Mogućnosti naponske optimizacije s mikroelektranama u distributivnim mrežama

Pavković, Marinko

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:411794

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-26

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA OSIJEK

DIPLOMSKI STUDIJ

MOGUĆNOSTI NAPONSKE OPTIMIZACIJE S MIKRO-ELEKTRANAMA U DISTRIBUTIVNIM MREŽAMA

Diplomski rad

Marinko Pavković

Osijek, 2016.

Obrazac D1: Obrazac za imenovanje Povjerenstva za obranu diplomskog rada

Osijek, 04.10.2016.

Odboru za završne i diplomske ispite

Imenovanje Povjerenstva za obranu diplomskog rada

Ime i prezime studenta:	Marinko Pavković			
Studij, smjer:	Diplomski sveučilišni studij Elektrotehnika, smjer Elektroenergetika			
Mat. br. studenta, godina upisa:	D-485,	22.09.2014.		
OIB studenta:	439119	15096		
Mentor:	Doc.dr.	sc. Predrag Marić		
Sumentor:	Marko \	/ukobratović		
Predsjednik Povjerenstva:	Doc.dr.sc. Goran Knežević			
Član Povjerenstva:	Marko \	/ukobratović		
Naslov diplomskog rada:	Mogućnosti naponske optimizacije s mikro-elektranama u distributiv mrežama			
Znanstvena grana rada:	Elektroenergetika (zn. polje elektrotehnika)			
Zadatak diplomskog rada:				
Prijedlog ocjene pismenog dijela ispita (diplomskog rada):	Vrlo do	bar (4)		
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjena znanja stečenih na fakultetu: 3 Postignuti rezultati u odnosu na složenost zadatka: 1 Jasnoća pismenog izražavanja: 3 Razina samostalnosti: 2			
Datum prijedloga ocjene mentora:	04.10.2016.			
Potpis mentora za predaju konačne verz	ije rada	Potpis:		
u Studentsku službu pri završetku studija:		Datum:		

IZJAVA O ORIGINALNOSTI RADA

Osijek, 05.10.2016.

Ime i prezime studenta:	Marinko Pavković
Studij:	Diplomski sveučilišni studij Elektrotehnika, smjer Elektroenergetika
Mat. br. studenta, godina upisa:	D-485, 22.09.2014.
Ephorus podudaranje [%]:	1%

Ovom izjavom izjavljujem da je rad pod nazivom: Mogućnosti naponske optimizacije s mikro-elektranama u distributivnim mrežama

izrađen pod vodstvom mentora Doc.dr.sc. Predrag Marić

i sumentora Marko Vukobratović

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

SADRŽAJ

1. UVOD
1.1. Distributivne mreže
1.1.1. Struktura distributivnih mreža4
1.2. Analiza naponske stabilnosti radijalnih distributivnih mreža4
1.2.1. Metodologija
1.3. Testiranje radijalnih distributivnih mreža9
2. MODELIRANJE I UPORABA DIgSILENT SOFTVERA12
2.1. Zadana IEEE mreža za testiranje od 13 čvorišta12
2.2. Modeliranje zadane IEEE mreže za testiranje od 13 čvorišta u DIgSILENT softveru16
2.2.1. Sabirnice
2.2.2. Nadzemni vodovi i podzemni kabeli19
2.2.3. Transformatori
2.2.4. Opterećenja
2.2.5. Kondenzatorske baterije
2.2.6. Krute mreže
2.2.7. Generatori
3. ANALIZA DOBIVENIH REZULTATA IEEE MREŽE ZA TESTIRANJE
3.1. Dobiveni rezultati napona, opterećenja i tokova snage na 13 sabirnica
3.2. Dobiveni rezultati napona, tokova snage i utjecaj mikro elektrane na distributivnu testnu mrežu od 13 sabirnica
3.3. Utjecaj elektrane od 2,5 MVA na distributivnu testnu mrežu od 13 sabirnica
4. ZAKLJUČAK
LITERATURA
SAŽETAK
ABSTRACT
ŽIVOTOPIS67
PRILOZI

1. UVOD

U današnjim vremenima sve je veća potreba za električnom energijom, pa tako i za stabilnost i optimizacijom napona u elektroenergetskim sustavima. Budući da se svakodnevno mijenjaju potrebe potrošača koje uzrokuju promjene napona u elektroenergetskim mrežama povećala se potreba za manje mikro elektrane koje su male snage ali dodatno stabiliziraju naponske prilike u distributivnim mrežama.

Prvo poglavlje će obuhvatiti kratak opis i strukturu distributivnih mreža. Budući da će nam biti potrebno u ovom diplomskom radu ukratko je opisano testiranje i analiza radijalnih distributivnih mreža u navedenom poglavlju.

U drugom poglavlju će biti ukratko opisan softver DIgSILENT PowerFactory i njegova upotreba. Zadana IEEE mreža od 13 čvorišta će biti izrađena u navedenom softveru i bit će detaljno opisana sama izrada IEEE mreže korak po korak. Svaki element koji će biti korišten u softveru bit će ukratko opisan tako da se dobije bolji uvid u samu izradu IEEE testne distributivne mreže.

Treće poglavlje će uključivati analizu dobivenih rezultata IEEE mreže za testiranje od 13 čvorišta. Prikazat će se dobivene vrijednosti napona, opterećenja i tokova snage na 13 sabirnica koje predstavljaju 13 čvorišta. Isto tako koristit će se generator male snage 250 kVA koji će se spojiti na nekoliko različita mjesta u mreži te će se vidjeti utjecaj na napon i tokove snage odnosno na cijelu mrežu. Isto tako bit će prikazan utjecaj elektrane veće snage 2,5 MVA na testnu distributivnu mrežu. Navedeni utjecaji će isto biti prikazan kroz dobivene vrijednosti i dijagrame.

1.1. Distributivne mreže

Distributivne mreže same po sebi spajaju krajnje potrošače u elektroenergetskom sustavu, ali da bi se to postiglo potrebno je preuzeti električnu energiju iz prijenosne mreže ili manjih mikro elektrana koje su priključene na distributivnu mrežu te distribuira električnu energiju do srednjih i malih potrošača [1].

Distributivna mreža može se podijeliti na dvije razine:

- Srednjenaponska distributivna mreža SN (nazivnih napona 10 kV, 20 kV, 30 kV i 35 kV)
- Niskonaponska distributivna mreža NN (nazivnog napona 0.4 kV) [1].

Položaj distributivnih mreža u elektroenergetskom sustavu može se prikazati na sljedećoj slici:

Sl. 1.1. Položaj distributivnih mreža u elektroenergetskom sustavu [7]

Distributivna mreža se pretežno napaja iz prijenosne mreže transformatorima, ali postoji mogućnost direktnog priključenja elektrana na distributivnu mrežu. Elektrane velikih snaga uvijek su priključene na prijenosnu mrežu, preko koje se električna energija prosljeđuje distributivnoj mreži, a da bi se veće elektrane priključile na prijenosnu mrežu potreban je blok transformator.

Male elektrane snage 10 MW i više mogu se priključiti direktno na distributivnu mrežu na dva načina:

 preko blok transformatora na srednjenaponsku distributivnu mrežu za elektrane snage 5 MW i više.

Sl. 1.2. Priključivanje male elektrane na srednjenaponsku distributivnu mrežu [7]

• direktno na niskonaponsku mrežu za elektrane snage 500 kW i više.

Sl. 1.3. Priključivanje male elektrane na niskonaponsku mrežu [7]

1.1.1. Struktura distributivnih mreža

Prema [1] strukturu distributivnih mreža može se podijeliti na sljedeći način:

- Jednostrano napajane distributivne mreže koje mogu biti:
 - Zrakasto-radijalne mreže
 - Prstenaste mreže
 - Mreže s potpornom točkom
- Dvostrano napajane distributivne mreže koje mogu biti:
 - ➢ Linijske mreže
 - Prstenaste i linijske mreže u kombinaciji

1.2. Analiza naponske stabilnosti radijalnih distributivnih mreža

Elektroenergetski sustav je međusobno povezani sustav koji se sastoji od proizvodnih jedinica, koje pretvaraju energiju goriva u električnu energiju određene energetske razine tj. snage dok samo povezivanje između proizvodnje i krajnjeg potrošača postižemo pomoću dalekovoda. Prema naponskim razinama, elektroenergetski sustav može se promatrati u tri razine, a to je sustava za proizvodnju, prijenos i distribuciju električne energije [3].

Prijenosni sustav je izrazito različit i sam po sebi karakterističan od distribucijskog, gdje kao posljednji povlači snagu iz jednog izvora te ga prenosi do krajnjeg potrošača. Prijenosni sustav ne samo da upravlja velikom proizvedenom snagom nego upravlja sa cijelim elektroenergetskim sustavom. Glavna razlika između prijenosnog i distribucijskog sustava je u samoj strukturi mreže. U prošlosti, sustavi su težili da bude u strukturi petlje, dok se danas teži da budu radijalne strukture [3].

Suvremene distribucijske mreže stalno su suočene sa većim zahtjevima opterećenja tj. svakodnevno su pod utjecajem od niskih do visokih razina opterećenja. U pojedinim industrijskim područjima, uočeno je da pod određenim kritičnim opterećenjima, distribucijski sustav je bio izložen kolapsu napona. Brownell i Clark su snimili taj fenomen kolapsa gdje je poslije toga korištena reaktivna kompenzacija tako da bi se izbjegao ponavljajući kolaps (slom) napona [3].

