Analiza IEEE 39-bus ispitnog sustava u DIgSILENT PowerFactory softveru

Glavaš, Krešimir

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:760036

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-20

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STORSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Stručni studij

ANALIZA IEEE 39-BUS ISPITNOG SUSTAVA U DIGSILENT POWER FACTORY PROGRAMU

Završni rad

Krešimir Glavaš

Osijek, 2016. Godine

Obrazac Z1S: Obrazac za imenovanje Povjerenstva za obranu završnog rada na preddiplomskom stručnom studiju

Osijek, 27.09.2016.

Odboru za završne i diplomske ispite

Imenovanje Povjerenstva za obranu završnog rada

na preddiplomskom stručnom stud					
Ime i prezime studenta:	Krešimi	r Glavaš			
Studij, smjer:	Preddip	lomski stručni studij Elektrotehnika, smjer Elektroenergetika			
Mat. br. studenta, godina upisa:	A4360,	A4360, 16.10.2015.			
OIB studenta:	532650	53265047187			
Mentor:	Doc.dr.s	sc. Predrag Marić			
Sumentor:					
Predsjednik Povjerenstva:	lzv.prof	.dr.sc. Tomislav Barić			
Član Povjerenstva:	Marko \	/ukobratović			
Naslov završnog rada:	Analiza IEEE 39-bus ispitnog sustava u DIgSILENT PowerFactory softveru				
Znanstvena grana rada:	Elektroenergetika (zn. polje elektrotehnika)				
Zadatak završnog rada	Modelirati i izvršiti analizu tokova snaga i kratkih spojeva IEEE 39-bus ispitnog sustava u DIgSILENT PowerFactory softveru.				
Prijedlog ocjene pismenog dijela ispita (završnog rada):	Izvrstan (5)				
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjena znanja stečenih na fakultetu: 3 Postignuti rezultati u odnosu na složenost zadatka: 3 Jasnoća pismenog izražavanja: 2 Razina samostalnosti: 3				
Datum prijedloga ocjene mentora:	27.09.2016.				
Potpis mentora za predaju konačne verzije rada u Studentsku službu pri završetku studija:		Potpis:			
		Datum:			

IZJAVA O ORIGINALNOSTI RADA

Osijek, 30.09.2016.

Ime i prezime studenta:	Krešimir Glavaš
Studij:	Preddiplomski stručni studij Elektrotehnika, smjer Elektroenergetika
Mat. br. studenta, godina upisa:	A4360, 16.10.2015.
Ephorus podudaranje [%]:	2%

Ovom izjavom izjavljujem da je rad pod nazivom: Analiza IEEE 39-bus ispitnog sustava u DIgSILENT PowerFactory softveru

izrađen pod vodstvom mentora Doc.dr.sc. Predrag Marić

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

Sadržaj:

1. UVOD
2. ANALIZA IEEE 39-SABIRNIČKOG ISPITNOG SUSTAVA
2.1. Uvod u simulaciju
2.2. I dio simulacije
2.2.1. Analiza tokova snaga za 90%-tno zadano opterećenje
2.2.2. Analiza tokova snaga za 100%-tno zadano opterećenje12
2.3. II dio simulacije
2.3.1. Analiza tokova snaga za 100% -tno zadano opterećenje15
2.3.2. Prijedlog riješenja preopterećenosti sustava18
2.3.3. Trofazni kratki spoj
3. ZAKLJUČAK
4. LITERATURA
5. SAŽETAK
6. ŽIVOTOPIS
7. PRILOZI

1. UVOD

Ispitni sustavi se naširoko koriste pri analizi i proučavanju elektroenergetskih sustava te su predmet mnogih znanstvenih radova i istraživanja. Prednosti analize, prema podacima preuzetim iz [6], ispitnih sustava su sljedeći:

• rezultati simulacije ispitnih sustava se mogu primjeniti na veliki spektar elektroenergetskih sustava,

- •statički i dinamički podaci umreženih elektroenergetskih sustava su loše dokumentirani,
- pojednostavljen proračun različitih scenarija simulacije,
- otežan rad programa za simulaciju pri velikom broju podataka.

Ispitne sustave možemo podijeliti u tri kategorije:

- prijenosni sustavi,
- distribucijski sustavi,
- nestabilni distribucijski sustavi.

Za potrebe ovog završnog rada analizirati će se IEEE 39-sabirnički ispitni sustav u DIgSILENT Power Factory programskom paketu i on spada u prijenosne ispitne sustave. Prijenosni sustavi su sustavi visokog napona, a u RH su to 110 kV, 220 kV i 400 kV razine. Razlog održavanja tako visokih napona jest održavanje što manjih gubitaka u vodovima pri prijenosu električne energije od izvora do potrošača. Jedna od karakteristika prijenosnih sustava jesu složenost i umreženost, odnosno tok energije postoji u oba smjera zbog važnosti održavanja prijenosa električne energije konstantnom. Bitno je naglasiti da s današnjim eksponencijalnim razvojem tehnologije elektroenergetski sustavi postaju sve dinamičniji, ne samo zbog konstantnog povećanja potražnje električne energije već i zbog činjenice da se elektroenergetski sustavi konstantno nadograđuju širokim spektrom obnovljivih izvora energije, primjerice solarnih panela kod krajnjih potrošača, što uzima sve više maha, ili raznih veličina vjetroelektrana, ali i drugih vrsta. Kako bi se osigurala zadovoljavajuća stabilnost, sigurnost i rad takvih sustava, neophodno je da elektroenergetski sustav bude predmet konstantnih procjena i analiza. U ovom slučaju IEEE 39sabirnički ispitni sustav jest zapravo reducirana verzija visokonaponskog elektroenergetskog prijenosnog sustava tzv. "New England power system" nastalog 70-ih godina prošlog stoljeća na sjeveroistoku Sjedinjenih Američkih Država, na području koje se naziva Nova Engleska (New England, eng.). Još od tog vremena predmet je mnogih znanstvenih istraživanja i objavljenih radova. Naširoko se koristi za analizu stabilnosti elektroenergetskih sustava. IEEE 39-sabirnički ispitni sustav je dobro poznat kao visokonaponski 10-generatorski sustav koji se sastoji od 10 generatora povezanih preko trofaznih, dvonamotnih transformatora na mrežu, te 19 potrošača i 39 sabirnica. Informacije o samom ispitnom sustavu preuzete su iz [1]. Nazivna frekfencija prvog tzv. "New England" prijenosnog sustava jest 60 Hz što je i razumljivo jer područje Sjeverne Amerike koristi elektroenergetski sustav baziran na toj frekfenciji. Za ovaj rad koristit će se nazivna frekfencija od 50 Hz sukladno s područjem gdje se nalazimo i elektroenergetskim sustavom koji se koristi u Europi. Na slici 1.1 može se vidjeti jednopolna shema IEEE 39sabirničkog ispitnog sustava s odgovarajućim položajem potrošača, no bez prikazanih trofaznih, dvonamotnih transformatora. Shema je preuzeta iz [2]. Kao što je već navedeno, svaki generator je povezan transformatorom na mrežu, a zadaća tih transformatora jest podići niski napon, u ovom slučaju nazivni napon generatora 19 kV, na nazivni napon IEEE 39-sabirničkog ispitnog sustava od 345 kV. Treba spomenuti kako generator na sabirnici 2 predstavlja akumulaciju većeg broja generatora odnosno snažnu elektranu ili krutu mrežu. Napon te sabirnice će se uzeti za referentni napon kako bi sve ostale napone u mreži mogli relativno izraziti preko tog napona. Cilj završnog rada je analizirati spomenuti IEEE 39-sabirnički sustav, te rezultate i podatke te analize predstaviti i komentirati. Glavni dio rada, odnosno drugo poglavlje se sastoji od 3 potpoglavlja. U prvom potpoglavlju predstavljeni su svi podaci potrebni za pokretanje simulacije gdje su detaljnije objašnjene pojedinosti simulacije koja je obrađena u DIgSILENT Power Factory programskom paketu. Drugo potpoglavlje sadrži osvrt na analizu tokova snaga te prikazuje rezultate tih simulacija i komentare, a nazvan je kao I dio simulacije. U trećem potpoglavlju, nazvan II dio simulacije, smanjene su impendancije vodova, a zatim su analizirani tokovi snaga pri 100%-tnom zadanom opterećenju. Analiziran je trofazni kratki spoj, te na kraju potpoglavlja ponuđeno je i određeno riješenje s obzirom na preopterećenja u mreži. Pri rješavanju problema određenog preopterećenja u mreži koristile su se metode opisane u praksi te su navedene u literaturi. Zadnje poglavlje je zaključak i obrat na rezultate predstavljene kroz glavni dio rada.

Sl. 1.1. – Jednopolna shema 39-sabirničkog ispitnog sustava [2, str. 1.]

2. ANALIZA IEEE 39-SABIRNIČKOG ISPITNOG SUSTAVA

2.1. Uvod u simulaciju

Za potrebe boljeg razumijevanja o kakvom se sustavu zapravo radi, u uvodu rada spomenute su pojedine karakteristike koje taj sustav posjeduje i određeni podaci koje će se koristiti u simulaciji tog sustava u DIgSILENT Power Factory programskom paketu. Za potrebe simulacije bitno je definirati svaki element sustava detaljno kako bi se dobile što relevantnije informacije o tokovima snaga sustava. Zadani podaci generatora dani su u tablici 2.1.

Sabirnica #	P (p.u.)	Q (p.u.)
1	5,527	1,687
2	10,00	2,425
3	6,50	1,705
4	5,08	1,673
5	6,32	0,76
6	6,50	2,669
7	5,60	2,415
8	5,40	0,239
9	8,30	0,631
10	2,50	1,767

 Tablica 2.1. – Zadane snage generatora

Tablica 2.1. predstavlja utisnute snage generatora na priključenim sabirnicama. Vrijednosti su dane u tzv. *per unit* vrijednostima, a kao bazna snaga je odabrana snaga iznosa 100 MVA. U nastavku potpoglavlja objašnjeno je na koji način se računaju apsolutne vrijednosti utisnutih snaga generatora i ostalih veličina iz *per unit* zadanih vrijednosti. Sljedeća tablica 2.2. predstavlja zadana opterećenja, odnosno zadane snage trošila. Vrijednosti podataka, kao i u prethodnom slučaju, su *per unit* vrijednosti. Podaci snaga generatora, snaga trošila, impendancije vodova i odstupanja napona na sabirnicama sustava preuzeti su iz [2]. Sve navedene veličine predstavljene su kao *per unit* vrijednosti i zahtijevaju proračun u apsolutne veličine. Kao bazni napona odabran je nazivni napon sustava od 345 kV. Podaci impendancija vodova preuzetih iz navedene reference predstavljaju ukupne impendancije pojedinih vodova, a ne jedinične vrijednosti kao što je uobičajeno u praksi. Za proračun ukupne impendancije voda iz jediničnih vrijednosti radnog otpora *R* i reaktancije *X* koristi se formula 2-1.

Sabirnica #	Pt (p.u.)	Q t (p.u.)
13	3,22	0,024
14	5	1,84
17	2,338	0,84
18	5,22	1,76
21	2,74	1,15
23	2,745	0,84
24	3,086	0,922
25	2,24	0,472
26	1,39	0,17
27	2,81	0,755
28	2,06	0,276
29	2,835	0,269
30	6,28	1,03
32	0,075	0,88
35	3,2	1,53
36	3,294	0,323
38	1,58	0,3

Tablica 2.2. – Zadane snage trošila

$$\underline{Z} = I(R_1 + jX_{l1}) \quad (\Omega), \tag{2-1}$$

gdje je:

 R_1 -jedinični radni otpor vodiča (Ω /km),

 X_{l1} -jedinična induktivna reaktancija vodiča (Ω /km),

a proračun admintancije, odnosno poprečne impendancije je:

$$\underline{Y} = I(G_1 + jB_{c1}) \quad (S), \tag{2-2}$$

gdje je:

*G*₁ -jedinična električna vodljivost (S/km),

 B_{c1} -jedinična kapacitivna susceptancija (vodljivost) (S/km).

Jednadžba (2-2) predstavlja recipročnu vrijednost impendancije voda i naziva se admintancija voda. Jednadžbe (2-1) i (2-2) su preuzete iz [4]. Informacije o istim jednadžbama mogu se

pronaći i u [8]. Pri proračunu apsolutnih vrijednosti iz *per unit* vrijednosti koriste se sljedeće formule:

$$U_{p.u.} = \frac{U}{U_{baze}}, \qquad (2-3)$$

gdje je:

U - napon u stvarnosti, realna veličina (V, volt),

 U_{baze} - odabrani bazni napon – 345 kV,

 $U_{p.u.}$ - vrijednost napona u *per unit* vrijednosti.

