Pogon za proizvodnju građevinskih ljepila i praškastih materijala

Juroš, Tomislav

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:573757

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-07

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA OSIJEK

Sveučilišni studij

POGON ZA PROIZVODNJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA

Završni rad

Tomislav Juroš

Osijek, 2016.
Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom studiju

Osijek, rujan 2016.

Odboru za završne i diplomске ispite

Prijedlog ocjene završnog rada

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Tomislav Juroš</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij, smjer:</td>
<td>Sveučilišni preddiplomski studij elektrotehnike</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>3753, 2013.</td>
</tr>
<tr>
<td>Mentor:</td>
<td>Izv.prof.dr.sc. Tomislav Barić, dipl.ing.el.</td>
</tr>
<tr>
<td>Sumentor:</td>
<td>-</td>
</tr>
<tr>
<td>Naslov završnog rada:</td>
<td>POGON ZA PROIZVODNJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA</td>
</tr>
<tr>
<td>Primarna znanstvena grana rada:</td>
<td>Elektrotehnika</td>
</tr>
<tr>
<td>Sekundarna znanstvena grana (ili polje) rada:</td>
<td>Energetika</td>
</tr>
<tr>
<td>Predložena ocjena završnog rada:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:</th>
<th>Primjena znanja stečenih na fakultetu:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postignuti rezultati u odnosu na složenost zadatka:</td>
<td></td>
</tr>
<tr>
<td>Jasnoća pismenog izražavanja:</td>
<td></td>
</tr>
<tr>
<td>Razina samostalnosti:</td>
<td></td>
</tr>
</tbody>
</table>

Potpis sumentora:
Potpis mentora:

Dostaviti:
1. Studentska služba

Potpis predsjednika Odbora: ______________________

Dostaviti:
1. Studentska služba
IZJAVA O ORIGINALNOSTI RADA

Osijek, rujan 2016.

Ime i prezime studenta: Tomislav Juroš

Studij: Sveučilišni preddiplomski studij elektrotehnike

Mat. br. studenta, godina upisa: 3753, 2013.

Ovom izjavom izjavljujem da je rad pod nazivom:

POGON ZA PROIZVODNJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA

izrađen pod vodstvom mentora

Izv.prof.dr.sc. Tomislav Barić, dipl.ing.el.

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

Juroš
SADRŽAJ

1. UVOD .. 1
 1.1. Opis zadatka: ... 1

2. POGON ZA PROIZVODNJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA „TERMO LINE d.o.o“ .. 2
 2.1. O pogonu .. 2

3. POSTUPAK PROIZVODNJE ... 5
 3.1 Tehnološki proces proizvodnje... 5
 3.2 Konačni proizvodi dobiveni u pogonu .. 6
 3.3. Receptura za pojedine proizvode ... 9
 3.4. Sirovina .. 10
 3.5. UPRAVLJANJE LINIJOM PRIPREME MATERIJALA .. 12
 3.5.1. Transporteri .. 14
 3.5.2. Rotacijska sušara .. 16
 3.5.3. Mlin čekićar... 21
 3.5.4. Kružno sito ... 24
 3.6. SILOSI .. 28
 3.7. LINIJA HOMOGNIZACIJE MATERIJALA .. 29
 3.7.1. Mješalica ... 31
 3.7.2. Uređaj za punjenje vreća (punilica) ... 36
 3.8. ROBOT ZA PALETIZACIJU ABB IRB 6000 S3: ... 39
 3.9. Stroj za omotavanje paleta zaštitnom folijom (pakerica) .. 43

4. PRORAČUN POTROŠNJE ELEKTRIČNE ENERGIJE POGONA .. 46

5. ZAKLJUČAK .. 49

LITERATURA ... 50

POPIS KORIŠTENIH OZNAKA I SIMBOLA .. 51

POPIS SLIKA, TABLICA .. 52

SAŽETAK .. 55

ABSTRACT .. 55

ŽIVOTOPIS ... 56
1. UVOD

U sadržaju ovog završnog rada bit će opisan detaljan postupak proizvodnje građevinskih ljepila i praškastih materijala od ulaska sirovine u pogon za proizvodnju građevinskih ljepila i praškastih materijala „Termoline d.o.o.“ pa sve do konačnog proizvoda. Pogon se sastoji od nekoliko električnih strojeva i svaki od njih ima svoju funkciju u nastanku konačnog proizvoda. Strojevi su međusobno povezani i ovise jedan od drugog, pod time se podrazumijeva da pojedini stroj ne može raditi ako prethodno ne dobije materijal obrađivan u drugom stroju. Pogon se može podijeliti u dvije velike cjeline koji obuhvaćaju liniju pripreme materijala i liniju homogenizacije materijala. Pored te dvije velike cjeline, ovaj pogon obuhvaća još robota koji ima funkciju da slaže proizvode te stroj koji omotava proizvode zaštitnom folijom. Osim opisa funkcija pojedinih strojeva, biti će opisani i elektromotori koji ih pogone. Sadržaj ovog završnog rada će biti popraćen fotografijama koje su osobno napravljene u prostoru pogona.

1.1. Opis zadatka:

Uvidom u pogon i dostupnu dokumentaciju treba proučiti i opisati pogon od ulaska poluproizvoda i/ili komponenata konačnog proizvoda (pijesak, mljeveni kamen, vapno, cement) u njega do konačnog proizvoda (Praškasto ljepilo na cementnoj bazi za lijepljenje i armiranje termo izolacijskih ploča od kamene vune, stiropora i stirodura, ljepilo za lijepljenje vanjske i unutrašnje keramike, plivajući estrih, cementni estrih) u pogonu za proizvodnju građevinskih ljepila i praškastih materijala „Termo line d.o.o.“. Opisati: procese u navedenom pogonu, elektromotorni pogon, elektromotore, te njihove funkcije. Sadržaj popratiti odgovarajućim skicama, slikama i shemama koje daju viziju rada i funkcije ovakvog pogona.
2. POGON ZA PROIZVODNJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA „TERMO LINE d.o.o“

2.1. O pogonu

Ovaj pogon se nalazi pod vlasništvom tvrtke „Blažević d.o.o.“ koja je osnovana i registrirana na trgovačkom sudu u Zagrebu 1990. godine. Tvrtka „Blažević d.o.o.“ se bavi proizvodnjom predmeta od INOX-a, aluminija, mesinga i plastičnih materijala. Proizvodni program obuhvaća klupe od INOX-a raznih dimenzija, rukohvate za vrata raznih dimenzija i oblika od INOX-a, aluminija, mesinga i drva, plastične kutije za otpadne baterije, stare lijekove, zaštitne kutije, sve vrste reklama i natpisa, sve vrste prometnih ogledala, plastičnu stolariju i još neke manje proizvode.

