Šarić, Marko

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:733090

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-01-30

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

zir.nsk.hr
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA OSIJEK

Sveučilišni studij

POGON ZA PROIZVODNJU CRIJEPA, DILJ D.O.O.

POGON „SLAVONKA“ VINKOVCI

Završni rad

Marko Šarić

Osijek, 2016.
Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom sveučilišnom studiju

Osijek, 07.09.2016.

Odboru za završne i diplomske ispite

Prijedlog ocjene završnog rada

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Marko Šarić</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij, smjer:</td>
<td>Preddiplomski sveučilišni studij Elektrotehnika</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>3785, 28.08.2013.</td>
</tr>
<tr>
<td>OIB studenta:</td>
<td>71573525710</td>
</tr>
<tr>
<td>Mentor:</td>
<td>Izv.prof.dr.sc. Tomislav Barić</td>
</tr>
<tr>
<td>Sumentor:</td>
<td></td>
</tr>
<tr>
<td>Naslov završnog rada:</td>
<td>Pogon za proizvodnju crijepa, DILJ d.o.o. Pogon Slavonka Vinkovci</td>
</tr>
<tr>
<td>Znanstvena grana rada:</td>
<td>Elektroenergetika (zn. polje elektrotehnika)</td>
</tr>
<tr>
<td>Predložena ocjena završnog rada:</td>
<td>Izvrstan (5)</td>
</tr>
</tbody>
</table>
| Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova: | Primjena znanja stečenih na fakultetu: 2
Postignuti rezultati u odnosu na složenost zadataka: 3
Jasnoća pismenog izražavanja: 3
Razina samostalnosti: 3 |

Potpis mentora za predaju konačne verzije rada u Studentsku službu pri završetku studija:

<table>
<thead>
<tr>
<th>Potpis:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum:</td>
<td></td>
</tr>
</tbody>
</table>
IZJAVA O ORIGINALNOSTI RADA

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Marko Šarić</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij:</td>
<td>Preddiplomski sveučilišni studij Elektrotehnika</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>3785, 28.08.2013.</td>
</tr>
<tr>
<td>Ephorus podudaranje [%]:</td>
<td>7 %</td>
</tr>
</tbody>
</table>

Ovom izjavom izjavljujem da je rad pod nazivom: **Pogon za proizvodnju crijepa, DILJ d.o.o. Pogon Slavonka Vinkovci**

izrađen pod vodstvom mentora Izv.prof.dr.sc. Tomislav Barić

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:
SADRŽAJ

1. **UVOD** .. 1
 1.1 Opis zadatka ... 1

2. **POVIJEST** ... 2

3. **PROIZVODNJA CRIJEPA** .. 3

4. **PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA** ... 4
 4.1 Protok gline kroz pogon .. 4
 4.2 Iskop .. 6
 4.3 Primarni deponij ... 7
 4.4 Primarna prerada ... 7
 4.5 Sekundarni deponij (Bazensko odležavalište) .. 10
 4.6 Oblikovanje proizvoda .. 12
 Fino pročišćavanje ... 12
 Vakumiranje .. 12
 Presanje .. 13
 4.7 Sušenje .. 14
 4.8 Engobiranje ... 16
 4.9 Pečenje ... 17
 4.10 Sortiranje i pakiranje .. 22
 4.11 Krajnji proizvod .. 25

5. **ENERGETSKI DIO POSTROJENJA** .. 28
 5.1 Transformerska stanica .. 28
 5.2 Asinkroni motor ... 32
 5.3 Opskrba pogona plinom .. 35
 5.4 Kompenzacija jalove snage ... 38
 5.5 Određivanje presjeka kabela i zaštite .. 43

6. **ZAKLJUČAK** ... 47

7. **POPIS KORIŠTENIH OZNAKA I SIMBOLA** .. 48

8. **POPIS KORIŠTENE LITERATURE I IZVORA** .. 49

9. **ŽIVOTOPIS** ... 51

10. **SAŽETAK** ... 52

11. **ABSTRACT** ... 52

12. **PRILOZI** ... 53
U ovom radu će biti opisan proces proizvodnje i obrade crijepa, opeke u pogonu „Slavonka“ koji se nalazi u Vinkovcima. Pogon je u vlasništvu tvrtke DILJ d.o.o koja posluje u sastavu našičke NEXE grupe. U pogonu se proizvode različite vrste crijepa od kojih su najpoznatiji: Cezar, Oktavijan, Dioklecijan, Ideal, Mediteran, Rustik, Glinex trend itd. Svaki crijep dolazi u nekoliko različitih oblika: rubni, odzraćnik, snjegobran, podžlijebnjak te carski žlijebnjak. Proces proizvodnje crepova se sastoji od više manjih procesa od kojih je većina automatizirana i moguće je pratiti i kontrolirati procese na računalu u slučaju kvara. Većina motora koji se nalaze u pogonu su trofazni asinkroni kavezni motori.