Bazna impendancija se računa iz sljedećeg izraza, uz baznu snagu S_{baze}=100 MVA:

$$Z_{baze} = \frac{U_{baze}^2}{S_{baze}} \quad , \tag{2-4}$$

i iznosi 1190,25 Ω.

Proračun impendancije se radi prema sljedećem izrazu:

$$Z_{p.u.} = \frac{Z}{Z_{baze}} \qquad (2-5)$$

Istim načinom računaju se i ostale *per unit* veličine. Bazna veličina kod radne i jalove snage izvora (generatora), potrošača i impendancije vodova je 100 MVA. Prethodno napisane formule (2-3) – (2-5) su preuzete iz [3], a mogu se pronaći i u zbirci zadataka [8]. Nakon što su definirani podaci za svaki element mreže, sustav je modeliran u u DIgSILENT PowerFactory programskom paketu – slika 2.1. Kako bi se što preglednije moglo pratiti dobivene rezultate analize, simulacija je podijeljena na dva glavna dijela. U prvom djelu analize korišteni su podaci preuzeti iz [2] i predstavljena je analiza tokova snaga pri 90%-tnom i 100%-tnom zadanom opterećenju. U drugom dijelu simulacije, smanjeni su iznosi impendancije vodova za 50%, te je analiza tokova snaga odrađena pri 100%-tnom opterećenju, a ostali podaci nisu mijenjani. Analiziran je trofazni kratki spoj, kako se radi o najnepovoljnijem kvaru koji se može pojaviti unutar elektroenegetskih sustava i mreža. Pred kraj drugog dijela simulacije predstavljen je način riješenja preopterećenosti sustava na primjeru simulacije ovog rada. Podaci izračunatih apsolutnih impendancija vodova dani su u prilogu [2.1.].

Slika 2.1. Jednopolna shema 39-sabirničkog ispitnog sustava u DIgSILENT PowerFactory softveru

2.2. I dio simulacije

U ovom odjeljku započeta je analiza prvog dijela simulacije. Razmatrat će se različita opterećenja IEEE 39-sabirničkog ispitnog sustava i prikazati podaci tih simulacija.

2.2.1. Analiza tokova snaga za 90%-tno zadano opterećenje

Tablica 2.3. prikazuje injektirane snage generatora pri 90%-tnom zadanom opterećenju, odnosno snagu koju generatori daju u mrežu.

Generator #	Sabirnica #	P (MW)	Q (MVar)	S (MVA)	Vrsta čvora
Generator 1	Terminal-10	250	176,7	306,1419	PQ
Generator 2	Terminal 2-2	489,7868	407,3581	637,0492	SL
Generator 3	Terminal 1-8	540	207,8707	578,6279	PV
Generator 4	Terminal 8-9	830	244,9347	865,386	PV
Generator 5	Terminal 3-1	552,7	168,7	577,87	PQ
Generator 6	Terminal 4-3	650	463,5596	798,3655	PV
Generator 7	Terminal 5-4	508	358,3005	621,6456	PV
Generator 8	Terminal 9-5	631,99	76	636,5532	PQ
Generator 9	Terminal 7-6	650	266,9	702,6632	PQ
Generator 10	Terminal 6-7	560	348,8001	659,7435	PV

 Tablica 2.3. – Snage generatora za 90%-tno opterećenje

Može se primjetiti prvi stupac s desna tablice pod nazivom vrste čvora. Čvorovi kojeg čine generatori s obzirom na način rada dijele se na tri vrste. SL oznaka označava referentni čvor, te predstavlja sabirnice iznimno snažne elektrane ili sabirnice gdje se nadovezuje kruta mreža. U tom čvoru radna i jalova snaga ne podliježu nikakvim ograničenjima, što znači u slučaju povećanja opterećenja u mreži taj čvor mora nadomjestiti tu potražnju jer vidjet će se da postoje vrste čvorova na kojima se utisnuta snaga u mrežu ne mijenja s obzirom na opterećenja na njihovim sabirnicama. Za kut napona uzima se vrijednost nula kako bi se svi ostali kompleksni naponi mogli prikazati relativno u odnosu na referentni čvor. U čvoru s opterećenjem ili PQ čvoru, injektirana radna i jalova snaga su uvijek iste prema definiciji, što u ovom slučaju znači da generatori na tim čvorovima imaju konstantne injektirane snage, bez obzira na opterećenje. Generatorski čvor ili PV čvor je čvor s proizvodnjom radne snage i regulacijom napona. Injektirana generatorska snaga i iznos napona mogu se postaviti posredstvom turbinskog odnosno naponskog regulatora. Dakle bez obzira na opterećenje na njegovoj sabirnici ova vrsta čvora će uvijek imati konstantnu utisnutu radnu snagu i napon na sabirnicama. Informacije o čvorovima su preuzete iz [7]. Sabirnice pod nazivom Terminal označavaju primarnu stranu trasnformatora gdje su priključeni generatori. Brojevi koji su priključeni uz nazive Terminal predstavljaju sekundarne strane transformatora te su označene na slici 1.1. Transformatori nisu označeni na navedenoj slici.

Generator	Nazivni napon (kV)	Iznosi napona dobivenih simulacijom (kV)	Vrsta čvora
Generator 1	19	18,35763	PQ
Generator 3	19	19	PV
Generator 2	19	19	SL
Generator 5	19	17,20669	PQ
Generator 6	19	19	PV
Generator 7	19	19	PV
Generator 10	19	19	PV
Generator 9	19	17,89044	PQ
Generator 4	19	19	PV
Generator 8	19	16,93403	PQ

 Tablica 2.4. – Odstupanje nazivnih napona na sabirnicama izvora

Tablica 2.4. zorno prikazuje odstupanja nazivnih napona sabirnica generatora i može se zaključiti kako pad napona postoji samo na PQ čvorovima, dok SL i PV čvorovi sukladno s njihovim definicijama održavaju taj napon uvijek konstantnim bez obzira na opterećenje.

	Sabirnica #	P (MW)	Q (MVar)	<i>S</i> (MVA)	cosφ
Trošilo 1	2	993,599	225	1018,757	0,9753
Trošilo 2	25	201,6	42,48	206,027	0,97851
Trošilo 3	1	82,8	4,14	82,9	0,99875
Trošilo 4	27	252,9	67,95	261,87	0,96574
Trošilo 5	32	6,75	79,2	79,487	0,08491
Trošilo 6	30	565,2	92,7	572,75	0,98681
Trošilo 7	36	296,46	29,07	297,88	0,99522
Trošilo 8	24	277,74	82,98	289,87	0,95815
Trošilo 9	21	246,6	103,5	267,44	0,92207
Trošilo 10	23	247,05	75,6	258,358	0,95622
Trošilo 11	35	288	137,7	319,22	0,90218
Trošilo 12	26	125,1	15,3	126,0321	0,9926
Trošilo 13	29	255,15	24,21	256,296	0,99552
Trošilo 14	28	185,4	24,84	187,0566	0,99114
Trošilo 15	38	142,2	270	305,1571	0,46598
Trošilo 16	13	289,8	2,16	289,808	0,99997
Trošilo 17	14	450	165,6	479,5032	0,93847
Trošilo 18	18	469,8	158,4	495,7848	0,94758
Trošilo 19	17	210,42	75,6	223,588	0,9411

Tablica 2.5. – Opterećenja potrošača pri 90%-tnom opterećenju

Tablica 2.5. prikazuje raspored potrošača po sabirnicama te njihova opterećenja pri 90%-tnom zadanom opterećenju. Kod većine potrošača faktor snage je zadovoljavajući, no može se primjetiti kod trošila 5 i 15 postoje velike količine jalove snage (Q) s obzirom na radnu snagu (P) trošila te kao posljedicu nizak faktor snage. Krajnji cilj je kod potrošača imati što veći postotak radne snage u odnosu na jalovu iz razloga što krajnji potrošači ne koriste jalovu snagu već samo radnu. Iznimka su primjerice motori kod industrijskih postrojenja koji koriste jalovu snagu kako bi stvorili određeni magnetski tok potreban za njihov rad [5]. Jalova snaga je energija koja oscilira između induktiviteta i trošila, te se na induktivitetu ne vrši nikakav rad [4]. No krajnji potrošači u mreži ipak plaćaju ukupnu energiju koja se koristi u njihovom kućanstvu, što uključuje i jalovu snagu. Stoga je bitno što više smanjiti postotak jalove snage, a povećati udio radne ili korisne snage. U praksi se koriste kondenzatorske baterije kako bi se poboljšao faktor snage, pošto struja na kondenzatoru prethodi naponu za 90°, a kod induktiviteta struja kasni za naponom za 90°. Na taj način može se povećati faktor snage.

Slika 2.2. – Poboljšanje faktora snage kondenzatorskim baterijama [5, str. 154.]

Na prethodnoj slici može se primjetiti proces poboljšanja faktora snage korištenjem kondenzatorskih baterija. Referentna veličina je nazivni napon V_n , fazor struje trošila I_T posjeduje aktivnu i reaktivnu komponentu, I_r u fazi s referentnim naponom, te I_x induktivnog karaktera. To su zapravo fazori čiji zbroj daje fazor struje trošila. Može se primjetiti struja kondenzatora I_c te zaključiti ono što je već spomenuto ranije, kako su fazori struje kondenzatora

i induktiviteta međusobno suprotni po kutu. Baterija priključena na sabirnice tiska u mrežu kapacitivnu struju te prema slici 2.2. jasno je da jakost te struje određuje koliko će faktor snage rasti s obzirom na induktivno opterećenje. Kondenzatorska baterija se u pravilu može priključivati za grupu trošila ili za pojedina veća trošila poput industrijskih postrojenja. Uvijek se priključuje paralelno trošilu na njegove sabirnice. Kondenzatorska baterija zapravo predstavlja istosmjerni naponski izvor kapacitivnog karaktera. Prema već navedenoj slici 2.2. može se vidjeti na kakav način dolazi do povećanja faktora snage. U simulaciji se nije pokušavalo koristiti kondenzatorske baterije iz razloga što se opterećenja trošila smatraju fiksnim prema zadanim podacima.

Generation External Infeed Inter Grid Elow	= 5662,4 = 0,0 = 0.0	9 MW 10 MW 10 MW	2719,12 0,00 0.00	Mvar Mvar Mvar	6281,51 0,00	MVA MVA
Load P(U) Load P(Un)	= 5586,5 = 5586,5 = 0.0	7 MW 7 MW 0 MW	1676,43 1676,43	Mvar Mvar Mvar	5832,68 5832,68	MVA MVA
Motor Load Grid Losses Line Charging Compensation ind. Compensation cap.	= 0,0 = 75,9 = = =	0 MW 2 MW	0,00 1042,69 -849,47 0,00 0,00	Mvar Mvar Mvar Mvar Mvar	0,00	MVA
Installed Capacity Spinning Reserve	= 9600,0 = 3937,5	0 MW 1 MW				
Total Power Factor: Generation Load/Motor	= 0 = 0,96 / 0	,90 [-] ,00 [-]				

i

Slika 2.3. – Ukupni rezultati tokova snaga za 90%-tno opterećenje

S rezultatima tokova snaga pri 90%-tnom zadanom opterećenju kao što pokazuje slika 2.3., može se primjetiti da je ukupna djelatna snaga proizvodnje (*Generation*) veća od djelatne snage potrošnje (*Load*) budući da je ukupna proizvodnja jednaka ukupnoj potrošnji uvećanoj za gubitke u sustavu.

Naziv voda	Sabirnice #	Opterećenje(%)
Line 10	9-29	144,8205
Line 28	3-20	133,6048
Line 35	4-30	104,0311
Line 37	39-36	110,0424
Line 38	5-39	119,5221
Line 41	21-22	119,7371
Line 42	6-22	124,882
Line 44	7-23	110,4067

Tablica 2.6. – Preopterećeni vodovi

Prethodna tablica prikazuje preopterećene vodove i može se vidjeti da je najveće preopterećenje na vodu 10, između sabirnica 9-29, gdje je dopušteno opterećenje premašeno za 44%. Ako se vodovi izlažu preopterećenjima duže vrijeme može doći do ozbiljnih posljedica.

2.2.2. Analiza tokova snaga za 100%-tno zadano opterećenje

Pri analizi IEEE 39-sabirničkog sustava sa 100%-tnim zadanim opterećenjem svi ostali podaci ostaju isti kao kod prethodne analize.