Pogon za proizvodnju građevinskih ljepila i praškastih materijala „Termoline d.o.o.“ je proizveden u dijelovima u mjestu Aranđelovac iz Srbije, a proizvođač pogona je tvrtka „IVA procesna oprema d.o.o.“ koja je izvršila postupak montaže pogona. Pogon je pušten u rad 2011. godine, a obuhvaća široki proizvodni program proizvodnje materijala koji se koriste u graditeljstvu. Svi proizvodi zadovoljavaju visoke standarde kvalitete i kontrolirani su u suradnji sa švicarskim proizvođačem aditiva i sirovina. „Termoline“ program osim proizvoda koji se dobivaju pogonom opisanim u završnom radu obuhvaćaju još sljedeće proizvode [1]:

- fasadni stiropor i stiropor za posebne namjene,
- dekorativne žbuke,
- građevinske boje,
- akrilne impregnacije.

Proizvodi ovog pogona se osim domaćeg tržišta mogu pronaći i u susjednim državama. Pogon se nalazi i djeluje u industrijskoj zoni u Vinkovcima. Tvrtka „Blažević d.o.o.“ trenutno broji oko 60 zaposlenih ljudi, a za rad pogona za proizvodnju građevinskih ljepila i praškastih materijala je potrebno 5 do 6 zaposlenika koji paze na rad pogona. Vanjski izgled pogona se može vidjeti na slici 2.1. [4], a unutrašnjost pogona na slici 2.2. [4].
2. POGON ZA PROIZVODNJJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA

Slika 2.1. Ulaz u tvrtku „Termoline d.o.o.“

Slika 2.2 Unutrašnjost pogona
2. POGON ZA PROIZVODNJU GRAĐEVINSKIH LJEPILA I PRAŠKASTIH MATERIJALA

Pogon za proizvodnju građevinskih ljepila i praškastih materijala se može podijeliti u dvije velike cjeline, odnosno dvije linije proizvodnje, a to su linija za pripremu materijala i linija homogenizacije materijala. Osim njih, ovaj pogon još obuhvaća robota koji ima funkciju slaganja gotovih upakiranih proizvoda na paletu te stroj koji omotava paletu s proizvodima rastezljivom folijom radi zaštite. Shematski prikaz pogona je je prikazan na slici 2.3. [4].

Slika 2.3. Shematski prikaz cijelog pogona

U liniji pripreme materijala biti će obuhvaćeni redom sljedeći procesi:

1. unošenje materijala (šljunak) pomoću utovarivača
2. sušenje materijala u rotacijskoj sušari
3. mljevenje materijala u mlinu
4. prosijavanje materijala kroz kružno sito
5. unošenje materijala preko pužnih transportera u silose namijenjene za mljeveni kamen

U liniji homogenizacije materijala biti će obuhvaćeni sljedeći procesi:

1. miješanje materijala u mješalici
2. punjenje vreća gotovim proizvodom
3. POSTUPAK PROIZVODNJE

3.1 Tehnološki proces proizvodnje

Hodogram 3.1. Tehnološki proces proizvodnje (MS Visio 2016)
3.2 Konačni proizvodi dobiveni u pogonu

STIROFIX prima:

To je praškasto ljepilo na bazi cementa za lijepljenje termo izolacijskih ploča od kamene vune, stiropora i stirodura na podloge od betona, opeke, gipsa i žbuke. Površina prethodno treba biti dobro očišćena od prašine i masnoće. Na termo izolacijske ploče se nanosi trakasto po rubovima i točkasto na sredini ploče te se zalijepi na pripremljenu površinu. Ljepilo se miješa s čistom vodom [1].

Potrošnja: (3 - 4) kg/m²

STIROFIX extra:

To je praškasto ljepilo na cementnoj bazi za armiranje termo izolacijskih ploča od stirodura, stiropora i kamene vune. Površina na koju se nanosi ljepilo treba biti dobro očišćena i suha. Kod postavljanja staklene mreže na ploču stiropora, nanosi se ljepilo gleterom i utiskuje se mrežica sa preklopima najmanje 10 cm. Nakon dvadesetak sati se čitava površina zagladi slojem ljepila. Ljepilo se miješa sa čistom vodom, te ne smije biti grudica [1].

Potrošnja: (3 - 4) kg/m²

STIROFIX termoline:

To je mineralna prirodno bijela masa za lijepljenje i armiranje ploča od stiropora, stirodura i kamene vune. S dodatkom sitnih stiropornih granula poboljšavaju koeficijent toplinske provodljivosti. Odlikuje se visokom paropropusnosti i izvrsnom kvalitetom obrađe. Ljepilo se miješa s čistom vodom, zatim se smjesa ostavlja 10 minuta i nakon toga se ponovno miješa [1].

Potrošnja: lijepljenje (2 - 4) kg/m², armiranje (3 – 5) kg/m²,

KERAFIX prima:

Služi za lijepljenje svih tipova građevinske keramike (zidne, podne, fasadne) za zidanje siporeks blokovima (laki betoni), a služi i za popravka manjih oštećenja. Površina prethodno treba biti dobro očišćena, a prije lijepljenja površina mora biti navlažena vodom. Ljepilo se miješa s vodom. Nanosi se zupčastim gleterom [1].

Potrošnja: (2 - 4) kg/m²,
KERAFIX extra:

Služi za lijepljenje svih tipova građevinske keramike, prirodnog i umjetnog kamena na podloge od betona, opeke, žbuke i drvolita. Koristi se u svim unutarnjim i vanjskim prostorima, a posebno pri oblaganju terasa, stepeništa. Površina na koju se nanosi mora biti bez pukotina i očišćena od prašine i masnoća, te navlažena vodom prije lijepljenja. Nanosi se zupčastim gleterom [1].

Potrošnja: (2 - 4) kg/m²

KERAFIX flex:

Fleksibilno ljepilo koje se koristi za polaganje keramičkih pločica izloženih statičkom i termičkom naprezanju. Služi za polaganje novih pločica na stare, teške keramike od prirodnog i umjenog kamena. Površina mora biti čvrsta i bez pukotina, prethodno očišćena od prašine i masnoće, a prije lijepljenja površina mora biti navlažena vodom. Nanosi se zupčastim gleterom [1].

