunikacije preko skripte pisane programskim jezikom *Python*. Očitani podaci zapisuju se pomoću pametnog brojila i centralne komunikacijske jedinice, a vrijeme sinkronizacije podataka odvija se svake minute. Simulacija je podešena tako da joj je cilj minimizirati razmjenu energije s mrežom odnosno želi postići razmjenu s mrežom od 0 W, razmjena energije je bila minimizirana sve dok je proizvodnja FN elektrane bila veća od potrošnje, a u slučaju razlike između potrošnje i proizvodnje dodatnu potrošnju je zadovoljilo EV koristeći se V2G komunikacijskim protokolom

koji omogućuje dvosmjerni tok energije. U slučaju da je proizvodnja bila veća od potrošnje dodatna energija se koristila za punjenje EV, a ako EV nije imao dovoljno energije kako bi zadovoljio potrošnju onda je potrebna razlika bila zadovoljena energijom iz mreže.

U ovoj simulaciji promatrani parametri za mrežu, kritičnu potrošnju, EV i FN elektranu su: napon, struja, snaga te stanje napunjenosti baterije EV. Simulacija povezuje izvor mreže, kritičnu potrošnju koju glumi programabilno trošilo, FN elektranu i EV, a iz grafova koji su prikazani na slikama 5.40, 5,41 i 5.42 moguće je vidjeti kako napon i struja mreže prate kritičnu potrošnju u ovisnosti o FN elektrani i EV što izravno utječe na ukupnu snagu sustava. Slike 5.40, 5.41 i 5.42 izravno su vezane uz slike 5.44, 5.45 i 5.46.

Maksimalna snaga mreže vidljiva na slici 5.43 iznosila je 287 W u 03:51 h. Ta vrijednost isto tako prati i maksimalni iznos napona i struje. Suprotno tomu, snaga kritične potrošnje za taj isti period

(slika 5.44) iznosila je 279 W, FN elektrana u tom trenutku ne radi, a snaga EV iznosi 3W. Minimalna snaga mreže (slika 5.43) u 11:26 h iznosila je -54 W, a snaga kritične potrošnje u to je vrijeme iznosila 503 W, FN elektrana je u tom trenutku proizvodila 208 W, a EV je mreži predao -350 W. Vidljivo je kako je kritična potrošnja potrebnu snagu zadovoljila uz pomoć EV-a, s obzirom da je maksimalna snaga EV-a (slika 5.46) u 11:21 h iznosila -411 W, što znači da je u tom trenutku došlo do pražnjenja baterije. Nadalje, na slici 5.46 vidljivo je da EV kreće s punjenjem baterija u 08:43 h, s obzirom da se mijenja predznak snage upravo u tom trenutku. Sukladno tomu, u 08:43 h snaga baterije prikazana je kao +47 W. Nakon 20:00 h razmjena energije s mrežom više nije 0W zbog toga što je SOC pao ispod 35% te je proradio sustav zaštite nadzornika baterije. Nakon toga se potrebna energija uvozi iz mreže. Razlika između mreže, potrošnje i EV-a rezultat je pokrivanja gubitaka potrebnih za napajanje sustava, kao što su opskrba pretvarača, napajanje svih ostalih komponenti ormara koji se koriste za nadzor sustava te gubici u vodovima. Maksimalna snaga proizvodnje FN elektrane (slika 5.45) iznosila je 224 W u 11:44 h, a minimalna proizvodnja u 23:34 h iznosila je -5 W što je predstavljeno kao mjerna pogreška instrumenta.

Sl 5.47. Stanje napunjenosti baterije

Na slici 5.47. vidljivo je kako EV mijenja stanja punjenja i pražnjenja. Pražnjenje počinje samim početkom simulacije te traje do 07:19 h, nakon čega nastupa punjenje koje traje sve do 10:28 h. Tijekom simulacije ovakva se situacija ponavlja nekoliko puta, a osim punjenja i pražnjenja baterija se nekoliko puta nalazi i u stanju mirovanja.