	Sabirnica #	<i>P</i> (MW)	Q (MVar)	S (MVA)	Vrsta čvora
Generator 1	Terminal-10	250 <i>,</i>	176,7	306,1419	PQ
Generator 2	Terminal 2-2	1095,576	462,2934	1189,118	SL
Generator 3	Terminal 1-8	540 <i>,</i>	228,1278	586,2101	PV
Generator 4	Terminal 8-9	830,	263,8924	870,9416	PV
Generator 5	Terminal 3-1	552,7	168,7	577,8728	PQ
Generator 6	Terminal 4-3	650 <i>,</i>	490,064	814,041	PV
Generator 7	Terminal 5-4	508 <i>,</i>	386,8438	638,5234	PV
Generator 8	Terminal 9-5	632 <i>,</i>	76,	636,5532	PQ
Generator 9	Terminal 7-6	650 <i>,</i>	266,9	702,6632	PQ
Generator 10	Terminal 6-7	560,	377,5995	675,412	PV

Tablica 2.7. – Snage generatora pri 100% opterećenju

Tablica 2.7. prikazuje snage koje generatori daju u mrežu kod maksimalnog zadanog opterećenja. Usporedimo li ovu tablicu s tablicom 2.3. može se primjetiti da generatori priključeni kao PQ vrsta čvorova zadržavaju iste iznose snaga koje injektiraju u mrežu. Iznos injektirane snage generatora na sabirnici 2 je naglo porasla, što znači da referentni generator nadomješta potrebe energije koje potrošači potraživaju. Za generatore priključene kao PV čvorove, što je očekivano, radna snaga je ostala konstantna, a dolazi do porasta injekcije jalove snage u mrežu. Radna snaga je fiksirana, a pri većim opterećenjima raste samo jalova snaga.

Sljedeća tablica (tablica 2.8.) prikazuje odstupanja napona na generatorskim sabirnicama za vrijeme simulacije.

Sabirnica #	Nazivni napon (kV)	Iznosi napona dobivenih simulacijom (kV)	Vrsta čvora
Generator 1	19	18,36386	PQ
Generator 3	19	19	PV
Generator 2	19	19	SL
Generator 5	19	17,05532	PQ
Generator 6	19	19	PV
Generator 7	19	19	PV
Generator 10	19	19	PV
Generator 9	19	17,67728	PQ
Generator 4	19	19	PV
Generator 8	19	16,75077	PQ

 Tablica 2.8. – Odstupanje nazivnih napona na sabirnicama izvora

Tablica 2.9. – Snage trošila pri 100% opterećenju

	Sabirnica #	<i>P</i> (MW)	Q (MVar)	S (MVA)	cosφ
Trošilo 1	2	1104	250,	1131,952	0,9753061
Trošilo 2	25	224,	47,2	228,9189	0,9785127
Trošilo 3	1	92,	4,6	92,11493	0,9987523
Trošilo 4	27	281,	75,5	290,9661	0,9657484
Trošilo 5	32	7,5	88,	88,31902	0,08491942
Trošilo 6	30	628,	103,	636,3906	0,9868153
Trošilo 7	36	329,4	32,3	330,9798	0,9952268
Trošilo 8	24	308,6	92,2	322,0789	0,9581504
Trošilo 9	21	274,	115,	297,1548	0,9220782
Trošilo 10	23	274,5	84,	287,0649	0,9562298
Trošilo 11	35	320,	153,	354,6956	0,9021819
Trošilo 12	26	139,	17,	140,0357	0,992604
Trošilo 13	29	283,5	26,9	284,7733	0,9955286
Trošilo 14	28	206,	27,6	207,8407	0,9911437
Trošilo 15	38	158,	300,	339,0634	0,4659895
Trošilo 16	13	322,	2,4	322,0089	0,9999722
Trošilo 17	14	500,	184,	532,7814	0,9384712
Trošilo 18	18	522,	176,	550,872	0,9475885
Trošilo 19	17	233,8	84,	248,432	0,9411027

Tablica 2.9. prikazuje snage trošila pri maksimalnom zadanom opterećenju. Spomenuta trošila 5 i 15 zadržavaju ne zadovoljavajući faktor snage. Spomenuta referenca [2] prikazuje *per unit* vrijednosti ovih snaga potrošača. Vrijednosti u tablici 2.9. se dobiju množenjem zadanih *per unit* vrijednosti s baznom snagom od 100 MVA.

Generation External Infeed Inter Grid Elow	= = -	6268,28 0,00	MW MW MW	2897,12 0,00	Mvar Mvar Mvar	6905,40 0,00	MVA MVA
Load P(U) Load P(Un)	=	6207,30 6207,30	MW MW MW	1862,70 1862,70	Mvar Mvar Mvar	6480,76 6480,76	MVA MVA
Motor Load Grid Losses Line Charging Compensation ind. Compensation cap.	= = = =	0,00 60,98	MW MW	0,00 1034,42 -838,75 0,00 0,00	Mvar Mvar Mvar Mvar Mvar	0,00	MVA
Installed Capacity Spinning Reserve	= =	9600,00 3331,72	MW MW				
Total Power Factor: Generation Load/Motor	= =	0,9 0,96 / 0,0	1 [-] 0 [-]				

Slika 2.4. – Ukupni rezultati simulacije tokova snaga 100%-tnog opt.

Prethodna slika sadrži podatke simulacije tokova snaga IEEE 39-sabirničkog sustava pri 100%tnom zadanom opterećenju. Ako se usporede ovi rezultati s rezultatima simulacije pri 90%-tnom zadanom opterećenju prikazanim na slici 2.3. može se vidjeti porast proizvodnje električne energije. Kako trošila potraživaju veće snage za njihov rad, generatori su prisiljeni u mrežu utiskivati veće snage. Može se vidjeti kao i kod prethodnog slučaja kako je djelatna snaga proizvodnje jednaka djelatnoj snazi potrošnje uvećanoj za gubitke sustava, što je za očekivati, jer se izjednačavanjem tih snaga dobiva balans između generatora i potrošača.

Veća opterećenja trošila rezultiraju u većim tokovima struje pa postoje i veća opterećenja prijenosnih vodova. Tablica 2.10. prikazuje preopterećene vodove pri 100% zadanom opterećenju trošila, i može se primjetiti porast opterećenja u usporedbi s tablicom 2.6. koja prikazuje preopterećene vodove pri 90%-tnom zadanom opterećenju trošila. Najveće preopterećenje voda se i dalje nalazi na vodu 10, između sabirnica 9 i 29, te je njegovo opterećenje poraslo za 1%. Najveći rast opterećenja postoji kod vodova 28 i 44 od 3%. Zanimljivo je napomenuti kako vod 37 više nije preopterećen iako je poraslo opterećenje.

Naziv voda	Sabirnice #	Opterećenje(%)
Line 10	9-29	145,7502
Line 28	3-20	136,2281
Line 35	4-30	106,8555
Line 38	5-39	120,8297
Line 41	21-22	119,3557
Line 42	6-22	126,3879
Line 44	7-23	113,0288

Tablica 2.10. – Preopterećeni vodovi

2.3. II dio simulacije

U potpoglavlju 2.1. objašnjeno je kako je podijeljena simulacija na dva dijela. Drugi dio simulacije koristi iste podatke kao prethodna osim impendancije vodova. Uzdužne impendancije vodova smanjene su za 50%. Za simulaciju je korišteno 100%-tno zadano opterećenje kako bi postojala neka usporedba s prvim dijelom simulacije.

2.3.1. Analiza tokova snaga za 100% -tno zadano opterećenje

	Sabirnica #	<i>P</i> (MW)	Q (MVar)	S (MVA)	Vrsta čvora
Generator 1	Terminal-10	250 <i>,</i>	176,7	306,1419	PQ
Generator 2	Terminal 2-2	1057,752	-7,585756	1057,78	SL
Generator 3	Terminal 1-8	540 <i>,</i>	-83,13075	546,3613	PV
Generator 4	Terminal 8-9	830,	-85,19022	834,3605	PV
Generator 5	Terminal 3-1	552,7	168,7	577,8728	PQ
Generator 6	Terminal 4-3	650 <i>,</i>	68,63101	653,6132	PV
Generator 7	Terminal 5-4	508 <i>,</i>	76,44186	513,7191	PV
Generator 8	Terminal 9-5	632,	76,	636,5532	PQ
Generator 9	Terminal 7-6	650 <i>,</i>	266,9	702,6632	PQ
Generator 10	Terminal 6-7	560,	23,17558	560,4794	PV

Tablica 2.11. – Snage generatora

Tablica 2.11. prikazuje snage kojim generatori opskrbljuju mrežu pri smanjenim impendancijama vodova i pri 100%-tnom zadanom opterećenju. Ako se usporede podaci tablice s tablicom 2.7. iz prvog dijela simulacije može se primjetiti drastično smanjenje proizvodnje jalove snage. Nadalje, jalova snaga poprima kapacitivan karakter.

Sabirnica #	Nazivni napon (kV)	Iznosi napona dobivenih simulacijom (kV)	Vrsta čvora
Generator 1	19	19,95478	PQ
Generator 3	19	19	PV
Generator 2	19	19	SL
Generator 5	19	19,47783	PQ
Generator 6	19	19	PV
Generator 7	19	19	PV
Generator 10	19	19	PV
Generator 9	19	19,86719	PQ
Generator 4	19	19	PV
Generator 8	19	19,05775	PQ

 Tablica 2.12. - Odstupanje nazivnih napona na sabirnicama izvora

Usporedbom s tablicom 2.8., kod tablice 2.12. može se primjetiti rast nazivnog napona na sabirnicama PQ čvorova. Uzrok tome su smanjene impendancije i povećani kapaciteti vodova. Na slijedećoj tablici 2.13. predstavljena su opterećenja trošila koja su zapravo fiksirana i konstantna bez obzira na mijenjanje iznosa impendancije vodova. Trošila i njihova potražnja snage u mreži su potpuno neovisna o impendancijama vodova. Taj zaključak se može i potvrditi usporedbom s tablicom 2.9. iz prvog dijela simulacije.

	Sabirnica #	<i>P</i> (MW)	Q (MVar)	S (MVA)	cosφ
Trošilo 1	2	1104	250	1131,952	0,9753061
Trošilo 2	25	224	47,2	228,9189	0,9785127
Trošilo 3	1	92	4,6	92,11493	0,9987523
Trošilo 4	27	281	75,5	290,9661	0,9657484
Trošilo 5	32	7,5	88	88,31902	0,08491942
Trošilo 6	30	628	103	636,3906	0,9868153
Trošilo 7	36	329,4	32,3	330,9798	0,9952268
Trošilo 8	24	308,6	92,2	322,0789	0,9581504
Trošilo 9	21	274	115	297,1548	0,9220782
Trošilo 10	23	274,5	84	287,0649	0,9562298
Trošilo 11	35	320	153	354,6956	0,9021819
Trošilo 12	26	139	17	140,0357	0,992604
Trošilo 13	29	283,5	26,9	284,7733	0,9955286
Trošilo 14	28	206	27,6	207,8407	0,9911437
Trošilo 15	38	158	300	339,0634	0,4659895
Trošilo 16	13	322	2,4	322,0089	0,9999722
Trošilo 17	14	500	184	532,7814	0,9384712
Trošilo 18	18	522	176	550,872	0,9475885
Trošilo 19	17	233,8	84	248,432	0,9411027

Tablica 2.13. – Opterećenja trošila

Pri analizi tokova snaga u prvom dijelu simulacije postojala su određena preopterećenja vodova koja su prezentirana u pripadnim tablicama. Analizom tokova snaga drugog dijela simulacije utvrđeno je kako nema preopterećenih vodova. Smanjenjem impendancija vodova i povećanjem kapaciteta istih dobio se sustav s manjim opterećenjima vodova, te sustav sa sabirnicama gdje nema većih odstupanja napona od nazivnog.

Generation External Infeed Inter Grid Flow	= = =	6230,45 0,00 0,00	MW MW MW	680,64 0,00 0.00	Mvar Mvar Mvar	6267,52 0,00	MVA MVA
Load P(U) Load P(Un) Load P(Un-U)	= = =	6207,30 6207,30 0,00	MW MW MW	1862,70 1862,70 0.00	Mvar Mvar Mvar	6480,76 6480,76	MVA MVA
Motor Load Grid Losses Line Charging Compensation ind. Compensation cap.	= = = =	0,00 23,15	MW MW	0,00 -1182,06 -2105,32 0,00 0,00	Mvar Mvar Mvar Mvar Mvar	0,00	MVA
Installed Capacity Spinning Reserve	=	9600,00 3369,55	MW MW				
Total Power Factor: Generation Load/Motor	= =	0,9 0,96 / 0,0	9 [-] 0 [-]				

Slika 2.5. – Ukupni rezultati simulacije pri smanjenim impendancijama vodova

Usporedbom sa slikom 2.4., slika 2.5. sumira zapravo ono što se već moglo zaključiti: proizvodnja jalove snage generatora je drastično smanjena, gubici u vodovima su kapacitivnog karaktera te je ukupno poboljšan faktor snage mreže.