U posljednje vrijeme dosta je učinjeno vezano za analizu naponske stabilnosti prijenosnih sustava, ali nije dovoljno istraženo vezano za analizu naponske stabilnosti radijalnih distributivnih mreža. Jasmon, Lee, Gubina i Strmchnik su proučavali analizu naponske stabilnosti radijalnih mreža. Oni su cijelu mrežu predstavili kao ekvivalent jednolinijske mreže. Navedeni ekvivalent vrijedi samo u radnoj točki na kojoj je izvedena. Može se iskoristiti za male promjene opterećenja oko radne točke. Međutim, budući da su jednadžbe tokova snage nelinearne čak i za jednostavni radijalni sustav, ekvivalent bi bio neodgovarajući za procjenu granice naponske stabilnosti. Također njihove metode ne dopuštaju promjenu uzroka opterećenja različitih čvorova koji bi uvelike utjecali na točku kolapsa [3].

Pokazalo se da je čvor na kojoj je vrijednost indeksa naponske stabilnosti minimalan, više osjetljiv na kolaps napona. Modeliranje složenih opterećenja se uzima za analizu naponske stabilnosti.

1.2.1. Metodologija

Postoji tehnika odnosno način rješavanja radijalnih distributivnih mreža pomoću tokova snage. U svrhu izvođenja indeksa naponske stabilnosti radijalne distributivne mreže, navedena tehnika tokova snaga objasnit će se ukratko. Slika 1.4. nam pokazuje radijalnu distributivnu mrežu od 15 čvorova, a slika 1.4. nam pokazuje električni ekvivalent slike 1.5. prema [3].

Sl. 1.4. Radijalna distributivna mreža 15 sabirnica [3]

Sl. 1.5. Električni ekvivalent slike 1.4 [3]

Prema [3] i pomoću električnog ekvivalenta na slici 1.5 dobiva se izraz (1-1) i (1-2) koji su opisani na sljedećoj stranici:

$$I(jj) = \frac{V(m1) - V(m2)}{r(jj) + jx(jj)}$$
(1-1)
$$P(m2) - jQ(m2) = V^{*}(m2)I(jj)$$
(1-2)

gdje je :

jj - broj grana,

- m1- grana krajnjeg čvora IS(jj),
- m2 prijemni kraj čvora IR(jj),
- I(jj) struja grane jj,
- V(m1) napon čvora m1,
- V(m2) napon čvora m2,

P(m2) - ukupna radna snaga opterećenja napajana kroz čvor m2,

Q(m2) - ukupna jalova snaga opterećenja napajana kroz čvor m2,

- *NB* ukupan broj čvorova,
- LN1- ukupan broj grana,
- TPL ukupna djelatna snaga opterećenja,
- TQL ukupna reaktivna snaga opterećenja,
- r(jj) otpor grane jj,
- x(jj) reaktancija grane jj.

Prema [3] iz jednadžbe (1-1) i (1-2), dobivamo:

$$|V(m2)|^{4} - \left\{ |V(m1)|^{2} - 2P(m2)r(jj) - 2Q(m2)x(jj) \right\} |V(m2)|^{2} + \left\{ P^{2}(m2) + Q^{2}(m2) \right\} \left\{ r^{2}(jj) + x^{2}(jj) \right\} = 0 \quad (1-3)$$

Neka je, $b(jj) = |V(m1)|^{2} - 2P(m2)r(jj) - 2Q(m2)x(jj) \quad (1-4)$
 $c(jj) = \left\{ P^{2}(m2) + Q^{2}(m2) \right\} \left\{ r^{2}(jj) + x^{2}(jj) \right\} \quad (1-5)$

Iz izraza prema [3] (1-3) - (1-5) dobivamo: $|V(m2)|^4 - b(jj)|V(m2)|^2 + c(jj) = 0$ (1-6)

Prema [3] iz jednadžbe (1-6) može se uočiti da na prijemnom kraju napon |V(m2)| ima četiri rješenja a to su:

$$1.\ 0.707\left[b(jj) - \left\{b^{2}(jj) - 4c(jj)\right\}^{\frac{1}{2}}\right]^{\frac{1}{2}}$$

$$2.\ -0.707\left[b(jj) - \left\{b^{2}(jj) - 4c(jj)\right\}^{\frac{1}{2}}\right]^{\frac{1}{2}}$$

$$3.\ -0.707\left[b(jj) + \left\{b^{2}(jj) - 4c(jj)\right\}^{\frac{1}{2}}\right]^{\frac{1}{2}}$$

$$4.\ 0.707\left[b(jj) + \left\{b^{2}(jj) - 4c(jj)\right\}^{\frac{1}{2}}\right]^{\frac{1}{2}}$$

Sada, za stvarne podatke kada su P,Q,r,x i V izraženi u p.u. (*per unit*), b(jj) je uvijek pozitivan zbog izraza $2\{P(m2)r(jj)+Q(m2)x(jj)\}$ koji je jako malen usporedbom sa $|V(m1)|^2$ i isto tako izraz 4c(jj) je jako malen u usporedbi sa $b^2(jj)$. Prema tome izraz $\{b^2(jj)-4c(jj)\}^{\frac{1}{2}}$ je gotov jednak kao b(jj) a time prva rješenja su gotovo jednaka nuli i nisu izvediva. Treće rješenje je negativno i nije izvedivo, a četvrto rješenje |V(m2)| je pozitivno i izvedivo. Dakle, prema [3] rješenje izraza (1-6) je jedinstveno. A to je:

$$|V(m2)| = 0.707 \left[b(jj) + \left\{ b^2(jj) - 4.0c(jj) \right\}^{\frac{1}{2}} \right]^{\frac{1}{2}} (1-7)$$

Zapravo, P(m2) je suma opterećenja djelatne snage svih čvorova izvan čvora m2, zbroj opterećenja djelatne snage samog čvora m2 i zbroj gubitaka djelatne snage za sve grane izvan čvora m2.

Q(m2) je suma opterećenja jalove snage svih čvorova izvan čvora m2, zbroj opterećenja jalove snage samog čvora m2 i zbroj gubitaka jalove snage za sve grane izvan čvora m2.

1.3. Testiranje radijalnih distributivnih mreža

U posljednji nekoliko godina mnogi digitalni računalni programi su razvijeni za analizu nesimetričnih trofaznih radijalnih distributivnih mreža. Programi koriste raznolike široke iterativne tehnike u rasponu od vrlo pojednostavljenih pretpostavki načinjene za modele voda i opterećenja pa sve do složenih s vrlo malo pretpostavki. Budući da postoji mnoštvo različitih programa postoji potreba za referentno testiranje vodova, tako da se rezultati različiti programa mogu usporediti [4].

Prema [4] sljedeći podaci su zajednički za sve sustave:

Modeli opterećenja

Opterećenja se mogu spojiti na čvor kao točka opterećenja ili pretpostaviti da su ravnomjerno raspoređeni na jednom dijelu voda tj. distributivno opterećenje. Opterećenje može biti jednofazno ili trofazno koje opet može biti simetrično ili nesimetrično. Trofazno opterećenje može se spojiti u wye (zvijezda sa uzemljenim zvijezdištem) ili u spoj trokut dok se jednofazna opterećenja mogu spojiti kao vod-zemlja ili vod-vod. Sva opterećenja mogu se modelirati sa konstantnom radnom i jalovom snagom, impedancijom i strujom [4].

OZNAKA	SPOJ	MODEL	
Y-PQ	Wye	Konstanta radna i jalova snaga	
Y-I	Wye	Konstantna struja	
Y-Z	Wye	Konstantna impedancija	
D-PQ	Delta	Konstanta radna i jalova snaga	
D-I	Delta	Konstantna struja	
D-Z	Delta	Konstantna impedancija	

Tab. 1.1. Oznake za različite modele opterećenja [4]

Prema [4] poprečni kondenzatori (engl. *shunt capacitors*) mogu biti spojeni u trofaznom spoju wye i trokut, a za jednofazni vod-zemlja ili vod-vod. Kondenzatori su modelirani na određenu nazivnu jalovu snagu.

Modeli nadzemnog razmaka

ID RAZMAKA	TIPOVI RAZMAKA
500	3-faze. 4-žični
505	2-faze, 3-žični
510	1-faza, 2-žični

Tab. 1.2. Identifikacijski brojevi i tipovi razmaka za nadzemne vodove [4]

Sl. 1.6. *Prikazuje udaljenost razmaka između faznog i neutralnog vodiča koristeći ID brojeve za nadzemne vodove*[4]

Prema [4] podaci vodiča

- Veličina vodiča [mm²]
- Tipovi vodiča AA= cijeli od aluminija, ACSR = aluminijski vodič ojačan čelikom, CU = bakar
- Vanjski promjer vodiča [mm]
- Geometrijski srednji radijus [mm]
- Dozvoljeno strujno opterećenje na 50 °C [A]

Modeli podzemnih razmaka kabela

ID RAZMAKA	TIPOVI RAZMAKA
515	3-faze. 3-kabela
520	1-faza, 2-kabela

 Tab. 1.3. Identifikacijski brojevi i tipovi razmaka za podzemne kabele [4]

Sl. 1.7. Prikazuje udaljenost razmaka između kabela podzemnih kabele [4]

Prema [4] podaci kabela

- Veličina vodiča [mm²]
- Promjer izolacije [mm]
- Promjer plašta [mm]
- Vanjski promjer [mm]
- Dozvoljeno strujno opterećenje [A]

2. MODELIRANJE I UPORABA DIgSILENT SOFTVERA

DIgSILENT je softverska i konzalting tvrtka koja pruža inženjerske usluge u poljima elektroenergetskim sustavima za distribuciju, prijenos, proizvodnju i industrijska postrojenja [5].