Potrošnja: (4 - 6) kg/m²

ESTRIHIV:

To je gotova glazura. Estrih ili cementni estrih se sastoji od smjese cementa, vode i pijeska. Svaki od ovih materijala zbog svojih karakteristika u odnosu na količinski omjer neposredno utječe na svojstva estriha. Estrih mora biti čist i ravan. Debljina sloja treba biti (2 - 8) cm [1].

Potrošnja: oko 16 kg/m²

TERALIV:

Plivajući estrih se izvodi ako je potrebna toplinska ili zvučna izolacija ili ako se želi veća debljina poda, a pritom se ne želi dodatno opteretiti betonsku podlogu. Posebno je pogodan za podna grijanja s toplom vodom. Nosivost plivajućeg estriha ovisi o debljini estriha i vrsti izolacijskih materijala [1].

Potrošnja: oko 18 kg/m²
Svi ovi proizvodi služe za što bolju izolaciju domova. Ljudi su kroz povijest naučili kako izolirati svoje domove od toplinskih gubitaka koristeći se različitim tehnikama i načinima. U tradicionalnim kamenim ili zemljanim kućama postojala je prirodna, ali nenamjerna ventilacija, jer je zrak strujao kroz pukotine koje su postojale oko vrata, krova ili prozora. To je omogućavalo da u kućama ne dolazi do pojave vlage.

Promatrajući efikasnost takvih kuća, takva kuća bi trošila znatno veću količine energije nego ona s dobrom izolacijom. Suvremena znanost graditeljstva je stavila naglasak na zaustavljanje strujanja zraka kroz kuće, odnosno, time se postiže ugodna temperatura te značajno manja potrošnja energije. Često se postavlja pitanje da li se termoizolacijom sprječava kuću da „diše“. U teoriji, postoji takva mogućnost ako je sloj izolacije puno deblji nego što je potrebno, onda je početna investicija u potpunosti neisplativa, time se nepotreban povećava izolacije i troškovi. Izolacija kuće obuhvaća podove, krovove, zidove i prozore.

Slika 3.1. Toplinski gubici kuće zbog loše izolacije
3.3. Receptura za pojedine proizvode

Tablica 3.1. Receptura za proizvode u postotcima

<table>
<thead>
<tr>
<th></th>
<th>CEMENT [%]</th>
<th>Kvarcni [%]</th>
<th>Pišetak [%]</th>
<th>Kameno brašno (0 - 0,6) mm [%]</th>
<th>Kameno brašno (0,6 - 1,2) mm [%]</th>
<th>Celulozni eter [%]</th>
<th>Ugašivač [%]</th>
<th>Celulozna vlakna [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIROFIX prima</td>
<td>24,5</td>
<td>55</td>
<td>12,5</td>
<td>6,5</td>
<td>1,8</td>
<td>0,2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>STIROFIX extra</td>
<td>25,7</td>
<td>56</td>
<td>16</td>
<td>-</td>
<td>1,8</td>
<td>0,25</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>STIROFIX termoline</td>
<td>25,5</td>
<td>55,4</td>
<td>16,7</td>
<td>-</td>
<td>1,9</td>
<td>0,25</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>KERAFIX prima</td>
<td>24,5</td>
<td>56</td>
<td>8,3</td>
<td>10</td>
<td>1</td>
<td>0,2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KERAFIX extra</td>
<td>24,7</td>
<td>56</td>
<td>17,2</td>
<td>-</td>
<td>1,2</td>
<td>0,25</td>
<td>0,65</td>
<td></td>
</tr>
<tr>
<td>KERAFIX flex</td>
<td>24,7</td>
<td>55</td>
<td>18</td>
<td>-</td>
<td>1,8</td>
<td>0,25</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>ESTRILIV</td>
<td>42,4</td>
<td>57,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TEARLIV</td>
<td>47</td>
<td>53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
3. POSTUPAK PROIZVODNJE

3.4. Sirovina

Prije nego što dođe do pokretanja pogona, potrebno je pripremiti sirovinu. Cijeli proces kreće tako da se utovarivačem (Slika 3.3. [4]) doveze pijesak ili sitni kamen koji se istresa u usipni koš (Slika 3.2. [4]) nakon čega se sirovina transportnim trakama odvodi do rotacijske sušare. Od šest silosa, dva se pune usitnjenim kamenim (kamenim brašnom), jedan se puni kvarcnim pijeskom, dok preostala tri služe za cement i vapno. Punjenje silosa vapnom i cementom se izvršava izvan pogona. Kamion koji dovozi materijal puni silose pomoću cijevi koja se postavi na otvor silosa, a sve se odvija izvan pogona.

Slika 3.2. Usipni koš
Slika 3.3. Utovarivač
3.5. UPRAVLJANJE LINIJOM PRIPREMЕ MATERIJALA

Prema literaturi [3], upravljanje cjelokupnom linijom pripreme materijala se vrši preko glavnog pulta upravljanja i pomoćnog pulta upravljanja. Glavni pult upravljanja se sastoji od operatorskog panela i upravljačkih preklopk. On je integriran u prednju stranu (vrata) glavnog ormara upravljanja. Pomoćni pult napajanja ovog pogona se nalazi iznad platforme sušare. Pored sušare se također nalazi i prekidač sigurnosnog isključenja. Pritiskom na njega, vrši se prekidanje upravljačkog napona i zaustavljanje svih pogona.

Na slici 3.4. [4] je prikazan glavni pult upravljanja linijom pripreme materijala. Na njemu se vidi operatorski panel, razni prekidači i signalizacijske lampice oko kojih se nalaze pločice koje ukraćko pokazuju njihovu funkciju. Na lijevoj strani pulta se nalazi glavni prekidač, a iznad njega su ampermetri koji prikazuju struje motora mlina i otprašivanja. Glavni prekidač služi za uključenje i isključenje napajanja kompletnog pulta upravljanja, a uključenje upravljačkog napona se vrši preko bijelog prekidača na kojem piše „KOMANDNI NAPON“. Ventilator otpašivanja se uključuje pritiskom na zeleni prekidač „START OTPRAŠIVANJA“, a zaustavlja se pritiskom na prekidač „STOP OTPRAŠIVANJA“. O otprašivaču će se više saznati u nastavku.

Mlin se uključuje na zeleni prekidač „START MLINA“, a isključuje pritiskom na prekidač „STOP MLINA“. Kao pokretač mlina se koristi elektronski uređaj, takozvani „SOFT-STARTER“ koji vrši postepeno zalijetanje motora u određenom vremenskom intervalu. Nakon što se izvrši zalijetanje motora, uključuje se signalizacija na glavnom pultu napajanja. Tek po završenom zalijetanju, moguće je započeti režim automatskog rada. Da bi se takav režim pokrenuo, potrebno je prekidač „AUTOM.-RUČNO“ prebaciti na automatsko te nakon toga stisnuti prekidač „START AUTOM. RADA“. Pri pokretanju automatskog rada, izvršava se pokretanje pogona jednog za drugim, sa zadrškom od 3 sekunde.