1.1 Opis zadatka
Uvidom u pogon i dostupnu dokumentaciju treba proučiti i opisati pogon za proizvodnju crijepa „Pogon „Slavonka“ Vinkovci Dilj d.o.o.“ od ulaska gline u njega do konačnog proizvoda crijepa te tehnološke procese u proizvodnji crijepa. Posebno treba odrediti elektromotorni pogon te utvrditi: broj elektromotora, vrste, veličine i funkcije u navedenom pogonu. Sadržaj popratiti odgovarajućim skicama, slikama i shemama koje nam daju viziju rada i funkcije ovakvog pogona.
2. POVIJEST

![Slika 2.1. Članice grupe NEXE](image-url)
3. PROIZVODNJA CRIJEPA

![Slika 3.1. Krov s crijepom na kući u Dubrovniku](image-url)
4. PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA

4.1 Protok gline kroz pogon

Slika 4.1. Dijagram toka tvari i jednopolna shema u pogonu „Slavonka“
4. PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA

4.2 Iskop

Glina se iskapa nedaleko od tvornice u kojoj se obrađuje. Glina koja se preraduje i koja služi za proizvodnju crijepa u pogonu „Slavonka“ vadi se iz obližnjeg jezera-gliništa. Iskapanje gline vrši se specijalnim bagerima s kontinuiranim radom tzv. bager „kabličar“. Bitan je i sloj gline koji se vadi. Prvi sloj (humus) nalazi se na razini do oko 90 metara te se ne koristi za pečenje. Slika 4.2 [4] prikazuje glinište i pogon „Slavonka“.

Gline možemo podijeliti u više skupina

- gline prve skupine, s visokim udjelom aluminijeva oksida, bez primjesa oksida željeza
- gline druge skupine, s visokim sadržajem aluminijeva oksida i manjim količinama oksida željeza
- gline treće skupine, s malom količinom aluminijeva oksida i većim postotkom oksida željeza
- gline četvrte skupine, s malom količinom aluminijeva oksida i većom količinom oksida željeza i kalcijeva karbonata.

Od ostalih tipova gline napominje se glina za ciglu, glina za blok-ciglu i glina za crijep u kojoj se nalaze primjese pijeska i željeza.

Slika 4.2. Pogon "Slavonka" i jezero-glinište
4.3 Primarni deponij

![Slika 4.3. Transportna traka za prijevoz gline](image)

4.4 Primarna prerada

Primarna prerada služi za odvajanje salitre i ostalih nečistoća koje se nalaze u sirovini. Transport gline s vanjskog odlagališta na primarnu preradu vrši se bagerima koji glinu prenose u sandučaste dodavače. U njima je omogućeno doziranje raznih vrsta gline u omjeru po volji. Na izlazu iz dodavača nalazi se stroj koji pomoću noževa usitnjava i ujednačava sirovinu. Odvajanje nečistoća i salitre odvija se u pročistaču čije rupice dimenzija od 3-8 cm ne dopuštaju prolaz većim grudama i kamenčićima. Nakon toga glina se melje u mlinu na veličinu zrna od 1 mm (grubi mlin). Glina se potom transportira do još jednog mlina (fini mlin) gdje se razmak valjaka održava manjim od 0,5 mm.

Slika 4.4. Asinkroni motor valjka za finu preradu
4. PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA

Slika 4.5. Asinkroni motor valjka za grubu preradu

Slika 4.6. Asinkroni motor koji pokreće stroj koji odvaja salitru
4.5 Sekundarni deponij (Bazensko odležavalište)

Slika 4.7. Transportna traka i asinkroni motor
4. PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA

Slika 4.8. Sekundarno odlagalište (prekriveni bazen)

Slika 4.9. Bager „kabličar“ i asinkroni motor koji ga pokreće
4.6 Oblikovanje proizvoda

Fino pročišćavanje

Slika 4.10. Homogenizator

Slika 4.11. Asinkroni motor homogenizatora

Vakumiranje

Prešanje

4.7 Sušenje
Sva vлага koja je ostala u glini se izvlači, radi povećanja čvrstoće koja igra veliku ulogu u transportu i u daljnjim procesima. U komornim sušarama sušenje se provodi u ciklusima. Program sušenja ovisi o vrsti crijepa kojeg želimo dobiti. Ovaj proces je od velike važnosti zbog toga što je glina jako osjetljiva na sušenje i može lagano doći do njenog pucanja. Napravljen je program koji

Slika 4.18. Glinene plastice prije ulaska u komoru za sušenje

Slika 4.19. Asinkroni motor za upuhivanje toplog zraka

Slika 4.20. Motoventilator
4.8 Engobiranje
Postupkom engobiranja ili glaziranja dobiva se crijep različitih boja gladke i sjajne površine čime se dugotrajno poboljšava estetski izgled krova. Poboljšava se kvaliteta krovišta jer je smanjeno upijanje vode, nakupljanje prašine te rast mahovina i lišajeva. Engobiranje se provodi nanošenjem otopine engobe i vode u zadanoj količini na površinu suhog crijepa. Tijekom procesa se kontrolira gustoća otopine i količina nanosa na crijep. Engoba na površini crijepa se osuši prije slaganja na vagone tunelske peći, te slijedi proces pečenja. U procesu pečenja engoba s crijepom formira čvrstu nedjeljivu cjelinu U priloženim slikama 4.21.[10] i 4.22.[10] vidimo prijevoz crijepa na vagonima. Pogledati prilog P.4.15.[12].