Navedena tvrtka je osnovana 1985. godine u privatnom vlasništvu a sjedište se nalazi u Gomaringen/Tübingen u Njemačkoj. Uporaba DIgSILENT-a je proširena diljem svijeta te uspostavom ureda u Australiji, Južnoj Africi, Italiji, Čileu, Španjolskoj, Francuskoj i Sjedinjenim Američkim Državama pojednostavili su bolju uslugu i povećali su korištenje svojih softverskih proizvoda i usluga. Danas DIgSILENT usluge i instalacije softvera je provedena više od 130 zemalja diljem svijeta [5].

2.1. Zadana IEEE mreža za testiranje od 13 čvorišta

Prema [4] IEEE mreža za testiranje od 13 čvorišta je mala mreža ali sa zanimljivim karakteristikama kao što su:

- 4.16 *kV* pojni vodovi.
- Jedna trafostanica
- Nadzemni i podzemni vodovi
- Grupa spojenih poprečnih kondenzatora
- Transformator
- Nesimetrična distribuirana opterećenja

Za ovakvu malu mrežu navedene karakteristike će pružiti dobar test za najčešća obilježja softvera distributivne analize [4]. Sljedeća slika prema [4] prikazuje navedenu IEEE mrežu za testiranje:

Sl. 2.1. IEEE mreža za testiranje od 13 čvorova [4]

Prema [4] podaci koji su priloženi uz zadanu IEEE mrežu za testiranje su sljedeći:

Tab. 2.1.	Konfigu	racija i	podaci	podzemnih	vodova	[4]
				F		

Konfiguracija	Faze	Kabel	Neutral	ID Razmaka
606	A B C N	250,000 AA, CN	-	515
607	A N	1/0 AA, TS	1/0 Cu	520

Tab. 2.2. Konfiguracija i podaci nadzemnih vodova [4]

Konfiguracija	Faze	Faza ACSR	Neutral ACSR	ID Razmaka
601	BACN	556,500 26/7	4/0 6/1	500
602	C A B N	4/0 6/1	4/0 6/1	500
603	C B N	1/0	1/0	505
604	A C N	1/0	1/0	505
605	C N	1/0	1/0	510

Čvor A	Čvor B	Duljina (m)	Konfiguracija
632	645	152.40	601
632	633	152.40	601
633	634	0	XFM - 1
645	646	91.40	601
650	632	609.60	601
684	652	243.80	606
632	671	609.60	601
671	684	91.40	601
671	680	304.80	601
671	692	0	Prekidač
684	611	91.40	601
692	675	152.40	606

 Tab. 2.3. Konfiguracija i podaci trasa vodova [4]

 Tab. 2.4. Podaci kondenzatorski baterija [4]

Čvor	Faza-A (kVAr)	Faza-B (kVAr)	Faza-C (kVAr)
675	200	200	200
611			100
Ukupno	200	200	300

 Tab. 2.5. Podaci transformatora [4]

	kVA	kV-viša	kV-niža	R - %	X - %
Trafostanica	5.000	115 - D	4.16 Gr. Y	1	8
Trafo - XFM -1	500	4.16 - Gr.Y	0.48 - Gr.Y	1,1	2

Čvor	Model opterećenja	Faza - 1 (kW)	Faza - 1 (kVAr)	Faza - 2 (kW)	Faza - 2 (kVAr)	Faza - 3 (kW)	Faza - 3 (kVAr)
634	Y-PQ	160	110	120	90	120	90
680	Y-PQ	0	0	170	125	0	0
646	D-Z	0	0	230	132	0	0
652	Y-Z	128	86	0	0	0	0
671	D-PQ	385	220	385	220	385	220
675	Y-PQ	485	190	68	60	290	212
692	D-I	0	0	0	0	170	151
611	Y-I	0	0	0	0	170	80
	Ukupno	998	496	683	412	1015	663

 Tab. 2.6. Podaci i modeli opterećenja čvorišta [4]

 Tab. 2.7. Podaci i modeli opterećenja čvorišta uravnoteženo[4]

Čvor	Ukupno O	pterećenje
	kW	kVAr
634	400	290
680	170	125
646	230	132
652	128	86
671	1255	718
675	843	462
692	170	151
611	170	80

2.2. Modeliranje zadane IEEE mreže za testiranje od 13 čvorišta u DIgSILENT softveru

U ovom dijelu prikazat će se postupak izrade prema [4] navedene IEEE mreže u softveru DIgSILENT. Svaki početak pri konstruiranju elektroenergetske mreže počinje sa sabirnicama koje će predstavljati čvorišta u ovom slučaju to će biti 13 sabirnica. Nakon toga povezuju se sabirnice sa podzemnim ili nadzemnim vodovima i transformatorima ovisno o tome kako je zadano u samoj IEEE mreži za testiranje.

Sl. 2.2. Modelirana IEEE mreža za testiranje od 13 sabirnica

Sl. 2.3. Jednofazna shema IEEE mreže za testiranje od 13 sabirnica u DIgSILENT softveru

2.2.1. Sabirnice

Pri modeliranju sabirnica IEEE mreže u softveru DIgSILENT potrebno podesiti tip sustava koji je ovom slučaju izmjenični, broj faza, očekivani nominalni napon i granične vrijednosti napona na svih 13 sabirnica. Navedeni podaci mogu se vidjeti na slikama 2.4 i 2.5..

Terminal - Grid\650.ElmTerm	? ×
IEC 61363 RMS-Simulation EMT-Simulation Harmonics Optimization State Estimator Reliability Generation Adequacy Tie Open Point Opt. Description Basic Data Load Row VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit Name Image: Complete Short-Circuit Complete Short-Circuit ANSI Short-Circuit Type Image: Complete Short-Circuit Complete Short-Circuit Ansi Short-Circuit Zone Image: Complete Short-Circuit Complete Short-Circuit Area	OK Cancel Jump to Cubicles
□ Out of Service System Type AC ✓ Phase Technology ABC ▼ Nominal Voltage ✓ Line-Line 4.16 kV Line-Ground 2.401777 kV Earthed	

Sl. 2.4. Osnovni podaci sabirnica IEEE testne mreže u softveru DIgSILENT

erminal - Grid\650.E	ElmTerm				? ×
IEC 61363 R	MS-Simulation	EMT-Simulation	Harmonics	Optimization	ОК
Basic Data Load F	low VDE/IEC S	hort-Circuit Com	blete Short-Circuit	ANSI Short-Circuit	Creat
Voltage Control	1				
Target Voltage	1	p.u. 4.1	6 kV		Jump to
Delta V max	10.	~ %			Cubicles
Delta V min	-10,	~ %			
Priority	-1	_			
	1.				
Steady State Voltag	ge Limits	_			
Max. Voltage	1,1	p.u.			
Min. Voltage	0,9	p.u.			

Sl. 2.5. *Granične vrijednosti napona na sabirnicama IEEE testne mreže u softveru DIgSILENT*

Sl. 2.6. Sabirnice IEEE mreže za testiranje

2.2.2. Nadzemni vodovi i podzemni kabeli

Pri modeliranju nadzemnih vodova i podzemnih kabela IEEE mreže u softveru DIgSILENT potrebno je podesiti duljinu trase, nazivni napon, nazivnu struju, nominalnu frekvenciju, otpor i reaktanciju po kilometru. Navedeni podaci mogu se uočiti na sljedećim slikama 2.7. i 2.8..

U potpoglavlju 1.4 testiranje radijalnih distributivnih mreža su objašnjeni i dani modeli nadzemnog i podzemnog razmaka u tablici 1.2. i 1.3. prema slici 1.6. i 1.7., isto tako broj i međusobna udaljenost vodiča dok u 2.1 potpoglavlju su zadani parametri i vrijednosti prema tablici 2.1. i 2.2..