5.8. Simulacija pogona mreža, FN elektrana, kritična potrošnja, EV uz predviđeno vrijeme punjenja

Peta simulacija prati 24-satni model potrošnje kućanstva s kritičnom potrošnjom, FN elektranom i električnim vozilom. Simulacija je odrađena tako što se na ormar mikromreže spaja programabilno istosmjerno trošilo pomoću ispravljača na priključnicu AC *out*. FN izmjenjivač integriran je unutar ormara mikromreže, a EV je spojen preko EV emulatora na priključnicu ormara mikromreže koja nosi naziv *non critical load.* Promatrani model potrošnje učitava se na programabilno trošilo uz pomoć RS232 komunikacije preko skripte pisane programskim jezikom *Python.* Očitani podaci zapisuju se pomoću pametnog brojila i centralne komunikacijske jedinice, a vrijeme sinkronizacije podataka odvija se svake minute. EV se puni samo za vrijeme niže tarife električne energije. Preciznije EV se puni samo u periodu od 0-8h te 22-24h. Simulacija je podešena tako da joj je cilj minimizirati razmjenu energije s mrežom odnosno želi postići razmjenu s mrežom od 0 W, razmjena energije je bila minimizirana sve dok je proizvodnja FN elektrane bila veća od potrošnje, a u slučaju razlike između potrošnje i proizvodnja dodatnu potrošnju je zadovoljilo EV koristeći se V2G komunikacijskim protokolom koji omogućuje dvosmjerni tok energije. U slučaju da je proizvodnja bila veća od potrošnje dodatna energija se koristila za punjenje EV, ako njegova baterija nije bila puna, a ako EV nije imao dovoljno energije kako bi zadovoljilo potrošnju onda je potrebna razlika bila zadovoljena energijom iz mreže. Početkom simulacije direktno se uključuje punjenje baterija, budući da je početni nivo SOC iznosio 59%. Nakon 8 sati, vozilo se prazni sve dok ne dosegne nižu tarifu u 22 sata, nakon čega počinje ponovno punjenje

U ovoj simulaciji promatrani parametri za mrežu, kritičnu potrošnju, EV i FN elektranu su: napon, struja, snaga te stanje napunjenosti baterije EV. Simulacija povezuje izvor mreže, kritičnu potrošnju koju glumi programabilno trošilo, FN elektranu i EV, a iz grafova koji su prikazani na slikama 5.48, 5,49 i 5.50 vidljivo je kako napon i struja mreže prate kritičnu potrošnju u ovisnosti o FN elektrani i EV što izravno utječe na ukupnu snagu sustava. Slike 5.49, 5.39 i 5.50 izravno su vezane uz slike 5.52, 5.53 i 5.54.

Maksimalna snaga mreže (slika 5.55) iznosila je 1321 W u 22:18 h. Vrijednost isto tako prati i maksimalan iznos napona i struje. Snaga kritične potrošnje za taj isti period (slika 5.56) iznosila je 106 W, FN elektrana u tom trenutku ne radi, a snaga punjenja EV u tom trenutku iznosi 1174 W. Minimalna snaga mreže (slika 5.55) u 09:37 h iznosila je -93 W, a snaga kritične potrošnje u to je vrijeme iznosila 71 W, FN elektrana je u tom trenutku proizvodila 167 W, a EV je u tom trenutku mreži predao 30 W. EV za vrijeme više tarife pokriva deficit energije i koristi suficit za punjenje. Predaje energiju glavnoj MG kako bi snaga razmjene s mrežom bila 0W, a za vrijeme niže tarife je uzima iz mreže. Maksimalna predana snaga EV-a vidljiva na slici 5.58 u 11:20 h iznosila je -427 W, što znači da je u tom trenutku došlo do pražnjenja baterije. Nadalje, na slici 5.61 vidljivo je da EV kreće s punjenjem baterija u trenutku početka simulacije, a punjenje traje sve do prestanka niže tarife, odnosno nakon što se baterija napunila u preostalom vremenu niže tarife izmjenjuje se stanje baterija između punjenja i mirovanja. Za vrijeme punjenja predznak snage na baterijama je pozitivan, a za vrijeme pražnjenja, odnosno više tarife predznak snage je negativan. Razlika između mreže, potrošnje i EV-a rezultat je pokrivanja gubitaka potrebnih za napajanje sustava, kao što su: opskrba pretvarača, napajanje svih ostalih komponenti ormara koji se koriste za nadzor sustava te gubici u vodovima. Maksimalna snaga proizvodnje FN elektrane sa slike 5.57 u 13:07 h iznosila je 238 W, a minimalna proizvodnja u 23:23 h iznosila je -12 W što je predstavljeno kao mjerna pogreška instrumenta.

Na slici 5.55. vidljivo je i kako EV mijenja stanja punjenja i pražnjenja. Punjenje počinje samim početkom simulacije te traje do 08:00 h, nakon čega nastupa pražnjenje koje traje sve do 22:00 h te nakon toga ponovno započinje punjenje do samoga kraja simulacije. Osim punjenja i pražnjenja baterija se još povremeno nalazi i u stanju mirovanja.

6. Zaključak

Koncept povezivanja mikromreža i električnih vozila zamjenjuje zastarjeli tradicionalni EES te predstavlja budućnost razvoja EES-a. Ulaganjem i razvojem daljnjeg koncepta mogućnosti dvosmjerne komunikacije između mreža i EV pridonosimo raznim ekonomskim i ekološkim mogućnostima. Samo neke od prednosti su smanjenje računa električne energije uz pomoć korištenja EV kao BESS, mogućnost većeg vršnog opterećenja bez dodatnog zakupa električne energije i značajno smanjenje emisija stakleničkih plinova. Kroz ovih pet simulacija detaljno su opisani i analizirani različiti scenariji vezani uz mogućnost implementacije obnovljivih izvora energije unutar EES te sustava vezanih za pohranu električne energije. Tijekom različitih simulacija prikupljeni su podaci o struji, naponu, snazi te stanju napunjenosti baterija tijekom razmjene energije s mrežom, proizvodnje iz FN elektrane, snage razmjene BESS-a, snage razmjene EV te kritičnoj potrošnji. Simulacije daju detaljniji uvid kako korisnik sa EV uz pomoć V2G komunikacije može pridonijeti optimiziranoj potrošnji energije te kako pojedini elementi utječu na mrežu. Primarna ideja rada bila je dokazati kako potrošač uz pomoć EV može u svoj sustav implementirati funkcionalnu mikromrežu bez kupnje zasebnog BESS-a. Kroz detaljnu analizu ovih pet simulacija omogućeno je dublje razumijevanje različitih konfiguracija koje uključuju prisutnost FN sustava, BESS-a, EV-a i kritične potrošnje, utječu na dinamiku i performanse elektroenergetske mreže. Rezultati nam pružaju izravan uvid u optimizaciju i bolje razumijevanje implementacije obnovljivih izvora energije i naprednih tehnologija skladištenja električne energije.

LITERATURA

Commented [MŽ1]: Obrisati prazninu između naslova i prve reference.

- [1] N. Hatziargyriou, "Microgrids Architectures and Control, National Technical University of Athens", 2014.
- [2] D. Donadel, F. Turrin, M. Conti i Luca Attanasio, "MiniV2G: An Electric Vehicle Charging Emulator" 2001.
- [3] J. Tomic, S. Letendre, W. Kempton, "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California. IEEE Transactions on Smart Grid" (2001).
- [4] A. Khan, "All You Need to Know About Microgrids Concept Explained," 2020, dostupno na:

https://www.engineeringpassion.com/all-you-need-to-know-about-microgrids-conceptexplained/ [17.06.2023.]