Slika 4.21. Crijep se utovara na vagone

Slika 4.22. Crepovi se pripremaju za pečenje
4. PROCES PROIZVODNJE CRIJEPА UNUTAR POSTROJENJA

4.9 Pečenje

Slika 4.23. Ventili na peći koji doziraju plin
4. PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA

Slika 4.27. Temperature prvog dijela peć

Slika 4.28. Temperature u drugom dijelu peć
4. PROCES PROIZVODNJE CRJEPA UNUTAR POSTROJENJA

Slika 4.29. Grafički prikaz temperaturu u peći

Slika 4.30. Pozicija vagona unutar peći
Slika 4.31. Ciklus pečenja prikazan na računalu

Slika 4.32. Vrijeme do ulaska idućeg vagona u peć
4. PROCES PROIZVODNJE CRJEGA UNUTAR POSTROJENJA

4.10 Sortiranje i pakiranje

Slika 4.33. Broj vagona koji su prošli kroz peć

Slika 4.34. Skidanje crijepa s vagona
Slika 4.35. Slaganje crijepe na paletu

Slika 4.36. Stroj za omatanje palete najlonom
4. PROCES PROIZVODNJE CRIJEPA UNUTAR POSTROJENJA

Slika 4.37. Gotov crijep

Slika 4.38. Gotov crijep
4.11 Krajnji proizvod

U pogonu se proizvodi mnogo vrsta crepova. Svaka vrsta je odlikovana visokom kvalitetom i koristi se za različita podneblja. Svaki se crijep slaže na krov na specifičan način pa i o tome treba voditi brigu. Neke vrste crijepova su: Cezar, Oktavijan, Dioklecijan, Glinex, Glinex premium, Mediteran te mnogi drugi. Sve vrste crijepa dolaze u nekoliko različitih boja [7].

![Slika 4.39. Cezar](image)

Slika 4.40. Oktavijan

Slika 4.41. Dioklecijan
Glinex kontinental i rustik su crepovi iznimne kvalitete, kontinentalni tipovi, dvostruko utoreni s rupom za čavao. To su glineni crepovi prosječne mase 3,1 kg, s utroškom od oko 13 komada na \(1m^2\) krova. Glinex omogućava toleranciju pri postavljanju. Na slici 4.42.[5] moguće je vidjeti različite oblike crijepe glinex.

Slika 4.42. Glinex

Slika 4.43. Mediteran
5. ENERGETSKI DIO POSTROJENJA

U ovom dijelu će biti rečeno o vrstama motora, o opskrbi pogona energijom, te sve ostalo važno vezano uz energetski dio pogona „Slavonka“ Vinkovci koji je jedan od najnaprednijih pogona za proizvodnju crijepa u ovom dijelu Europe.

5.1 Transformerska stanica

Transformator je statički električni uređaj u kojem se električna energija iz jednog ili više izmjeničnih krugova koji napajaju primarne namote (gornjonaponska strana) transformatora prenosi u jedan ili više izmjeničnih krugova napajanih iz sekundarnih namota (donjonaponska strana) transformatora s izmijenjenim iznosima jakosti struje i napona, te nepromijenjenom frekvencijom. Transformatori su naprave koje na principu elektromagnetske indukcije pretvaraju izmjenični sustav napona i struja jednih veličina u druge iste frekvencije. Nemaju pokretnih dijelova stoga se nazivaju statički električni strojevi. Mogu se upotrebljavati za povišenje ili smanjenje napona. Snaga električne struje ovisi o umnošku struje i napona, te je zbog toga podizanjem napona moguće prenijeti istu snagu s manjim jakostima struje. Pad napona je proporcionalan jakosti struje kroz vodič, te zbog toga struja manje jakosti omogućuje smanjenje prereza vodiča (smanjuje se utrošak bakra ili aluminija), uz to još uzrokuje manje padove napona na dugačkim vodovima. Rad transformatora zasniva se na Faraday-yevom zakonu elektromagnetske indukcije te Lentzovim zakonom. Iz tih zakona zaključuje se da će vremenski promjenjiva struja na primarnom namotu inducirati vremenski promjenjiv napon na sekundarnom namotu [9]. U postrojenju se nalaze dva transformatora 10/0,4 kV, 1250 kVA. Na slikama 5.1.[10], 5.2.[10], 5.3.[10] i 5.4.[10] prikazani su transformatori koji se nalaze u postrojenju.