State Estimator Reliability Generation Adequacy Tie Open Point Opt. Description Basic Data Load Row VDE/IEC Short-Circuit Complete Short-Circuit Canc Iame Nur Line(645 - 632) Figure Figure Type Image: Equipment Type Library/Nadzemni vod (645-632) Figure Jump ti Image: Equipment Type Library/Nadzemni vod (645-632) Ferminal i Image: Equipment Type Library/Nadzemni vod (645-632) Cone Terminal i Image: Equipment Type Library/Nadzemni vod (645-632) State Estimator 632 Cone Terminal i Image: Equipment Type Library/Nadzemni vod (645-632) Cone Terminal i Image: Equipment Type Library/Nadzemni vod (645-632) Cone Terminal i Image: Equipment Type Library/Nadzemni vod (645-632) Cone Terminal i Image: Equipment Type Library/Nadzemni vod (645-632) Number of Resulting Values Parameters Number of Parameters Number of Themal Rating Image: Equipment Type Library Integration Factor Image: Equipment Type Library Integration Factor Image: Equipment Type Library Param	ANSI Short-Circuit	IEC 61363	RMS-Simulation	EMT-S	mulation	Harmonics	Optimization		ĸ
Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit Canc Iame [Air Line(645 - 632) Figure Figure Figure Figure Sype 	State Estimator	Reliability	Generation Adequ	Jacy	Tie Ope	n Point Opt.	Description		<u>`</u>
Name kir Line(645 - 632) Fype	Basic Data	Load Flow	VDE/IE	C Short-Ci	cuit	Complet	e Short-Circuit	, Can	cel
Type 	Vame	Air Line(645 - 632)						Deur	
Terminal i Implie ferminal i Implie fere	Гуре	➡ Equipment Type	oe Library\Nadzemni	vod (645-	532)				
Terminal j Image: Sections/Line Loads	Ferminal i		_2			645		Jump	to
Cone Terminal i	Ferminal j	Grid\632\Cub	_1			632			
Vrea Terminal i ▼ ▲ Out of Service Number of parallel Lines 1 Parameters 1 Phemal Rating ▼ ▲ Length of Line 0.1524 Derating Factor 1 Vige of Line 0.006173640 chm Zero Seq. Resistance, R1 0.0014919960 chm Zero Seq. Resistance, R1 0.014919960 chm Zero Seq. Resistance, R1 0.0014919060 chm Zero Seq. Resistance, R1 0.004270950 chm Zero Seq. Resistance, R1 0.00402024 chm Zero Seq. Resistance, R0 0.003273552 chm Zero Seq. Resistance, R0 0.004278904 A Earth Factor, Magnitude 0.4598158 Earth Factor, Angle 2.845282 deg Sype of Line Overhead Line Line Model © Lumped Parameter Sections/Line Loads	Zone	Teminal i	+						
Out of Service Number of parallel Lines 1 Parameters Rated Current 1, kA Pos. Seq. Impedance, Angle 69,55402 deg Thermal Rating 	vrea	Teminal i	+						
Number of parallel Lines 1 Parameters 0.04271095 Ohm Pos. Seq. Impedance, Angle 69,55402 deg Porameters Pos. Seq. Impedance, Angle 0.04271095 Ohm Pos. Seq. Impedance, Angle 0.04271095 Ohm Pos. Seq. Resistance, R1 0.01491996 Ohm Pos. Seq. Resistance, R1 0.0402024 Ohm Zero Seq. Resistance, R0 0.03273552 Ohm Zero Seq. Resistance, X0 0.00617964 Ohm Earth-Fault Current, I.ce 0.00428904 A Earth-Fault Current, I.ce 0.00428904 A Earth Factor, Magnitude 0.4598158 Earth Factor, Angle 2.845282 deg	Out of Service								
parallel Lines 1 I, kA Parameters Pos. Seq. Impedance. Z1 0.04271095 Ohm Pos. Seq. Impedance. Angle 69,55402 deg Pos. Seq. Residence. R1 0.01491996 Ohm Pos. Seq. Residence. R1 0.01491996 Ohm Pos. Seq. Residence. R1 0.0402024 Ohm Length of Line 0.1524 km Derating Factor 1. Zero Seq. Residence. X0 0.009617964 Ohm Earth Fault Current, I.ce 0.00428904 A Earth Fault Current, I.ce 0.00428904 A Earth Fault Current, I.ce 0.4598158 Earth Factor, Angle 2.845282 deg Ype of Line Overhead Line Une Une Sections/Line Loads Image: Sections/Line Loads	Number of			Resu	ting Values				
Parameters Pos. Seq. Impedance. 21 0.04271095 0 hm Premeters Pos. Seq. Impedance. Angle 69,55402 deg Thermal Rating Impedance. Angle Impedance. R1 Impedanc	parallel Lines	1	_	Rate	Current		1, kA		
Parameters Pois. Seq. Impedance, Angle 9, 35424 2089 Thermal Rating		,		Pos.	Geq. Imped	lance, Z1	0,04271095 Ohm		
Thermal Rating Image: Constraint of Line 0.1524 km Length of Line 0.1524 km Zero Seq. Reactance, X1 0.04002024 Ohm Derating Factor 1. Zero Seq. Reactance, X0 0.09617964 Ohm Earth-Fault Current, Ice 0.00428904 A Earth-Fault Current, Ice 0.040224 Ohm Ype of Line Overhead Line Line Model Image: Constraint of Constraints Sections/Line Loads Sections/Line Loads	Parameters			Pos.	Seq. Imped Seq. Resist	ance, Angle tance, R1	0.01491996 Ohm		
Length of Line 0.1524 km Zero Seq. Resistance, R0 0.03273552 Ohm Derating Factor 1. Zero Seq. Rescatance, X0 0.09617364 Ohm Earth-Fault Current, Ice 0.00427804 Ohm Earth-Fault Current, Ice 0.04598158 Earth Factor, Magnitude 0.4598158 Earth Factor, Angle 2.845282 deg 'ype of Line Overhead Line 'Line Model	Thermal Rating	▼ →		Pos.	Seq. React	tance, X1	0,04002024 Ohm		
Derating Factor 1. Zero Seq. Reactance, X0 0.09617964 Ohm Earth-Fault Current, Ice Earth-Fault Current, Ice 0.00428904 A Earth-Factor, Magnide 0.45938158 Earth Factor, Angle 2,845282 deg	Length of Line	0,1524	km	Zero	Seq. Resist	tance, R0	0,03273552 Ohm		
Calification Control Earth Factor, Magnitude 0.4598158 Earth Factor, Angle 2.845282 deg	Derating Factor	1.	_	Zero	Seq. Read	tance, X0	0,09617964 Ohm		
Earth Factor, Angle 2,845282 deg Sections/Line Loads 2,845282 deg	-	, .		Earth	Factor, Ma	anitude	0.4598158		
Type of Line Overhead Line Line Model Image: Comparison of the second s				Earth	Factor, An	gle	2,845282 deg		
Line Model C Lumped Parameter (PI) Sections/Line Loads	ype of Line	Overhead Line							
C Lumped Parameter (PI) C Distributed Parameter Sections/Line Loads	Line Model								
C Distributed Parameter Sections/Line Loads	• Lumped Para	meter (PI)							
Sections/Line Loads	C Distributed Pa	arameter							
Sections/Line Loads									
	Sections/L	ine Loads							

Sl. 2.7. Osnovni podaci nadzemnih vodova IEEE testne mreže u softveru DIgSILENT

RMS-Simulation	EMT-Simul	ation	Harmonics	Optimiza	tion	State E	stimator		OK
Reliability	Generation	Adequacy	Tie O	oen Point Op	t. [Descr	iption		UK
Basic Data Load	Flow VDE/IEC	Short-Circuit	Complete Shore	t-Circuit A	NSI Short	Circuit	IEC 61363	. (Cancel
Name	Nadzemni vod (64	5-632)							
Rated Voltage	4,16 k	v							
Rated Current	1. k	A							
Nominal Frequency	50. H	z							
Cable / OHL	Overhead Line	•							
System Type	AC	Phases	3 🔻	No. of Ne	utrals	1 💌			
-Parameters per Le	nath 1.2-Sequence		- Paramete	rs per Length	Zero Sea	uence —			
Resistance R' (2	0°C) 0,0979	Ohm/km	Resistar	nce R0'	0,2148	Ohm	/km		
	• , •				,				
Reactance X'	0,2626	Ohm/km	Reacta	nce X0'	0,6311	Ohm,	/km		
Parameters per Le	ngth, Neutral		Paramete	rs per Length	, Phase-N	eutral Coup	pling		
Resistance Rn'	0,0979	Ohm/km	Resistar	nce Rpn'	0,2148	Ohm,	/km		
Reactance Xn'	0,2626	Ohm/km	Reactar	nce Xpn'	0,6311	Ohm,	∕km		

Sl 2.8. Potrebni podaci za modeliranje nadzemih vodova IEEE testne mreže u softveru DIgSILENT

Sl. 2.9. Nadzemni vodovi i podzemni kabeli IEEE mreže za testiranje

2.2.3. Transformatori

Pri modeliranju transformatora IEEE testne mreže u softveru DIgSILENT potrebno je podesiti naponske razine na sabirnicama na koje je spojen transformator, nazivnu snagu, nominalnu frekvenciju, iznose napona na višoj i nižoj razini transformacije, grupi spoja i nazivni napon kratkog spoja. Navedeni podaci su prikazani na slikama 2.10 i 2.11..

2-Winding Transformer - Grid\2-Winding Transformer.ElmTr2	? ×
RMS-Simulation EMT-Simulation Harmonics Optimization State Estimator	ОК
Reliability Generation Adequacy Tie Open Point Opt. Description	
Busic Busic Fload How VDE/TEC Short-Circuit Complete Short-Circuit AlvSi Short-Circuit TEC 6136.	Cancel
Name 2-Winding Transformer	Figure >>
Type	
HV-Side Grid\Terminal\Cub_1 Terminal	Jump to
LV-Side Gid\650\Cub_4 650	
Zone HV-Side	
Area HV/Side	
Out of Service External Star Point	
Number of Flip Connections	
parallel Iransformers	
Thermal Rating	
Bating Factor 1 Bated Power 5 MVA	
Internal Grounding Impedance, LV Side	
Star Point Connected	
Paristana Pa	
Reactance, Xe U, Ohm	

Sl. 2.10. Osnovni podaci transformatora IEEE testne mreže u softveru DIgSILENT

ANSI Short-Circuit IEI	C 61363 RMS-	Simulation EN	IT-Simulation	Harmonics	Optimization		OK
State Estimator R	eliability Ger	eration Adequacy	Tie Oper	n Point Opt.	Description		
Basic Data	Load Flow	VDE/IEC Sho	ort-Circuit	Complete S	hort-Circuit	Ca	and
ame	Substation(1)						
echnology	Three Phase Tra	ansformer	-				
ated Power	5,	MVA					
ominal Frequency	50,	Hz					
Rated Voltage		Ve	ctor Group				
HV-Side	115,	cV HV	-Side	D 💌			
LV-Side	4,16	cV LV-	Side	YN 💌			
Positive Sequence Imped	lance			-			
Short-Circuit Voltage uk	8,	% Pha	ase Shift	0 3	30deg		
Copper Losses	49,61389	cW Na	me l	Dyn0			
Zero Sequ. Impedance, S	Short-Circuit Voltage						
Absolute uk0	8,	%					
Resistive Part ukr0	0,	%					