- [5] M. Žnidarec, G. Knežević, D. Šljivac, A. Sumper i Nemanja Mišljenović, "A Review of Energy Management Systems and Organizational Structures of Prosumers,".
- [6] UK Power Networks Services, "UK Power Networks Services," 2023, dostupno na: <u>https://ukpowernetworksservices.co.uk/insights-and-news/introduction-to-microgrids/</u> [17.06.2023.]
- [7] G. Shahgholian, "A brief review on microgrids: Operation, applications, modeling, and control", 2021., dostupno na:

https://onlinelibrary.wiley.com/doi/epdf/10.1002/2050-%207038.12885 .[17.06.2023.]

- [8] FranklinWH, "Microgrid energy system introduction," 2022, dostupno na: https://www.franklinwh.com/blog/microgrid-energy-system-introduction [17.06.2023.]
- [9] K. Velebit, "Fotonaponske ćelije na temelju listova fleksibilnog grafena,", U prvom broju Matematicko-fizičkog lista (1/249) školske godine 2012./2013. u rubrici "Iz svijeta znanosti" objavljen je kratak clanak na temu "Prozirne fotonaponske ćelije"
- [10] Bluesun Solar Co.,Ltd, "WHAT ARE SHINGLED SOLAR PANELS?," 2023, dostupno na: https://www.bluesunpv.com/blog/what-are-shingled-solar-panels b250 [18.06.2023.]
- [11] Peacock Media Group Pty Ltd, "PANELS, POLYCRYSTALLINE VS MONOCRYSTALLINE SOLAR PANELS," 2023, dostupno na: <u>https://www.solarquotes.com.au/panels/photovoltaic/monocrystalline-vs-polycrystalline/</u> [18.06.2023.]
- [12] . C. Chaouki Ghenai, "Grid-tied and stand-alone hybrid solar power system for desalination plant, 2018"
- [13] "What is a hybrid solar system?," dostupno na:

https://www.cleanenergyreviews.info/blog/2014/8/14/what-is-hybrid-solar. [18.06.2023.] [14] LUXPOWER Technology, "USER MANUAL LXP-LB-US 12K," 2021, dostupno na:

<u>https://jcsolarpanels.co.za/shop/solar-inverters/hybrid-inverters/luxpower-10kw-hybrid-solar-inverter/</u> [20.06.2023.]

- [15] P. S. Moses, M. A. S. Masoum i S. Hajforoosh, "2012. Distribution transformer stress in smart grid with coordinated charging of Plug-In Electric Vehicles. In 2012 IEEE PES Innovative Smart Grid Technologies (ISGT).".
- [16] L. Golić, "Pregled i usporedba punionica za električna vozila, 2020.".,
- [17] Mennekes Elektrotechnik GmbH & Co., "socket, Mennekes solutions: The solution for Europe: Type 2 charging socket with or without," 2012, dostupno na: <u>https://amonev.ie/uploads/UJztbptS/TYPE2.pdf</u> [08.07.2023.]
- [18] Electric car home, "Electric Car Home: Charging point connector types," 2019,dostupno na: <u>https://electriccarhome.co.uk/charging-points/charging-point-connector-types/</u>. [09.07.2023.]
- [19] Joosup, "What is a CHAdeMO Charger?," 2022, dostupno na: https://www.joosup.com/what-is-chademo-charger/ [11.07.2023.]
- [20] Auto, motor i sport, "Kako funkcionira ELEN-aplikacija? Radi, ali ne u potpunosti," 2021, dostupno na:

https://ams.hr/elen-aplikacija-radi-ali-ne-u-potpunosti/ <u>https://ams.hr/elen-aplikacija-radi-ali-ne-u-potpunosti/</u>[11.07.2023]

- [21] HEP Elektra, "Kupac s vlastitom proizvodnjom kategorija kućanstvo", 2022, dostupno na: <u>https://www.hep.hr/elektra/kucanstvo/kupac-s-vlastitom-proizvodnjom-kategorija-kucanstvo/1545</u>," [27 06 2023.]
- [22] Zakon o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji NN 138/2021 dostupan na: <u>Zakon o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji</u> (10.07.2023.).
- [23] Victron Energy B.V., "Victron-MultiPlus-800VA-5000VA-datasheet.pdf," 2023,dostupno na:

https://www.europe-solarstore.com/download/victron/Victron-MultiPlus-800VA-5000VA-datasheet.pdf [12.07.2023.]

- [24] Victron Energy B.V., "Phoenix Wechselrichter," 2022, dostupno na: https://image.schrackcdn.com/datenblaetter/h_pvbi24800-.pdf [12.07.2023.]
- [25] Victron Energy B.V., "BlueSolar Charge Controllers," 2022, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-Blue-Solar-Charge-Controller-MPPT-75-10,-75-15,-100-15,-100-20_48V-EN-.pdf</u> [12.07.2023.]
- [26] Victron Energy B.V., "Venus GX," 2023, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-Venus-GX-EN.pdf</u> [13.07.2023.]
- [27] Victron Energy B.V., "BMV-700 series: Precision Battery Monitoring," 2023, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-BMV-700-series-EN.pdf</u> [13.07.2023.]
- [28] Victron Energy B.V., "E.Meter," 2023, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-Energy-Meters-Selection-Guide-EN.pdf</u> [13.07.2023.]
- [29] Victron Energy B.V., "Gel and AGM Batteries," 2022, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-GEL-and-AGM-Batteries-EN.pdf</u> [13.07.2023.]
- [30] Victron Energy B.V., "12,8 & 25,6 Volt Lithium-Iron-Phosphate Batteries Smart," 2023, dostupno na:

https://www.victronenergy.com/upload/documents/Datasheet-12,8-&-25,6-Volt-lithiumiron-phosphate-batteries-Smart-EN.pdf [13.07.2023.]

- [31] Victron Energy B.V., "VE.BusBMS," 2022, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-VE-Bus-BMS-EN.pdf</u> [13.07.2023.]
- [32] Victron Energy B.V., "Cerbo GX, Cerbo-S GX and GX Touch," 2023, dostupno na: <u>https://www.victronenergy.com/upload/documents/Datasheet-Cerbo-GX-GX-Touch-EN.pdf</u>. [13.07.2023.]
- [33] VOLTCRAFT,"DPPS-32-30," 2021, dostupno na: <u>https://asset.conrad.com/media10/add/160267/c1/-/en/001086563DS01/podatkovna-</u> <u>tablica-1086563-voltcraft-dpps-32-30-laboratorijsko-napajanje-podesivo-1-32-vdc-0-</u> <u>30-a-960-w-usb-programabilno-broj-izlaza-1-x.pdf</u> [13.07.2023.]
- [34] PeakTech, "PeakTech® P 2280 DC electronic load with USB," 2016, dostupno na: https://www.peaktech.de/uk/datasheet/0ec271b4f33c4cbba3be3cd0ace73a06. [13.07.2023.]
- [35] Mean Well, "MSP-300-24*MEANWELL," 2016, dostupno na: https://meanwell.html [14.07.2023.]
- [36] HEP ODS, "Kupac s. vlastitom proizvodnjom," 2016,dostupno na: https://www.hep.hr/ods/korisnici/kupac-s-vlastitom-proizvodnjom/29"[27.06.2023.]

ŽIVOTOPIS

Marko Kenjerić rođen je 23. Studenog 1998. u Virovitici. Nakon završetka osnovne škole 2013. upisuje Srednju Školu u Slatini, smjer Opća Gimnazija. Nakon završetka srednje škole 2017. godine, polaže državnu maturu te upisuje preddiplomski studij elektrotehnike na Fakultetu elektrotehnike, računarstva i informacijskih tehnologija. Na drugoj godini studija odabire izborni blok elektroenergetika. Godine 2021. završava preddiplomski studij i upisuje diplomski studij elektrotehnike smjer održiva elektroenergetika.

Potpis autora