S desne strane pulta se nalazi signalizacijske lampice koje signaliziraju popunjenost silosa, kao i način rada pogona. Funkcija svake lampice je istaknuta na pločica iznad njih. Osim njih, tu se nalazi i jedna crvena signalizacijska lampica „ALARM“ koja se upali u slučaju nepravilnog stanja na liniji. U tom slučaju se gase svi uređaji na liniji.
Slika 3.4. Glavni ormar upravljanja linijom pripreme materijala

Na upravljačkom ormaru se nalaze i obavezna uputstva za rukovanje ovim ormarom, kao i sigurnosni zahtjevi.

Pomoćni pult upravljanja (LP1) se nalazi iznad platforme rotacijske sušare. Na njemu se nalaze prekidači za grijanje zraka u sušari. Tu se nalaze 2 prekidača, jednim se pojačava grijanje gorionika ("TEMPERATURA +"), a drugim se smanjuje grijanje ("TEMPERATURA –"). Oba omogućuju stepenastu regulaciju grijanja zraka. Iznad preklopnika se nalaze zaslon koji prikazuje temperaturu zraka na izlazu iz sušare, kao i temperaturu zraka na ulazu u sušaru. Pristup pomoćnom pultu napajanja nije bio moguć.
3.5.1. Transporteri

Slika 3.5. Spiralni transporter Slika 3.6. Procesni transporter

3. POSTUPAK PROIZVODNJE

Slika 3.7. Izvedba motora na pužnom transporteru

Slika 3.8. Natpisna pločica reduktora

Slika 3.9. Natpisna pločica motora
Rotacijska sušara

Rotacijska sušara je industrijski stroj koji je zadužen za smanjivanje tekuće mješavine, odnosno vlage tako da se materijal stavi u izravni kontakt s grijanim plinom (Slika 3.10. [4]). Takve sušare se koriste za sušenje različitih vrsta materijala, te se njome lako upravlja. Ona izgleda poput velike cilindrične cijevi te je obično od tla odvajaju betonski stupovi ili čelične grede. Prema literaturi [5], rotacijska sušara može biti blago nagnuta u jednu stranu, odnosno u stranu na koju materijal poslije procesa izlazi, a to je napravljeno kako bi materijal lakše izlazio pod djelovanjem sile teže, ili u horizontalnom položaju. Sušara rotira te se tako i materijal podiže, a kada dođe dovoljno visoko, on pod djelovanjem sile teže pada te pritom prolazi kroz vruće strujanje zraka, a zatim pada na dno sušare. Ovo strujanje zraka može biti takvo da se topli zrak kreće od početka prema kraju sušare ili obrnuto. U ovom pogonu se vrući zrak kreće u smjeru ulaza prema izlazu materijala iz sušare.
3. POSTUPAK PROIZVODNJE

GRADA ROTACIJSKE SUŠARE:

Rotacijska sušara je kompaktna cjelina koja omogućava sušenje sirovine, u ovom slučaju sitnog kamena i pijeska. Ona se sastoji od tri cjeline: ulazni dio, tijelo sušare te izlazni dio. Ulazni dio ima zadatak da istovremeno omogući ulaz toplog zraka grijanog plinom i sirovine koja se suši u tijelu sušare. Izlazni dio služi za usmjeravanje toplog zraka i suhog materijala na transportnu traku. Sušara je konstruirana od masivnih čeličnih dijelova i vatrootpornih limova. Izvana je obložena izolacijskim materijalom kako bi se što efikasnije iskoristio grijani zrak. Iznad sušare se nalazi i usisnik koji sprječava da prašina onečišćuje pogon (Slika 3.11. [4]).
Rotacijsku sušaru pokreće elektromotor, njegova namjena je da rotira sušaru pomoću zupčanika (Slika 3.12. [4]). Na osovinu motora se nalazi zupčanik s puno manjim promjerom i brojem zubi nego zupčanik koji se nalazi okolo cijele sušare. Zupčanik je strojni dio u obliku kruga s pravilno raspoređenim zubima. Zupčanici se uglavnom koriste za rotiranje ili prijenos snage, odnosno primjenjuje se sila na zube drugog zupčanika. Na motoru se nalazi i reduktor koji služi da bi se smanjila brzina vrtnje. Radi sigurnosnih razloga se okolo sušare nalazi ograda. Natpisnu pločicu motora nije bilo moguće slikati zbog nepristupačnosti, a podaci motora su preuzeti s web stranice proizvođača motora [6].
Grijanje zraka u rotacijskoj sušari je omogućeno pomoću plinskog plamenika s upuhivanjem zraka marke Riello RS 100 (Slika 3.13. [4]). On je pokretan elektromotorom snage 1,5 kW čija natpisna pločica se može vidjeti na slici 3.14. [4]. Plamenik je potrebno barem jednom godišnje provjeravati, a tu ubrajamo analizu ispušnih plinova, zamjena filtra za plin ukoliko je prljav,
čišćenje prozorčića za kontrolu plamena, provjera glave za izgaranje, učvršćivanje otpuštenih vijaka i provjera da ne dolazi do propuštanja plina na bilo kojem dijelu plamenika. Za rad plamenika potrebno je imati konstantan dovod goriva potrebnog za izgaranje.

Slika 3.13. Plamenik Riello RS 100

Slika 3.14. Natpisna pločica motora plamenika
3.5.3. Mlin čekićar

Mlin čekićar je stroj namijenjen za mljevenje prije toga proсуšene mase šljunka na određenu granulaciju potrebnu za proizvodnju građevinskih ljepila. Granulacije koje se koriste u pogonu su (0 – 0,6) mm i (0,6 – 1,2) mm. Prosуšena masa se u mlin dovodi procesnim transporterom. Ako se kao sirovina koristi pijesak, i on također prolazi kroz mlin.

