Koordinacija sustava regulacije napona i reaktivnih snaga na različitim naponskim razinama

Štefok, Matija

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:403007

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-09

Repository / Repozitorij

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
Koordinacija sustava regulacije napona i reaktivnih snaga na različitim naponskim razinama

Diplomski rad

Matija Štefok

Osijek, 2015.
SADRŽAJ

1. UVOD ... 1
 1.1. Zadatak diplomskog rada... 2

2. NAZIVNI NAPON U ELEKTROENERGETSKOM SUSTAVU .. 3
 2.1. Kvaliteta električne mreže.. 3
 2.2. Ovisnost napona o jalovoj snazi ... 4
 2.3. Promjena napona tokom vremena .. 6
 2.4. Proračun pada napona ... 9

3. JALOVA SNAGA ... 15
 3.1. Potrebe potrošača za jalovom snagom ... 15
 3.2. Elementi kao proizvođači i potrošači jalove energije .. 17
 3.2.1. Transformatori ... 18
 3.2.2. Zračni vodovi i kabeli.. 18
 3.3. Uzroci lošeg faktora snage ... 19
 3.4. Osnove kompenzacije jalove snage .. 20

4. KORDINIRANA REGULACIJA NAPONA I JALOVE SNAGE U
 ELEKTROENERGETSKOM SUSTAVU .. 23
 4.1. Sredstva za smanjenje pada napona ... 23
 4.2. Povećanje pogonskog napona .. 25
 4.3. Smanjenje reaktancije .. 25
 4.4. Smanjene jalove snage u mreži .. 26
 4.5 Kondenzatorske baterije .. 26
 4.5.1. Potrebna snaga za kompenzaciju ... 29
 4.5.2. Način kompenzacije ... 30
 4.6. Uređaji za automatsku regulaciju kompenzacije ... 35
 4.6.1. Skokovita regulacija jalove snage .. 35

5. RAČUNALI MODEL PRIJENOSNOG PODRUČJA OSIJEKA...................................... 37
 5.1. Dijagram i rezultati prvog stanja ... 40
 5.2. Dijagram i rezultati drugog stanja ... 46
 5.3. Usporedba rezultata i objašnjenje ... 57

6. ZAKLJUČAK .. 59

LITERATURA .. 61

SAŽETAK .. 63

ABSTRACT ... 63

ŽIVOTOTIPIS ... 64

PRILOG ... 65
SAŽETAK

Potražnja za električnom energijom je u porastu kao i neizbježno povećanje cijene, stoga se i trenutno najveći elektroenergetski sustavi suočavaju s bolnom činjenicom, a to je potreba za ulaganjem u revitalizaciju postojećih sustava, odnosno ulaganje u izgradnju novih prijenosnih i distributivnih sustava. Potrošači zahtijevaju pouzdanu i kvalitetnu opskrbu električne energije, tj napon u svakom trenutku mora biti unutar mrežnih pravila, a shodno tome elektroenergetski sustav moram zadovoljiti takve zahtjeve s obzirom na različita pogonska stanja. Ključni parametri za sigurnu i kvalitetnu opskrbu postiže se regulacijom napona i kompenzacije jalove snage. U računalnom modelu prijenosnog područja Osijek prikaza je koordinacija regulacije napona i jalove snage na više naponskih razina. Koordinirana regulacija u ovom radu ostvarena je pomoću kompenzacijijskih uređaja (kondenzatorske baterije, prigušnica).

Ključne riječi: nazivni napon, reaktivna snaga, kompenzacija.

ABSTRACT

Electricity demand is increasing as the inevitable increase in prices, and therefore currently the largest electric power systems face the painful fact, and that is the need for investing in the rehabilitation of existing systems, and investing in the construction of new transmission and distribution systems. Consumers need reliable and quality supply of electricity, ie the voltage at all times must be within the network policy, and consequently the power system must meet these requirements due to the different operating states. Key parameters for safe and high-quality supply is achieved by regulating the voltage and reactive power compensation. The computer model of the transmission area Osijek display the coordination of voltage control and reactive power to more voltage levels. Coordinated regulation of this work was realized by means of compensating devices (capacitor battery, damping coil).

Key words: rated voltage regulation, reactive power, compensation.