Slika 2.6. Dio sustava pod većim opterećenjem

Slika 2.6. oslikava dio elektroenergetskog sustava pri analizi tokova snaga prvog dijela simulacije sa 100%-tnim opterećenjem, gdje se mogu vidjeti smjerovi tokova snaga, te

preopterećeni elementi mreže u crvenoj boji. Unutar pripadnih okvira kraj elemenata prikazani su rezultati tokova snaga. Kod potrošača, vodova, generatora i transformatora su prikazane radna i jalova snaga uz jakost struje koju povlače ili daju u mrežu, a kod sabirnica prikazuju vrijednosti i kut napona prema referentnom naponu na sabirnici generatora 2.

Slika 2.7. – Rasterećeni dio sustava pri 50% manjim impendancijama vodova

Slika 2.7. predstavlja isti dio sustava prema slici 2.6., ali nakon smanjenja impendancije vodova. S obzirom na sliku 2.6. može se primjetiti smanjenje opterećenosti sustava.

2.3.2. Prijedlog riješenja preopterećenosti sustava

Pri 100%-tnom zadanom opterećenju sustava u prvom dijelu simulacije postojala su preopterećenja određenih vodova. Smanjenjem impendancije vodova, odnosno povećanjem presjeka vodiča opterećenja vodova dovedena su u prihvatljive okvire. Smanjenje impedancije vodova se u praksi rješava povećanjem presjeka vodiča ili dodavanjem paralelnih vodova.

2.3.3. Trofazni kratki spoj

Trofazni kratki spojevi su najnepovoljniji kvarovi koji se mogu manifestirati unutar elektroenergetskih mreža. Radi se o kratkom spoju koji je simetričan i u pravilu su jakosti struje

tog tipa kratkog spoja veće od svih ostalih. Nastaje kada se kratko spoje sve tri faze u istu točku gdje napon na tom mjestu pada na nulu, a struja raste na ogromne vrijednosti rezultirajući velikim elektromehaničkim oscilacijama unutar mreže. Informacije o kratkom spoju preuzete su iz [8] i [9].

		rtd.V. [kV]	vol [kV]	tage [deg]	C- Factor	Sk" [MVA/MVA]	I [kA/kA]	k" [deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	Ik [kA]	Ith [kA]
10	Line 2-Winding Trans	345,00 12 Terminal	0,00	0,00	1,10	7320,62 MVA 3123,41 MVA 4197,95 MVA	12,25 kA 5,23 kA 7,03 kA	-87,51 93,44 91,79	32,64 kA 13,93 kA 18,72 kA	11,61	6940,57	12,25	12,74
12	Line Line(1) Line(5) Line(11)	345,00 10 11 25 13	0,00	0,00	1,10	8873,51 MVA 2483,35 MVA 1187,60 MVA 2676,58 MVA 2559,76 MVA	14,85 kA 4,16 kA 1,99 kA 4,48 kA 4,28 kA	-84,62 91,06 93,20 102,91 92,72	37,31 kA 10,44 kA 4,99 kA 11,25 kA 10,76 kA	14,84	8865,55	14,85	15,14
11	Line(1) Line(2)	345,00 12 2	0,00	0,00	1,10	4343,43 MVA 1942,31 MVA 2402,54 MVA	7,27 kA 3,25 kA 4,02 kA	-86,54 95,09 92,14	18,93 ka 8,46 ka 10,47 ka	7,27	4343,43	7,27	7,48
2	Line(2) Line(3) 2-Winding Trans	345,00 11 19 Terminal	0,00 (2	0,00	1,10	6746,35 MVA 1300,75 MVA 1248,59 MVA 4197,95 MVA	11,29 kA 2,18 kA 2,09 kA 7,03 kA	-87,53 94,21 92,96 91,79	30,05 kA 5,79 kA 5,56 kA 18,70 kA	10,65	6366,30	11,29	11,73
19	Line(3) Line(16)	345,00 2 18	0,00	0,00	1,10	4249,13 MVA 2413,53 MVA 1835,77 MVA	7,11 kA 4,04 kA 3,07 kA	-87,26 92,29 93,32	18,80 ka 10,68 ka 8,12 ka	7,11	4249,13	7,11	7,36
8	Line(4) 2-Winding Trans	345,00 25 Terminal	0,00 1	0,00	1,10	6724,83 MVA 2532,81 MVA 4197,95 MVA	11,25 kA 4,24 kA 7,03 kA	-86,34 96,75 91,79	29,26 kA 11,02 kA 18,27 kA	10,62	6344,71	11,25	11,57

Slika 2.8. *Rezultati trofaznog kratkog spoja za pojedine vodove i transformatore pri 100%-tnom opterećenju*

Slika 2.8. prikaziva okvirno o kakvim se iznosima struja trofaznog kratkog spoja radi. Simulacija je odrađena uz 100% zadano opterećenje i uz zadane početne impendancije vodova. Cijeli izvještaj trofaznog kratkog spoja nalazi se u prilogu. Na tako visokim naponima kao što su prijenosni i s tim što se kratki spoj nalazi relativno blizu izvora odnosno generatora, dolazi do jako visokih jakosti struja kratkog spoja. Ove informacije su jako vrijedne pošto se zaštita elektroenergetskih mreža vrši prema iznosima struja kratkog spoja. Pri dimenzioniranju visokonaponskih prekidača bitno je predvidjeti koji su to najveći iznosi jakosti struje kratkog spoja koji se mogu pojaviti unutar mreže te dimenzionirati prekidač na taj način da može isklopiti struju kratkog spoja i to u što kraćem vremenskom periodu. Osim prekidača postoji tu još niz elemenata koji se koriste kako bi se zaštitili elektroenergetski sustav poput vremenskih i usmjerenih releja, rastavljača, različitih vrsta uzemljenja i slično. Zaštita se postavlja selektivno tako da releji bliže mjestu kratkog spoja brzo reagiraju i odspajaju taj dio mreže iz sustava, kako bi se prijenos energije mogao ne smetano odvijati bez većih oscilacija.

[rtd.V.	Vol	tage	c-	Sk"	I	k"	ip	Ib	Sb	Ik	Ith
1		[kV]	[kV]	[deg]	Factor	[MVA/MVA]	[kA/kA]	[deg]	[kA/kA]	[kA]	[MVA]	[kA]	[kA]
10		345,00	0,00	0,00	1,10	9848,42 MVA	16,48 kA	-87,41	43,81 kA	15,85	9468,36	16,48	17,11
	Line	12				5651,18 MVA	9,46 kA	93,18	25,14 kA				
	2-Winding Trans	Terminal				4197,95 MVA	7,03 kA	91,79	18,67 kA				
12		345,00	0,00	0,00	1,10	13646,90 MVA	22,84 kA	-85,12	57,81 kA	22,68	13550,27	22,84	23,32
i –	Line	10	1		· ·	3120,70 MVA	5,22 kA	91,33	13,22 kA		-	-	i
i –	Line(1)	11				1910,48 MVA	3,20 kA	92,83	8,09 kA				i
1	Line(5)	25				4164,72 MVA	6,97 kA	101,18	17,64 kA				i
	Line(11)	13				4487,61 MVA	7,51 kA	92,38	19,01 kA				
111		345,00	0,00	0,00	1,10	7171,40 MVA	12,00 kA	-86,46	31,19 kA	11,99	7165,66	12,00	12,33
i –	Line(1)	12	1		· ·	3533,68 MVA	5,91 kA	94,98	15,37 kA		-	-	- í i
İ.	Line(2)	2				3639,91 MVA	6,09 kA	92,14	15,83 kA				Í
12		345.00	0.00	0.00	1.10	8898.90 MVA	14.89 kA	-87.27	39.41 kA	14.26	8518.82	14.89	15.42
1	Line(2)	11	-,	-,	-,	2400.61 MVA	4.02 kA	94.17	10.63 kA		,		
i –	Line(3)	19				2301.67 MVA	3.85 kA	92,93	10.19 kA				
İ.	2-Winding Trans	Terminal	(2			4197,95 MVA	7,03 kA	91,79	18,59 kA				
119		345,00	0.00	0.00	1.10	7016.13 MVA	11.74 kA	-87.15	30.97 kA	11.73	7011.95	11,74	12.14
	Line(3)	2	-,	-,	-,	3674.69 MVA	6.15 kA	92,44	16.22 kA	,	,,	,	
İ.	Line(16)	18				3341,64 MVA	5,59 kA	93,30	14,75 kA				
8		345,00	0.00	0.00	1.10	8838,62 MVA	14.79 kA	-85,84	38.01 kA	14.16	8458,52	14,79	15.15
1	Line(4)	25	-,	-)	-,	4647,52 MVA	7,78 kA	96,31	19,99 kA	,			,
i –	2-Winding Trans	Terminal	1			4197,95 MVA	7,03 kA	91,79	18,06 kA				i

Slika 2.9. – Trofazni kratki spoj 50% smanjene impendancije, simulacija pri 100%-tnom

opterećenju

Usporedbom slika 2.8. i 2.9. očito su struje kratkog spoja sustava nakon modifikacije sustava veće od struja kratkog spoja sustava prije uvedene modifikacije, s obzirom da se radi o smanjenju impedancije sustava.

3. ZAKLJUČAK

Kroz glavni dio rada gdje su predstavljeni rezultati simulacije IEEE 39-sabirničkog sustava, mogli su se primjetiti različiti konteksti u kojima se sustav nalazio kako bi se dobilo što više moguće korisnih podataka. Mijenjana su zadana opterećenja, impendancije vodova, a i osim analize pogonskih stanja sustava prikazana je i analiza nepovoljnih stanja u kojima se sustavi u stvarnosti mogu naći. Pri tom se misli na analizu trofaznog kratkog spoja u dva slučaja i svakako radi se o jakim strujama, pogotovo na tim visokim naponskim razinama. Pri tim iznosima struje kratkog spoja moguće su ogromne štete na prijenosnim sustavima. Iz tih i sličnih razloga razumljivo je zašto su ovakve analize bitne. Zadatak je bio analizirati IEEE 39-sabirnički sustav pomoću DIgSILENT PowerFactory programskog paketa i ta analiza je prikazana. Cilj ovakvih simulacija je okupiti što veći broj podataka o sustavu i njegovom ponašanju u različitim kontekstima. Razlog tome je što se sustavi i mreže u stvarnosti nalaze pred takvim izazovima i kako bi postojao siguran prijenos električne energije koja je osnova svakog ekonomskog i gospodarskog napretka i razvitka, analize ovog tipa su jako bitne i neizbježne. IEEE 39sabirnički sustav je složen, no idealan za proračune tokova snaga kod velikih umreženih prijenosnih elektroenergetskih sustava jer kao ispitni sustav sadrži njihove bitne karakteristike. Analize tokova snaga daju važne podatke i uvid u cjelokupan rad sustava prije puštanja u pogon ili kod proširenja već postojećih.

4. LITERATURA

[1] M. A. Pai, *"Energy function analysis for power system stability"*, Kluwer Academic Publishers, Boston, SAD 1989.g.

[2] Dept. Of Electrical Engg., Faculty of Engineering, Dayalbagh Educational Institute ; <u>http://shodhganga.inflibnet.ac.in/bitstream/10603/15070/25/25_appendix_e.pdf</u>

[3] K. Ožegović i M. Ožegović, *Električne energetske mreže* - svezak III, FESB, Opal computing d.o.o., Split 2002. g.

[4] B. Jajac, Teorijske osnove elektrotehnike – svezak III, Graphis, Zagreb 2007.g.