Mlin je inače jedan od najuniverzalnijih strojeva čiji se rad zasniva na korištenju energije čekića, odnosno energije rotacijskih dijelova mlina, ali i međusobnim sudaranjem čestica unutar mlina i razbijanjem od stijenke mlina. Elektromotor koji pokreće ovaj mlin je snage 37 kW što znači da je mlin čekićar velik potrošač električne energije (Slika 3.15. [4]). Napravljen je od čeličnih profila kako bi bio što otpornija na trošenje, a sama konstrukcija je napravljena tako da se dijelovi mogu promijeniti u vrlo kratkom vremenskom roku u slučaju da dođe do stradanja pojedinih dijelova. Kućište mлина je napravljeno od čeličnih ploča i ono je montirano na vratilo. Unutar kućišta se nalaze čekići i sito. Čekići su dijelovi izrađeni od termički obrađenog čelika sa oznakom C40. To su rotirajući dijelovi koji se nalaze na centralnoj osnovi koja je priključena na motor, a sito okružuje čekiće osim na mjestu gdje materijal ulazi. Rotor s čekićima na njemu mora biti dobro izbalansiran prije prvog korištenja. Odnos otvorenih površina za ubacivanje materijala i snage pogonskog motora mora biti dovoljno velik kako ne bi došlo do pregrijavanja mlina.

Slika 3.15. Pogonski motor mлина čekićara
Na motoru nije bilo moguće fotografirati natpisnu pločicu jer je nema. Pomoću karakteristika motora napisanih na shemi motora mlina (Slika 3.16. [4]) i naziva proizvođača na motoru mogu se pronaći odlike motora na internet stranici proizvođača motora [7].

Tablica 3.4. Natpisna pločica motora ZK 200 L-2 [7]

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>ATB SEVER d.o.o.</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Niskonaponski trofazni zatvoreni motor s kaveznim rotorom</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>37 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>400 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>68 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,90</td>
</tr>
<tr>
<td>Brzina vrtnje</td>
<td>2940 o/min</td>
</tr>
</tbody>
</table>
Slika 3.16. Shema motora mlina (MS Visio 2016)
3.5.4. Kružno sito

Slika 3.17. Kružno sito
Elektromotor koji pokreće kružno sito je snage 5,5 kW i može se vidjeti na slici 3.17. [4]. Natpisnu pločica motora se nalazi na slici 3.18. [4].

![Slika 3.18. Natpisna pločica motora kružnog sita](image)

Tablica 3.5. Natpisna pločica motora 132M2-6

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>Moto-technik</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Asinkroni motor</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>5,5 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>380/600 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>12,9/7,43 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,77</td>
</tr>
<tr>
<td>Brzina vrtne</td>
<td>960 o/min</td>
</tr>
</tbody>
</table>

Prosijana masa iz kružnog sita se pužnim transporterom dostavlja u silose 1,2 ili 3, ovisno o tome o kojoj se masi radi. Ako se kao početna sirovina koristi šljunak, onda se takva masa poslije prosijavanja naziva kameno brašno koje se za proizvodnju koristi u 2 različite vrste granulacija i kao takvo popunjava silose 1 i 3, a u silos 2 se koristi za kvarcni pjesak. Pužni transporter se može vidjeti na slici 3.17. [4], a natpisna pločica motora koji ga pogoni se može vidjeti na slici 3.19. [4].
Kako bi se u pogonu smanjila količina prašine koja nastaje tijekom procesa proizvodnje, koristi se otprašivač (Slika 3.20. [4]). Okružen je metalnom konstrukcijom koja mu daje stabilnost. Na njemu su lako izmjernje plastične vreće za otpad. Elektromotor kojim se omogućuje usisavanje prašine je snage 4 kW, a njegova natpisna pločica se nalazi na slici 3.21. [4]. Cijevima je povezan s rotacijskom sušarom, mlinom i kružnim sitom radi skupljanja prašine.

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>Elprom Harmanli</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Asinkroni motor</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>3 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>220/380 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>12,3/7,1 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,78</td>
</tr>
<tr>
<td>Brzina vrtnje</td>
<td>1430 o/min</td>
</tr>
</tbody>
</table>

Slika 3.19. Natpisna pločica motora pužnog transportera

Tablica 3.6. Natpisna pločica motora AT 100 L4
Slika 3.20. Otprašivač

Slika 3.21. Natpisna pločica motora otprašivača
3. POSTUPAK PROIZVODNJE

3.6. SILOSI

[Slika 3.22. Silosi izvana]

MATERIJALI UNUTAR SILOSA:

1. silos : kameno brašno - granulacija (0 - 0.6) mm
2. silos : kameno brašno - granulacija (0.6 – 1.2) mm
3. silos : kvarcni pijesak
4. silos : cement
5. silos : cement
6. silos : vapno
3.7. LINIJA HOMOGNIZACIJE MATERIJALA

Prema literaturi [3], upravljanje linijom homogenizacije s vrši preko glavnog pulta za upravljanje te pomoćnog pulta upravljanja. Glavni pult upravljanja (GOU) se sastoji od operatorskog panela upravljanja i upravljačkih preklopki i prekidača. On je integriran u prednju stranu (vrata) glavnog ormara upravljanja mješalicom. Pomoćni pult upravljanja nosi oznaku LP1. Na njemu se nalazi preklopnik za start rada punilice, uređaja koji će biti opisan u nastavku.

Prije početka rada, treba provjeriti da li su zadovoljeni svi uvjeti za normalan rad linije homogenizacije. Uključenje upravljačkog napona se vrši preko bijele tipke „KOMANDNI NAPON“. Mješalica se uključuje pritiskom na tipku „START MJEŠALICE“, a zaustavlja tipkom „STOP MJEŠALICE“. Kao pokretač mješalice se koristi elektronski uređaj naziva „soft - starter“ koji vrši postepeno zalijetanje motora u određenom, tj. zadanom vremenskom intervalu. Kada je zalijetanje izvršeno, na ormaru se pali signalizacijska lampica koja uvjerava operatera da je zalijetanje izvršeno. Po završetku zalijetanja, moguće je pokrenuti režim automatskog rada, ili se mogu ručno pokretati transportni puževi za doziranje materijala. Prije nego li se pokrene automatski način rada, potrebno je izabrati odgovarajući program po kojem će se vršiti doziranje i miješanje materijala iz silosa.

Tijekom automatskog rada, vrši se doziranje materijala u mješalicu preko transportnih puževa sve do zadanih količina, zatim se odvija proces miješanja, prosipanje mase u usipni koš mješalice i nakon toga transport te iste mase pomoću pužnog transportera u stroj za punjenje vreća.
3. POSTUPAK PROIZVODNJE

Slika 3.23. GOU izvana

Slika 3.24. GOU iznutra
3. POSTUPAK PROIZVODNJE

3.7.1. Mješalica

Za miješanje materijala se koristi velika mješalica kapaciteta 2500 kilograma, a za pokretanje takve mješalice motor snage 30 kW (Slika 3.25. [4]), a natpisna pločica se može vidjeti na slici 3.26. [4]. U njoj se odvija proces homogenizacije, te se za pojedine vrste građevinskih ljepila koriste različiti omjeri sastojaka. Mješalica je programirana prije početka rada pogona, te je dovoljno izbirati na zaslonu koji proizvod želimo. Nakon što je smjesa izmiješana, ona prvo ide u usipni koš te potom pužnim transporterom u uređaj za punjenje vreća (punilica).