Sl. 2.11. Potrebni podaci za modeliranje transformatora IEEE testne mreže u softveru DIgSILENT

Sl. 2.12. Transformatori IEEE mreže za testiranje

2.2.4. Opterećenja

Pri modeliranju opterećenja IEEE testne mreže u softveru DIgSILENT potrebno je podesiti ulazne parametre koji su u ovom slučaju radna i jalova snaga. Budući da su opterećenja nesimetrična potrebno je za svaku fazu modelirati opterećenje. Navedeni podaci su prikazani na slici 2.13..

nput Mode	P,Q		•	Figure >
alanced/Unbalance	d <mark>Unbala</mark>	nced	•	Jump to
Operating Point		_	Actual Values	
Active Power	0.4	MW	0,4 MW	
Reactive Power	0,29	Mvar	0,29 Mvar	
Voltage	1.	p.u.		
Scaling Factor	1.		1.	
Adjusted by Loa	ad Scaling	Zone S	caling Factor: 1,	
Phase 1			Actual Values	
Active Power	0,16	MW	0,16 MW	
Reactive Power	0,11	Mvar	0,11 Mvar	
Phase 2			Actual Values	
Active Power	0,12	MW	0,12 MW	
Reactive Power	0,09	Mvar	0,09 Mvar	
Phase 3			Actual Values	
Active Power	0,12	MW	0,12 MW	
Reactive Power	0.09	Mvar	0,09 Mvar	

Sl 2.13. Potrebni podaci za modeliranje opterećenja IEEE testne mreže u softveru DIgSILENT

Sl. 2.14. Opterećenja IEEE mreže za testiranje

2.2.5. Kondenzatorske baterije

Pri modeliranju kondenzatorskih baterija IEEE testne mreže u softveru DIgSILENT potrebno je podesiti tip sustava koji je ovom slučaju izmjenični, nazivni napon, tip spoja i nazivnu snagu koji su prikazani na slici 2.15..

ANSI Short-Circuit	IEC 61363	RMS-Simulation	EMT-Simulation	Harmonics	Optimization	
State Estimator	Reliability	Generation Ade	quacy Tie Ope	n Point Opt.	Description	
Basic Data	Load Flow	VDE/	IEC Short-Circuit	Complete	Short-Circuit	Cance
Name Shunt/Filt	er					Baum
Terminal 🔫 🔺 G	rid\675\Cub_2		675			rigure
Zone 🔸 🛄						Jump to
Area 🔸						
Out of Service		Test	2011/02	_		
system Type	AL V	Technolo	ogy 3PH-'D'	-		
vominai voltage	4,16	κν		6		
Shunt Type	C	_	- τ			
nput Mode	Default	▼		eμ		
Controller						
Max. No. of Steps	1		Max. Rated Rea	ctive Power 0,1	Mvar	
Act.No. of Step	1	*	Actual Reactive	Power 0,1	Mvar	
- Design Parameter (p	per Step)		Layout Paramete	er (per Step)		
Rated Reactive Por	wer, C 0,1	Mvar	Susceptance	1926,159	uS 🗖	
Loss Factor, tan(del	ta) 0.		Parallel Conduct	ance 0.	uS	
				1.		
	Capacitance (per	Step)				
Terminal to Ground		- 5				
Terminal to Ground Susceptance to Gro	und 0,	115				

Sl 2.15. Potrebni podaci za modeliranje kondenzatorskih baterija IEEE testne mreže u softveru DIgSILENT

Sl. 2.16. Kondenzatorske baterije IEEE mreže za testiranje

2.2.6. Krute mreže

U ovom slučaju kruta mreža je klasificirana kao referentni čvor. U softveru DIgSILENT je prikazana kao engl. *External grid* a za tip referentnog čvorišta odabran je model SL engl. *slack* gdje je prikazano na slici 2.17..

IEC 61363	RMS-Simulation	EMT-Simula	tion H	lamonics	Optimization	State Estimator	
Reliability	Genera	tion Adequacy		Tie Open Po	oint Opt.	Description	
Basic Data	Load Flow	VDE/IEC Shor	-Circuit	Complete	Short-Circuit	ANSI Short-Circuit	Canc
us Type	SL 🔻						Figure
nput Mode	Default	▼	Setpoint	local	•		
Operation Point							Jump to
Angle	0.	deg					
Voltage Setpoint	1.	p.u.					
Reference Busba	r +						

Sl. 2.18. Kruta mreža IEEE mreže za testiranje

2.2.7. Generatori

Pri modeliranju generatora snage 250 kVA IEEE testne mreže u softveru DIgSILENT potrebno je podesiti nazivnu snagu, faktor snage prema tablici 3.2.. Potrebno je uzeti u obzir da su generatori u Republici Hrvatskoj modelirani prema čvoru opterećenja PQ s $\cos \varphi = 1$ zbog poticajne tarife na predanu djelatnu snagu, a ne djelatnu i jalovu snagu.

Budući da je u ovom slučaju generator modeliran prema čvoru opterećenja s $\cos \varphi = 0.8$ u mrežu je predavao i jalovu snagu.

chronous Machine - Ond Ocherator 250 KVA.chrisyn	r X
RMS-Simulation EMT-Simulation Harmonics Optimization State Estimator	01/
Reliability Generation Adequacy Tie Open Point Opt. Description	OK
sic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363	Cancel
Spinning if circuit-breaker is open Mode of Local Voltage Controller	Dana at
Reference Machine Power Factor	Figure >>
orresponding Bus Type: PQ O Voltage	Jump to
temal Secondary Controller 🔍 🕈	
Dispatch Capability Curve	
Input Mode S cos(phi) V	
qmin/-1.00 p qmax/ 1.00	
Apparent Power 0.25 MVA (0.60/ p.80)	
Power Factor 0.8 ind. 0.80 0.80 0.80	
Voltage 1, p.u. 0,3333	
Angle 0, deg	
Prim. Frequency Bias 0, MW/Hz -1,000 -0,333 0,333 1,000,00	
Capability Curve 	
Capability Curve	
Capability Curve	
Capability Curve •	
Capability Curve • … Use limits specified in type Min. [-1, p.u. [-0.25] Mvar Scaling Factor (min.) [100, % Max. 1. p.u. [0.25] Mvar Scaling Factor (max.) [100, % Operational Limits Min. 0. MW Max. 9999, MW	
Capability Curve • Use limits specified in type Min. -1. p.u. -0.25 Mvar Scaling Factor (min.) 100, % Max. 1. p.u. 0.25 Mvar Scaling Factor (max.) 100, % Operational Limits Min. 0, MW MW	

SI 2.19. Potrebni podaci za modeliranje generatora snage 250 kVA IEEE testne mreže u softveru DIgSILENT

3. ANALIZA DOBIVENIH REZULTATA IEEE MREŽE ZA TESTIRANJE

U ovom dijelu poglavlja prikazat će se ujedno analizirati dobiveni rezultati simulacija u softveru DIgSILENT. Prikazat će se dobivene vrijednosti napona, opterećenja i tokovi snage na 13 sabirnica koje predstavljaju 13 čvorišta a u drugom dijelu poglavlja prikazat će se utjecaj mikro elektrane na testnu distributivnu mrežu od 13 sabirnica.

3.1. Dobiveni rezultati napona, opterećenja i tokova snage na 13 sabirnica

Na slici 3.1. može se uočiti preopterećenje transformatora XFM-1 gdje njegovo opterećenje iznosi 111,68 %, a na sabirnici 634 je veći pad napona pa vrijednost napona iznosi 0,88 p.u.. Dozvoljeni limiti napona u simulaciji je podešen na donji limit koji iznosi 0,90 p.u. i gornji limit koji iznosi 1,1 p.u..

Kako bi se rasteretio preopterećeni transformator XFM-1 koristit će se dodatne kondenzatorske baterije za sve tri faze vrijednosti 0,3 Mvar. Pomoću navedenih kondenzatorskih baterija izvršit će se kompenzacija i popraviti naponske prilike na sabirnici 634.

Sl. 3.1. Shema prikaza IEEE testne mreže sa opterećenim transformatorom XFM -1

Na slici 3.2. može se uočiti da je poslije izvršene kompenzacije transformator rasterećen na 88,03%, a naponske prilike na sabirnici 634 su se popravile i sa vrijednosti 0,88 p.u. su podignute na 0,91 p.u..

Sl. 3.2. Shema prikaza IEEE testne mreže sa izvršenom kompenzacijom - kondenzatorska baterija 0,3 Mvar

U dobivenom dijagramu na slici 3.3. može se vidjeti dobiveni rezultati napona na 13 sabirnicama. Svaka sabirnica je označena brojem koji su dodijeljeni u zadanoj IEEE mreži za testiranje. Može se uočiti da je najveći napon na sabirnici 650 iznosi 0,96 p.u. što je i očekivano budući da se nalazi blizu krute mreže to jest referentnom čvorištu gdje je nominalan napon 1,00 p.u.. Na sabirnicama 680, 652, 646, 611 i 675 napon je najmanji 0,91 p.u. budući da su to krajnje sabirnice IEEE testne mreže a ujedno nalaze se i potrošači na njima što dodatno pridonosi padu napona.