Slika 5.1. 10/0,4 kV transformator Slika 5.2. 10/0,4 kV transformator
Transformatore i njihov rad moguće je pratiti na ormarima koji se nalaze unutar pogona, koji su vrlo moderni i lagano je koristiti se s njima. Na slikama 5.5.[10] i 5.6.[10] prikazane su glavne sklopke za svaki od transformatora te njihovi osigurači. U slučaju da dođe do kvara na jednom od transformatora, drugi transformator treba osigurati normalan rad pogona, kontrola transformatora se vrši pomoću ormara koji je prikazan na slici 5.7.[10]
Niskonaponski razvodi transformatora omogućavaju napajanje pojedinih dijelova pogona te njihovo isključivanje u slučaju potrebnog popravka kvara nekog dijela infrastrukture. Na slikama 5.8.[10] i 5.9.[10] prikazani su niskonaponski razvodi oba transformatora.
U pogonu postoji pomoćni agregat koji se koristi u slučaju da pogon ostane bez napajanja. Taj agregat omogućava normalan rad te ga je moguće uključiti i isključiti pomoću sklopke koje se nalazi na ormaru na slici 5.10.[10]

Slika 5.10. Glavna sklopka mreže i pomoćni agregat
5.2 Asinkroni motor

Asinkroni motor razlikuje se od sinkronog po tome što mu rotor nije napajan strujom iz vanjskog izvora. Struje se u rotoru induciraju okretnim poljem statora. Zato motor često nazivamo i indukcijski motor. Asinkroni motor je električni stroj koji radi na principu rotirajućeg električnog polja. Brzina vrtnje rotora motora različita je od brzine vrtnje okretnog magnetnog polja. Zaključak je da se električna energija prenosi beskontaktno (indukcijom) djelovanjem tog okretnog magnetskog polja, a to polje stvara sustav višefaznih struja u statoru. Kako bi se stvorilo to polje na statoru trebaju biti barem dva namota koja su međusobno pomaknute za određeni kut. Uz to također struje koje teku tim namotima moraju biti fazno pomaknute za neki kut. Prema izvedbi mogu rotorskog namota dijele se na kavezne i klizno-kolutne strojeve. Na slici 5.11.[13] prikazana je izvedba kaveznog asinkronog motora. Ovakvi strojevi su jednostavne konstrukcije, robusni i pouzdani u pogonu te se i najčešće koriste u svim vrstama elektromotornih pogona. Rotirajuće elektromagnetsko polje koje je stvoreno u namotima statora vrti se sinkronom brzinom koja je prikazana formulom: \(n_s = \frac{(60 \times f)}{p} \), gdje je: \(n_s \) sinkrona brzina, \(f \) sinkrona frekvencija struja, te \(p \) predstavlja broj pari polova motora.

![Slika 5.11. Kavezni asinkroni motor](image-url)
5. ENERGETSKI DIO POSTROJENJA

To okretno magnetsko polje inducira napon u vodičima rotora koji u namotu stvara struju. Interakcijom struje i polja stvara se sila na vodiče koja zakreće rotor u smjeru rotacije magnetnog polja. Ako je moment svih sila na vodiče rotora veći od momenta otpora vrtnji, rotor će se vrtjeti brzinom koja je uvijek različita od brzine vrtnje okretnog polja, te se zbog toga motor zove asinkroni. Na slici 5.12. vidi se utjecaj struje pojedine zavojnice u stvaranju magnetskog polja te je prikazana rotacija magnetskog polja u vremenu. Debelom linijom označena su određena tri trenutka u kojima su promatrani vektori magnetskog polja svake zavojnice. Vektorskim zbrajanjem dokazuje se da je rezultantno magnetsko polje rotirajuće.

Slika 5.12. Okretno magnetsko polje

Okretno polje se vrt u odnosu na stator brzinom prikazano formulom \(n_s = \frac{60 \times f}{p} \) o/min dok se rotor vrti brzinom vrtnje \(n, o/min \). Razlika brzine vrtnje rotora (mehaničke brzine) i brzine vrtnje okretnog polja naziva se klizanje. Klizanje možemo objasniti kao odnos relativne brzine okretnog polja prema rotoru i brzine okretnog polja, a označavamo ga sa \(s \) ili ga dajemo u postocima kao \(s\% \).
Klizanje prikazujemo formulom: \(s = \frac{n_{s}-n}{n_{s}} \) ili u postocima \(s\% = \frac{n_{s}-n}{n_{s}} \times 100 \). Brzinu vrtnje računamo pomoću formule za klizanje te dobijemo \(n = (1 - s) \times n_{s} \). Inducirani napon rotora \(E \) i njegova frekvencija \(f \) direktno su proporcionalni klizanju \(s \). Kada rotor stoji \((n = 0) \), klizanje je \(s = 1 \). Kad mu se brzina povećava, klizanje opada pa postaje \(s = 0 \) onda kada se rotor vrti sinkronom brzinom \((n = n_{s}) \), tj. Kad je brzina rotora jednaka brzini okrетnog polja. Pri tome napon u rotoru postaje 0, pa u rotoru nema ni struja koje bi u magnetskom polju stvarale moment. Motor očito ne može raditi pri sinkronoj brzini. Za stvaranje momenta potrebno je neko, makar i maleno klizanje, potreban je asinkroni rad. Klizanje \(s \) određuje ne samo brzinu vrtnje već i frekvencije, napone, struje - ukratko cijelo pogonsko stanje asinkronog stroja. Ono je najprikladniji parametar za definiranje tog stanja. Klizanje se kreće između 0.1 i 5%, dok se veće vrijednosti odnose na motore manjih snaga (do oko 1kW). Grafički prikaz klizanja možemo prikazati pomoću momentne karakteristike asinkronog motora. Na slici 5.13.[13] prikazana je momentna karakteristika.

Slika 5.13. Momentna karakteristika asinkronog motora
Postoje tri važne točke na karakteristici. Motor kreće *poteznim momentom* ili momentom kratkog spoja \(M_{k} \) koji odgovara klizanju \(s = 1 \). Moment zatim raste do *maksimalne vrijednosti* kod klizanja \(s_{m} \). Nakon toga imamo silaznu, radnu granu momentne karakteristike, na kojoj asinkroni motor normalno radi. U tom području najmanji poremećaj – usporeni ili ubrzani – dovodi do takve promjene momenta koja motor vraća u prvobitno stanje; koja ga, dakle ubrzava ili usporava. Na tom dijelu karakteristike motor, kažemo, radi *stabilno*. Klizanje pri normalnom radu motora iznosi svega nekoliko postotaka. Na kraju se nalazi treća točka nazvana *nazivni moment* pri kojem klizanje iznosi \(s_{n} \) a brzina \(n_{n} \). Asinkroni motor moći će pokrenuti samo ako je moment tereta manji od momenta pokretanja.
5.3 Opskrba pogona plinom

![Slika 5.14. Plinovodi u Hrvatskoj](image-url)
U tablicama 5.1[12], 5.2[12] i 5.3[12] prikazana je potrošnja plina za ožujak, travanj te svibanj 2016. godine. Iz slika je moguće dobiti uvid u:

- dnevnu potrošnju plina
- broj crepova koji su prošli kroz peć u jednom danu
- ukupnu masu proguranih crepova
- ukupnu potrošnju plina u jednom danu
- iznos ukupne suhe gline koja je ušla u peć
- iznos energije utrošen u peći
- iznos ukupne pečene gline uz sav škart na izlasku iz peći
- iznos predanog pečenog crijepa na skladište po danu
- iznos predanog pečenog specijalnog crijepa na skladište po danu
Tablica 5.1 Specifična potrošnja plina u mjesecu ožujku

<table>
<thead>
<tr>
<th>Datum</th>
<th>Prolazno plin u m3</th>
<th>Specifična potrošnja plina u m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>2,5</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>3,7</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>4,9</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>5,1</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
</tbody>
</table>

Tablica 5.2. Specifična potrošnja plina za mjesec travanj

<table>
<thead>
<tr>
<th>Datum</th>
<th>Prolazno plin u m3</th>
<th>Specifična potrošnja plina u m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>2,5</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>3,7</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>4,9</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
<tr>
<td>5,1</td>
<td>5,93</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
<td>15,92</td>
</tr>
</tbody>
</table>
5. ENERGETSKI DIO POSTROJENJA

5.4 Kompenzacija jalove snage

Pogon „Slavonka“ koristi veliki broj induktivnih potrošača tj. motora te zbog toga iz distribucijske mreže crpi jalovu snagu. Potrebna energija za nastanak induktivnih polja ne može se pretvoriti u radnu (djelatnu) snagu, stoga snagu potrebnu za nastanak magnetskih polja zovemo jalova snaga. Jalova struja potrebna je za rad induktivnih potrošača (motori, transformatori) čiji induktivni otpor uzrokuje fazni pomak za kut φ, odnosno vremensko kašnjenje struje za naponom u prolasku kroz nulu. Budući da je pri prijenosu i razdiobi električne energije jalovi dio beskoristan i nepotrebno opterećuje mrežu, treba ga održavati na najnižim mogućim vrijednostima. Zbog toga se vrši kompenzacija jalove snage. Dodatan razlog je to što HEP naplaćuje jalovu snagu ako njezina vrijednost prelazi 1/3 vrijednosti utrošene djelatne energije što odgovara faktoru snage $\cos \phi = 0.95$. Kako bi se spriječilo uzimanje jalove snage iz mreže, a time i bespotrebno plaćanje, u pogonima se instaliraju uređaji koji će nadomjestiti potrebnu jalovu snagu. Ekonomičnost takvih uređaja je velika, investicija uložena u takve uređaje u načelu se vraća u prvoj godini eksploatacije.

Uređaj za kompenzaciju jalove snage sprječava prijenos jalove snage kroz mrežu, odnosno, on stvara jalovu snagu potrebnu za rad induktivnih potrošača u pogonu. Kako kod kondenzatora (kapacitivni potrošači) jalova struja prethodi naponu, udjeli kapaciteta i induktiviteta se međusobno izjednačavaju i tu pojavu koristimo za kompenzaciju jalove snage u mreži. Dakle
jalova snaga potrebna za rad tih potrošača će biti uzeta iz uređaja za kompenzaciju, a ne iz mreže. Pritom treba osigurati da vrijednosti električnih i magnetskih polja (kapacitet i induktivitet) budu istih vrijednosti, ali suprotnih predznaka.

Kompenzacija se može postići na dva načina:

1) fiksnim kompenzacijama (pojedinačnim i grupnim)

2) automatskim kompenzacijama

Slika 5.16. Kondenzatorska baterija

Slika 5.17. Kondenzatorska baterija korištena u pogonu

Slika 5.18. Digitalni displej prikazuje faktor snage
Pogoni s promjenljivim potrebama jalove snage ne dopuštaju čvrstu kompenzaciju kao način kompenzacije, obzirom da može doći do neekonomične potkomenzacije ili opasne prekompenzacije. Potrebna snaga kondenzatora mora se prilagoditi promjenljivim potrebama jalove snage. Tu su posebno pogodna centralno smještena kompenzacijska postrojenja. U takvim postrojenjima regulacijske jedinice su dodijeljene pojedinim dijelovima postrojenja. Regulacijske jedinice sadrže osim energetskog dijela i regulator jalove snage koji mjeri jalovu snagu. Prednosti centralne kompenzacije su:

- snaga kondenzatora automatski se prilagođava potrebnoj jalovoj snazi potrošača
- relativno jednostavna naknadna ugradba modula ili jedinica za proširenje
- središnjim položajem omogućen lakši nadzor

Na slici 5.19.[16] prikazan je primjer centralne kompenzacije.

Slika 5.19. Centralna kompenzacija

U pogonu se nalaze ormari za napajanje kompenzacije transformatora koji su prikazani na slikama 5.20.[10] odnosno 5.21.[10]. Na slikama 5.22.[10] i 5.23[10] prikazani su ormari za kompenzaciju jalove snage u kojima su smještene kondenzatorske baterije.
5. ENERGETSKI DIO POSTROJENJA

Slika 5.20. Napojno polje kompenzacije za transformator 1

Slika 5.21. Napojno polje kompenzacije za transformator 2

Slika 5.22. Ormar za kompenzaciju jalove snage 1

Slika 5.23. Ormar za kompenzaciju jalove snage 1
5.5 Određivanje presjeka kabela i zaštite

Dimenzioniranje kabela i pravi odabir zaštite su vrlo važni procesi jer se sa povećanjem struje koja prolazi kroz vodič povećava njegova temperatura, tj. on se zagrijava te može izbiti požar ili se dogoditi veća nesreća. Zbog tih razloga električne instalacije moraju biti osigurane osiguračima i zaštitnim sklopkama. Na mjestima na kojima dođe do preopterećenja tj. kratkog spoja dolazi do prekida strujnog kruga da bi se smanjila šteta prouzrokovana kvarom. Najvažniji faktor kod dimenzioniranja kabela je jakost struje koju trajno može podnijeti. Struja se najčešće računa iz snage prema danoj formuli:

\[
I = \frac{P}{\sqrt{3 \times U \times \cos \varphi}}
\]

Gdje \(P\) predstavlja radnu snagu, \(U\) predstavlja napon u trofaznom sustavu, a \(\cos \varphi\) faktor snage. Nakon određenja vrijednosti struje, iz tablice 5.4. očitava se vrijednost debljine kabela ovisno o materijalu koji je potreban. Iz tablice se očitava i vrijednost osigurača koji je potreban za taj kabel. Ako se želi upotrijebiti bakreni kabel promatramo stupac gdje piše Cu, a ako želimo koristiti aluminijski kabel promatramo stupac iznad kojega piše Al. U praksi se uzima jedan razred više, nikad razred manje, te se nikad ne uzima debljina kabela manja od 2,5 mm\(^2\). U žuta polja se unose vrijednosti, te se u rezultati dobivaju u lijevom stupcu.

Tablica 5.4. Opštetivost kabela

<table>
<thead>
<tr>
<th>Presjek mm(^2)</th>
<th>Struja Cu (A)</th>
<th>Osigurač Cu (A)</th>
<th>Struja Al (A)</th>
<th>Osigurač Al (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,75</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>18</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>25</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>35</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>61</td>
<td>50</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>82</td>
<td>63</td>
<td>64</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>108</td>
<td>80</td>
<td>85</td>
<td>63</td>
</tr>
<tr>
<td>35</td>
<td>135</td>
<td>100</td>
<td>105</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>168</td>
<td>125</td>
<td>132</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>207</td>
<td>160</td>
<td>163</td>
<td>125</td>
</tr>
<tr>
<td>95</td>
<td>250</td>
<td>200</td>
<td>197</td>
<td>160</td>
</tr>
<tr>
<td>120</td>
<td>292</td>
<td>250</td>
<td>230</td>
<td>200</td>
</tr>
<tr>
<td>150</td>
<td>335</td>
<td>250</td>
<td>263</td>
<td>200</td>
</tr>
<tr>
<td>185</td>
<td>382</td>
<td>315</td>
<td>301</td>
<td>250</td>
</tr>
<tr>
<td>240</td>
<td>453</td>
<td>400</td>
<td>357</td>
<td>315</td>
</tr>
<tr>
<td>300</td>
<td>504</td>
<td>400</td>
<td>409</td>
<td>315</td>
</tr>
</tbody>
</table>
Na slikama 5.24.[10] i 5.25.[10] nalaze se dva dijela trofaznog sustava pogona TSO Sarajevo sa slike 5.26.[10]. Na njima se nalaze motori sa njihovim važnim podacima s natpisne pločice. U tablici 5.5. se nalaze vrijednosti struje motora prvog dijela proračuna, koje smo dobili uvrštavanjem podataka u formulu (5-1).

Slika 5.24. Prvi dio trofaznog sustava

Slika 5.25. Drugi dio trofaznog sustava
Zatim se u tablici 5.4. traži presjek kabela koji odgovara prvoj većoj vrijednosti struje od one koja je dobivena preko formule (5-1). Preporuča se uzimanje višeg razreda zaštite jer prilikom uklopa na napojnu mrežu asinkroni motor uzima iz mreže struju čak do 10 puta veću od nazivne. Ta struja uzrokuje propad napona na mreži te može ometati ostale potrošače na istoj mreži, uz to uzrokuje i veliko termičko opterećenje namota motora, specifično kaveza rotora. Za prve dvije vrijednosti struje se uzima presjek od 2,5 mm² jer je to minimalna veličina presjeka koja se uzima kod motora. Za treći motor struja iznosi I=23,53 A, te unošenjem u tablicu spada u grupu od 26 A, ali se zbog sigurnosnih razloga uzima grupa više te se zbog toga koristi kabel presjeka 4 mm². Zatim se

<table>
<thead>
<tr>
<th>P=2.5 kW, (U=400\text{V}, \cos \varphi = 0,83)</th>
<th>P=3 kW, (U=400\text{V}, \cos \varphi = 0,873)</th>
<th>P=15 kW, (U=400\text{V}, \cos \varphi = 0,92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I=4,35 A</td>
<td>I=4,96 A</td>
<td>I=23,53 A</td>
</tr>
</tbody>
</table>

Zatim se u tablici 5.26. Trofazni sustav
odabiru sigurnosne sklopke tako što se promatra raspon vrijednosti u kojima se nalazi dobivena vrijednost struje. Osim odabira raspona u kojem se nalazi ta vrijednost, moguće je i odabir raspona vrijednosti iznad dobivene vrijednosti. U tablici 5.6. se nalaze vrijednosti struja izračunate preko formule (5-1).

Tablica 5.6 Drugi dio proračuna

<table>
<thead>
<tr>
<th>$P=2,5\ kW$, $U=400\ V$, $\cos\varphi = 0,83$</th>
<th>$P=4\ kW$, $U=400\ V$, $\cos\varphi = 0,8$</th>
<th>$P=5\ kW$, $U=400\ V$, $\cos\varphi = 0,85$</th>
<th>$P=12\ kW$, $U=400\ V$, $\cos\varphi = 0,87$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I=4,35\ A$</td>
<td>$I=7,22\ A$</td>
<td>$I=8,49\ A$</td>
<td>$I=19,91\ A$</td>
</tr>
</tbody>
</table>

Za prva tri motora se uzima minimalna vrijednost presjeka kabela od 2,5 mm2, definirana prema iskustvu i ostalim faktorima. Za četvrti motor se uzima presjek od 4 mm2 jer on ima veću vrijednost struje. Drugi, treći i četvrti motor priključuju se na druge sigurnosne sklope zato što oni imaju veću struju te je stoga potrebna i veća grupa raspona. Osigurači, tj. sigurnosne sklopke se biraju tako da njihova vrijednost bude veća od one koja mu prethodi. Za motore sklopke imaju rasponge od 3,5 A do 5 A, od 7 A do 10 A te od 18 A do 24 A, ali se ipak odabire osigurač većeg razreda te se stoga uzima osigurač od 25 A. Ako bi se biralo obrnutim redoslijedom, kod motora bi se nalazio veći osigurač, a nakon njega manji, te bi u slučaju kvara na motoru prestalo svi motori koji su u tom dijelu sustava, a ne samo taj koji je u kvaru. Na kraju se odabire presjek kabela od 16 mm2 i sigurnosna sklopka od 63 A.
6. ZAKLJUČAK

7. POPIS KORIŠTENIH OZNAKA I SIMBOLA

Tablica 7.1. Popis korištenih oznaka i simbola prema abecednom redu

<table>
<thead>
<tr>
<th>Oznaka ili simbol</th>
<th>Naziv</th>
<th>Iznos</th>
<th>Mjerna jedinica</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos \varphi)</td>
<td>faktor snage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varphi)</td>
<td>fazni kut</td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>(f_s)</td>
<td>frekvencija vrtnje polja</td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>(\vec{H})</td>
<td>vektor jakosti magnetskog polja</td>
<td></td>
<td>A×m⁻¹</td>
</tr>
<tr>
<td>(i)</td>
<td>trenutna vrijednost električne struje</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(I)</td>
<td>električna struja</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(M_k)</td>
<td>potezni moment</td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>(M_{\text{max}})</td>
<td>prekretni moment</td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>(M_n)</td>
<td>nazivni moment</td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>(n_s)</td>
<td>sinkrona brzina vrtnje</td>
<td></td>
<td>okretaj×min⁻¹</td>
</tr>
<tr>
<td>(p)</td>
<td>broj pari polova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>električna snaga</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(Q)</td>
<td>jalova snaga</td>
<td></td>
<td>var</td>
</tr>
<tr>
<td>(s)</td>
<td>klizanje asinkronog motora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>temperatura</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(U)</td>
<td>električni napon</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>
POPIS KORIŠTENE LITERATURE I IZVORA