Mješalica ima svoju vagu, sama izvaže masu koja joj dolazi pužnim transporterima iz silosa. Način na koji mješalica važe mase pojedinih sastojaka se temelji na Wheatstoneovom mostu koji služi za mjerenje otpora inače. Međutim, ovdje se otpor čija se vrijednost mjeri koristi kao mjerni pretvornik sile. Pod silom se smatra da masa koja dolazi na mješalicu gura klizač promjenjivog otpora. Wheatstoneov most je onda ovdje izveden tako da pokazuje masu umjesto otpora.

Slika 3.25. Mješalica i usisnik iznad nje
3. POSTUPAK PROIZVODNJE

Slika 3.26. Natpisna pločica motora mješalice

Tablica 3.7. Natpisna pločica motora ZK 225 M6

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>ATB SEVER d.o.o.</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Niskonaponski trofazni zatvoren motor s kaveznim rotorom</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>30 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>400 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>61 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,83</td>
</tr>
<tr>
<td>Brzina vrtnje</td>
<td>980 o/min</td>
</tr>
</tbody>
</table>

Slika 3.27. Motor mješalice (MS Visio 2016)
Nakon što se izvrši homogenizacija materijala u mješalicu, smjesa pada u usipni koš mješalice spremna za punilicu u koju ju vodi pužni transporter. Usipni koš mješalice i pužni transporter su prikazani na slici 3.28. [4]. Natpisna pločica motora pužnog transportera je prikazana na slici 3.29. [4].

![Slika 3.28. Usipni koš mješalice](image-url)
3. POSTUPOK PROIZVODNJE

Slika 3.29. Natpisna pločica pužnog transportera

Tablica 3.8. Natpisna pločica motora 100L 2-4

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>Moto - technik</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Asinkroni motor</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>3 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>220/380 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>11,7/6,86 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,82</td>
</tr>
<tr>
<td>Brzina vrtnje</td>
<td>1410 o/min</td>
</tr>
</tbody>
</table>
3.7.2. Uređaj za punjenje vreća (punilica):

Slika 3.30. Upravljački pult punilice

Prije početka rada, potrebo je izvršiti umjeravanje punilice i potom joj zadati parametre bitne za njen rad. Za pokretanje punilice potrebno je preklopnik postaviti u položaj 1. Prije pokretanja radnik treba postaviti odgovarajuću vreću na otvor za punjenje. Poslije toga kreće automatsko
punjenje vreće na zadanu mjeru. Punjenje počinje velikom brzinom, a pri kraju usporava radi punjenja na točnu i zadanu mjeru. Nakon što se dosegne točna masa, radnik treba preuzeti vreću i položiti je na transportnu traku. Natpisna pločica motora punilice je prikazana na slici 3.33. [4], a shema punilice na slici 3.32. [4]. Motor iste snage pokreće transportnu traku kojom popunjene vreće putuju do robota koji će biti opisan u nastavku. Vrlo bitan proces koji se odvija tijekom punjenja vreća je proces fluidizacije usipnog koša te same punilice radi razbijanja zgusnute mase. Traka za transport trake se pali preko prekidača koji se nalazi iznad trake. Pored trake se nalazi i pisač koji na vreću otisne datum proizvodnje.

Slika 3.31. Punilica
Slika 3.32. Shema punilice (MS Visio 2016)
3. POSTUPLAN PROIZVODNJE

Slika 3.33. Natpisna pločica motora punilice

Tablica 3.9. Natpisna pločica motora punilice 90L 4

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>Moto - technik</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Asinkroni motor</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>1,5 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>220/380 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>6,38/3,70 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,79</td>
</tr>
<tr>
<td>Brzina vrtnje</td>
<td>390 o/min</td>
</tr>
</tbody>
</table>

3.8. ROBOT ZA PALETIZACIJU ABB IRB 6000 S3:

Vreće nakon punjenja putuju ravnim transportnom trakom prema robotu koji vrši proces paletizacije (Slika 3.34. [4]). On je programiran da svojim alatom slaže vreće na paletu (Slika 3.35. [4]). Kada se paleta napuni, robot stane. Za njegovo korištenje je potreban i zračni kompresor. Ovakav robot ne može raditi samostalno nego on zahtjeva dovod komprimiranog zraka. Pneumatski sustavi imaju svoje prednosti, npr. lagan prijenos snage, visoka brzina rada i jednostavno održavanje. Bez kompresora, on ne može obavljati svoje zadaće.
Slika 3.34. Robot za slaganje vreća na palette

Slika 3.35. Alat za hvatanje vreća
3. POSTUPAK PROIZVODNJE

Ovakav robot na maksimalnoj udaljenosti od težišta (2,4 m) može držati masu od 120 kilograma ovisno o namjeni. Ovisno o namjeni, sama ruka robota se ne mijenja nikad nego se samo mijenja alat na vrhu ruke robota, ali ga je potrebno programirati prema namjeni. Robot se upravlja pomoću upravljačkog zaslona prikazanog na slici 3.36. [4] i upravljačkog ormara (Slika 3.37. [4]).

Tablica 3.10. Tehničke karakteristike robota ABB IRB 6000S

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>ABB Robotics</td>
</tr>
<tr>
<td>Type</td>
<td>IRB 6000/S3 M93 /2,4 - 120</td>
</tr>
<tr>
<td>Voltage</td>
<td>3x475</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Power</td>
<td>4,5 kVA</td>
</tr>
<tr>
<td>Ref no</td>
<td>R 341.1007-001</td>
</tr>
<tr>
<td>Mas no</td>
<td>A 35149</td>
</tr>
<tr>
<td>Max weight</td>
<td>300 kg</td>
</tr>
</tbody>
</table>

Ovakav robot na maksimalnoj udaljenosti od težišta (2,4 metra) može držati masu od 120 kilograma ovisno o namjeni. Ovisno o namjeni, sama ruka robota se ne mijenja nikad nego se samo mijenja alat na vrhu ruke robota, ali ga je potrebno programirati prema namjeni. Robot se upravlja pomoću upravljačkog zaslona prikazanog na slici 3.36. [4] i upravljačkog ormara (Slika 3.37. [4]).