Sl. 3.3. Dobiveni rezultat napona na 13 sabirnica IEEE mreže

Na slici 3.4. prema [4] u tablici 2.7. zadana opterećenja se nalaze na svakom zadanom čvorištu to jest sabirnici. Crveni stupci prikazuju zadanu radnu snagu dok plavi stupci prikazuju zadanu jalovu snagu. Najveća radna i jalova snaga je na sabirnici 671 kako je i zadano, dok na sabirnicama na kojoj je vrijednost nula vrijednosti nisu bile zadane u zadanoj IEEE mreži za testiranje.

Sl. 3.4. Dobiveni rezultat opterećenja na 13 sabirnica IEEE mreže

Prema dobivenom rezultatu na slici 3.5. može se uočiti utjecaj krute mreže gdje je na sabirnici 650 najveća vrijednost radne i jalove snage koje iznose 3,37 MW i 1,76 Mvar zbog blizine krute mreže, dok su povišene vrijednosti i na sabirnicama 671, 632 zbog same blizine sabirnice 650 i krute mreže. Na ovom dijagramu crvena boja označava radnu snagu, a zelena označava jalovu snagu. Potrebno je uzeti u obzir opterećenja koja vladaju na sabirnica jer i navedena opterećenja utječu na tokove snaga.

Sl. 3.5. Dobiveni rezultat tokova snage na 13 sabirnica IEEE mreže
3.2. Dobiveni rezultati napona, tokova snage i utjecaj mikro elektrane na distributivnu testnu mrežu od 13 sabirnica

U ovom djelu poglavlja koristit će se generator snage 250 kVA koji će predstavljati mikro elektranu. Navedeni generator će biti spojen nasumično na više mjesta na testnoj distributivnoj mreži od 13 sabirnica. Kako bi se generator spojio na IEEE testnu mrežu koristit će se transformator snage 400 kVA. Podaci za navedene elemente dani su u tablicama 3.1. i 3.2..

Tab. 3.1. Podaci transformatora 400 kVA[5]

	kVA	kV-viša	kV-niža	u _k - %
Transformator G1	400	4.16 - D	0.4 - Gr.Y	4

Navedeni podaci za transformator preuzeti su iz baze podataka u softveru DIgSILENT.

Nazivna snaga	250 kVA
Nazivni napon	400 V ± 5 %
Faktor snage $\cos \varphi$	0,8 - 1
Brzina	1500 okr/min
Broj polova	4
Broj faza	3
Spoj u zvijezdu, šest izvoda, četiri priključka	
Čvor opterećenja	PQ

Tab. 3.2. Podaci generatora 250 kVA

Prema slikama 3.6. i 3.7. navedeni dijagram prikazuje utjecaj mikro elektrane na 13 sabirnica testne IEEE distributivne mreže. Budući da je mikro elektrana spojena na sabirnicu 652, na navedenoj sabirnici je registrirana najveća promjena napona s 0,9099 p.u. na 0,9198 p.u.. Isto tako može se uočiti da je došlo do manjeg porasta napona na bližoj sabirnici 684, što je pozitivno u ovom slučaju jer je cilj da naponi budu što bliže nominalnom naponu 1,0 p.u..

Sl. 3.6. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 652

Sl. 3.7. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 652 od 250 kVA na 13 sabirnica

Na slici 3.8. može se uočiti porast radne i jalove snage na sabirnici 652 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,1280 MW i jalove snage 0,0860 Mvar. Sa priključenjem mikro elektrane vrijednosti su se povećale na 1,1971 MW i 0,1432 Mvar, a njen utjecaj je prisutan na bližoj sabirnici 684 gdje radna snaga se za mali iznos smanjila ali se zato povećavala jalova snaga.

Sl. 3.8. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 652 od 250 kVA na 13 sabirnica

Na slikama 3.9. i 3.10. može se uočiti identična promjena napona kao na slici 3.7.. Značajnu promjenu napona može se uočiti na sabirnici 646 gdje je priključena mikro elektrana sa vrijednosti 0,9333 p.u. na 0,9402 p.u. zbog samog utjecaja generatora. Potrebno je uzeti u obzir i utjecaj, da se navedena sabirnica nalazi bliže krutoj mreži.

Sl. 3.9. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 646

Sl. 3.10. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 646 od 250 kVA na 13 sabirnica

Prema slici 3.11 dobiveni rezultat pokazuje porast radne i jalove snage na sabirnici 646 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,2300 MW i jalove snage 0,1320 Mvar. Sa priključenjem mikro elektrane vrijednost radne snage ostala je nepromijenjena na 0,2300 MW dok se jalova snaga povećala na 0,1435 Mvar. Utjecaj mikro elektrane se proširio na bližoj sabirnici 645 gdje su se smanjile vrijednosti radne i jalove snage.

Sl. 3.11. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 646 od 250 kVA na 13 sabirnica

Prema slikama 3.12. i 3.13. dobiveni rezultati na dijagramu su identični kao na prethodnim slikama 3.7. i 3.10. gdje su povišeni naponi na sabirnicama bliže nominalnoj vrijednosti 1,00 p.u.. Značajna promjena napona je na sabirnici 675 gdje je priključena mikro elektrana sa vrijednosti 0,9090 p.u. na 0,9183 p.u.. Što upućuje da nasumičnim priključivanjem mikro elektrane na različita mjesta u ovoj IEEE testnoj distributivnoj mreži djeluje pozitivno na naponske prilike u mreži a ujedno i na naponsku stabilnost.

Sl. 3.12. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 675

Sl. 3.13. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 675 od 250 kVA na 13 sabirnica

Prema slici 3.14. dobiveni rezultat pokazuje porast radne i jalove snage na sabirnici 675 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,8430 MW i jalove snage 0,4620 Mvar. Sa priključenjem mikro elektrane vrijednosti se nisu promijenile zbog većeg opterećenja na sabirnici. Isto tako može se uočiti značajniji utjecaj mikro elektrane na bližoj sabirnici 692 gdje se smanjila radna i jalova snaga.

Sl. 3.14. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 675 od 250 kVA na 13 sabirnica

Prema slikama 3.15. i 3.16. može se uočiti mali porast napona na bližoj sabirnici 684 gdje su vrijednosti bliže nominalnoj vrijednosti napona od 1,00 p.u.. Značajna promjena napona je na sabirnici 611 gdje je priključena mikro elektrana sa vrijednosti 0,9104 p.u. na 0,9200 p.u..

Sl. 3.15. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 611

Sl. 3.16. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 611 od 250 kVA na 13 sabirnica

Slika 3.17. prikazuje porast radne i jalove snage na sabirnici 611 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,1700 MW i jalove snage 0,1657 Mvar. Sa priključenjem mikro elektrane vrijednosti su se povećale na 0,1971 MW i 0,3125 Mvar. Isto tako može se uočiti značajniji utjecaj mikro elektrane na bližoj sabirnici 684 gdje se znatno povećala jalova snaga ali se smanjila radna snaga, dok se na sabirnici 671 smanjila radna i jalova snaga.

Sl. 3.17. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 611 od 250 kVA na 13 sabirnica

Prema slikama 3.18. i 3.19. može se uočiti mali porast napona na bližoj sabirnici 671 gdje su vrijednosti bliže nominalnoj vrijednosti napona od 1,00 p.u.. Značajna promjena napona je na sabirnici 680 gdje je priključena mikro elektrana sa vrijednosti 0,9095 p.u. na 0,9200 p.u..

Sl. 3.18. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 680

Sl. 3.19. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 680 od 250 kVA na 13 sabirnica

Slika 3.20. prikazuje porast radne i jalove snage na sabirnici 680 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,1700 MW i jalove snage 0,1250 Mvar. Sa priključenjem mikro elektrane vrijednosti su se povećale na 0,1971 MW i 0,1432 Mvar. Isto tako može se uočiti značajniji utjecaj mikro elektrane na sabirnicama 650, 632 i 671 gdje se za mali iznos smanjila radna i jalova snaga.

Sl. 3.20. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 680 od 250 kVA na 13 sabirnica

Prema slikama 3.21. i 3.22. može se uočiti mali porast napona na bližim sabirnicama 671 i 675 gdje su vrijednosti bliže nominalnoj vrijednosti napona od 1,00 p.u.. Značajna promjena napona je na sabirnici 692 gdje je priključena mikro elektrana sa vrijednosti 0,9105 p.u. na 0,9194 p.u..

Sl. 3.21. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 692

Sl. 3.22. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 692 od 250 kVA na 13 sabirnica

Slika 3.23. prikazuje nepromijenjenost radne i jalove snage na sabirnici 692 na kojoj je priključena mikro elektrana zbog utjecaja susjednih sabirnica 671 i 675 gdje su opterećenja najveća u mreži. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 1,0147 MW i jalove snage 0,5421 Mvar. Sa priključenjem mikro elektrane vrijednosti su ostale nepromijenjene. Isto tako može se uočiti mali utjecaj mikro elektrane na sabirnicama 671, 632 i 650 gdje se za mali iznos smanjila radna i jalova snaga.

Sl. 3.23. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 692 od 250 kVA na 13 sabirnica

Prema slikama 3.24. i 3.25. može se uočiti mali porast napona na bližim sabirnicama 692 i 684, gdje su vrijednosti bliže vrijednosti nominalnog napona od 1,00 p.u.. Mali porast napona je na sabirnici 671 gdje je priključena mikro elektrana od 250 kVA. Navedeni porast napona na sabirnici 671 je sa vrijednosti 0,9105 p.u. na vrijednost 0,9194 p.u..

Sl. 3.24. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 671

Sl. 3.25. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 671 od 250 kVA na 13 sabirnica

Slika 3.26. prikazuje identičan iznos radne i jalove snage na sabirnici 671 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 2,6380 MW i jalove snage 1,3278 Mvar. Sa priključenjem mikro elektrane vrijednosti su bile identične zbog toga što se na ovoj sabirnici nalazi veći potrošač a ujedno imamo utjecaj krute mreže. Na sabirnicama 650 i 632 je za manji iznos smanjena radna i jalova snaga dok je na sabirnici 684 za manji iznos porasla jalova snaga.

Sl. 3.26. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 671 od 250 kVA na 13 sabirnica

Prema slikama 3.27. i 3.28. može se uočiti mali porast napona na bližim sabirnicama 611, 652 i 671, gdje su vrijednosti bliže vrijednosti nominalnog napona od 1,00 p.u.. Mali porast napona je na sabirnici 684 gdje je priključena mikro elektrana od 250 kVA. Navedeni porast napona na sabirnici 684 je sa vrijednosti 0,9103 p.u. na vrijednost 0,9196 p.u..

Sl. 3.27. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 684

Sl. 3.28. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 684 od 250 kVA na 13 sabirnica

Slika 3.29. prikazuje porast jalove snage na sabirnici 684 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,2981 MW i jalove snage 0,0860 Mvar. Sa priključenjem mikro elektrane vrijednosti su se povećale na 0,2981 MW i 0,2323 Mvar. Na sabirnicama 650, 632 i 671 je za mali iznos smanjena radna i jalova snaga.

Sl. 3.29. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 684 od 250 kVA na 13 sabirnica

Prema slikama 3.30. i 3.31. može se uočiti mali porast napona na bližim sabirnicama 646 i 632, gdje su vrijednosti blizu vrijednosti nominalnog napona od 1,00 p.u.. Porast napona je na sabirnici 645 gdje je priključena mikro elektrana od 250 kVA. Navedeni porast napona na sabirnici 645 iznosi 0,9337 p.u. na vrijednost 0,9402 p.u.. Potrebno je uzeti u obzir da je sabirnica 645 bliže izvoru krute mreže pa je pad napona manji zbog samog njenog utjecaja.

Sl. 3.30. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 645

Sl. 3.31. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 645 od 250 kVA na 13 sabirnica

Slika 3.32. prikazuje porast jalove snage na sabirnici 645 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,2300 MW i jalove snage 0,1321 Mvar. Sa priključenjem mikro elektrane vrijednosti radne snage ostala je istog iznosa 0,2300 MW dok se jalova snaga povećavala 0,1435 Mvar. Može se uočiti utjecaj mikro elektrane na sabirnice 650 i 632 gdje se smanjila radna i jalova snaga.

Sl. 3.32. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 645 od 250 kVA na 13 sabirnica

Prema slikama 3.33. i 3.34. može se uočiti mali porast napona na sabirnicama 650, 633 i 645, gdje su vrijednosti blizu vrijednosti nominalnog napona od 1,00 p.u.. Porast napona je na sabirnici 632 gdje je priključena mikro elektrana od 250 kVA. Navedeni porast napona na sabirnici 632 iznosi sa vrijednosti 0,9342 p.u. na vrijednost 0,9402 p.u.. Potrebno je uzeti u obzir da je sabirnica 632 bliže izvoru krute mreže pa je pad napona manji zbog utjecaja krute mreže.

Sl. 3.33. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 632

Sl. 3.34. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 632 od 250 kVA na 13 sabirnica

Slika 3.35. prikazuje malo smanjenje radne i jalove snage na sabirnici 632 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 3,3120 MW i jalove snage 1,6112 Mvar. Sa priključenjem mikro elektrane vrijednosti su se smanjile na 3,3112 MW i 1,6039 MVAr. Može se uočiti značajniji utjecaj mikro elektrane na bližoj sabirnici 650 gdje se za mali iznos smanjila radna i jalova snaga, dok su na sabirnici 671 ostale iste vrijednosti radne i jalove snage. Spajanjem mikro elektrane u ovom slučaju generatora vrlo blizu smanjuje se učinak krute mreže.

Sl. 3.35. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 632 od 250 kVA na 13 sabirnica

Prema slikama 3.36. i 3.37. može se uočiti mali porast napona na sabirnicama 634, 632, gdje su vrijednosti blizu vrijednosti nominalnog napona od 1,00 p.u.. Porast napona je na sabirnici 633 gdje je priključena mikro elektrana od 250 kVA. Navedeni porast napona na sabirnici 633 iznosi sa vrijednosti 0,9133 p.u. na vrijednost 0,9202 p.u.. Potrebno je uzeti u obzir da je sabirnica 633 bliže izvoru krute mreže pa je pad napona manji zbog utjecaja krute mreže.

Sl. 3.36. Shema prikaza nasumičnog spajanja mikro elektrane od 250 kVA na sabirnicu 633

Sl. 3.37. Dobiveni rezultat napona utjecajem mikro elektrane spojene na sabirnici 633 od 250 kVA na 13 sabirnica

Slika 3.38. prikazuje porast jalove snage na sabirnici 633 na kojoj je priključena mikro elektrana. Bez priključene mikro elektrane vrijednosti radne snage iznosila je 0,4075 MW i jalove snage 0,0533 Mvar. Sa priključenjem mikro elektrane vrijednost radne snage ostala je ista 0,4075 MW dok se povećala jalova snaga 0,1435 Mvar. Na sabirnicama 650 i 632 je smanjena za mali iznos radna i jalova snaga.

Sl. 3.38. Dobiveni rezultat tokova snage utjecajem mikro elektrane spojene na sabirnici 633 od 2.5 MVA na 13 sabirnica

3.3. Utjecaj elektrane od 2,5 MVA na distributivnu testnu mrežu od 13 sabirnica

U ovom djelu rada napravit će se tri simulacije kako bi se vidio utjecaj elektrane veće snage na distributivnu testnu mrežu od 13 sabirnica. Budući da su promjene jako male kod mikro elektrane, rezultati su prikazivani sa četiri decimale, dok kod elektrane veće snage će biti značajnije promjene pa će se rezultati iskazivati sa dva decimalna mjesta. Koristit će se generator snage 2,5 MVA koji će biti nasumično spojen na tri različita mjesta u testnoj mreži. Kako bi se generator spojio na testnu mrežu koristit će se paralelni spoj dva transformatora snage 2,5 MVA budući da u bazi podataka softvera DIgSILENT iskazana najveća snaga za distributivni transformator. Podaci za navedene elemente dani su u tablicama 3.3 i 3.4

Tab. 3.3. Podaci transformatora snage 2,5 MVA [5]

	kVA	kV-viša	kV-niža	u _k - %
Transformator G1	2500	4.16 - D	0.4 - Gr.Y	6
Transformator G2	2500	4.16 - D	0.4 - Gr.Y	6

Tab. 3.4. Podaci generatora snage 2,5 MVA

Nazivna snaga	2,5 MVA
Nazivni napon	400 V ± 5 %
Faktor snage $\cos \varphi$	0,8 - 1
Brzina	1500 okr/min
Broj polova	4
Broj faza	3
Spoj u zvijezdu, šest izvoda, četiri priključka	
Generatorski čvor	PV

Pri modeliranju generatora snage 2,5 MVA IEEE testne mreže u softveru DIgSILENT potrebno je podesiti napon, nazivnu snagu i faktor snage prema tablici 3.4.. Navedeni podaci prikazani su na slici 3.39..

X OK Cancel gure >>
OK Cancel gure >>
Cancel
Cancel
gure >>
np to
mp to
mp to

Sl 3.39. Potrebni podaci za modeliranje generatora snage 2,5 MVA IEEE testne mreže u softveru DIgSILENT

Prema slikama 3.40. i 3.41. može se uočiti utjecaj elektrane veće snage na 13 sabirnica testne IEEE distributivne mreže. Budući da je elektrana spojena na sabirnicu 652, na navedenoj sabirnici je registrirana najveća promjena napona s 0,91 p.u. na 0,98 p.u.. Isto tako može se uočiti da je došlo do porasta napona na svim sabirnicama, što je pozitivno u ovom slučaju jer je cilj da naponi budu što bliže nominalnom naponu 1,0 p.u..

Sl. 3.40. Shema prikaza nasumičnog spajanja elektrane od 2.5 MVA na sabirnicu 652

Sl. 3.41. Dobiveni rezultat napona utjecajem elektrane spojene na sabirnici 652 od 2.5 MVA na 13 sabirnica

Na slici 3.42. može se uočiti porast radne i jalove snage na sabirnici 652 na kojoj je priključena elektrana veće snage. Bez priključene elektrane vrijednosti radne snage iznosila je 0,13 MW i jalove snage 0,09 Mvar. Sa priključenjem elektrane vrijednosti su se povećale na 1,99 MW i 1,05 Mvar, a njen utjecaj je prisutan na bližim sabirnicama 684, 671 gdje je smanjena radna i jalova snaga dok se radna i jalova snaga povećala na bližoj sabirnici 684.

Sl. 3.42. Dobiveni rezultat tokova snage utjecajem elektrane spojene na sabirnici 652 od 2.5 MVA na 13 sabirnica

Prema slikama 3.43. i 3.44. može se uočiti identična promjena napona kao na slici 3.40. gdje su povišene vrijednosti napona na svih 13 sabirnica. Značajnu promjenu napona može se uočiti na sabirnici 646 gdje je priključena elektrana sa vrijednosti 0,93 p.u. na 0,98 p.u. zbog samog utjecaja generatora. Potrebno je uzeti u obzir i utjecaj, da se navedena sabirnica nalazi bliže krutoj mreži.

Sl. 3.43. Shema prikaza nasumičnog spajanja elektrane od 2.5 MVA na sabirnicu 646

Sl. 3.44. Dobiveni rezultat napona utjecajem elektrane spojene na sabirnici 646 od 2.5 MVA na 13 sabirnica

Slika 3.45. prikazuje porast radne i jalove snage na sabirnici 646 na kojoj je priključena elektrana. Bez priključene elektrane vrijednosti radne snage iznosila je 0,23 MW i jalove snage 0,13 Mvar. Sa priključenjem elektrane vrijednosti su se povećale na 1,99 MW i 1,03 Mvar. Značajni utjecaj mikro elektrane se proširio na bližoj sabirnici 645 gdje se povećala vrijednosti radne i jalove snage.

Sl. 3.45. Dobiveni rezultat tokova snage utjecajem elektrane spojene na sabirnici 646 od 2.5 MVA na 13 sabirnica

Prema slikama 3.46. i 3.47. može se uočiti povišeni naponi na svim sabirnicama, gdje su vrijednosti blizu vrijednosti nominalnog napona od 1,00 p.u.. Znatni porast napona je na sabirnici 633 gdje je priključena elektrana od 2,5 MVA. Navedeni porast napona na sabirnici 633 iznosi za 0,05 p.u. tj. sa vrijednosti 0,93 p.u. na vrijednost 0,98 p.u.. Potrebno je uzeti u obzir da je sabirnica 633 bliže izvoru krute mreže pa je pad napona manji zbog utjecaja krute mreže.

Sl. 3.46. Shema prikaza nasumičnog spajanja elektrane od 2.5 MVA na sabirnicu 633

Sl. 3.47. Dobiveni rezultat napona utjecajem elektrane spojene na sabirnici 633 od 2.5 MVA na 13 sabirnica

Slika 3.48. prikazuje porast radne i jalove snage na sabirnici 633 na kojoj je priključena elektrana. Bez priključene elektrane vrijednosti radne snage iznosila je 0,41 MW i jalove snage 0,05 Mvar. Sa priključenjem elektrane veće snage vrijednosti su se povećale na 1,99 MW i 1,08 Mvar. Na sabirnicama 650 i 632 je znatno smanjena radna i jalova snaga. Potrebno je napomenuti da se priključivanjem elektrane veće snage na sabirnicu 633 rasteretio transformator XFM-1 gdje je prije priključivanja opterećenje bilo 88,03%, a poslije priključivanja mikro elektrane iznosila 82,79%.

Sl. 3.48. Dobiveni rezultat tokova snage utjecajem elektrane spojene na sabirnici 633 od 2.5 MVA na 13 sabirnica

4. ZAKLJUČAK

Ovaj diplomski rad obuhvaća kratak opis i strukturu distributivnih mreža. Isto tako ukratko je opisano testiranje i analiza radijalnih distributivnih mreža. Da bi se zadana IEEE testna distributivna mreža mogla unijeti i projektirati potrebno je poznavanje rada u softveru DIgSILENT. Drugo poglavlje obuhvaća proces unosa i detaljnog opisivanja postupka izrade IEEE testne distributivne mreže. Treće poglavlje obuhvaća analizu dobivenih rezultata navedene testne mreže.

U ovom diplomskom radu pokazno je dokazana mogućnost naponske optimizacije s mikro elektranama u distributivnim mrežama. Za navedenu distributivnu mrežu korištena je IEEE testna distributivna mreža od 13 sabirnica. Generator male snage 250 kVA priključen je na više različitih nasumično odabrana mjesta na navedenoj testnoj mreži, te je dokazano i može se uočiti iz dobivenih rezultata da je došlo do porasta napona samo na sabirnicama na kojima je priključen generator te vrlo mali porast na najbližim sabirnicama. zbog same blizine potrebno je uzeti u obzir i krutu mrežu koja utječe na iznos napona na sabirnicama koje su joj bliže.

Kod simulacije tokova snaga utjecaj mikro elektrane na testnu mrežu može se uočiti, da na sabirnicama gdje su velika opterećenja nema promjene radne i jalove snage budući da su na nekim sabirnicama veća opterećenja nego što je snaga same mikro elektrane. Dok na neopterećenim sabirnicama imamo izraženiji doprinos jalove snage.

U zadnjem potpoglavlju 3.3. može se vidjeti utjecaj elektrane veće snage od 2,5 MVA gdje se naponske prilike na svim sabirnicama popravljaju te su još bliže nominalnoj vrijednosti od 1,00 p.u.. Na sabirnicama koje su udaljene od krute mreže utjecaj generatora veće snage puno je veći te su izraženija povećanja radne i jalove snage nego kod sabirnica koje su bliže krutoj mreži. Potrebno je uzeti u obzir i opterećenja na sabirnicama koji isto tako utječu na iznos radne i jalove snage.

Budući da je potražnja za električnom energijom svakim danom sve veća, biti će veliki izazov održavati naponsku stabilnost elektroenergetskih sustava. Međutim, ako u distributivnim mrežama postoji veći broj mikro elektrana to jest malih proizvodnih jedinica, naponska stabilnost će biti neupitna ali potrebno je uzeti u obzir ako je mreža podopterećena ili preopterećena kako će ona utjecati na naponske prilike u mreži. Svaka proizvodnja mora pratiti potražnju to jest potrošače da bi ravnoteža u elektroenergetskom sustavu bila zadovoljena.

Ovim putem bih se zahvalio svom mentoru doc.dr.sc. Predragu Mariću dipl. ing, koji mi je omogućio i dodijelio ovu temu za diplomski rad i koji mi je pružio nesebičnu pomoć prilikom same izrade diplomske radnje sa svojim idejama i dugogodišnjim iskustvom u samoj struci.

LITERATURA

- Ranko Goić, Damir Jakus, Ivan Penović, Distribucija električne energije, interna skripta, Fakultet elektrotehnike, strojarstva i brodogradnje Split, Split, 2008 godine.
- [2] Zoran Kovač, Marijan Kalea, Električna postrojenja, interna skripta, materijali s predavanja, Elektrotehnički fakultet Osijek, Osijek, 2009 godine.
- [3] M. Chakravorty, D.Das, Voltage stability analysis of distribution networks, Department of Electrical Englineering, Indian Institute of Technology, Kharagpur 721302, West Benglal, India, 2000 godine.
- [4] IEEE Distribution Planning Working Group Report, Radial Distribution Test Feeders, Transactions on Power System, Vol 6, No 3, Kolovoz 1991. godine.
- [5] http://www.digsilent.de/
- [6] Lajos Jozsa, Tokovi snaga u mreži, Elektrotehnički fakultet Osijek, str. 11, Osijek, 2009. godine.
- [7] Srete Nikolovski, Distributivne mreže, interna skripta, materijali s predavanja, Elektrotehnički fakultet Osijek, Osijek, 2010 godine.

SAŽETAK

Ovim diplomskim radom ukratko je opisana distributivna mreža i njene strukture. Isto tako ukratko je opisano testiranje i analiza radijalnih distributivnih mreža. Prema dobivenim rezultatima analize prikazan je utjecaj mikro elektrane i regularne elektrane na distributivnu IEEE testnu mrežu. Za navedenu analizu potrebno je posjedovati određene vještine rada u softveru DIgSILENT koje obuhvaća proces unosa i projektiranja

Ključne riječi: Naponska optimizacija, struktura distributivnih mreža, DIgSILENT, mikroelektrane, radijalne distributivne mreže.

ABSTRACT

Possibilities of voltage optimization using micro power plants in distribution networks

This final thesis short describe distribution network and their structures. It's also short describe testing and analysis of radial distribution networks. The influence of the micro power plant and the regular power planton the IEEE test distribution network is shown and described in analysis of results. For this purpose it's required to have skills to work in software DIgSILENT which includes input data and planning process.

Keywords: voltage optimization, structures of distribution networks, DIgSILENT, micro power plant, radial distribution networks.

ŽIVOTOPIS

Marinko Pavković rođen 11.05.1988 godine u Zenici (B i H). Doseljava se u Hrvatsku 1994 godine u grad Slatina. Osnovnu školu završava u Slatini i upisuje srednju elektrotehničku školu Marka Marulića u Slatini 2003 godine. Cjelokupno srednjoškolsko obrazovanje je položio sa odličnim uspjehom, te je maturirao sa odličnim uspjehom. U jesen 2007 godine upisuje stručni studij. Za vrijeme studiranja stručnog studija radi kao pomoćni laborant na kolegiju Fizika, Osnove elektrotehnike 1 i 2, pomaže glavnom laborantu i studentima prilikom izvođenja laboratorijskih vježbi. U lipnju 2010. radi u Optimi Telekom kao agent u kontaktnom centru za tehničku podršku. U rujnu 2010. završava stručni studij s odličnim uspjehom te upisuje razlikovnu godinu. Završetkom razlikovne godine stječe pravo, te se 2011. godine upisuje na sveučilišni diplomski studij kojeg trenutno završava.

Marinko Pavković

PRILOZI

- Diplomski rad u .docx formatu
- Diplomski rad u .pdf formatu
- Softverski model u .pfd formatu