[4] Glinište i pogon google maps, url: https://www.google.hr/maps/@45.3040017,18.8210913,1098m/data=!3m1!1e3 (29.01.2016)

[9] Transformator, url: https://www.fer.unizg.hr/_download/repository/EEPE_10_TR1.pdf (05.06.2016)

[10] Vlastite slike

[12] Službena dokumentacija tvrtke Dilj d.o.o

[16] Uređaji za kompenzaciju jalove snage, url: https://www.fer.unizg.hr/_download/repository/Uredjaji Za kompenzaciju jalove snage.pdf (05.06.2016)

[18] Opteretivost kabela, url: http://3.bp.blogspot.com/_K23makPk3e4/TBhgrw7VnpI/AAAAAAAAA-g/wP0WpEsLzBE/s400/proracun_007.GIF (05.06.2016)

[19] Osnove električnih strojeva, Radenko Wolf
ŽIVOTOPIS

Marko Šarić

Po završetku srednje škole te maturiranju sa vrlo dobrim uspjehom upisuje preddiplomski sveučilišni studij elektrotehnike na Fakultetu elektrotehnike, računarstva i informacijskih tehnologija u Osijeku.

Nakon završetka preddiplomskog studija ima cilj upisati diplomski studij na Fakultetu elektrotehnike, računarstva i informacijskih tehnologija u Osijeku.

U Osijeku 1. srpnja 2016

Marko Šarić
Proizvodnja pečene gline u ovom pogonu je vrlo veliki i automatizirani proces. To je vrlo složen i kompleksan posao. Potrebno je pronaći najbolju vrstu gline, što ovaj pogon ima po svim standardima. Proizvodnja je kontinuirani proces koji se sastoji od iskopa gline, primarne prerade, sekundarne prerade, oblikovanja proizvoda, sušenja, engobiranja tj. glaziranja, do pečenja, sortiranja te na kraju pakiranja i na kraju prodaje proizvoda na tržištima u ovom dijelu Europe. Za sve te procese potrebno je pronaći adekvatnu opremu, najvažnije je pronaći motore i robote koji će omogućiti ispravan rad svakog dijela pogona. Kao što je rečeno proizvodnja je jednim dijelom automatizirana te nam je omogućena kontrola procesa pomoću računala. Potrebno je znanje u svim područjima elektrotehnike, ponajviše ono područje vezano uz magnetske veze koje opisuju djelovanje motora koji su u pogonu uglavnom asinkroni. Poznavanjem tih načela moguće je ispitivanje, računanje proračuna te donošenje zaključaka o ispravnom radu stroja i cijelog pogona.

Ključne riječi: pogon, pečena glina, proces, automatizacija, pečenje, motor, programi

ABSTRACT

Tile production in this factory is very big and automated process. It's a very compound and complex business. You have to find the best kind of clay, which this factory has found based on all standards. Production is a continuous process which is consisted of: excavation of clay, primary and secondary modification, figuration of the product, drying, varnishing, baking, sorting all the way to the packing and in the end selling of the product at the markets in this part of Europe. For all those process it is necessary to find adequate equipment, starting from machines and robots that will enable accurate and correct work of every part of factory. Like it is said, tile production is automated in some parts of the factory and we can monitor some of those processes on computers. We need to have some foreknowledge in wide areas of electrical engineering, mostly to have knowledge in the area about electromagnetic connection which describes the working principle of an asynchronous motor. By knowing the basic laws of the motor it is possible to create some examination, to reach some calculations and to reach conclusions about the work of the machine and the whole plant.

Key words: plant, baked clay, process, automation, baking, motor, programs
PRILOZI

P.4.1. Shema motora M1
P.4.2. Shema motora M2
P.4.3. Shema motora M3
P.4.4. Shema motora M4
P.4.5. Shema motora M5
P.4.6. Shema motora M6
P.4.7. Shema motora M7
P.4.8. Shema motora M8
P.4.9. Shema motora M9
P.4.10. Shema motora M10
P.4.11. Shema motora M11
P.4.12. Shema motora M12
P.4.13. Shema motora M13
P.4.15. Shema motora M15
P.4.16. Shema motora M16
P.4.17. Shema motora M17
P.4.18. Shema motora M18
P.4.19. Shema motora M19
П.4.1. Шема мотора M1
P.4.2. Shema motora M2
P.4.3. Shema motora M3
P.4.4. Shema motora M4
P.4.5. Shema motora M5
P.4.6. Shema motora M6
P.4.7. Shema motora M7
P.4.8. Shema motora M8
P.4.9. Shema motora M9
P.4.10. Shema motora M10
PRILOZI

P.4.11. Shema motora M11
P.4.12. Shema motora M12
P.4.13. Shema motora M13
P.4.15. Shema motora M15
P.4.16. Shema motora M16
P.4.17. Shema motora M17
P.4.18. Shema motora M18
P.4.19. Shema motora M19