Slika 3.36. Upravljački zaslon robota
Unutar upravljačko ormara se nalazi frekvencijski pretvarač ENC EDS-1000 (Slika 3.38. [4]). Frekvencijski pretvarači omogućuju mjerenje varijabli, dijagnostiku, zaštitu, nadzor, upravljanje i reguliranje elektromotornog pogona, odnosno procesnih veličina. Četiri najvažnija dijela ovog uređaja su: diodni ispravljač, istosmjerni međukrug, izmjnjivač i upravljački dio.

Slika 3.37 Upravljački ormar robota

Slika 3.38. Frekvencijski pretvarač
3. POSTUPAK PROIZVODNJE

3.9. Stroj za omotavanje paleta zaštitnom folijom (pakerica)

![Stroj za omotavanje paleta folijom](image)

Slika 3.39. Stroj za omotavanje paleta folijom
3. POSTUPAK PROIZVODNJE

Slika 3.40. Natpisna pločica motora pakerice

Primjer gotovog proizvoda omotanog zaštitnom folijom spremnog za skladištenje i transport prikazan je na slici 3.41. [4].

Slika 3.41. Gotov proizvod spreman za skladištenje i transport
Kao i u liniji pripreme materijala, tako se i u liniji homogenizacije materijala nalazi koristi otprašivač kako bi se smanjila količina prašine u pogonu. Otprašivač je cijevima spojen na punilicu i mješalicu, a pokretan je elektromotorom snage 0,75 kW (Slika 3.42. [4]). Natpisna pločica motora se može vidjeti na slici 3.43. [4].

Slika 3.42. Otprašivač

Slika 3.43. Natpisna pločica motora otprašivača

<table>
<thead>
<tr>
<th>Podatak</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proizvođač</td>
<td>CEG motors</td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Asinkroni motor</td>
</tr>
<tr>
<td>Nazivna snaga</td>
<td>0,75 kW</td>
</tr>
<tr>
<td>Nazivni napon</td>
<td>230/400 V</td>
</tr>
<tr>
<td>Nazivna struja</td>
<td>3,12/1,70 A</td>
</tr>
<tr>
<td>Frekvencija</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Faktor snage</td>
<td>0,81</td>
</tr>
<tr>
<td>Brzina vrtnje</td>
<td>2800 o/min</td>
</tr>
</tbody>
</table>
4. PRORAČUN POTROŠNJE ELEKTRIČNE ENERGIJE POGONA

U ovom poglavlju će biti prikazana gruba procjena potrošnje električne energije. Nekakvu vrstu usporedbe potrošnje električne energije pomoću proračuna i stvarnog računa nije moguće napraviti iz razloga što se tvrtka „Blažević d.o.o“ bavi još i proizvodnjom fasadnih boja, stiropora, raznih vrsta akrilne impregnacije, plastične stolarije, a sve se nalazi u sklopu jedne zgrade, što znači da ne primaju odvojen račun za struju za pogon za proizvodnju građevinskih ljepila i praškastih materijala.

Ovaj pogon prema saznanjima od glavnog inženjera radi dnevno 3-4 sata, ovisno o narudžbama. U proračunu je zato u obzir uzeto da pogon radi 3,5 sata dnevno, 23 dana mjesečno isključujući subote i nedjelje, što dovodi do 80,5 radnih sati mjesečno.

Tablica 4.1. Proračun potrošnje električne energije u kWh

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukupno</td>
<td>Motor (kW)</td>
<td>Broj motora</td>
<td>Ukupno (kW) B*C</td>
<td>Broje radnih dana u mjesecu</td>
<td>Broj radnih sati u mjesecu</td>
<td>Potrošena energija (kWh) D*F</td>
</tr>
<tr>
<td>1.</td>
<td>0,18</td>
<td>4</td>
<td>0,72</td>
<td>23</td>
<td>80,5</td>
<td>57,69</td>
</tr>
<tr>
<td>2.</td>
<td>1,5</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>80,5</td>
<td>241,5</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>23</td>
<td>80,5</td>
<td>483</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>23</td>
<td>80,5</td>
<td>966</td>
</tr>
<tr>
<td>5.</td>
<td>5,5</td>
<td>6</td>
<td>33</td>
<td>23</td>
<td>80,5</td>
<td>2656,5</td>
</tr>
<tr>
<td>6.</td>
<td>7,5</td>
<td>1</td>
<td>7,5</td>
<td>23</td>
<td>80,5</td>
<td>603,75</td>
</tr>
<tr>
<td>7.</td>
<td>30</td>
<td>1</td>
<td>30</td>
<td>23</td>
<td>80,5</td>
<td>2415</td>
</tr>
<tr>
<td>8.</td>
<td>37</td>
<td>1</td>
<td>37</td>
<td>23</td>
<td>80,5</td>
<td>2978,5</td>
</tr>
<tr>
<td>Ukupno</td>
<td>88,68</td>
<td>20</td>
<td>129,22</td>
<td></td>
<td></td>
<td>10,401,94</td>
</tr>
</tbody>
</table>
S internet stranice HEP-a [10] na datum 25.6.2015. godine, preuzete su tarifne stavke za kategoriju poduzetnici, a može se vidjeti na slici 4.1. [9]. Uz saznanje da se ovdje radi o pogonu, uzima se pretpostavka da je korišten tarifni model bijeli na visokom naponu, viša tarifa čija najnovija cijena iznosi 0,64 kn/kWh na višoj tarifi.

Slika 4.1. Tarifne stavke za kupce kategorije poduzetnici
Tablica 4.2. Izračun mjesečne potrošnje u kunama

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izračun mjesečne potrošnje</td>
<td>Broj kWh</td>
<td>Cijena po kWh</td>
<td>Ukupno</td>
</tr>
<tr>
<td>Bijeli model za poduzetnike</td>
<td>10.401,94</td>
<td>0,64kn</td>
<td>6.657,24 kn</td>
</tr>
<tr>
<td>Naknada za obračunsko mjerno mjesto</td>
<td>-</td>
<td>-</td>
<td>68,00 kn</td>
</tr>
<tr>
<td>Ukupno</td>
<td></td>
<td></td>
<td>6.725,24 kn</td>
</tr>
</tbody>
</table>

Množenjem ukupne potrošnje električne energije dobivene u tablici 4.1. i cijene bijelog tarifnog modela za visoki napon, uz još plaćanje naknade za mjerno mjesto, dobiva se iznos od 6.725,24 kn. U ovu grubu procjenu nije uračunata potrošnja električne struje uzrokovana osvjetljenjem i grijanjem pogona, čišćenje električnim strojevima, kompresorom koji se koristi za pokretanje robota.
5. ZAKLJUČAK