[5] R. Goić, D. Jakus i I. Penović, *Distribucija električne energije* – interna skripta, FESB, Split 2008.g.

http://marjan.fesb.hr/~rgoic/dm/skriptaDM.pdf

[6] Dr. N.Mithulananthan, Prof. T.Saha, Development of a Comprehensive Power System Simulation Laboratory (PSS-L) at the University of Queensland – Project Funded by Australian Power Institute (API) <u>http://www.itee.uq.edu.au/pssl/drupal7_with_innTheme/sites/default/files/Test%20system%20re</u> port%20(1).pdf

[7] Prof.dr.sc.D. Šljivac, *Predavanja po generacijama – skripta s predavanja iz predmeta Elektrane i elektroenergetski sustavi*, Elektrotehnički fakultet Osijek, Osijek 2012. g. <u>https://loomen.carnet.hr/mod/folder/view.php?id=156746</u>

[8] S. Nikolovski, D. Šljivac, *Elektroenergetske mreže – zbirka riješenih zadataka, Treće izdanje,* Elektrotehnički fakultet Sveučilišta J. J. Strossmayera u Osijeku, Grafika, Osijek 2003.g.

[9] H.Požar, Visokonaponska rasklopna postrojenja, Peto izdanje, Tehnička knjiga, Zagreb, 1990.g.

5. SAŽETAK

Kroz završni rad prikazana je analiza 39-sabirničkog ispitnog sustava u DIgSILENT PowerFactory programu. Simulacija tog ispitnog sustava odrađena je u više različitih situacija kako bi se dobio što širi opseg podataka. Prvo su analizirani tokovi snaga IEEE 39-sabirničkog sustava s 90%-tnim i 100%-tnim zadanim opterećenjem potrošača, a nakon toga analiza tokova snaga sustava sa 50% smanjenim impendancijama vodova pri 100% zadanim opterećenjima trošila. Zatim je analiziran trofazni kratki spoj sustava prije i nakon modifikacije sustava (smanjenja impedancije vodovova) te je napravljena određena usporedba. Svi dobiveni podaci su predstavljeni i komentirani kroz glavni dio rada, a na kraju je ponuđeno i određeno riješenje s obzirom na preopterećenja koja su postojala unutar mreže. Riješenje je u skladu s metodom koja se i inače koriste u praksi. Na kraju je pojašnjena važnost ovakvih analiza i simulacija te zašto se uopće provode.

KLJUČNE RIJEČI: IEEE 39-sabirnički sustav, analiza tokova snaga, analiza kratkih spojeva, promjena opterećenja

Abstract

The analysis of IEEE 39-bus test system has been shown through this paper. Simulation of that test system has been analysed in various context's so that various data could have been presented. Firstly, a load flow of IEEE 39-bus test system with 90% and 100% of given load data has been analysed, and after that, the load flow of the system with 100% given of given load data and with 50% smaller impendance of lines has been analysed. The three-phase short-circuit has been analysed before and after the system improvement in line impendance reduction. The data of the analysis has been given and commented through this paper, and in the end, the solution for the overloaded elements has been presented. The solution is used in praxis with similar problems. At the end, the importance of this kind of analysis and simulation has been explained.

KEY WORD'S: IEEE 39-bus system, load flow analysis, short-circuit analysis, load scaling

6. ŽIVOTOPIS

Glavaš Krešimir rođen je u Mostaru, BIH, 05.08.1991. godine. Odrastao je u Grudama, BIH, gdje je pohađao osnovnu i srednju školu, smjer gimnazija. Nakon završetka gimnazije upisuje se na Fakultet elektrotehnike, računarstva i brodogradnje u Splitu 2009. Godine, smjer elektrotehnika i informacijska tehnologija na preddiplomskom sveučilišnom studiju. 2015. godine prebacuje se na Elektrotehnički fakultet u Osijeku te upisuje treću godinu stručnog sveučilišnog studija elektrotehnike smjer elektroenergetika gdje uz fakultetske obveze pohađa i praksu u tvrtci Hrvatski Operater Prijenosnog Sustava.

7. PRILOZI

Naziv	Sabirnica	Sabirnica	<i>R</i> (Ω)	Χ(Ω)	<i>Β</i> (μS)
voda	1#	2#			
Line	12	10	0	21,54	0
Line 1	11	12	4,17	48,92	587
Line 2	2	11	1,19	29,76	630
Line 3	19	2	1,19	29,76	1000
Line 4	25	8	0,7142	27,61	0
Line 5	12	25	8,33	10,24	123
Line 6	25	26	3,81	38,45	431
Line 7	26	28	5,12	56,42	655
Line 8	28	29	1,67	17,97	209,2
Line 9	26	29	6,78	74,39	864
Line 10	9	29	0,9522	18,57	0
Line 11	12	13	1,547	17,97	216
Line 12	13	38	1,309	15,83	180
Line 13	14	13	1,55	25,35	186
Line 14	15	14	0,9522	15,24	112,7
Line 15	18	15	0,9522	13,33	124
Line 16	19	18	2,74	43,2	320
Line 17	15	16	0,238	3,1	37
Line 18	18	17	0,476	5,48	65,5
Line 19	17	16	0,714	10,95	94,9
Line 20	1	16	0	29,8	0
Line 21	38	37	0,833	9,76	110
Line 22	37	27	1,55	20,59	270
Line 23	27	26	1,67	17,5	201
Line 24	36	37	0,833	10,59	113
Line 25	35	36	1,07	11,18	144
Line 26	34	35	2,14	25,83	307
Line 27	34	14	0,9522	15,35	116
Line 28	3	20	0	23,8	0
Line 29	31	32	1,9	51,77	0
Line 30	16	31	0,833	9,76	116
Line 31	20	31	0,0761	5,12	61,2
Line 32	20	33	0,0761	5,12	61,2
Line 33	32	33	1,9	51,77	0
Line 34	34	33	1,07	12,02	145
Line 35	4	30	1,07	21,42	0
Line 36	30	39	0,833	16,43	0
Line 37	39	36	1,9	23,2	255
Line 38	5	39	0,833	16,9	0

P.2.1. - Apsolutne impendancije vodova

Line 39	24	36	0,357	7,022	57,1
Line 40	36	21	0,9522	16,07	214
Line 41	21	22	0,9522	16,07	214
Line 42	6	22	0	17,02	0
Line 43	23	22	0,714	11,43	155
Line 44	7	23	0,595	32,37	0
Line 45	24	23	2,62	41,66	303

P.2.2. – Trofazni kratki spoj s zadanim impendancijama sustava pri 100%-tnom opterećenju

		rtd.V.	Volta	ge	C-	Sk"	I	k"	ip	Ib	Sb	Ik	Ith
 		[kV]	[kv] [degj	Factor	[MVA/MVA]	[KA/KA]	[deg]	[KA/KA]	[KA]	[MVA]	[KA]	[KA]
10		345,00	0,00	0,00	1,10	7320,62 MVA	12,25 kA	-87,51	32,64 kA	11,61	6940,57	12,25	12,74
!	Line	12				3123,41 MVA	5,23 kA	93,44	13,93 kA				
-	2-Winding Trans	lerminal				4197,95 MVA	7,03 kA	91,79	18,72 kA				
12		345,00	0,00	0,00	1,10	8873,51 MVA	14,85 kA	-84,62	37,31 kA	14,84	8865,55	14,85	15,14
Í.	Line	10				2483,35 MVA	4,16 kA	91,06	10,44 kA				
1	Line(1)	11				1187,60 MVA	1,99 kA	93,20	4,99 kA				
	Line(5)	25				2676,58 MVA	4,48 kA	102,91	11,25 kA				
	Line(11)	13				2559,76 MVA	4,28 kA	92,72	10,76 kA				
111		345.00	0.00	0.00	1.10	4343.43 MVA	7.27 kA	-86.54	18.93 kA	7.27	4343.43	7.27	7.48
1	Line(1)	12	0,00	.,	-,	1942.31 MVA	3,25 kA	95,09	8,46 kA	.,	,	.,	.,
i –	Line(2)	2				2402,54 MVA	4,02 kA	92,14	10,47 kA				i
		245 00				6746 DE 184				40.05	6366.30		44.72
2		345,00	0,00	0,00	1,10	6/46,35 MVA	11,29 kA	-87,53	30,05 kA	10,65	6366,30	11,29	11,73
1	Line(2)	11				1300,75 MVA	2,18 KA	94,21	5,79 KA				
1	2 Winding Trans	Topminal	()			1240,59 MVA	2,09 KA	92,90	3,30 KA				
	z-winding frans	Terminar	(2			4197,95 MVA	7,05 KA	51,75	10,70 KA				
19		345,00	0,00	0,00	1,10	4249,13 MVA	7,11 kA	-87,26	18,80 kA	7,11	4249,13	7,11	7,36
	Line(3)	2				2413,53 MVA	4,04 kA	92,29	10,68 kA				
	Line(16)	18				1835,77 MVA	3,07 kA	93,32	8,12 kA				
8		345,00	0.00	0.00	1.10	6724.83 MVA	11.25 kA	-86.34	29.26 kA	10.62	6344.71	11.25	11.57
1	Line(4)	25		-,	-,	2532,81 MVA	4,24 kA	96,75	11,02 kA	,		,	
i –	2-Winding Trans	Terminal	1			4197,95 MVA	7,03 kA	91,79	18,27 kA				i
25		345,00	0,00	0,00	1,10	7579,72 MVA	12,68 kA	-80,50	29,67 kA	12,68	7579,72	12,68	12,83
	Line(4)	8				2226,38 MVA	3,73 kA	91,65	8,/1 kA				
	Line(5)	26				3673,61 MVA 1542 22 MVΔ	6,49 KA 2 58 kΔ	92 37	15,17 κΑ 6 04 kΔ				
!	Line(0)	20				1342,22 MVA	2,50 KA	52,57	0,04 KA				
26		345,00	0,00	0,00	1,10	5611,58 MVA	9,39 kA	-85,23	23,76 kA	9,39	5611,58	9,39	9,59
	Line(6)	25				2019,58 MVA	3,38 kA	97,01	8,55 kA				
<u> </u>	Line(7)	28				751,58 MVA	1,26 kA	93,50	3,18 kA				
	Line(9) Line(23)	29				2091.25 MVA	1,26 KA 3,50 kA	93,50	8,85 kA				
į –							· · ·	<i>.</i>					j
28	ling(7)	345,00	0,00	0,00	1,10	3578,14 MVA	5,99 kA	-85,81	15,32 kA	5,99	3578,14	5,99	6,13
	Line(8)	29				2261,96 MVA	3,79 kA	93,71	9,68 kA				
İ.,								· · · · ·					
29	Line(8)	345,00	0,00	0,00	1,10	4520,23 MVA	7,56 kA	-86,53	19,68 kA	7,52	4496,61	7,56	/,/8
	line(9)	26				945,83 MVA	1,58 kA	95,22	4,12 kA				
i –	Line(10)	9				2630,10 MVA	4,40 kA	92,22	11,45 kA				
9		345 00	0 00	0 00	1 10	5687 76 MVA	9 52 kA	-87 //	25 29 kA	8 88	5307 70	9.52	9.88
Ľ	Line(10)	29	0,00	0,00	1,10	1491,26 MVA	2,50 kA	94.74	6,63 kA	0,00	5507,70	5,52	5,00
į –	2-Winding Trans	Terminal	(8			4197,95 MVA	7,03 kA	91,79	18,66 kA				į
 13		345,00	0.00	0.00	1,10	7728,16 MVA	12.93 kA	-86.08	33,33 kA	12.93	7728.16	12.93	13,26
1	Line(11)	12		.,	-,10	3163,88 MVA	5,29 kA	95,26	13,65 kA	,		,->	, 0
	Line(12)	38				2325,88 MVA	3,89 kA	93,30	10,03 kA				
	Line(13)	14				2239,93 MVA	3,75 kA	92,66	9,66 kA				
38		345,00	0,00	0,00	1,10	6852,66 MVA	11,47 kA	-86,20	29,58 kA	11,47	6852,66	11,47	11,76
	Line(12)	13				2995,70 MVA	5,01 kA	93,96	12,93 kA				
	Line(21)	37				3856,98 MVA	6,45 kA	93,67	16,65 kA				
14		345,00	0,00	0,00	1,10	7323,52 MVA	12,26 kA	-86,96	32,19 kA	12,26	7323,52	12,26	12,65
	Line(13)	13				2392,22 MVA	4,00 kA	93,77	10,51 kA				
-	Line(14)	34				2593,56 MVA	4,34 kA 3 01 ⊾∧	92,41 93 01	11,40 kA				
1	cane(27)	<u>_</u>				2350,05 FIVA	JJI NA		10,20 KA				
15		345,00	0,00	0,00	1,10	7530,02 MVA	12,60 kA	-87,38	33,43 kA	12,60	7530,02	12,60	13,07
	Line(14)	14 18				2424,14 MVA	4,06 kA	93,37	10,/6 kA				
1	Line(17)	16				4060,56 MVA	6,80 kA	92,18	18,03 kA				

18	Line(15) Line(16) Line(18)	345,00 15 19 17	0,00	0,00	1,10	6187,07 MVA 2606,82 MVA 1293,67 MVA 2286,59 MVA	10,35 kA 4,36 kA 2,16 kA 3,83 kA	-87,14 92,91 92,83 92,82	27,30 kA 11,50 kA 5,71 kA 10,09 kA	10,35	6187,07	10,35	10,70
16	Line(17) Line(19) Line(20) Line(30)	345,00 15 17 1 31	0,00	0,00	1,10	7844,41 MVA 2468,82 MVA 769,14 MVA 2147,02 MVA 2460,59 MVA	13,13 kA 4,13 kA 1,29 kA 3,59 kA 4,12 kA	-87,56 93,41 93,03 90,92 92,62	34,97 kA 11,01 kA 3,43 kA 9,57 kA 10,97 kA	13,13	7844,41	13,13	13,65
17	Line(18) Line(19)	345,00 18 16	0,00	0,00	1,10	6056,15 MVA 2741,53 MVA 3314,73 MVA	10,13 kA 4,59 kA 5,55 kA	-87,15 93,24 92,53	26,73 kA 12,10 kA 14,63 kA	10,13	6056,15	10,13	10,48
1	Line(20) 2-Winding Trans	345,00 16 Terminal	0,00 .(3	0,00	1,10	6679,56 MVA 2481,66 MVA 4197,95 MVA	11,18 kA 4,15 kA 7,03 kA	-88,39 91,31 91,79	30,36 kA 11,28 kA 19,08 kA	10,54	6299,67	11,18	11,84
37	Line(21) Line(22) Line(24)	345,00 38 27 36	0,00	0,00	1,10	8035,41 MVA 2214,92 MVA 1513,55 MVA 4306,96 MVA	13,45 kA 3,71 kA 2,53 kA 7,21 kA	-86,45 93,65 93,77 93,42	34,87 kA 9,61 kA 6,57 kA 18,69 kA	13,45	8035,41	13,45	13,81
27	Line(22) Line(23)	345,00 37 26	0,00	0,00	1,10	5395,50 MVA 3100,06 MVA 2295,97 MVA	9,03 kA 5,19 kA 3,84 kA	-85,83 93,48 95,10	23,10 kA 13,27 kA 9,83 kA	9,03	5395,50	9,03	9,24
36	Line(24) Line(25) Line(37) Line(39) Line(40)	345,00 37 35 39 24 21	0,00	0,00	1,10	9693,37 MVA 2651,40 MVA 1709,49 MVA 2536,12 MVA 1122,89 MVA 1674,11 MVA	16,22 kA 4,44 kA 2,86 kA 4,24 kA 1,88 kA 2,80 kA	-86,83 93,76 93,64 93,35 92,24 92,11	42,45 kA 11,61 kA 7,49 kA 11,11 kA 4,92 kA 7,33 kA	16,22	9693,37	16,22	16,71
35	Line(25) Line(26)	345,00 36 34	0,00	0,00	1,10	6886,74 MVA 4591,64 MVA 2295,18 MVA	11,52 kA 7,68 kA 3,84 kA	-86,19 94,00 93,44	29,71 kA 19,81 kA 9,90 kA	11,52	6886,74	11,52	11,82
34	Line(26) Line(27) Line(34)	345,00 35 14 33	0,00	0,00	1,10	7165,66 MVA 2182,57 MVA 2471,30 MVA 2512,42 MVA	11,99 kA 3,65 kA 4,14 kA 4,20 kA	-86,88 94,23 92,88 92,39	31,43 kA 9,57 kA 10,84 kA 11,02 kA	11,99	7165,66	11,99	12,36
34 32 	Line(26) Line(27) Line(34) Line(29) Line(33)	345,00 35 14 33 345,00 31 33	0,00 0,00	0,00 0,00	1,10 1,10	7165,66 MVA 2182,57 MVA 2471,30 MVA 2512,42 MVA 3076,97 MVA 1548,03 MVA 1528,94 MVA	11,99 kA 3,65 kA 4,14 kA 4,20 kA 5,15 kA 2,59 kA 2,56 kA	-86,88 94,23 92,88 92,39 -87,67 92,31 92,35	31,43 kA 9,57 kA 10,84 kA 11,02 kA 13,75 kA 6,92 kA 6,83 kA	11,99 5,15	7165,66 3076,97	11,99 5,15	12,36 5,36
34 32 31	Line(26) Line(27) Line(34) Line(29) Line(33) Line(29) Line(29) Line(30) Line(31)	345,00 35 14 33 345,00 31 33 345,00 32 16 20	0,00 0,00 0,00	0,00 0,00 0,00	1,10 1,10 1,10	7165,66 MVA 2182,57 MVA 2471,30 MVA 2512,42 MVA 3076,97 MVA 1548,03 MVA 1528,94 MVA 7166,95 MVA 246,34 MVA 3402,31 MVA 3518,80 MVA	11,99 kA 3,65 kA 4,14 kA 4,20 kA 5,15 kA 2,59 kA 2,56 kA 11,99 kA 0,41 kA 5,69 kA 5,89 kA	-86,88 94,23 92,88 92,39 -87,67 92,31 92,35 -87,48 93,47 93,16 91,83	31,43 kA 9,57 kA 10,84 kA 11,02 kA 13,75 kA 6,92 kA 6,83 kA 31,89 kA 1,10 kA 15,14 kA 15,66 kA	11,99 5,15 11,99	7165,66 3076,97 7166,95	11,99 5,15 11,99	12,36 5,36 12,45
34 34 1 32 1 31 31 33 33	Line(26) Line(27) Line(34) Line(29) Line(33) Line(29) Line(30) Line(31) Line(32) Line(33) Line(34)	345,00 35 14 33 345,00 31 33 345,00 32 16 20 345,00 20 32 32 34	0,00 0,00 0,00	0,00 0,00 0,00	1,10 1,10 1,10 1,10	7165,66 MVA 2182,57 MVA 2471,30 MVA 2512,42 MVA 3076,97 MVA 1548,03 MVA 1528,94 MVA 7166,95 MVA 246,34 MVA 3402,31 MVA 3518,80 MVA 6923,27 MVA 3852,82 MVA 280,88 MVA 2791,40 MVA	11,99 kA 3,65 kA 4,14 kA 4,20 kA 5,15 kA 2,59 kA 2,56 kA 11,99 kA 0,41 kA 5,69 kA 5,89 kA 11,59 kA 6,45 kA 0,47 kA	-86,88 94,23 92,88 92,39 -87,67 92,31 92,35 -87,48 93,47 93,16 91,83 -87,38 91,46 92,91 94,18	31,43 kA 9,57 kA 10,84 kA 11,02 kA 13,75 kA 6,92 kA 6,83 kA 31,89 kA 1,10 kA 15,14 kA 15,66 kA 30,73 kA 17,10 kA 1,25 kA 12,39 kA	11,99 5,15 11,99 11,59	7165,66 3076,97 7166,95 6923,27	11,99 5,15 11,99 11,59	12,36 5,36 12,45 12,01
34 	Line(26) Line(27) Line(34) Line(29) Line(33) Line(29) Line(30) Line(31) Line(31) Line(31) Line(31) Line(28)	345,00 35 14 33 345,00 31 33 345,00 32 16 20 345,00 20 32 34 345,00 32 34 345,00 32 34 345,00 32 34 33 33 3	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	1,10 1,10 1,10 1,10	7165,66 MVA 2182,57 MVA 2471,30 MVA 2512,42 MVA 3076,97 MVA 1548,03 MVA 1528,94 MVA 7166,95 MVA 246,34 MVA 3402,31 MVA 3402,31 MVA 3518,80 MVA 6923,27 MVA 3852,82 MVA 280,88 MVA 2791,40 MVA 7419,82 MVA 2741,79 MVA 2298,02 MVA 2381,29 MVA	11,99 kA 3,65 kA 4,14 kA 4,20 kA 5,15 kA 2,59 kA 2,56 kA 11,99 kA 0,41 kA 5,69 kA 5,89 kA 11,59 kA 6,45 kA 0,47 kA 4,67 kA 12,42 kA 4,59 kA 3,85 kA 3,99 kA	-86,88 94,23 92,88 92,39 -87,67 92,31 92,35 -87,48 93,47 93,16 91,83 -87,38 91,46 92,91 94,18 -87,55 92,70 93,64 91,02	31,43 kA 9,57 kA 10,84 kA 11,02 kA 13,75 kA 6,92 kA 6,83 kA 31,89 kA 1,10 kA 15,14 kA 15,16 kA 30,73 kA 12,39 kA 33,07 kA 12,22 kA 10,24 kA 10,61 kA	11,99 5,15 11,99 11,59 12,42	7165,66 3076,97 7166,95 6923,27 7419,82	11,99 5,15 11,99 11,59 12,42	12,36 5,36 12,45 12,01 12,91
34 34 1 32 32 33 33 1 20 1 3 3 1 3 1 3 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1	Line(26) Line(27) Line(34) Line(29) Line(33) Line(29) Line(30) Line(31) Line(31) Line(31) Line(32) Line(28) Line(28) 2-Winding Trans	345,00 35 14 33 345,00 31 33 345,00 20 32 34 345,00 31 33 3 3 345,00 20 31 33 3 3 3 3 3 3 3 3 3	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	1,10 1,10 1,10 1,10 1,10	7165,66 MVA 2182,57 MVA 2471,30 MVA 2512,42 MVA 3076,97 MVA 1548,03 MVA 1528,94 MVA 7166,95 MVA 246,34 MVA 3402,31 MVA 3518,80 MVA 6923,27 MVA 3852,82 MVA 280,88 MVA 2791,40 MVA 7419,82 MVA 7419,82 MVA 2381,29 MVA 6829,07 MVA 2631,13 MVA 4197,95 MVA	11,99 kA 3,65 kA 4,14 kA 4,20 kA 5,15 kA 2,59 kA 2,56 kA 11,99 kA 0,41 kA 5,69 kA 5,89 kA 11,59 kA 6,45 kA 0,47 kA 4,67 kA 12,42 kA 4,59 kA 3,85 kA 3,99 kA 11,43 kA 4,40 kA 7,03 kA	-86,88 94,23 92,88 92,39 -87,67 92,31 92,35 -87,48 93,47 93,16 91,83 -87,38 91,46 92,91 94,18 -87,55 92,70 93,64 91,02 -88,27 91,63 91,79	31,43 kA 9,57 kA 10,84 kA 11,02 kA 13,75 kA 6,92 kA 6,83 kA 31,89 kA 1,10 kA 15,14 kA 15,66 kA 30,73 kA 12,39 kA 12,22 kA 10,24 kA 10,24 kA 10,61 kA 30,96 kA 11,93 kA	11,99 5,15 11,99 11,59 12,42 10,79	7165,66 3076,97 7166,95 6923,27 7419,82 6449,16	11,99 5,15 11,99 11,59 12,42 11,43	12,36 5,36 12,45 12,01 12,91 12,91

30 	Line(35) Line(36)	345,00 4 39	0,00	0,00	1,10	5865,92 MVA 2487,56 MVA 3378,50 MVA	9,82 kA 4,16 kA 5,65 kA	-87,31 92,23 93,04	25,98 kA 11,02 kA 14,96 kA	9,80	5857,53	9,82	10,17
39	Line(36) Line(37) Line(38)	345,00 30 36 5	0,00	0,00	1,10	7765,74 MVA 1895,22 MVA 3149,81 MVA 2721,58 MVA	13,00 kA 3,17 kA 5,27 kA 4,55 kA	-87,05 92,39 93,99 92,15	34,18 kA 8,34 kA 13,86 kA 11,98 kA	12,94	7730,97	13,00	13,42
5	Line(38) 2-Winding Trans	345,00 39 Terminal	0,00 .(9	0,00	1,10	7251,20 MVA 3053,76 MVA 4197,95 MVA	12,13 kA 5,11 kA 7,03 kA	-87,63 93,16 91,79	32,36 kA 13,63 kA 18,74 kA	11,50	6871,17	12,13	12,63
24	Line(39) Line(45)	345,00 36 23	0,00	0,00	1,10	7175,32 MVA 5668,44 MVA 1506,91 MVA	12,01 kA 9,49 kA 2,52 kA	-86,97 93,12 92,70	31,52 kA 24,90 kA 6,62 kA	12,01	7175,32	12 , 01	12,39
21	Line(40) Line(41)	345,00 36 22	0,00	0,00	1,10	6612,99 MVA 3726,29 MVA 2886,96 MVA	11,07 kA 6,24 kA 4,83 kA	-87,11 93,34 92,31	29,15 kA 16,43 kA 12,73 kA	11,07	<mark>6612,9</mark> 9	11,07	11,44
22	Line(41) Line(42) Line(43)	345,00 21 6 23	0,00	0,00	1,10	7440,49 MVA 2229,60 MVA 2716,17 MVA 2495,69 MVA	12,45 kA 3,73 kA 4,55 kA 4,18 kA	-87,71 93,38 91,16 92,56	33,27 kA 9,97 kA 12,15 kA 11,16 kA	12,39	7406,41	12,45	12,97
6	Line(42) 2-Winding Trans	345,00 22 Terminal	0,00 .(7	0,00	1,10	7126,02 MVA 2928,07 MVA 4197,95 MVA	11,93 kA 4,90 kA 7,03 kA	-88,20 91,83 91,79	32,24 kA 13,25 kA 18,99 kA	11,29	6746,09	11 , 93	12,55
23	Line(43) Line(44) Line(45)	345,00 22 7 24	0,00	0,00	1,10	6847,91 MVA 3207,69 MVA 2059,82 MVA 1580,95 MVA	11,46 kA 5,37 kA 3,45 kA 2,65 kA	-87,59 92,56 91,41 93,40	30,54 kA 14,30 kA 9,19 kA 7,05 kA	11,46	6847,91	11,46	11,92
7	Line(44) 2-Winding Trans	345,00 23 Terminal	0,00 (6	0,00	1,10	6390,67 MVA 2192,72 MVA 4197,95 MVA	10,69 kA 3,67 kA 7,03 kA	-88,18 91,87 91,79	28,90 kA 9,92 kA 18,99 kA	10,06	6010,73	10,69	11,25
Teri	minal 2-Winding Trans Generator 1	19,00 10	0,00	0,00	1,10	9145,03 MVA 2433,42 MVA 6711,62 MVA	277,89 kA 73,94 kA 203,94 kA	-87,19 92,68 -87,14	733,84 kA 195,27 kA 538,57 kA	225,06	7406,57	277,89	287,48
Teri	minal 1 2-Winding Trans Generator 3	19,00 8	0,00	0,00	1,10	8770,90 MVA 2060,94 MVA 6711,62 MVA	266,52 kA 62,63 kA 203,94 kA	-86,52 95,49 -87,14	693,59 kA 162,98 kA 530,75 kA	213,66	7031,33	266,52	274,07
Teri	minal(2) 2-Winding Trans Generator 2	19,00 2	0,00	0,00	1,10	8781,81 MVA 2070,20 MVA 6711,62 MVA	266,85 kA 62,91 kA 203,94 kA	-87,12 92,92 -87,14	703,22 kA 165,77 kA 537,44 kA	214,02	7043,26	266,85	275,79
Teri	minal(3) 2-Winding Trans Generator 5	19,00 1	0,00	0,00	1,10	8735,78 MVA 2024,92 MVA 6711,62 MVA	265,45 kA 61,53 kA 203,94 kA	-87,55 91,07 -87,14	706,63 kA 163,79 kA 542,90 kA	212,65	6998,10	265,45	275,85
Teri	minal(4) 2-Winding Trans Generator 6	19,00 3	0,00	0,00	1,10	8834,42 MVA 2123,39 MVA 6711,62 MVA	268,45 kA 64,52 kA 203,94 kA	-87,51 91,32 -87,14	713,85 kA 171,58 kA 542,32 kA	215,64	7096,64	268,45	278,78
Teri	minal(5) 2-Winding Trans Generator 7	19,00 4	0,00	0,00	1,10	8527,78 MVA 1816,20 MVA 6711,62 MVA	259,13 kA 55,19 kA 203,94 kA	-87,22 92,48 -87,14	684,24 kA 145,72 kA 538,51 kA	206,31	6789,43	259,13	268,07
Teri	minal(6) 2-Winding Trans Generator 10	19,00 7	0,00	0,00	1,10	8539,65 MVA 1828,41 MVA 6711,62 MVA	259,49 kA 55,56 kA 203,94 kA	-87,42 91,56 -87,14	688,47 kA 147,41 kA 541,09 kA	206,68	6801,70	259,49	269,12
Teri	minal(7) 2-Winding Trans Generator 9	19,00 6	0,00	0,00	1,10	9023,79 MVA 2312,70 MVA 6711,62 MVA	274,20 kA 70,28 kA 203,94 kA	-87,50 91,44 -87,14	728,99 kA 186,83 kA 542,20 kA	221,40	7285,97	274,20	284,72
Teri	minal(8) 2-Winding Trans Generator 4	19,00 9	0,00	0,00	1,10	8025,03 MVA 1313,70 MVA 6711,62 MVA	243,86 kA 39,92 kA 203,94 kA	-86,92 94,17 -87,14	639,57 kA 104,70 kA 534,90 kA	191,02	6286,17	243,86	251,49
Teri	minal(9) 2-Winding Trans Generator 8	19,00 5	0,00	0,00	1,10	9102,40 MVA 2390,82 MVA 6711,62 MVA	276,59 kA 72,65 kA 203,94 kA	-87,24 92,48 -87,14	730,71 kA 191,93 kA 538,78 kA	223,77	7364,04	276,59	286,20

		rtd.V.	Volta	age	C -	Sk"	I	k"	ip	Ib	Sb	Ik	Ith
		[kV]	[kV] [[deg]	Factor	[MVA/MVA]	[kA/kA]	[deg]	[kA/kA]	[kA]	[MVA]	[kA]	[kA]
		345.00	0.00	0.00	4 40	0040 42 104	46 40 14	07 44	42 04 14	45.05	0460.36	46.40	47 44
110	Lána	345,00	0,00	0,00	1,10	9848,42 MVA	16,48 KA	-87,41	43,81 KA	15,85	9468,36	16,48	1/,11
	Line 2 Warddan Taraa	12				3051,18 MVA	9,46 KA	95,18	25,14 KA				
	z-winding Trans	Terminal				4197,95 MVA	7,05 KA	91,79	10,07 KA				
112		345 00	0 00	0 00	1 10	13646 90 MVA	22 84 KA	85 10	57 81 kA	22 68	13550 27	22 84	22 22
112	Line	10	0,00	0,00	1,10	3120 70 MVA	5 22 kA	01 33	13 22 kA	22,00	15550,27	22,04	25,52
	line(1)	10				1910 48 MVA	3 20 kA	92.83	13,22 KA 8 09 kΔ				
1	line(5)	25				4164.72 MVA	6,97 kA	101,18	17.64 kA				
i –	Line(11)	13				4487.61 MVA	7.51 kA	92.38	19.01 kA				
i –						,,	.,	,					
11		345,00	0,00	0,00	1,10	7171,40 MVA	12,00 kA	-86,46	31,19 kA	11,99	7165,66	12,00	12,33
i –	Line(1)	12	·	-	-	3533,68 MVA	5,91 kA	94,98	15,37 kA			-	
i –	Line(2)	2				3639,91 MVA	6,09 kA	92,14	15,83 kA				
İ.													
2		345,00	0,00	0,00	1,10	8898,90 MVA	14,89 kA	-87,27	39,41 kA	14,26	8518,82	14,89	15,42
	Line(2)	11				2400,61 MVA	4,02 kA	94,17	10,63 kA				
	Line(3)	19				2301,67 MVA	3,85 kA	92,93	10,19 kA				
	2-Winding Trans	Terminal	(2			4197,95 MVA	7,03 kA	91,79	18,59 kA				
19		345,00	0,00	0,00	1,10	7016,13 MVA	11,74 kA	-87,15	30,97 kA	11,73	7011,95	11,74	12,14
	Line(3)	2				3674,69 MVA	6,15 kA	92,44	16,22 kA				
	Line(16)	18				3341,64 MVA	5,59 kA	93,30	14,75 kA				
8		345,00	0,00	0,00	1,10	8838,62 MVA	14,79 kA	-85,84	38,01 kA	14,16	8458,52	14,79	15,15
!	Line(4)	25				4647,52 MVA	7,78 kA	96,31	19,99 kA				
	2-Winding Trans	Terminal	1			4197,95 MVA	7,03 kA	91,79	18,06 kA				
105													
125	12(1)	345,00	0,00	0,00	1,10	11937,14 MVA	19,98 KA	-81,32	47,15 KA	19,87	118/6,18	19,98	20,22
	Line(4)	8				2909,64 MVA	4,87 KA	91,70	11,49 kA				
	Line(5)	12				6415,79 MVA	10,74 KA	104,85	25,34 KA				
	Line(0)	20				2091,04 MVA	4,50 KA	91,55	10,05 KA				
26		345,00	0,00	0,00	1,10	9518,62 MVA	15,93 kA	-85,46	40,48 kA	15,93	9518,62	15,93	16,28
!	Line(6)	25				3511,76 MVA	5,88 kA	97,00	14,94 kA				
!	Line(7)	28				1106,93 MVA	1,85 kA	93,05	4,71 kA				
!	Line(9)	29				1106,94 MVA	1,85 kA	93,05	4,71 kA				
!	Line(23)	27				3798,10 MVA	6,36 kA	93,14	16,15 kA				
		345.00	0.00	0.00	4 40	5000 00 MM	0.00.14	05.04	25 22 14	0.00	5004 00	0.00	10 12
28	1	345,00	0,00	0,00	1,10	5909,82 MVA	9,89 KA	-85,84	25,32 KA	9,88	5904,00	9,89	10,12
!	Line(7)	26				2439,10 MVA	4,08 KA	94,93	10,45 KA				
1	LTHE(0)	29				5471,09 MVA	5,01 KA	95,62	14,07 KA				
120		345 00	0 00	0 00	1 10	6800 20 MVA	11 10 64	86 34	20 52 64	11 20	6600 02	11 40	11 70
125	ling(8)	28	0,00	0,00	1,10	1788 82 MVA	2 99 44	95 11	7 76 kA	11,20	0050,52	11,40	11,70
1	Line(0)	26				1788 8/ MVA	2,99 kA	95 10	7,70 KA				
1	Line(10)	9				3234 04 MVA	5 /1 kA	92.05	1/ 02 kA				
1	21112(10)	2				5254,04 1114	2,41 104	52,05	14,02 104				
9		345,00	0.00	0.00	1.10	7049.02 MVA	11.80 kA	-87.05	31.05 kA	11.16	6668.93	11.80	12.19
1	Line(10)	29	-,	-,	-,	2853,21 MVA	4.77 kA	94,67	12.57 kA	,	,	,	,
i –	2-Winding Trans	Terminal	(8			4197,95 MVA	7.03 kA	91,79	18,49 kA				
i i			、 -			,,	.,		,				
13		345,00	0,00	0,00	1,10	12857,00 MVA	21,52 kA	-86,35	55,75 kA	21,52	12857,00	21,52	22,09
i –	Line(11)	12	1	1		5062,23 MVA	8,47 kA	95,09	21,95 kA			-	1
i –	Line(12)	38				4024,76 MVA	6,74 kA	92,94	17,45 kA				
i –	Line(13)	14				3772,71 MVA	6,31 kA	92,48	16,36 kA				
Í.						-	-		-				
38		345,00	0,00	0,00	1,10	11747,53 MVA	19,66 kA	-86,47	51,02 kA	19,66	11747,53	19,66	20,20
1	Line(12)	13				5098,80 MVA	8,53 kA	93,73	22,15 kA				
	Line(21)	37				6648,79 MVA	11,13 kA	93,37	28,88 kA				
14		345,00	0,00	0,00	1,10	12099,21 MVA	20,25 kA	-87,00	53,22 kA	20,25	12099,21	20,25	20,90
	Line(13)	13				4157,17 MVA	6,96 kA	93,60	18,29 kA				
I.	Line(14)	15				4071,14 MVA	6,81 kA	92,42	17,91 kA				
!	Line(27)	34				3871,34 MVA	6,48 kA	92,97	17,03 kA				
1													
15		345,00	0,00	0,00	1,10	11979,63 MVA	20,05 kA	-87,27	53,04 kA	20,01	11955,47	20,05	20,76
1	Line(14)	14				4199,36 MVA	7,03 kA	93,31	18,59 kA				
!	Line(15)	18				1660,21 MVA	2,78 kA	92,57	7,35 kA				
1	Line(17)	16				6120,40 MVA	10,24 kA	92,37	27,10 kA				

P.2.3. Trofazni kratki spoj s umanjenim impendancijama vodova pri 100%-tnom opterećenju

18	Line(15) Line(16) Line(18)	345,00 15 19 17	0,00	0,00	1,10	10195,26 MVA 4332,00 MVA 2114,95 MVA 3748,32 MVA	17,06 kA 7,25 kA 3,54 kA 6,27 kA	-87,10 92,97 92,77 92,90	44,94 kA 19,10 kA 9,32 kA 16,52 kA	17,06 10195,26	17,06	17,63
16	Line(17) Line(19) Line(20) Line(30)	345,00 15 17 1 31	0,00	0,00	1,10	12267,18 MVA 4242,27 MVA 1278,53 MVA 2841,09 MVA 3906,52 MVA	20,53 kA 7,10 kA 2,14 kA 4,75 kA 6,54 kA	-87,38 93,35 92,95 91,21 92,75	54,44 kA 18,83 kA 5,67 kA 12,61 kA 17,34 kA	20,44 12216,15	20,53	21,29
17	Line(18) Line(19)	345,00 18 16	0,00	0,00	1,10	10005,81 MVA 4562,91 MVA 5443,05 MVA	16,74 kA 7,64 kA 9,11 kA	-87,09 93,25 92,62	44,10 kA 20,11 kA 23,99 kA	16,74 10005,81	16,74	17,30
1	Line(20) 2-Winding Trans	345,00 16 Terminal	0,00 (3	0,00	1,10	8747,47 MVA 4549,56 MVA 4197,95 MVA	14,64 kA 7,61 kA 7,03 kA	-88,38 91,47 91,79	39,76 kA 20,68 kA 19,08 kA	14,00 8367,58	14,64	15,50
37	Line(21) Line(22) Line(24)	345,00 38 27 36	0,00	0,00	1,10	13448,36 MVA 3739,07 MVA 2534,04 MVA 7175,28 MVA	22,51 kA 6,26 kA 4,24 kA 12,01 kA	-86,73 93,37 93,42 93,17	58,74 kA 16,33 kA 11,07 kA 31,34 kA	22,51 13448,36	22,51	23,17
27	Line(22) Line(23)	345,00 37 26	0,00	0,00	1,10	9441,70 MVA 5558,94 MVA 3883,86 MVA	15,80 kA 9,30 kA 6,50 kA	-86,08 93,19 94,97	40,65 kA 23,94 kA 16,72 kA	15,80 9441,70	15,80	16,19
36	Line(24) Line(25) Line(37) Line(39) Line(40)	345,00 37 35 39 24 21	0,00	0,00	1,10	15482,58 MVA 4529,73 MVA 2894,64 MVA 3876,98 MVA 1691,47 MVA 2490,54 MVA	25,91 kA 7,58 kA 4,84 kA 6,49 kA 2,83 kA 4,17 kA	-87,04 93,47 93,41 92,99 92,14 92,03	68,13 kA 19,93 kA 12,74 kA 17,06 kA 7,44 kA 10,96 kA	25,91 15482,58	25,91	26,75
35	Line(25) Line(26)	345,00 36 34	0,00	0,00	1,10	11749,70 MVA 7821,96 MVA 3927,83 MVA	19,66 kA 13,09 kA 6,57 kA	-86,45 93,71 93,23	50,99 kA 33,94 kA 17,05 kA	19,66 11749,70	19,66	20,20
34	Line(26) Line(27) Line(34)	345,00 35 14 33	0,00	0,00	1,10	11866,57 MVA 3864,72 MVA 4124,47 MVA 3878,17 MVA	19,86 kA 6,47 kA 6,90 kA 6,49 kA	-86,94 93,99 92,81 92,41	52,11 kA 16,97 kA 18,11 kA 17,03 kA	19,86 11866,57	19,86	20,48
32	Line(29) Line(33)	345,00 31 33	0,00	0,00	1,10	5553,02 MVA 2788,09 MVA 2764,93 MVA	9,29 kA 4,67 kA 4,63 kA	-87,56 92,42 92,46	24,75 kA 12,42 kA 12,32 kA	9,29 5553,02	9,29	9,66
31	Line(29) Line(30) Line(31)	345,00 32 16 20	0,00	0,00	1,10	11391,94 MVA 404,80 MVA 5535,11 MVA 5452,62 MVA	19,06 kA 0,68 kA 9,26 kA 9,12 kA	-87,31 93,65 93,22 92,09	50,47 kA 1,79 kA 24,52 kA 24,16 kA	19,01 11358,01	19,06	19,75
33	Line(32) Line(33) Line(34)	345,00 20 32 34	0,00	0,00	1,10	11181,57 MVA 5836,94 MVA 443,90 MVA 4903,05 MVA	18,71 kA 9,77 kA 0,74 kA 8,21 kA	-87,22 91,68 93,07 94,07	49,44 kA 25,81 kA 1,96 kA 21,68 kA	18,66 11150,51	18,71	19,36
20	Line(31) Line(32) Line(28)	345,00 31 33 3	0,00	0,00	1,10	11622,39 MVA 4529,73 MVA 4055,15 MVA 3038,87 MVA	19,45 kA 7,58 kA 6,79 kA 5,09 kA	-87,35 92,76 93,55 91,30	51,54 kA 20,09 kA 17,98 kA 13,48 kA	19,31 11540,19	19,45	20,16
3	Line(28) 2-Winding Trans	345,00 20 Terminal	0,00 (4	0,00	1,10	9021,87 MVA 4823,92 MVA 4197,95 MVA	15,10 kA 8,07 kA 7,03 kA	-88,23 91,76 91,79	40,85 kA 21,84 kA 19,01 kA	14,46 8641,95	15,10	15,91
4	Line(35) 2-Winding Trans	345,00 30 Terminal	0,00 (5	0,00	1,10	8108,89 MVA 3911,39 MVA 4197,95 MVA	13,57 kA 6,55 kA 7,03 kA	-87,63 93,00 91,79	36,19 kA 17,45 kA 18,73 kA	12,93 7728,85	13,57	14,12

30	Line(35) Line(36)	345,00 4 39	0,00	0,00	1,10	8878,70 MVA 3123,99 MVA 5755,03 MVA	14,86 kA 5,23 kA 9,63 kA	-87,28 92,06 93,07	39,30 kA 13,83 kA 25,47 kA	14,70	8781,42	14,86	15,38
39	Line(36) Line(37) Line(38)	345,00 30 36 5	0,00	0,00	1,10	11625,39 MVA 2611,49 MVA 5712,96 MVA 3302,28 MVA	19,45 kA 4,37 kA 9,56 kA 5,53 kA	-87,05 92,20 93,83 92,01	51,18 kA 11,50 kA 25,15 kA 14,54 kA	19,20	11471,62	19,45	20,09
5	Line(38) 2-Winding Trans	345,00 39 Terminal	0,00 (9	0,00	1,10	9609,87 MVA 5412,58 MVA 4197,95 MVA	16,08 kA 9,06 kA 7,03 kA	-87,45 93,15 91,79	42,70 kA 24,05 kA 18,65 kA	15,45	9229,81	16,08	16,69
24	Line(39) Line(45)	345,00 36 23	0,00	0,00	1,10	12025,74 MVA 9628,95 MVA 2396,82 MVA	20,12 kA 16,11 kA 4,01 kA	-87,10 92,97 92,64	52,99 kA 42,43 kA 10,56 kA	20,12	12025,74	20,12	20,79
21	Line(40) Line(41)	345,00 36 22	0,00	0,00	1,10	10939,64 MVA 6532,08 MVA 4407,87 MVA	18,31 kA 10,93 kA 7,38 kA	-87,15 93,20 92,32	48,27 kA 28,82 kA 19,45 kA	18,31	10938,93	18,31	18,93
22	Line(41) Line(42) Line(43)	345,00 21 6 23	0,00	0,00	1,10	11302,84 MVA 4013,10 MVA 3298,32 MVA 3992,38 MVA	18,92 kA 6,72 kA 5,52 kA 6,68 kA	-87,51 93,26 91,41 92,63	50,30 kA 17,86 kA 14,68 kA 17,77 kA	18,70	11171,35	18,92	19,64
6	Line(42) 2-Winding Trans	345,00 22 Terminal	0,00 (7	0,00	1,10	9465,04 MVA 5267,10 MVA 4197,95 MVA	15,84 kA 8,81 kA 7,03 kA	-88,13 91,93 91,79	42,75 kA 23,79 kA 18,96 kA	15,20	9085,10	15,84	16,65
23	Line(43) Line(44) Line(45)	345,00 22 7 24	0,00	0,00	1,10	10661,83 MVA 5062,86 MVA 2763,62 MVA 2836,04 MVA	17,84 kA 8,47 kA 4,62 kA 4,75 kA	-87,45 92,67 91,54 93,31	47,38 kA 22,50 kA 12,28 kA 12,60 kA	17,75	10604,88	17,84	18,51
7	Line(44) 2-Winding Trans	345,00 23 Terminal	0,00 (6	0,00	1,10	8194,61 MVA 3996,67 MVA 4197,95 MVA	13,71 kA 6,69 kA 7,03 kA	-88,11 91,99 91,79	37,00 kA 18,05 kA 18,95 kA	13,08	7814,66	13,71	14,41
Teri	minal 2-Winding Trans Generator 1	19,00 10	0,00	0,00	1,10	10445,94 MVA 3734,53 MVA 6711,62 MVA	317,42 kA 113,48 kA 203,94 kA	-87,41 92,10 -87,14	842,56 kA 301,22 kA 541,35 kA	264,60	8707,83	317,42	329,28
Teri	minal 1 2-Winding Trans Generator 3	19,00 8	0,00	0,00	1,10	9982,07 MVA 3271,29 MVA 6711,62 MVA	303,32 kA 99,40 kA 203,94 kA	-86,62 94,44 -87,14	791,00 kA 259,22 kA 531,84 kA	250,47	8242,60	303,32	312,14
Teri	minal(2) 2-Winding Trans Generator 2	19,00 2	0,00	0,00	1,10	10006,89 MVA 3295,32 MVA 6711,62 MVA	304,08 kA 100,13 kA 203,94 kA	-87,26 92,50 -87,14	803,88 kA 264,72 kA 539,16 kA	251,25	8268,51	304,08	314,75
Teri	minal(3) 2-Winding Trans Generator 5	19,00 1	0,00	0,00	1,10	9929,16 MVA 3218,65 MVA 6711,62 MVA	301,72 kA 97,80 kA 203,94 kA	-87,73 91,04 -87,14	806,59 kA 261,46 kA 545,21 kA	248,92	8191,76	301,72	314,44
Teri	minal(4) 2-Winding Trans Generator 6	19,00 3	0,00	0,00	1,10	10064,39 MVA 3353,69 MVA 6711,62 MVA	305,83 kA 101,91 kA 203,94 kA	-87,68 91,22 -87,14	816,68 kA 272,14 kA 544,62 kA	253,03	8326,87	305,83	318,47
Teri	minal(5) 2-Winding Trans Generator 7	19,00 4	0,00	0,00	1,10	9597,65 MVA 2886,16 MVA 6711,62 MVA	291,64 kA 87,70 kA 203,94 kA	-87,33 92,21 -87,14	772,19 kA 232,21 kA 539,99 kA	238,82	7859,44	291,64	302,12
Teri	minal(6) 2-Winding Trans Generator 10	19,00 7	0,00	0,00	1,10	9642,89 MVA 2931,89 MVA 6711,62 MVA	293,02 kA 89,09 kA 203,94 kA	-87,56 91,46 -87,14	780,19 kA 237,21 kA 543,02 kA	240,21	7905,16	293,02	304,54
Teri 	minal(7) 2-Winding Trans Generator 9	19,00 6	0,00	0,00	1,10	10272,88 MVA 3562,12 MVA 6711,62 MVA	312,16 kA 108,24 kA 203,94 kA	-87,68 91,31 -87,14	833,42 kA 288,99 kA 544,50 kA	259,36	8535,33	312,16	325,02
Teri	minal(8) 2-Winding Trans Generator 4	19,00 9	0,00	0,00	1,10	8978,23 MVA 2266,79 MVA 6711,62 MVA	272,82 kA 68,88 kA 203,94 kA	-86,92 93,71 -87,14	715,57 kA 180,67 kA 534,92 kA	219,98	7239,30	272 , 82	281,37
Teri	minal(9) 2-Winding Trans Generator 8	19,00 5	0,00	0,00	1,10	10340,23 MVA 3628,81 MVA 6711,62 MVA	314,21 kA 110,27 kA 203,94 kA	-87,40 92,11 -87,14	833,34 kA 292,45 kA 540,90 kA	261,39	8602,11	314,21	325,80