LITERATURA

[3] Dokumentacija pogona za proizvodnju građevinskih ljepila i praškastih materijala

[6] Podaci o motorima,

Tablica 1. Popis korištenih oznaka i simbola

<table>
<thead>
<tr>
<th>Oznaka ili simbol</th>
<th>Naziv</th>
<th>Mjerna jedinica</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>Frekvencija</td>
<td>Hz</td>
</tr>
<tr>
<td>(\cos \varphi)</td>
<td>Faktor snage</td>
<td>-</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efikasnost</td>
<td>%</td>
</tr>
<tr>
<td>GOU</td>
<td>Glavni pult upravljanja</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>Nazivna struja</td>
<td>A</td>
</tr>
<tr>
<td>IP</td>
<td>Stupanj mehaničke zaštite</td>
<td>-</td>
</tr>
<tr>
<td>LP1</td>
<td>Pomoćni pult upravljanja</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>Masa</td>
<td>kg</td>
</tr>
<tr>
<td>Mas no</td>
<td>Proizvodni tip</td>
<td>-</td>
</tr>
<tr>
<td>NT</td>
<td>Niža tarifa</td>
<td>kn / kWh</td>
</tr>
<tr>
<td>P</td>
<td>Nazivna snaga</td>
<td>W</td>
</tr>
<tr>
<td>R</td>
<td>Otpor</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Ref no</td>
<td>Referentni tip</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>Nazivni napon</td>
<td>V</td>
</tr>
<tr>
<td>VT</td>
<td>Viša tarifa</td>
<td>kn / kWh</td>
</tr>
</tbody>
</table>
POPIS SLIKA, TABLICA

Hodogram 3.1. Tehnološki proces proizvodnje (MS Visio 2016)

Slika 2.1. Ulaz u tvrku „Termoline d.o.o.“

Slika 2.2 Unutrašnjost pogona

Slika 2.3. Shematski prikaz cijelog pogona

Slika 3.1. Toplinski gubici kuće zbog loše izolacije

Slika 3.2. Usipni koš

Slika 3.3. Utovarivač

Slika 3.4. Glavni ormar upravljanja linijom pripreme materijala

Slika 3.5. Spiralni transporter

Slika 3.6. Procesni transporter

Slika 3.7. Izvedba motora na pužnom transporteru

Slika 3.8. Natpisna pločica reductora

Slika 3.9. Natpisna pločica motora

Slika 3.10. Rotacijska sušara

Slika 3.11. Usisnik za usisavanje prašine

Slika 3.12. Elektromotor rotacijske sušare

Slika 3.13. Plamenik Riello RS 100

Slika 3.14. Natpisna pločica motora plamenika

Slika 3.15. Pogonski motor mlina čekićara

Slika 3.16. Shema motora mlina (MS VISIO 2016)

Slika 3.17. Kružno sito

Slika 3.18. Natpisna pločica motora kružnog sita
Slika 3.19. Natpisna pločica motora pužnog transportera

Slika 3.20. Otprašivač

Slika 3.21. Natpisna pločica motora otprašivača

Slika 3.22. Silosi izvana

Slika 3.23. GOU izvana

Slika 3.24. GOU iznutra

Slika 3.25. Mješalica i usisnik iznad nje

Slika 3.26. Natpisna pločica motora mješalice

Slika 3.27. Usipni koš mješalice

Slika 3.28. Shema motora mješalice (MS Visio 2016)

Slika 3.29. Natpisna pločica pužnog transportera

Slika 3.30. Upravljački pult punilice

Slika 3.31. Punilica

Slika 3.32. Natpisna pločica motora punilice

Slika 3.33. Robot za slaganje vreća na palete

Slika 3.34. Punilica (MS Visio 2016)

Slika 3.35. Alat za hvatanje vreća

Slika 3.36. Upravljački zaslon robota

Slika 3.37. Upravljački ormar robota

Slika 3.38. Frekvencijski pretvarač

Slika 3.39. Stroj za omotavanje palete folijom

Slika 3.40. Natpisna pločica motora pakerice

Slika 3.41. Gotov proizvod spreman za skladištenje i transport

Slika 3.42. Otprašivač
Slika 3.43. Natpisna pločica motora otprašivača

Tablica 3.1. Receptura za proizvode u postotcima

Tablica 3.2. Natpisna pločica motora MS 112L-4

Tablica 3.3. Natpisna pločica motora MS 132M-4

Tablica 3.4. Natpisna pločica motora ZK 200 L-2

Tablica 3.5. Natpisna pločica motora 132M2-6

Tablica 3.6. Natpisna pločica motora AT 100 L4

Tablica 3.7. Natpisna pločica motora ZK 225 M6

Tablica 3.8. Natpisna pločica motora 100L 2-4

Tablica 3.9. Natpisna pločica motora punilice 90L 4

Tablica 3.10. Tehničke karakteristike robota ABB IRB 6000S

Tablica 3.11. Natpisna pločica motora pakerice

Tablica 4.1. Proračun potrošnje električne energije u kWh

Tablica 4.2. Izračun mjesečne potrošnje u kunama
SAŽETAK

U završnom radu je opisan postupak proizvodnje građevinskih ljepila i praškastih materijala. Proces se ostvaruje pomoću dvije linije proizvodnje, a to su linija pripreme materijala i linija homogenizacije materijala. Osim njih, potreban je robot za slaganje vreća i stroj za završnu obradu. Pored postupka proizvodnje građevinskih ljepila i praškastih materijala, opisan je i rad svakog pojedinog stroja koji se koristi u pogonu. Uz svaki stroj se još nalaze informacije o elektromotorima koji ih pokreću te neki shematski prikazi strojeva. Na kraju završnog rada nalazi se proračun mjesečne potrošnje električne energije.

Ključne riječi: asinkroni motor, cement, elektromotor, kameno brašno, kvarčni pijesak, homogenizacija, transporteri,
ŽIVOTOPIS

Aktivno se služi engleskim jezikom, računalom, te je informatički pismen (MS Word, MS Excel, MS PowerPoint, MS Visio, Matlab, poznavanje programskog jezika C++), a pasivno poznaje njemački jezik.

Nakon završene srednje škole upisuje Fakultet elektrotehnike, računarstva i informacijskih tehnologija u Osijeku, a na drugoj godini studija se odlučuje za smjer elektroenergetike. Po završetku preddiplomskog studija namjera mu je upisati diplomski studij na Fakultetu elektrotehnike, računarstva i informacijskih tehnologija u Osijeku te po završetku studija raditi u struci.

U Osijeku, rujan 2016.

Tomislav Juroš

Potpis: