Estimacija paramatara nadomijesne sheme transformatora programom za simulacije elektromagnetskih polja

Bilandžija, Domagoj

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:885650

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-06

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA OSIJEK

Diplomski studij

ESTIMACIJA PARAMETARA NADOMJESNE SHEME TRANSFORMATORA PROGRAMOM ZA SIMULACIJE ELEKTROMAGNETSKIH POLJA

Diplomski rad

Domagoj Bilandžija

Osijek, 2017.

1. UVOD	1
1.1. Zadatak diplomskog rada	1
2. TRANSFORMATORI	2
2.1. Osnovne pretvorbe energije i fizikalni zakoni primijenjeni u transformatoru	2
2.1.1. Ampereov kružni zakon ili zakon protjecanja	3
2.1.2. Faraday – Lenzov zakon ili zakon elektromagnetske indukcije	5
2.1.2.1. Samoindukcija	6
2.1.2.2. Međuindukcija	8
2.1.3. Zakoni magnetskih krugova	11
2.2. Izvedba i podjela transformatora	18
2.3. Dobivanje nadomjesne sheme transformatora	24
2.3.1. Savršeni transformator	24
2.3.2. Idealni transformator	
2.3.3. Nadomjesna shema transformatora	35
3. TEORIJA ELEKTROMAGNETSKIH POLJA	41
3.1. Maxwellove jednadžbe	41
3.2. Metoda konačnih elemenata	44
4. SIMULACIJE U RAČUNALNOM PROGRAMU ANSYS MAXWELL	46
4.1. O računalnom programu Ansys Maxwell	46
4.2 Izrada računalnog modela u Ansys Maxwell-u	47
5. REZULTATI SIMULACIJE U RAČUNALNOM PROGRAMU ANSYS	94
5.1. Rezultati simulacije za Incremental tip rješavanja matrice induktiviteta	94
5.2. Rezultati simulacije za Apparent tip rješavanja matrice induktiviteta	109
ZAKLJUČAK	111
LITERATURA	112
SAŽETAK	114
ŽIVOTOPIS	115
PRILOZI	116

1. UVOD

U ovom se diplomskom radu mjerenjima na stvarnom transformatoru i simulacijom modela tog stvarnog transformatora u programskom paketu ANSYS MAXWELL određuju parametri nadomjesne sheme transformatora. Diplomski se rad bavi niskonaponskim transformatorom *Elektrosklop TPTO 200 VA*, preciznije, njegovim modeliranjem i simuliranjem u programskom paketu Ansys Maxwell. Glavni je cilj diplomskog rada, pomoću Ansys Maxwella, crtanje geometrije transformatora, postavljanje uzbude transformatora i dobivanje rezultata simulacije koji se podudaraju s teorijskom podlogom. Potrebno je obaviti simulaciju tranzijentne pojave prilikom uklopa transformatora u praznom hodu. U programskom je paketu Ansys Maxwell, nakon simulacije uklopa transformatora u praznom hodu, potrebno prikazati vremensku promjenu samoinduktiviteta i međuinduktiviteta namota transformatora te gubitke u jezgri transformatora. Prvi se dio rada bavi fizikalnim zakonima na kojima se temelji rad transformatora, zatim podjelom i izvedbama transformatora te kreiranjem nadomjesne sheme transformatora. Drugi dio rada je nadopuna prvog dijela rada jer su Maxwellove jednadžbe temelj elektromagnetizma. Osim toga, u drugom je dijelu rada opisana osnovna ideja metode konačnih elemenata koju programski paket Ansys Maxwell primjenjuje prilikom simuliranja računalnog modela. U trećem je dijelu rada prikazan postupak crtanja geometrije modela transformatora, postavljanje izolacije, mreženja, uzbude i rubnih uvjeta. Nakon toga, u petom se dijelu rada nalaze rezultati simulacije, a na kraju su rada prilozi.

1.1. Zadatak diplomskog rada

U diplomskom radu je potrebno za jedan primjer trofaznog transformatora manje snage napraviti simulacijski model u programskom paketu *ANSYS MAXWELL*. Prikazati postupak crtanja geometrije transformatora, postavljanja rubnih uvjeta i izvora polja. Obaviti simulaciju prijelaznog (tranzijentnog) stanja uklopa transformatora u praznom hodu. Također, prikazati iznose induktiviteta i međuinduktiviteta namota te njihove promjene tijekom prijelaznog stanja. Prikazati promjenu gubitaka u jezgri transformatora tijekom prijelaznog stanja.

2. TRANSFORMATORI

2.1. Osnovne pretvorbe energije i fizikalni zakoni primijenjeni u transformatoru

Aparat ili uređaj čini skup dijelova povezanih u jednu logičnu cjelinu s ciljem ostvarenja željene funkcije. Strojevi služe za prijenos sile, promjenu smjera djelovanja sile i za ubrzavanje procesa rada. Osim toga, stroj je svaka mehanička sprava koja pomoću pokretnih dijelova prenosi energiju ili pretvara energiju iz jednog oblika u drugi, na kraju najčešće u formu mehaničke energije. Prema tome, transformatori (riječ transformacija potječe od latinske riječi *transformatio* – transformacija, tj. mijenjanje oblika) nisu strojevi nego su to uređaji koji transformiraju odnosno preoblikuju izmjeničnu električnu energiju posredstvom magnetske energije. To su statički uređaji čija je svrha da dovedenu izmjeničnu električnu energiju pretvore u magnetsku energiju, a onda tu magnetsku energiju ponovo pretvore u električnu energiju. Slika 2.1. prikazuje temeljne pretvorbe energije u transformatoru.

Slika 2.1. Pretvorbe energije u transformatoru

Na slici 2.1. je prikazan koncept transformatora kao blok kojemu se dovodi električna energija, koji sadrži magnetsku energiju i koji dalje predaje električnu energiju. Dakle, slika 2.1. idejno prikazuje samo transformaciju energije koja se ostvaruje korištenjem transformatora. Smisao transformatora nije samo puko pretvaranje električne energije nekih parametra u magnetsku energiju da bi se na kraju dobila električna energija neodređenih parametara. Termin parametri električne energije odnosi se na električne veličine koje karakteriziraju električnu energiju, a to su frekvencija f [Hz], napon U [V] i struja I [A]. Transformatorom se ostvaruje željena promjena iznosa napona i struje dok se iznos frekvencije ne mijenja.

Budući da su transformatori uređaji koji se sastoje od strujnih i magnetskih krugova, njihovo se djelovanje opisuje električnim i magnetskim fizikalnim zakonima. Da bi se usvojilo načelo rada transformatora potrebno je poznavati Ampereov zakon, fizikalni zakon elektromagnetske indukcije odnosno Faraday – Lenzov zakon, zakon elektromagnetske samoindukcije te fizikalne zakone strujnih i magnetskih krugova.

2.1.1. Ampereov kružni zakon ili zakon protjecanja

Ampereov zakon povezuje električne i magnetske fizikalne veličine i ukazuje na to da je izvor magnetskog polja električna struja, preciznije električni naboj u gibanju. Matematički zapis Ampereovog kružnog zakona glasi, prema [1]:

$$\oint_{l} \vec{H} d\vec{l} = \sum_{k=1}^{n} I_{k} = \Theta, \qquad (2-1)$$

gdje je \vec{H} [A/m] vektor jakosti magnetskog polja, $d\vec{l}$ [m] vektor infinitezimalne duljine krivulje l, I [A] je intenzitet istosmjerne struje, a Θ [A] je strujno protjecanje ili magnetska uzbuda. Prema [2] i u skladu s jednadžbom (2-1), Ampereov kružni zakon iskazuje da je krivuljni integral vektora jakosti magnetskog polja \vec{H} po zatvorenoj krivulji l jednak algebarskom zbroju n struja koje obuhvaća zatvorena krivulja l odnosno da je krivuljni integral vektora jakosti magnetskog polja \vec{H} po zatvorenoj krivulji l jednak strujnom protjecanju Θ . Prema [3], općenito se krivuljni integral vektora po zatvorenoj krivulji zove cirkulacija vektora. Stoga se zakon protjecanja naziva i Ampereov zakon o cirkulaciji vektora magnetskog polja. Zakon protjecanja nije ograničen na zatvorene krivulje u obliku kružnice, nego zatvorene krivulje mogu biti postavljene proizvoljno u prostoru i mogu biti proizvoljnog nepravilnog oblika. Proizvoljno se odabrane zatvorene krivulje koje obuhvaćaju električne struje nazivaju Ampereove petlje. Osim toga, proizvoljan je i oblik, zatvorenom krivuljom obuhvaćenih, strujnih vodiča kojima teku električne struje. Struja, obuhvaćena zatvorenom krivuljom l, koja ima referentni smjer vezan sa smjerom obilaska zatvorene krivulje l po pravilu desnog vijka ima pozitivan predznak, a u suprotnom slučaju ima negativan predznak. Prema [2], primjena Ampereovog zakona zahtijeva ispunjenje dva preduvjeta. Prvi, da je vektor jakosti magnetskog polja \vec{H} u svakoj točki na zatvorenoj krivulji ili tangencijalan ili okomit u odnosu na tu zatvorenu krivulju. Drugi je preduvjet da amplituda vektora jakosti magnetskog polja \vec{H} mora biti jednaka u svim točkama zatvorene krivulje gdje je \vec{H} tangencijalan na tu zatvorenu krivulju. Slika 2.2. služi za opis Ampereovog zakona.

Slika 2.2. Zatvorena krivulja l koja obuhvaća električne struje

Na slici 2.2. su prikazane električne struje *I* koje su obuhvaćene zatvorenom krivuljom *l*. Na temelju slike 2.2. vrijedi, prema jednadžbi (2-1):

$$\oint_{l} \vec{H} d\vec{l} = \oint_{l} H dl = \sum_{k=1}^{n} I_{k} = (-I_{1} + I_{2} + I_{3} - I_{4}).$$

Iz slike 1.1 jasno je da su u označenoj točki na krivulji l vektor jakosti magnetskog polja \vec{H} i vektor infinitezimalne duljine krivulje $d\vec{l}$ kolinearni pa skalarni produkt vektora, $\vec{H}d\vec{l}$, postaje običan produkt Hdl. Na slici 1.1 postoji električna struja I_5 koja ne ulazi u proračun jer nije obuhvaćena zatvorenom krivuljom l. Dakle, jedino se zbrajaju ili oduzimaju struje koje su obuhvaćene zatvorenom krivuljom l. Ukoliko nema električnih struja koje teku kroz površinu određenu zatvorenom krivuljom tada je cirkulacija vektora jakosti magnetskog polja \vec{H} jednaka nuli. Moguće je da zbroj svih struja koje su obuhvaćene zatvorenom krivuljom tada je cirkulacija vektora jakosti magnetskog polja \vec{H} jednaka nuli no takav slučaj ne podrazumijeva da je jakost magnetskog polja u svakoj točki zatvorene krivulje

jednaka nuli. Kada bi krivulja l sa slike 2.2. bila kružnica ili nekog drugačijeg oblika koji obuhvaća iste struje (I_1, I_2, I_3, I_4) zbroj struja bi bio isti. Stoga, oblik krivulje l ne utječe na konačan rezultat.

Zakon protjecanja pogodan je za računanje jakosti magnetskog polja u slučajevima gdje je zatvorena krivulja l, iz jednadžbe (2-1), pravilnog ili simetričnog oblika. Zakonitost se primjenjuje na magnetskim krugovima, stoga se primjenjuje i na transformatorima gdje se pomoću promjenjive magnetske uzbude Θ odnosno električne struje I stvara potrebni promjenjivi magnetski tok Φ [Wb] potreban za transformaciju energije. Promjenjivi je magnetski tok Φ temelj sljedećeg fizikalnog zakona.

2.1.2. Faraday – Lenzov zakon ili zakon elektromagnetske indukcije

Prema [3], M. Faraday je uočio da promjenjivi magnetski tok u zatvorenoj konturi inducira elektromotornu silu u toj zatvorenoj konturi. Pošto je magnetski tok proporcionalan s magnetskom indukcijom B [T] i površinom S [m²] kroz koju se promatra magnetski tok, promjenjivi se magnetski tok može ostvariti na više načina vremenskom promjenom magnetske indukcije ili promatrane površine. Prema tome, ovisno o načinu na koji se postiže promjenjivi magnetski tok, postoji inducirana elektromotorna sila gibanja te inducirana elektromotorna sila transformacije. Kako se rad bavi transformatorima, ovdje se proučava induciranje elektromotorne sile transformacije primjenom promjenjivog magnetskog toka kroz nepokretnu konturu. Spoznavši istu zakonitost, da promjenjivi magnetski tok kroz zatvorenu konturu inducira elektromotornu silu u toj zatvorenoj konturi, Lenz je definirao i smjer induciranog napona, a time i smjer inducirane struje u zatvorenoj konturi. Stoga se zakon naziva Faraday – Lenzov zakon i njegov matematički oblik glasi:

$$e = -\frac{d\varphi(t)}{dt}.$$
(2-2)

Jednadžba (2-2) iskazuje da je inducirana elektromotorna sila transformacije, e [V], u nekoj zatvorenoj konturi jednaka negativnoj derivaciji magnetskog toka $\varphi(t)$ po vremenu kroz tu istu

zatvorenu konturu. Dakle, iznos induciranog napona u zatvorenoj konturi ovisi o brzini promjene magnetskog toka kroz zatvorenu konturu. Predznak minus u jednadžbi (2-2) ukazuje na smjer induciranog napona i u skladu je s Lenzovim zakonom. Ukoliko je kontura složena i sastavljena od *N* zavoja kroz koje prolazi isti magnetski tok, tada vrijedi:

$$e = -N \frac{d\varphi(t)}{dt} = -\frac{d\Psi(t)}{dt},$$
(2-3)

gdje je, u jednadžbi (2-3), $\Psi(t)$ [Wb] ulančani magnetski tok. Dakle, inducirana elektromotorna sila transformacije u složenoj zatvorenoj konturi s N zavoja jednaka je brzini promjene ulančanog toka kroz tu istu konturu.

Suština Lenzova zakona jest polaritet inducirane struje koja je posljedica induciranog napona u zatvorenoj konturi. Naime, inducirana je struja u zatvorenoj konturi uvijek takvog smjera da stvara magnetski tok koji se protivi promjenama izvornog magnetskog toka koji je inducira. Iz Ampereovog je zakona poznato da električna struja stvara u svojoj okolici magnetsko polje te se tako struja inducirana u zatvorenoj konturi kroz koju prolazi promjenjivi magnetski tok opire uzroku svoga nastanka, a to je promjenjivi magnetski tok. Lenzov zakon predstavlja zakon tromosti u području elektromagnetizma.

2.1.2.1. Samoindukcija

Samoindukcija je fizikalna pojava da se u električki vodljivoj konturi kojom teče promjenjiva struja inducira elektromotorna sila zbog promjene magnetskog toka, uslijed promjenjive struje, kroz tu električki vodljivu konturu. Prema [5], vlastiti induktivitet ili kraće induktivitet L [H] je koeficijent razmjernosti induciranog napona samoindukcije e_{ind} i derivacije jakosti struje di/dt u istom vodiču:

$$e_{ind} = -L\frac{di}{dt}.$$
(2-4)

Negativan predznak u jednadžbi (2-4) u skladu je s Lenzovim zakonom. Induktivitet može biti linearan ili nelinearan, stoga njegova vrijednost ne mora biti konstantna. Koeficijent je samoindukcije *L*, prema [3], za linearni magnetski krug:

$$L = \frac{N^2}{R_m}.$$
(2-5)

Jednadžba (2-5) iskazuje da je koeficijent samoindukcije *L* nekog svitka jednak omjeru kvadrata broja zavoja N^2 i reluktanciji ili magnetskom otporu R_m [A/Vs]. Jednadžbe (2-4) i (2-5) vrijede za linearne magnetske krugove. Prema jednadžbi (2-5) koeficijent samoindukcije za linearne magnetske krugove ovisi samo o dimenzijama i magnetskim svojstvima materijala o kojima zapravo ovisi reluktancija. Za nelinearni induktivitet vrijedi:

$$e_{ind} = -\frac{d}{dt}(Li). \tag{2-6}$$

Jednadžba (2-6) u obzir uzima nelinearnost induktiviteta koja je karakteristična za magnetske krugove sastavljene od feromagnetskih materijala. Tada je inducirani napon samoindukcije jednak negativnoj derivaciji umnoška samoinduktiviteta i struje.

Za fizikalni opis samoindukcije neka posluži slika 2.3.

Slika 2.3. Pojava samoindukcije u električnom krugu

Na slici 2.3. prikazan je električni krug koji se sastoji od linearnog induktiviteta i električnog izvora istosmjernog napona. Odabran je trenutak u kojem se struja električnog kruga na slici 2.3. povećava, što je označeno s i + di. Budući da električna struja stvara magnetsko polje, pozitivnim porastom struje dolazi do pozitivnog porasta magnetskog polja, a time i magnetskog toka, $\Phi + d\Phi$. Promjenom magnetskog polja dolazi do induciranja napona samoindukcije e_{ind} s označenim smjerom. Inducirana struja i_{ind} takvog je smjera da, prema pravilu desnog vijka, generira magnetsko polje Φ' koje nastoji poništiti pozitivnu promjenu izvornog magnetskog polja. Kada bi odabrali drugi trenutak u kojemu struja u električnom krugu opada, i - di, a time i magnetsko polje, $\Phi - d\Phi$, tada bi inducirani napon samoindukcije e_{ind} bio suprotnog smjera u odnosu na smjer induciranog napona samoindukcije na slici 2.3. U tom bi slučaju inducirana struja i_{ind} također bila suprotnog smjera u odnosu na smjer struje i_{ind} sa slike 2.3. i nastojala bi zadržati izvorni magnetski tok konstantnim prema Lenzovom zakonu.

2.1.2.2. Međuindukcija

Za međuindukciju su potrebne najmanje dvije vodljive konture koje mogu, ali ne moraju, biti galvanski povezane. Prema [6], međuindukcija ili međusobna indukcija dvaju svitaka je pojava da promjena jakosti električne struje, a time i magnetskog toka, u jednom svitku inducira elektromotornu silu u nekom drugom svitku. Prema tome, dva svitka su nekako povezana jer promjena jakosti struje u jednom svitku inducira elektromotornu silu u drugom svitku. Takvi svici nazivaju se induktivno vezani svici i jakost njihove povezanosti iskazuje se faktorom induktivne veze k koji je u praktičnim slučajevima uvijek manji od jedan, a može biti i jednak nuli $(0 \le k \le 1)$. Kada je faktor induktivne veze jednak nuli tada svici nisu induktivno vezani. Induktivno su vezani zavoji svitka povezani zajedničkim magnetskim tokom koji se naziva magnetskim tokom međuindukcije dok se magnetski tok koji međusobno ne povezuje, ne ulančava zavoje svitaka naziva rasipnim magnetskim tokom. U idealnom slučaju, gdje faktor induktivne veze ima vrijednost jedan, sav magnetski tok koji proizvodi jedan svitak ulančava sve zavoje drugog svitka i nema rasipnih magnetskih tokova. Svitak kojem je primarni cilj induciranje elektromotorne sile naziva se sekundarnim svitkom. Koeficijent se razmjernosti inducirane elektromotorne sile sekundara i brzine promjene jakosti struje primara koja inducira tu elektromotornu silu naziva međuinduktivitetom te se označava slovom *M* [H]:

$$e_2 = -M \frac{di_1}{dt},\tag{2-7}$$

gdje je e_2 trenutna vrijednost inducirane elektromotorne sile na sekundaru koja je posljedica promjene iznosa primarne struje i_1 na primaru. Iznos inducirane elektromotorne sile razmjeran je međuinduktivitetu M i derivaciji primarne struje i_1 po vremenu. Iznos međuinduktiviteta općenito ovisi o broju namotaja svitaka koji su induktivno vezani te o njihovom međusobnom smještaju u prostoru. Osim toga, međuinduktivitet ovisi i o materijalu u kojem se nalaze svici. Negativan predznak na desnoj strani jednadžbe (2-7) u skladu je s Lenzovim zakonom. Jednadžba (2-7) vrijedi za konstantan iznos međuinduktiviteta što nije slučaj kod magnetskih krugova s feromagnetičnim materijalima. Za dva induktivno vezana svitka vrijedi, prema [6]:

$$M = \frac{N_1 N_2}{R_m}.$$
(2-8)

Prema jednadžbi (2-8) međuinduktivitet između dva svitka razmjeran je umnošku broja zavoja primara N_1 i sekundara N_2 te je obrnuto razmjeran magnetskom otporu R_m . Ukoliko se dva svitka nalaze u materijalu koji ima konstantu vrijednost reluktancije tada je i međuinduktivitet konstantan.

Slika 2.4. Induktivno vezani svici

Na slici 2.4. su prikazana dva induktivno vezana svitka, namotana oko cilindra bez magnetskog otpora, kod kojih je magnetska veza savršena jer nema rasipnih tokova pa sav magnetski tok koji proizvodi primarna struja (i_1) prolazi i kroz sekundar u kojemu se inducira elektromotorna sila čija je posljedica struja (i_2) . Lijevi svitak na slici 2.4. je primarni jer njegova je osnovna funkcija proizvodnja magnetskog toka, a desni svitak je sekundarni svitak kojemu je osnovni cilj induciranje elektromotorne sile. Pretpostavljeno je da u promatranom trenutku primarna struja ima pozitivnu promjenu pa je u skladu s tim određen smjer sekundarne struje koji je takav da se protivi promjeni izvornog magnetskog toka. Stoga su suprotni smjerovi magnetskih tokova struje primara i struje sekundara koji su označeni strelicama u cilindru na slici 2.4. Pošto smjerovi magnetskih tokova nisu podudarni, tj. međusobno se suprotstavljaju, međuinduktivitet je negativan (M < 0). Kada bi promatrali neki drugi trenutak u kojem bi se struja primara smanjivala, tada bi struja sekundara imala suprotan smjer od onoga na slici 2.4. (prema Lenzovu zakonu) i magnetski tokovi primara i sekundara bi se podudarali, tj. potpomagali bi se međusobno. Tada bi međuinduktivitet bio pozitivan. Kod međuinduktivnih je svitaka važno napomenuti da svici kojima nije primarni cilj generiranje magnetskog toka također generiraju magnetske tokove koji ulančavaju ostale svitke i time utječu na njihovu međuinduktivnu povezanost. Uz međuindukciju, u realnim slučajevima, uvijek dolazi i do samoindukcije koja je zanemarena u ovom potpoglavlju o međuindukciji. Tako na slici 2.4., uz pretpostavku da postoje rasipni tokovi oba svitka, postoji samoindukcija i na primaru i na sekundaru.

2.1.3. Zakoni magnetskih krugova

Prema [3], strujni je krug cjelokupni prostor u kojem se zatvaraju strujnice, a to su silnice električnog polja. Analogno tome, magnetski krug je cjelokupni prostor u kome se zatvaraju silnice magnetskog polja. Silnice su zamišljene, usmjerene ili neusmjerene linije koje predstavljaju svojstva električnog i magnetskog polja. Postavljene su u smjeru djelovanja sile te njihova gustoća ukazuje na intenzitet polja u prostoru. Dakle, veća gustoća silnica označava veću jakost polja i obrnuto. Ipak, postoji razlika između silnica električnog polja i silnica magnetskog polja. Silnice su magnetskog polja neprekinute zatvorene linije koje nemaju svoj početak niti kraj dok silnice električnog polja imaju, prema dogovoru, definiran svoj početak u pozitivnom električnom naboju i svoj kraj u negativnom električnom naboju.

Magnetski se krugovi uglavnom sastoje od materijala koji imaju visoku magnetsku permeabilnost μ [H/m]. Prema [7], veza između jakosti magnetskog polja *H* i magnetske indukcije *B* upravo je magnetska permeabilnost materijala u kojem postoji magnetsko polje. Linearan je odnos veličina *H* i *B* uobičajen, stoga vrijedi:

$$\mu = \frac{B}{H}.$$
(2-9)

Jednadžba (2-9) iskazuje linearnu ovisnost magnetske indukcije i jakosti magnetskog polja. Za osnovni opis magnetskih krugova magnetska permeabilnost je konstanta iako u stvarnosti to nije jer se primjetno mijenja s promjenom magnetske indukcije. Nadalje, magnetska je permeabilnost

nekog materijala fizikalna veličina koja opisuje propustljivost ili propusnost magnetskog polja kroz taj materijal i analogna je električnoj vodljivosti u električnim krugovima. Dakle, materijal s većim iznosom magnetske permeabilnosti magnetski je propusniji u odnosu na materijal s manjom magnetskom permeabilnošću. Magnetska permeabilnost vakuuma μ_0 je konstanta, $\mu_0 = 4\pi \cdot 10^{-7}$, i pomoću nje se iskazuje relativna magnetska permeabilnost μ_r koja iskazuje koliko je puta magnetska permeabilnost nekog materijala veća ili manja u odnosu na magnetsku permeabilnost vakuuma. Stoga je apsolutna magnetska permeabilnost nekog materijala μ jednaka:

$$\mu = \mu_r \mu_0. \tag{2-10}$$

Prema [7], tipične se vrijednosti relativne magnetske permeabilnosti materijala za izradu jezgre transformatora i električnih rotacijskih strojeva kreću od 2000 do 80000. Uslijed korištenja materijala s visokom magnetskom permeabilnošću dolazi do zatvaranja magnetskih silnica prema obliku magnetske jezgre. Dakle, magnetska jezgra u magnetskom krugu određuje putanju magnetskih silnica i usmjerava magnetske silnice kako bi se ostvarivale željene pretvorbe energije.

Na slici 2.5. je prikazan magnetski krug s jednim uzbudnim svitkom.

Slika 2.5. Jednostavan magnetski krug

Slikom 2.5. je prikazan jednostavan magnetski krug. Permeabilnost je magnetske jezgre na slici 2.5. značajno veća od permeabilnosti vakuuma $\mu_1 >> \mu_0$ pa se silnice magnetskog polja zatvaraju unutar magnetske jezgre koja je označena sivom bojom. Površina je poprečnog presjeka, S_1 , te magnetske jezgre homogena, a svitak s N zavoja protjecan strujom *i* proizvodi magnetsko polje, odnosno magnetski tok. Dakle, produkt *Ni* je magnetska uzbuda odnosno magnetomotorna sila koja uzbuđuje magnetski krug. Magnetsko je polje, a time i magnetski tok, na slici 2.5. prikazano isprekidanim zatvorenim linijama, silnicama magnetskog polja čija je srednja duljina l_1 . Koristeći pravilo desne ruke, određuje se smjer magnetskog polja u magnetskoj jezgri. Kako je magnetsko polje proizvedeno električnom strujom u svitku, smjer se magnetskog polja određuje tako da se prstima desne ruke obuhvati svitak na način da su savijeni prsti postavljeni u smjeru struje, a ispruženi palac tada pokazuje smjer magnetskog polja. Smjer magnetskog polja na slici 2.5. u skladu je s navedenim pravilom desne ruke. Prema [3], ukupni je magnetski tok Φ koji prolazi kroz poprečni presjek *S* magnetske jezgre sa slike 2.5. jednak:

$$\Phi = \int_{S} d\Phi = \int_{S} \vec{B} \cdot d\vec{S}.$$
 (2-11)

Jednadžba (2-11) iskazuje da je ukupan magnetski tok Φ kroz neku površinu *S*, jednak zbroju elementarnih magnetskih tokova $d\Phi$ koji prolaze kroz tu površinu *S*. Jednadžba (2-11) se može

matematički interpretirati: ukupan je magnetski tok jednak plošnom integralu elementarnih magnetskih tokova po površini *S*, odnosno ukupan je magnetski tok jednak plošnom integralu skalarnog produkta vektora magnetske indukcije \vec{B} i elementarnih površina $d\vec{S}$ po površini *S*. Jednadžba (2-11) vrijedi za magnetski tok nehomogenih magnetskih polja. Pretpostavlja se da je magnetsko polje u magnetskoj jezgri slike 2.5. homogeno, pa jednadžba (2-11) prelazi u jednostavniji oblik:

$$\Phi = \vec{B} \cdot \vec{S} = BS \cos(\alpha). \tag{2-12}$$

Prema jednadžbi (2-12) ukupan je magnetski tok homogenog magnetskog polja jednak skalarnom produktu vektora magnetske indukcije \vec{B} i vektora površine \vec{S} . Iznos skalarnog produkta iz jednadžbe (2-12) ovisi o kosinusu kuta α , a to je kut između vektora \vec{B} i \vec{S} . Proizvoljnu površinu S ograničava neka krivulja kojoj se proizvoljno odabire smjer. Smjer vektora površine podudara se sa smjerom jediničnog vektora normale te površine, a smjer se jediničnog vektora normale određuje prema pravilu desnog vijka s obzirom na proizvoljan smjer obilaska krivulje koja omeđuje površinu S. Najveći se iznos toka dobiva kada je kut α između vektora \vec{B} i \vec{S} jednak nuli. Zato za magnetski krug sa slike 2.5. vrijedi:

$$\Phi_1 = B_1 S_1, \tag{2-13}$$

gdje je Φ_1 magnetski tok kroz magnetsku jezgru, B_1 je magnetska indukcija u magnetskoj jezgri, a S_1 je površina poprečnog presjeka magnetske jezgre. Primjena jednadžbe (2-1) na magnetski krug sa slike 2.5. daje:

$$\Theta = \oint_{l} \vec{H} d\vec{l} = Ni. \tag{2-14}$$

Konstrukcija je magnetske jezgre takva da srednja duljina silnice l_1 magnetskog polja u jezgri sa slike 2.5. približno odgovara duljini svake silnice magnetskog polja. Zbog toga se prethodni izraz može preoblikovati u običan produkt.

$$\Theta = H_1 l_1 = Ni, \tag{2-15}$$

magnetska je uzbuda Θ jednaka produktu srednje vrijednosti jakosti magnetskog polja H_1 i srednje duljine silnice magnetskog polja l_1 . Kombinacijom jednadžbi (2-1) i (2-9) te njihovom primjenom na magnetski krug sa slike 2.5. dobije se:

$$Ni = H_1 l_1 = \frac{B_1}{\mu_1} l_1, \tag{2-16}$$

ako se magnetska indukcija B_1 u magnetskoj jezgri izrazi pomoću magnetskog toka kroz jezgru Φ_1 tada jednadžba (2-16) prelazi u sljedeći oblik:

$$Ni = \frac{\Phi_1}{\mu_1 S_1} l_1.$$
 (2-17)

Jednadžba (2-17) predstavlja Ohmov zakon za magnetski krug sa slike 2.5. i vrijedi samo za linearne magnetske krugove kada je permeabilnost magnetske jezgre konstantna. Faktor s desne strane jednadžbe (2-17) koji množi magnetski tok je reluktancija ili magnetski otpor. Dakle, općenito za linearne magnetske krugove vrijedi:

$$Ni = \Phi R_m. \tag{2-18}$$

Jednadžba (2-18) analogna je Ohmovom zakonu za strujne krugove što je prikazano slikom 2.6.

Slika 2.6. Analogija između strujnih krugova a) i magnetskih krugova b)

Slika 2.6. a) shematski prikazuje strujni krug gdje električna struja *I* kao posljedica napona *V* teče kroz zatvoreni strujni krug čiji je ukupan električni otpor R_{el} dok je na slici 2.6. b) shematski prikazan magnetski krug ukupne reluktancije R_m kojim teče magnetski tok Φ proizveden magnetskom uzbudom Θ . Slika 2.6. b) je ekvivalentna shema magnetskog kruga sa slike 2.5. Magnetski krugovi mogu biti jednostavni i složeni te za njih vrijede ista pravila bez obzira na njihovu kompleksnost. Složeni se magnetski krugovi granaju i sastoje se od više magnetskih uzbuda spojenih serijski ili paralelno, a moguća je i njihova međusobna serijska i paralelna kombinacija. Postoje i magnetski krugovi sa zračnim rasporom. Tada se zračni raspor smatra reluktancijom koja ima značajno veći iznos u odnosu na reluktanciju feromagnetskog materijala.

U tablici 2.1 prikazana je analogija Kirchhoffovih zakona za strujne i magnetske krugove.

Kirchhoffovi zakoni za strujne krugove		Kirchhoffovi zakoni za magnetske krugove	
1. Kirchhoffov zakon za električne krugove	$\sum_{k=1}^{n} I_{k} = 0$	 Kirchhoffov zakon za magnetske krugove 	$\sum_{k=1}^{n} \Phi_{k} = 0$
2. Kirchhoffov zakon za električne krugove	$\sum_{k=1}^n R_{el_k} i_k = \sum_{k=1}^n e_k$	2. Kirchhoffov zakon za magnetske krugove	$\sum_{k=1}^{n} R_{m_k} \Phi_k = \sum_{k=1}^{n} \Theta_k$
			$\sum_{k=1}^{n} H_k l_k = \sum_{k=1}^{n} \Theta_k$

Tab. 2.1. Sličnost Kirchhoffovih zakona električnih i magnetskih krugova

Kirchhoffovi su zakoni za električne krugove u tablici 2.1. prikazani samo radi usporedbe s Kirchhoffovim zakonima za magnetske krugove i neće se dalje analizirati. Složeni magnetski krugovi se sastoje od grana i čvorova. Granom se naziva dio magnetskog kruga kojemu pripada isti magnetski tok uz to da su svi elementi jedne grane u seriji dok se čvorom se naziva dio magnetskog kruga u kojem se spajaju najmanje tri grane magnetskog kruga. Bilo kakav granama zatvoreni magnetski put čini magnetsku konturu. Prvi Kirchhoffov zakon za magnetske krugove iskazuje da je suma magnetskih tokova u nekom čvoru magnetskog kruga jednaka nuli. Drugi

Kirchhoffov zakon iskazuje da je suma magnetskih padova napona $\sum_{k=1}^{n} R_{m_k} \Phi_k$, tj. $\sum_{k=1}^{n} H_k l_k$ u

granama koje tvore zatvoren magnetsku konturu jednaka sumi magnetskih uzbuda Θ . U magnetskom krugu ne postoje gubici analogni djelatnim gubicima u strujnom krugu. Osim toga ne postoji kratki spoj nit prazni hod u magnetskom krugu. Na kraju se može zaključiti da je magnetska uzbuda Θ analogna elektromotornoj sili *e*, magnetski je tok Φ analogan struji *I* te je reluktancija R_m analogna električnom otporu R_{el} .

2.2. Izvedba i podjela transformatora

Osnovni su dijelovi transformatora, koji omogućuju njegovo djelotvorno funkcioniranje, međusobno i prema jezgri električki izolirane električne zavojnice ili svici induktivno povezani promjenjivim magnetskim tokom posredstvom magnetski vodljive jezgre koja je najčešće feromagnetska. Feromagnetska jezgra transformatora čini zatvoreni magnetski krug i namijenjena je za oblikovanje i usmjeravanje magnetskog polja. Osim toga, mehanička je uloga jezgre da nosi namot. Feromagneticima pripadaju, prema [5]: željezo, nikal, kobalt, gadolinij, terbij, itd., te njihove slitine. Svici se mogu magnetski povezati i nekim drugim medijem, na primjer zrakom, ali se djelotvornije povezuju feromagneticima jer oni imaju značajno veću magnetsku permeabilnost μ u odnosu na ostale medije poput zraka, vode, bakra i aluminija. Tako, prema [5], čisto željezo ima oko 5000 puta veću magnetsku permeabilnost u odnosu na zrak. Iz ekonomskih se razloga jezgre transformatora ne grade od slitina s najvećom mogućom magnetskom permabilnošću već se koriste materijali koji su najisplativiji uz zadovoljavajuću vrijednost magnetske permeabilnosti. Uz te se osnovne dijelove koriste i dodatni dijelovi kao npr. električne stezaljke (priključnice), elementi za mehaničko učvršćenje, konzervator, kotao, hladnjaci te zaštitni uređaji. Na principu elektromagnetske međuindukcije transformatori preoblikuju određeni izmjenični napon u drugi izmjenični napon ili više njih uz nepromijenjen iznos frekvencije.

Naime, transformator se sastoji od najmanje dva međusobno nepomična svitka, namotana na istu magnetsku jezgru te ih se naziva namotima transformatora. Namoti su transformatora koncentrirani namoti jer su gusto namotani oko željezne jezgre na pojedinim mjestima, tj. nisu raspodijeljeni po čitavom volumenu magnetske jezgre. Namoti se transformatora imenuju, ovisno o smjeru energije, primarnim ili ulaznim pomoću kojih energija dolazi do magnetske jezgre te sekundarnim i tercijarnim koji su izlazni i predaju energiju iz transformatora. Postoje dvije osnovne konfiguracije transformatora, a to su stupni (jezgrasti) tip i ogrnuti tip transformatora. Te dvije uobičajene konfiguracije transformatora razlikuju se po smještaju namota namotanih na magnetskoj jezgri. Tako su kod stupnog transformatora namoti smješteni na svakom stupu jezgre dok se kod ogrnutog tipa namoti postavljaju na centralni stupac ili centralne stupce ovisno o tome koliko stupaca sadrži magnetska jezgra. Slikom 2.7. je prikazan stupni i ogrnuti tip transformatora.

Slika 2.7. Shematski prikaz a) stupnog i b) ogrnutog transformatora

Na slici 2.7. a) i b) namoti se nalaze na stupcima magnetskih jezgara, a stupce međusobno povezuje jaram magnetske jezgre. Prostor između jarmova i stupova naziva se prozorom jezgre i namijenjen je za smještaj namota na magnetsku jezgru odnosno stupce. Namoti se transformatora, primarni i sekundarni, postavljaju oko istog stupca kako bi bilo što manje rasipnih magnetskih tokova. Da bi se reducirali rasipni magnetski tokovi, namoti se transformatora podijele tako da priliježu jedan uz drugog motanjem oko istog stupca magnetske jezgre. Pomoću slike 2.7. jednostavno je predočiti si kako bi magnetski tok bio slabije iskorišten ako bi namotaji primara i sekundara bili odvojeni, svaki na svojem stupcu pojedinačno. Namot nižeg napona, donjonaponski namot, obilježen crvenom bojom na slici 2.7., postavljen je bliže jezgri (stupcu) u odnosu na namot višeg napona, gornjonaponski namot, koji je označen plavom bojom na istoj slici. Razlozi su takvom rasporedu donjonaponskog i gornjonaponskog namota oko stupca povezani s ekonomičnošću. Naime, namot nižeg napona je od deblje žice u odnosu na namot višeg napona. Zbog uštede materijala namot s debljom žicom postavlja se bliže jezgri jer se time prave kraći zavoji i manji je opseg zavoja koji čine taj namot, a time se ujedno i troši manje materijala. Osim toga, zbog izolacijskih se razloga donjonaponski namot stavlja prvi do stupca magnetske jezgre. Postavljanjem gornjonaponskog namota do stupca magnetske jezgre potrebna je jača izolacija prema jezgri u odnosu na izolaciju gornjonaponskog namota koji nije prvi do stupca. Prema [1], željezna jezgra poprima različite oblike i različito se izvodi, a većinom se gradi u pravokutnoj formi. Izvodi se iz mnoštva međusobno izoliranih tankih limova visoke magnetske permeabilnosti koji se nazivaju transformatorskim limovima ili lamelama. Razlog tome su vrtložne struje koje bi, u slučaju punog presjeka željezne jezgre, bile puno većeg iznosa te bi time i gubici u željezu bili veći. Naime, vrtložne struje ili Foucaultove struje generiraju se u metalnim vodičima električne struje, što je željezna jezgra transformatora, uslijed djelovanja promjenjivog magnetskog polja. Vrtložne struje teku tako da stvaraju zatvoreni krug oko jedne točke unutar vodiča pa se pomoću međusobno izoliranih transformatorskih limova ograničava njihov intenzitet. Vrtložne struje zagrijavaju željeznu jezgru transformatora uslijed električne otpornosti željezne jezgre, a tako povećavaju radnu temperaturu transformatora te predstavljaju nepoželjan gubitak električne energije. Prema [1], debljina transformatorskih limova je od 0,2 do 0,35 mm, a kod malih transformatora i 0,5 mm. Međusobna električna izolacija transformatorskih limova izvodi se pomoću izolatora debljine $2 - 10 \,\mu\text{m}$ poput sloja laka, oksida, fosfata, tankog papira i slično. Transformatorski se limovi slažu u tzv. pakete koji moraju biti kompaktni, tj. međusobno čvrsto povezani kako bi željezna jezgra transformatora bila što homogenija unatoč tome što je sastavljena od puno istovrsnih dijelova. Osim toga, čvrsto povezivanje transformatorskih limova u kompaktnu cjelinu sprječava brujanje transformatora uslijed vibracija zbog slabe međusobne povezanosti transformatorskih limova. Čvrsto se povezivanje transformatorskih limova u cjelovitu željeznu jezgru transformatora osigurava pomoću steznih elemenata. Koeficijent koji iskazuje kvalitetu povezivanja transformatorskih limova naziva se faktor punjenja i predstavlja omjer presjeka samih limova (bez zračnih raspora) koji čine jezgru i stvarnog presjeka koji je veći jer ga čine limovi sa zračnim rasporima.

Slika 2.8. Postavljanje transformatorskih limova koji čine jezgru transformatora

a) jednofaznog i b) trofaznog

Na slici 2.8. prikazano je smisleno slaganje transformatorskih limova po slojevima koji čine jezgru jednofaznog i trofaznog transformatora. Oni se, jedan na drugog, SLOJ 1 na SLOJ 2, slažu uzastopno i naizmjenično tvoreći što manji zračni raspor između transformatorskih limova kako bi se ostvarila što veća magnetska vodljivost i što manja struja magnetiziranja. Na slici 2.8. a) i b) se jasno vidi da se svaki zračni raspor u prethodnom sloju transformatorskog lima prekriva transformatorskim limom u sljedećem sloju. Potrebno je spomenuti kako se u transformatorima koriste hladno valjani orijentirani limovi. Hladno valjani limovi mogu biti izotropni i anizotropni (orijentirani). Orijentirani hladno valjani limovi imaju relativno različita magnetska svojstva s obzirom na smjer valjanja. Uz to, hladno valjani limovi imaju prednost nad toplo valjanim limovima u pogledu glađe površine koju je lakše izolirati što ujedno i poboljšava faktor punjenja samog paketa limova.

Poprečni presjek jarma i stupca transformatorske magnetske jezgre međusobno se razlikuju po obliku ovisno o snazi transformatora. Prema [1], za manje su transformatore stupci i jarmovi kvadratnog presjeka što odgovara istoj širini svih limova koji čine jezgru. Za transformatore većih snaga koriste se limovi različitih širina kako bi se oblikovali križni i stupnjevani oblici poprečnog presjeka magnetske jezgre. Omjer je poprečnog presjeka stupca transformatorske magnetske jezgre i unutarnjeg presjeka namota koji su najčešće cilindrični, prema [1], faktor punjenja stupa f_{st} . Vrijedi pravilo da se povećanjem snage transformatora povećava broj limova s različitom širinom koji tvore magnetsku jezgru transformatora. Uz to, kružni se presjeci magnetske jezgre zbog neisplativosti ne izrađuju nego je stupnjevani oblik poprečnog presjeka magnetske jezgre karakterističan za transformatore velikih snaga.

Postoje razni aspekti koji svrstavaju transformatore u pojedine kategorije, a jedan od njih je sistematizacija s obzirom na snagu tako da se, prema [1], energetski transformatori dijele na:

- a) male (ispod 50 kVA),
- b) srednje (50 do 1600 kVA) i
- c) velike (iznad 1600 kVA).

Nadalje, energetski su transformatori oni koji se koriste u elektroenergetskom sustavu u prijenosu i distribuciji električne energije. Blok transformatori ili generatorski transformatori se nalaze između električnog generatora i visokonaponske prijenosne mreže povezujući time proizvodnju i prijenos električne energije. Oni omogućuju ekonomičan visokonaponski prijenos električne energije. Mrežni transformatori su energetski transformatori koji napon visokonaponske prijenosne mreže (400 kV, 220 kV i 110 kV) spuštaju na distribucijsku naponsku razinu (35 kV). Prema [1], blok transformatori i mrežni transformatori pripadaju velikim transformatorima. Distribucijski se transformatori koriste u distribuciji električne energije gdje spuštaju naponsku razinu ispod 35 kV. Transformatori na distribucijskoj razini podešavaju naponsku razinu za potrošače električne energije ovisno o nominalnom naponu potrošača električne energije. Osim toga, koriste se mjerni transformatori, autotransformatori, transformatori za galvansko odvajanje, laboratorijski transformatori.

Najmanje dva namota čine transformator pa se prema tome mogu podijeliti na:

- a) dvonamotne i
- b) višenamotne.

S obzirom na broj faza mogu biti:

- a) jednofazni i
- b) višefazni (najčešće trofazni).

Iz perspektive hlađenja transformatora postoje suhi i uljni transformatori. Zrak se koristi kao rashladno sredstvo kod suhih transformatora dok se kod uljnih transformatora koriste različita ulja i umjetne tekućine. Prema [1], strujanje tih rashladnih sredstava može biti prirodno ili prisilno. Suhi se transformatori primjenjuju za napone do 50 kV snage do 10 MVA. Suhi transformatori su nezapaljivi pa se koriste u uvjetima gdje je ta karakteristika nezapaljivosti bitna. Uljni transformatori se redovito koriste za više napone u odnosu na napone suhih transformatora jer su ulja i umjetne tekućine električki čvršći iz aspekta dielektrične čvrstoće i imaju veću specifičnu toplinu u odnosu na zrak. Kod uljnih su transformatora namoti i magnetska jezgra uronjeni u tekućinu koja ispunjava kotao na kojem se nalazi i poklopac kotla s provodnim izolatorima i konzervator.

2.3. Dobivanje nadomjesne sheme transformatora

2.3.1. Savršeni transformator

Polazna točka u građenju nadomjesne sheme transformatora bit će neopterećeni transformator odnosno transformator kojemu su izlazne stezaljke otvorene i nema tereta. Takav transformator nalazi se u stanju praznog hoda. Dvodimenzionalno je prikazan na slici 2.9.

Slika 2.9. Transformator u praznom hodu

Slikom 2.9. shematski je prikazan transformator kojemu je sekundar otvoren, a primar je priključen na izmjenični napon u_1 . U realnosti su namoti transformatora raspoređeni na istom stupcu prema slici 2.7., ali su ovdje na slici 2.9. radi jednostavnosti namoti transformatora, primar i sekundar, na odvojenim stupcima magnetske jezgre. Struja i_{ϕ} koja teče primarom na slici 2.9. naziva se strujom uzbude ili strujom praznog hoda i odgovorna je za stvaranje izmjeničnog magnetskog toka u jezgri. Prema [7], opravdano je zanemarenje rasipnih magnetskih tokova transformatora sa slike 2.7. jer su količinom beznačajni u odnosu na magnetski tok međuindukcije koji teče magnetskom jezgrom transformatora i na slici 2.7. predstavljen je isprekidanom crtom u magnetskoj jezgri. Rasipni su magnetski tokovi zanemareni i na transformatoru sa slike 2.9. Prema [7], u izmjeničnim su elektroenergetskim sustavima valni oblici napona i magnetskog toka bliski sinusnom valnom obliku. Stoga, priključkom izmjeničnog sinusnog napona na primarni namot transformatora nastaje promjenjivi magnetski tok u magnetskoj jezgri koji se može opisati jednadžbom (2-19):

$$\varphi(t) = \Phi_m \sin(\omega t). \tag{2-19}$$

Trenutna vrijednost magnetskog toka $\varphi(t)$ nalazi se s lijeve strane jednadžbe (2-19), a u istoj jednadžbi na desnoj strani nalazi se Φ_m koji predstavlja amplitudu magnetskog toka u magnetskoj jezgri. U jednadžbi (2-19) ω [Hz] je kružna frekvencija i vrijedi $\omega = 2\pi f$, uz to da je f frekvencija priključenog napona u_1 . Prema jednadžbi (2-3), napon koji se inducira na svitku jednak je negativnoj derivaciji magnetskog toka u vremenu pomnoženoj s brojem zavoja svitka, N. Dakle, inducirani napon na primaru e_1 jednak je:

$$e_1(t) = -N_1 \frac{d\varphi(t)}{dt} = -N_1 \frac{d\Phi_m \sin(\omega t)}{dt} = -N_1 \Phi_m \omega \cos(\omega t).$$
(2-20)

Jednadžbom (2-20) opisana je trenutna vrijednost i valni oblik induciranog napona, na primarnom namotu, koji je monoharmonijska funkcija pa se može izvesti:

$$E_{maks1} = N_1 \Phi_m \omega, \qquad (2-21)$$

$$E_{ef,1} = \frac{N_1 \Phi_m \omega}{\sqrt{2}}.$$
(2-22)

U jednadžbi (2-21) $E_{maks,1}$ predstavlja amplitudu ili maksimalnu vrijednost induciranog napona primarnog namota e_1 dok je u jednadžbi (2-22) $E_{ef,1}$ efektivna vrijednost induciranog napona primarnog namota e_1 . Iz jednadžbi (2-21) i (2-22) se jasno uočava da je amplituda magnetskog toka razmjerna induciranom naponu te da je obrnuto razmjerna broju zavoja i frekvenciji priključenog napona što je iskazano sljedećom jednadžbom:

$$\Phi_m = \frac{E_{ef,1}\sqrt{2}}{N_1\omega} = \frac{E_{maks,1}}{N_1\omega}.$$
(2-23)

Struja praznog hoda i_{Φ} je određena magnetskim karakteristikama materijala magnetske jezgre tako da stvara magnetsku uzbudu $(i_{\Phi}N_1)$ potrebnu za stvaranje magnetskog toka iz jednadžbe (2-23). Zbog nelinearnosti materijala, najčešće feromagnetika, od kojeg je izgrađena jezgra transformatora, struja praznog hoda nije sinusnog valnog oblika. Prema [7], ukoliko se struja praznog hoda obradi Furierovom analizom otkriva se činjenica da se struja praznog hoda sastoji od osnovne komponente i niza neparnih viših harmonika od kojih je osnovni treći harmonik. Ta osnovna komponenta može se rastaviti na dvije komponente, jedna koja je u fazi s induciranim naponom primara i druga koja fazno zaostaje za 90° prema induciranom naponu. Komponenta struje praznog hoda koja je u fazi s induciranim naponom naziva se radnom strujom gubitaka i ona odgovara gubicima petlje histereze i gubicima vrtložnih struja u jezgri transformatora. Druga je komponenta struje praznog hoda struja magnetiziranja koja zaostaje za 90° u odnosu na struju radnih gubitaka. Struja je praznog hoda energetskog transformatora obično malog iznosa, svega jedan do dva posto nazivne struje. Osim toga, struja praznog hoda opada s porastom snage transformatora. Iako struja praznog hoda nije sinusnog valnog oblika, može se predstaviti ekvivalentnim sinusnim valnim oblikom koji ima istu efektivnu vrijednost, frekvenciju i snagu kao i izvorna struja praznog hoda. Time se navedene komponente struje praznog hoda mogu crtati u fazorskom dijagramu i njihov fazorski zbroj daje I_{Φ} . Prema navedenom i zanemarenjem rasipnih magnetskih tokova, inducirana je elektromotorna sila e_1 zajedno s padom napona na radnom otporu R_1 primarnog namota transformatora sa slike 2.9. jednaka naponu u_1 priključenom na primar.

$$U_{ef,1} = I_{\Phi}R_1 + E_{ef,1}.$$
 (2-24)

U jednadžbi (2-24) $U_{ef,1}$ je efektivna vrijednost napona priključenog na primar, I_{Φ} je efektivna vrijednost struje praznog hoda i $E_{ef,1}$ je efektivna vrijednost induciranog napona na primaru. Ako se pretpostavi da nema pada napona zbog djelatnog otpora na primarnom namotu $(I_{\Phi}R_{1})$ može

se reći da je inducirani napon samoindukcije e_1 jednak priključenom naponu na primarnom namotu u_1 . Time se zanemario radni otpor primarnog namotaja R_1 . Stoga je magnetski tok razmjeran i priključenom naponu primara prema jednadžbi (2-23) i (2-25).

$$U_{ef,1} = E_{ef,1}.$$
 (2-25)

Transformator kod kojeg su zanemareni djelatni otpori vodiča primarnog i sekundarnog namota $(R_1 = R_2 = 0)$ i koji nema rasipnih magnetskih tokova naziva se savršenim transformatorom. Kod savršenog transformatora postoji magnetski otpor R_m . Nadalje, kod savršenog transformatora, kao i kod svakog transformatora, namotaji su induktivno vezani. Namotaji su induktivno vezani ukoliko magnetski tok, koji stvara struja jednog namotaja, više ili manje prolazi i kroz drugi namotaj. Kvaliteta induktivnog vezivanja iskazuje se pomoću već navedenog faktora induktivne veze k koji je kod savršenog transformatora idealan i iznosi jedan. Prema [8], faktor induktivne veze savršenog transformatora je:

$$k = \frac{M}{\sqrt{L_1 L_2}} = 1.$$
(2-26)

Jednadžba (2-26) opisuje čvrstoću induktivnog vezivanja svitaka savršenog transformatora, gdje je M međuinduktivitet između primarnog i sekundarnog namota, a L_1 samoinduktivitet primarnog namota i L_2 samoinduktivitet sekundarnog namota. Faktor induktivne veze vrijednost jedan postiže samo u idealiziranim slučajevima. Kada je faktor induktivne veze idealan (k = 1), tada ne postoje rasipni magnetski tokovi jer magnetski tok koji je proizvela struja jednog namota potpuno prolazi i kroz drugi namot. Rasipni se magnetski tok zatvara samo oko onog namota kojim teče struja koja ga stvara, ne ulančava druge namote (sekundar ili tercijar) i ne doprinosi pretvorbi energije u transformatoru. Zato se smatra gubitkom energije koji se ne može korisno upotrijebiti. Za daljnju je diskusiju potrebno napomenuti da se proučava savršeni transformator u praznom hodu kojemu na sekundaru nije spojeno trošilo nego su stezaljke otvorene. Magnetski je tok iz jednadžbe (2-19) zajednički magnetski tok pa pripada svim namotima koji su namotani na istu magnetsku jezgru. Taj zajednički magnetski tok inducirao bi napon na svakom svitku koji je namotan na tu magnetsku jezgru. Iz jednadžbe (2-3) se može zaključiti da će inducirani napon na namotima te jezgre ovisiti o broju zavoja pojedinog svitka i o brzini promijene zajedničkog magnetskog toka $\varphi(t)$. Uz pretpostavku da su oko magnetske jezgre namotana dva namotaja, primar i sekundar, trenutna vrijednost induciranog napona na sekundaru $e_2(t)$ bit će:

$$e_2(t) = -N_2 \frac{d\varphi(t)}{dt} = -N_2 \frac{d\Phi_m \sin(\omega t)}{dt} = -N_2 \Phi_m \omega \cos(\omega t), \qquad (2-27)$$

gdje je N_2 broj zavoja sekundarnog namota, Φ_m je amplituda magnetskog toka u jezgri, a ω je kružna frekvencija priključenog napona na primaru. Jednadžba (2-27) je u skladu s Faraday – Lenzovim zakonom.

Slikom 2.10. prikazan je savršeni transformator kojemu odgovaraju jednadžbe (2-20) i (2-27).

Slika 2.10. Savršeni transformator u praznom hodu

Na slici 2.10. je prikazana shema dvonamotnog savršenog transformatora kojemu je induktivna veza savršena, a sekundar je neopterećen tako da njime ne teče električna struja pa nema napona međuindukcije.

Omjer izraza (2-20) i (2-27) daje odnos induciranog napona na primarnom namotu i induciranog napona na sekundarnom namotu:

$$\frac{e_1(t)}{e_2(t)} = \frac{N_1}{N_2} = n,$$
(2-28)

odnosno:

$$\frac{E_{ef,1}}{E_{ef,2}} = \frac{N_1}{N_2} = n.$$
(2-29)

Koeficijent transformacije n u jednadžbama (2-28) i (2-29) ukazuje na povećanje ili smanjenje induciranog napona sekundarnog namota u odnosu na inducirani napon primarnog namota. Veličine $E_{ef,1}$ i $E_{ef,2}$, u jednadžbi (2-29), su efektivne vrijednosti induciranog napona primara i sekundara čiji omjer odgovara omjeru broja zavoja primarnog i sekundarnog namota, a time i koeficijentu transformacije n. Kako su kod savršenog transformatora zanemareni djelatni otpori primarnog i sekundarnog namota, može se napisati:

$$\frac{u_1(t)}{u_2(t)} = \frac{N_1}{N_2} = n.$$
(2-30)

Veličine $u_1(t)$ i $u_2(t)$ iz jednadžbe (2-30) su trenutne vrijednosti napona na ulaznim i na izlaznim priključnicama savršenog transformatora. Jednadžba (2-30) se može jednostavno preoblikovati u jednadžbu (2-31) jer su naponi $u_1(t)$ i $u_2(t)$ monoharmonijske funkcije:

$$\frac{U_{ef,1}}{U_{ef,2}} = \frac{N_1}{N_2} = n.$$
(2-31)

Jednadžba (2-31) pokazuje da se prema potrebama efektivna vrijednost napona na izlazu iz transformatora (sekundaru) može mijenjati u odnosu na efektivnu vrijednost napona na ulazu u transformator (primaru).

2.3.2. Idealni transformator

Neka slika 2.11. posluži za promatranje svojstava idealnog transformatora.

Slika 2.11. Opterećeni idealni transformator

Primarni namot transformatora sa slike 2.11. priključen je na izmjenični napon i ima N_1 zavoja dok je sekundar s N_2 zavoja opterećen impedancijom Z. Magnetska uzbuda koju generira struja sekundara (i_2N_2) suprotnog je smjera u odnosu na magnetsku uzbudu koju generira primarna struja (i_1N_1) . Korak dalje u idealizacijama čini savršeni transformator idealnim transformatorom. Naime, kod idealnog transformatora zanemareni su djelatni otpori namota, magnetska veza je savršena (k = 1) pa nema rasipnih tokova, gubitaka u jezgri nema, a magnetski otpor jezgre je toliko malen da je potrebna zanemariva struja uzbude za uspostavu magnetskog toka. Te idealizacije transformatora priključeni napon primara jednak je induciranom naponu na primaru. Napon na izlaznim stezaljkama sekundara jednak je induciranom naponu na sekundaru. Stoga za idealni transformator kao i za savršeni vrijedi jednadžba (2-30). Odnos napona primara i sekundara.

Postojanje sekundarne struje, a time i magnetske uzbude (i_2N_2) ne mijenja glavni magnetski tok u jezgri kojeg stvara struja primara i_1 . Kako su magnetske uzbude primara i sekundara suprotnog smjera, može se pisati:

$$N_1 i_1 = N_2 i_2. (2-32)$$

Magnetska uzbuda primara idealnog transformatora djeluje tako da kompenzira magnetsku uzbudu sekundara. Naime, kod idealnog transformatora ukupna magnetska uzbuda koja djeluje na jezgru je jednaka nuli što je u skladu s pretpostavkom da je struja uzbude i_{ϕ} idealnog transformatora jednaka nuli. Dakle, svaka promjena magnetske uzbude sekundara odražava se promjenom magnetske uzbude primara. Iz jednadžbe (2-32) može se pisati:

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}.$$
(2-33)

Prema jednadžbi (2-33) omjer struja primara i sekundara idealnog transformatora odnosi se kao omjer broja zavoja sekundara i primara. Povezivanjem jednadžbi (2-30) i (2-33) dobiva se jednadžba (2-34):

$$u_1 i_1 = u_2 i_2,$$
 (2-34)

odnosno, trenutna snaga na ulazu u idealni transformator jednaka je izlaznoj trenutnoj snazi idealnog transformatora. Jednadžba (2-34) odgovara idealnom transformatoru jer su svi gubici zanemareni pa je snaga na ulazu jednaka snazi na izlazu iz idealnog transformatora.

Korištenje je fazorskog računa omogućeno primjenom sinusnog valnog oblika napona na primarnoj strani idelanog transformatora i terećenjem impedancijom na sekundaru idealnog transformatora. Prema tome, jednadžbe (2-30) i (2-33) se mogu zapisati u fazorskom obliku:

$$\frac{U_1}{\overline{U}_2} = \frac{N_1}{N_2},$$
(2-35)

$$\frac{\bar{I}_1}{\bar{I}_2} = \frac{N_2}{N_1}.$$
(2-36)

Iz jednadžbi (2-35) i (2-36) može se izraziti:

$$\frac{\overline{U}_1}{\overline{I}_1} = \left(\frac{N_1}{N_2}\right)^2 \frac{\overline{U}_2}{\overline{I}_2},\tag{2-37}$$

Odnosno:

$$Z_{1} = \left(\frac{N_{1}}{N_{2}}\right)^{2} Z_{2}.$$
 (2-38)

Dakle, impedancija se u sekundarnom krugu Z_2 može zamijeniti odgovarajućom impedancijom Z_1 u primarnom krugu prema jednadžbi (2-38). To je prikazano sljedećom slikom.

Slika 2.12. Svođenje impedancije idealnog transformatora na primarnu stranu

Postupak prebacivanja fizikalnih veličina sa sekundarne strane na primarnu, ali i obrnuto, naziva se svođenje veličina na jednu naponsku razinu transformatora. Veličine se koje se svode na neku naponsku stranu transformatora nazivaju reduciranim veličinama. Na slici 2.12. je prikazan postupak svođenja sekundarne impedancije na primarnu naponsku razinu gdje su na slici 2.12. b) i c) prikazani krugovi ekvivalentni onome na slici 2.12 a). Pri svođenju veličina iz jednadžbe (2-38) je jasno da se impedancija mijenja s kvadratom omjera broja zavoja, a iz jednadžbi (2-35) i (2-36) uočava se da se naponi i struje mijenjaju s omjerom broja zavoja namota idealnog transformatora.

2.3.3. Nadomjesna shema transformatora

Za dobivanje nadomjesne sheme transformatora poslužit će slika 2.13. na kojoj se primar i sekundar transformatora nalaze na različitim stupcima magnetske jezgre zbog jednostavnijeg prikaza magnetskih tokova.

Slika 2.13. Shematski prikaz transformatora i magnetskih tokova

Na slici 2.13. ukupni tok koji prolazi kroz primarni namot sastoji se od rasipnog toka i glavnog magnetskog toka. Rasipni magnetski tok primara ulančava samo zavoje primarnog namota. Glavni magnetski tok prolazi magnetskom jezgrom kroz oba namota i zajednički je magnetski tok jer je stvoren kombinacijom primarne i sekundarne struje transformatora. Rasipni magnetski tok primara inducira elektromotornu silu u primarnom namotu koja je istog smjera kao i inducirani napon zbog promjene glavnog magnetskog toka. Prema [7], pošto je većina putanje primarnog rasipnog magnetskog toka kroz zrak, što se vidi na slici 2.13., taj rasipni tok i napon koji se inducira zbog promjene primarnog rasipnog toka su linearni s primarnom strujom \overline{I}_1 . Stoga se rasipni magnetski tok može smatrati induktivitetom L_{l_1} odnosno primarnom rasipnom reaktancijom X_{l_1} [Ω]. Primarna rasipna rektancija jednaka je:

$$X_{l_1} = \omega L_{l_1}, \tag{2-39}$$

gdje je $\omega = 2\pi f$, uz to da je *f* frekvencija napona priključenog na primarni namot. Zavoji su namota izrađeni od vodiča pa posjeduju električnu otpornost, stoga priključkom napona na stezaljke primara postoji pad napona u primarnom namotu uslijed djelatnog otpora vodiča R_1 . Dakle, naponu priključenom na primarni namot ravnotežu drže pad napona na djelatnom otporu primara $(\overline{I}_1 R_1)$, pad napona na primarnoj rasipnoj reaktanciji $(\overline{I}_1 X_{l_1})$ i elektromotorna sila \overline{E}_1 inducirana uslijed promjenjivog glavnog magnetskog toka.

$$\overline{U}_1 = \overline{I}_1 R_1 + \overline{I}_1 X_L + \overline{E}_1. \tag{2-40}$$

Slika 2.14. Razvojna nadomjesna shema primara koja odgovara jednadžbi (40)

Slika 2.14. predstavlja prvi korak prema u dobivanju potpune nadomjesne sheme transformatora.

Glavni je magnetski tok posljedica udruženog djelovanja električnih struja primarnog namota i sekundarnog namota. Pred primarnom strujom stoje dva zahtjeva: uspostava takve magnetske uzbude koja će istovremeno stvarati glavni magnetski tok i kompenzirati utjecaj sekundarne magnetske uzbude koja djeluje u suprotnom smjeru i demagnetizira magnetsku jezgru transformatora. Drugi način shvaćanja uloge primarne struje je da ona istovremeno magnetizira magnetsku jezgru transformatora i opskrbljuje teret priključen na sekundarnom namotu. Prema drugom načinu shvaćanja primarna se struja može razložiti na dvije komponente: uzbudna i teretna. Uzbudna je komponenta struje \overline{I}_{Φ} određena kao dodatna primarna struja odgovorna za generiranje glavnog magnetskog toka. Teretna je komponenta primarne struje \overline{I}_2 određena kao ona koja je zadužena za kompenzaciju magnetske uzbude sekundarne struje transformatora (\overline{I}_2N_2) . Ukupna magnetska uzbuda koja djeluje na magnetsku jezgru transformatora je:

$$\bar{I}_{\Phi}N_{1} = \bar{I}_{1}N_{1} - \bar{I}_{2}N_{2} = \left(\bar{I}_{\Phi} + \bar{I}_{2}\right)N_{1} - \bar{I}_{2}N_{2}.$$
(2-41)

Iz jednadžbe (2-41) dobiva se da je:

$$\vec{I}_{2} = \frac{N_{2}}{N_{1}}\vec{I}_{2},$$
(2-42)

teretna komponenta primarne struje jednaka umnošku sekundarne struje i omjera broja zavoja sekundarnog i primarnog namota. Već je ranije spomenuto da se uzbudna struja koja nije sinusoidalnog oblika može zamijeniti ekvivalentnim sinusnim valnim oblikom. To omogućuje razdiobu uzbudne struje na radnu struju gubitaka \overline{I}_C koja je u fazi s induciranim primarnim naponom \overline{E}_1 i na struju magnetiziranja \overline{I}_M koja fazno zaostaje za 90° u odnosu na inducirani napon primara. Ekvivalentna sinusna struja uzbude omogućuje postavljanje paralelne grane u nadomjesnoj shemi sa slike 2.14. između priključenog napona i induciranog napona. Prema [7], paralelna se grana sastoji od paralelne kombinacije otpora R_C koji predstavlja gubitke u jezgri i reaktancije X_M koja predstavlja glavni magnetski tok.

$$X_M = 2\pi f L_M, \qquad (2-43)$$

gdje je f frekvencija priključenog primarnog napona, a L_M je indukcija magnetiziranja. Na sljedećoj slici prikazana je nadomjesna shema sa slike 2.14. kojoj je dodana spomenuta paralelna grana.

Slika 2.15. Razvojna nadomjesna shema s paralelnom granom

Gubici u jezgri zbog glavnog magnetskog toka su jednaki omjeru kvadrata induciranog napona i radnog otpora \overline{E}_1^2/R_c . Prema [7], paralelna grana sa slike 2.15. naziva se uzbudna grana nadomjesne sheme, a paralelna se kombinacija otpora R_c i reaktancije X_M naziva uzbudna impedancija i označava se sa Z_{Φ} . Uz pretpostavu da je R_c konstanta, tada gubici u jezgri variraju ovisno o kvadratu induciranog napona (sinusnog) \overline{E}_1^2 , odnosno, prema jednadžbi (2-22), o kvadratu glavnog magnetskog toka Φ_m^2 i kružne frekvencije priključenog primarnog napona ω^2 . Reaktancija X_M , tj. induktivitet L_M u krajnjoj liniji ovise o magnetskoj permeabilnosti koja za feromagnetske materijale nije konstantna. Ako se pretpostavi da je reaktancija X_M konstantna, tada je struja magnetiziranja neovisna o frekvenciji priključenog napona. U praksi je uobičajeno da su R_c i X_M određeni za nazivni napon i nazivnu frekvenciju. U tom se slučaju pretpostavlja da su R_c i X_M konstantni unatoč minimalnim odstupanjima od nazivnih vrijednosti napona i frekvencije tijekom normalnog rada.

Sljedeći je korak u izradi potpune nadomjesne sheme proučavanje prilika na sekundarnom namotu. Glavni magnetski tok koji prolazi i kroz sekundarni namot inducira u njemu elektromotornu silu \overline{E}_2 koja se može opisati jednadžbom (2-29). Jednadžbe (2-29) i (2-42) su karakteristične jednadžbe idealnog transformatora, stoga opravdavaju uvođenje idealnog transformatora u izgradnju nadomjesne sheme transformatora. Kao i kod primarnog namota, na

sekundaru postoji pad napona uslijed djelatnog otpora vodiča R_2 od kojeg je napravljen namot. Osim toga, na slici 2.13. je jasno označeno da postoje rasipni magnetski tokovi sekundarnog namota. Stoga na sekundaru postoji pad napona zbog sekundarne rasipne reaktancije X_{l_2} . Za sekundarni strujni krug vrijedi:

$$\overline{E}_2 = \overline{I}_2 R_2 + \overline{I}_2 X_{l_2} + \overline{U}_2. \tag{2-44}$$

Veličine \overline{E}_2 , \overline{I}_2 i \overline{U}_2 su fazorske veličine, a jednadžba (2-44) iskazuje da sekundarnom induciranom naponu ravnotežu pružaju padovi napona na radnom otporu sekundara, sekundarnoj rasipnoj reaktanciji i izlazni napon \overline{U}_2 . Sljedeća slika prikazuje sekundarom i idealnim transformatorom nadograđenu nadomjesnu shemu u odnosu na shemu sa slike 2.15.

Slika 2.16. Razvojna nadomjesna shema transformatora sa sekundarnom stranom

Nadomjesna shema transformatora sa slike 2.16. u sebi sadrži idealni transformator, djelatne gubitke u namotima primara i sekundara predstavljene radnim otporima, rasipni su magnetski tokovi prikazani rasipnim reaktancijama primara i sekundara, glavni magnetski tok predstavljen je reaktancijom X_M . Gubici u jezgri predstavljeni su radnim otporom R_C . Naponi i struje su na slici 2.16. u fazorskom obliku. Sažimajući gore navedeno, nadomjesna se shema transformatora sa slike 2.16. sastoji od idealnog transformatora i različitih impedancija. Da bi se iz slike 2.16. dobila potpuna nadomjesna shema potrebno je sve veličine svesti na jednu naponsku razinu. Ovdje će se sve veličine reducirati na primarnu naponsku razinu. Svođenjem svih veličina na

jednu naponsku razinu idealni se transformator sa slike 2.16. može skloniti na lijevu ili desnu stranu nadomjesne sheme transformatora. Potpuna nadomjesna shema transformatora obično izgleda ovako:

Slika 2.17. Potpuna nadomjesna shema s reduciranim sekundarnim veličinama

Na slici 2.17. nalazi se potpuna nadomjesna shema transformatora u kojoj su sekundarni napon, struja i sekundarna impedancija svedeni na primarnu naponsku razinu. Nadomjesna shema sa slike 2.17. naziva se i T – nadomjesna shema transformatora. Idealni transformator nije prikazan, ali može se zamisliti na krajnje desnoj strani slike 2.17. Prema [7], za sliku 2.17. vrijedi:

$$Z_{2}' = R_{2}' + X_{l_{2}}' = \left(\frac{N_{1}}{N_{2}}\right)^{2} \left(R_{2} + X_{l_{2}}\right) = \left(\frac{N_{1}}{N_{2}}\right)^{2} Z_{2}, \qquad (2-45)$$

gdje su u jednadžbi (2-45) reducirane veličine označene s crticom u gornjem indeksu. Reducirana je impedancija jednaka umnošku stvarne vrijednosti impedancije i kvadrata omjera broja zavoja primara i sekundara. Reducirani je napon sekundara \overline{U}_2 sa slike 2.17. jednak umnošku stvarne vrijednosti sekundarnog napona i omjera broja zavoja primarnog i sekundarnog namota:

$$\overline{U}_{2} = \frac{N_{1}}{N_{2}}\overline{U}_{2}.$$
 (2-46)

3. TEORIJA ELEKTROMAGNETSKIH POLJA

3.1. Maxwellove jednadžbe

Jedan od temelja funkcioniranja električnih sustava koji su osmišljeni za izvođenje određenih zadataka su elektromagnetski zakoni i pojave. Elektromagnetske zakone i pojave primijenjene u takvim sustavima mogu se opisati Maxwellovim jednadžbama. James Clark Maxwell je napravio matematičku teoriju elektriciteta i magnetizma na način da je već poznate elektromagnetske pojave i zakone matematički interpretirao, dijelom nadopunio i ujedinio u četiri jednadžbe. Prema [9], zakonitosti su iskazane Maxwellovim jednadžbama primjenjive na širokom rasponu različitih električnih i magnetskih fenomena. U nastavku su prikazane, prema [10], Maxwellove jednadžbe u integralnom obliku koje vrijede u vakuumu:

$$\oint_C \vec{E}d\vec{l} = -\frac{d}{dt} \int_S \mu_0 \vec{H}d\vec{S}.$$
(3-1)

Jednadžba (3-1) je prva Maxwellova jednadžba poznatija pod nazivom Faraday - Lenzov zakon. U jednadžbi (3-1) \vec{E} [V/m] je vektor jakosti električnog polja, $d\vec{l}$ [m] je vektor infinitezimalne duljine krivulje *C*. Nadalje, μ_0 [H/m] je magnetska permeabilnost vakuuma, \vec{H} [A/m] je vektor jakosti magnetskog polja te je $d\vec{S}$ vektor infinitezimalne površine ukupne površine *S*. Na lijevoj je strani jednadžbe (3-1) cirkulacija odnosno linijski integral vektora jakosti električnog polja po zatvorenoj krivulji *C*, $\oint \vec{E}d\vec{l}$, koja je jednaka negativnoj derivaciji promjenjivog magnetskog

toka
$$-\frac{d}{dt}\int_{S} \mu_0 \vec{H} d\vec{S} = -\frac{d\varphi(t)}{dt}$$
 kroz površinu *S*. Drugim riječima, cirkulacija vektora jakosti električnog polja po krivulji *C* odnosno inducirani napon u konturi *C* je jednak brzini promjene magnetskog toka kroz površinu *S* koju obrubljuje krivulja *C*. Jednadžba (3-1) odgovara

jednadžbi (2-2) iz drugog poglavlja. Jednadžbom (3-1) se iskazuje povezanost promjenjivog magnetskog toka i induciranog električnog polja.

$$\oint_C \vec{H} d\vec{l} = \int_S \vec{J} d\vec{S} + \frac{d}{dt} \int_S \varepsilon_0 \vec{E} d\vec{S} = \int_S \vec{J} d\vec{S} + \frac{d}{dt} \int_S \vec{D} d\vec{S}.$$
(3-2)

Jednadžba (3-2) je druga Maxwellova jednadžba koja je zapravo prošireni Ampereov zakon iz jednadžbe (2-1). Naime, Maxwell je Ampereovom zakonu dodao pomačne struje. Prema [3], danas je poznato da promjenjiva inducirana elektromotorna sila u dielektriku stvara pomačne struje. Iako u vakuumu nema naboja, a postoje pomačne struje u vakuumu, naziv pomačne struje se i dalje koristi. U jednadžbi (3-2) \vec{H} [A/m] je vektor jakosti magnetskog polja, a $d\vec{l}$ [m] je vektor infinitezimalne duljine krivulje C. U nastavku, vektor \vec{J} [A/m²] je vektor gustoće provodne struje, $d\vec{S}$ je vektor infinitezimalne površine ukupne površine S, $\varepsilon_0 \approx 8,854 \cdot 10^{-12}$ [F/m] je dielektrična permitivnost vakuuma dok je \vec{E} [V/m] vektor jakosti električnog polja. Jednadžba (3-2) iskazuje da je cirkulacija vektora jakosti magnetskog polja po zatvorenoj krivulji *C*, $\oint_C \vec{H} d\vec{l}$, jednaka zbroju provodnih $\int_S \vec{J} d\vec{S}$ i pomačnih $\frac{d}{dt} \int_S \varepsilon_0 \vec{E} d\vec{S}$ struja. Za vakuum vrijedi $\varepsilon_0 \vec{E} = \vec{D}$ što je prikazano na desnoj strani jednadžbe (3-2). Vektor \vec{D} [C/m²] je vektor gustoće električnog toka odnosno vektor električne indukcije. Električna je indukcija mjera električnog polja koje prolazi kroz određenu površinu. $\frac{dD}{dt} = \vec{J}_{pom} [A/m^2]$ je vektor gustoće pomačnih struja. Druga je Maxwellova jednadžba (3-2) komplementarna prema prvoj Maxwellovoj jednadžbi. Druga Maxwellova jednadžba ukazuje da se magnetsko polje inducira uslijed električne struje u vodiču, ali i uslijed promjenjivog električnog toka.

$$\oint_{S} \varepsilon_0 \vec{E} d\vec{S} = \oint_{S} \vec{D} d\vec{S} = \int_{V} \rho dV.$$
(3-3)

Jednadžba (3-3) je treća Maxwellova jednadžba poznatija pod imenom Gaussov zakon za električno polje. Veličina ε_0 [F/m] je dielektrična permitivnost vakuuma, vektor \vec{E} [V/m] je vektor jakosti električnog polja, a $d\vec{S}$ je vektor infinitezimalne površine ukupne površine *S*.

Umnožak dielektrične permitivnosti vakuuma i vektora jakosti električnog polja je, $\varepsilon_0 \vec{E} = \vec{D}$, vektor gustoće električnog toka \vec{D} [C/m²]. Volumna je gustoća električnog naboja ρ [C/m³], a dV je infinitezimalni volumen ukupnog volumena V kojeg omeđuje površina S. Prema [9], jednadžba (3-3) iskazuje da je ukupan električni naboj unutar proizvoljnog volumena V kojeg omeđuje površina S razmjeran s ukupnim električnim tokom $\Phi_E = \oint_S \vec{D} d\vec{S}$ koji prolazi kroz tu

površinu *S*. Može se reći i da je električni tok kroz zatvorenu površinu *S* razmjeran ukupnom naboju koji je obuhvaćen tom zatvorenom površinom. U ovom slučaju, zatvorena površina *S* je površina bilo kojeg oblika koja okružuje neku količinu električnog naboja.

$$\oint_{S} \mu_0 \vec{H} d\vec{S} = 0.$$
(3-4)

Jednadžba (3-4) je četvrta Maxwellova jedndadžba koja predstavlja zakon o konzervaciji magnetskog toka ili Gaussov zakon za magnetsko polje. Za magnetsko polje u vakuumu vrijedi $\mu_0 \vec{H} = \vec{B}$ [T], tako da, prema [3], jednadžba (3-4) iskazuje da je magnetski tok kroz neku zatvorenu površinu *S* jednak nuli. U jednadžbi (3-4) μ_0 je magnetska permeabilnost vakuuma, vektor \vec{H} je vektor jakosti magnetskog polja, a $d\vec{S}$ je vektor infinitezimalne površine ukupne površine *S*. Prema [3], jednadžba (3-4) iskazuje da magnetski tok nema izvora. Na kraju, potrebno je spomenuti da se Maxwellove jednadžbe osim u integralnom obliku mogu iskazati i u diferencijalnom obliku.

3.2. Metoda konačnih elemenata

Prema [9], analiza je i dizajniranje strojeva i uređaja koji se temelje na elektromagnetskim zakonitostima složen proces uslijed:

- složene geometrije uređaja ili stroja,
- korištenja različitih materijala koji se čine uređaj ili stroj i
- istovremenih elektromagnetskih, toplinskih i mehaničkih pojava.

Prvi je korak u analizi određivanje proučavanja određenih pojava, ali i zanemarivanje te ignoriranje nekih drugih pojava. Taj korak analize naziva se modeliranje. Tako određeno područje promatranja je sustav promatranja ili domena. Prema [11], sustav može biti kontinuirani i diskretni. Kontinuirani se sustav opisuje diferencijalnim, parcijalnim i/ili diferencijalno-integralnim jednadžbama. Diferencijalni se sustav opisuje sustavim algebarskih jednadžbi i taj se sustav algebarskih jednadžbi rješava numeričkim metodama. Drugi korak u analizi je odabir i primjena numeričke metode za rješavanje problema i taj se proces naziva diskretizacija problema. Postoji više numeričkih metoda koje se primjenjuju: FEM (Finite Element Method), BEM (Boundary Element Method), FDM (Finite Differnce Method), MM (Moments Method), itd. Prema [9], FEM ili metoda konačnih elemenata danas je najkorištenija metoda u rješavanju linearnih i nelinearnih problema bez obzira na geometriju. Razlog tome je što su ostale suvremene metode manje precizne i skuplje. Analiza i ispitivanje na stvarnim, fizičkim uređajima i strojevima pripada prošlosti. Diskretizacija se vrši podjelom promatranog područja ili prostora na konačan broj diskretnih aproksimacija ili konačnih elemenata. Ti su konačni elementi određeni čvorovima. Treći, i posljednji, korak u analizi je računanje dodatnih rezultata i analiza dobivenog rješenja. Prema [11], vanjski se utjecaji na granici promatranog sustava definiraju jednadžbama graničnih uvjeta. Vanjski utjecaji mogu izvršiti promjenu stanja promatranog sustava. Ukoliko dobivena rješenja nisu zadovoljavajuća proces analize se ponavlja.

Metoda konačnih elemenata je matematička metoda za rješavanje običnih i parcijalnih diferencijalnih jednadžbi koje opisuju fizikalna svojstva materijala. Pošto Maxwellove jednadžbe mogu biti integralnog ili diferencijalnog oblika, metoda se konačnih elemenata primjenjuje u analizi i dizajnu uređaja i strojeva koji se temelje na elektromagnetskim zakonitostima. Prema [9], područja su primjene metode konačnih elemenata u elektromagnetizmu:

- električni rotacijski strojevi,
- transformatori,
- električni aktuatori i električni senzori, itd.

4. SIMULACIJE U RAČUNALNOM PROGRAMU ANSYS MAXWELL

4.1. O računalnom programu Ansys Maxwell

Prema [12], *Ansys Maxwell* je interaktivni računalni program sa širokim rasponom performansi. Korištenjem metode konačnih elemenata rješava statičke električne i magnetske probleme, a osim toga rješava i probleme elektromagnetske prirode u tranzijentnom području. Program nudi rješenja problema vezanih uz elektromagnetizam rješavanjem Maxwell-ovih jednadžbi u konačnom prostoru uz prikladne granične uvjete i, kada je to potrebno, početne uvjete koje određuje korisnik kako bi se dobilo jedinstveno rješenje. Program prilikom pokretanja simulacije vrši diskretizaciju modela u male konačne elemente kako bi riješio skup algebarskih jednadžbi.

4.2 Izrada računalnog modela u Ansys Maxwell-u

Za izradu je računalnog modela transformatora u računalnom programu nužno poznavati podatke o stvarnom transformatoru koji se modelira u *Ansys Maxwell*-u. Osnovni se električni podaci promatranog trofaznog transformatora *Elektrosklop TPTO 200 VA* nalaze na njegovoj natpisnoj pločici i prikazani su u sljedećoj tablici:

TROFAZNI	FRANSFORMATOR ELEK	TROSKLOP TPTO 200 VA
	GORNJONAPONSKI	DONJONAPONSKI
	NAMOT	NAMOT
Nazivni		
linijski		
napon,	400	38
U_n [V]		
Nazivna		
linijska		
struja,	0.28	3.03
I_n [A]		
Vrsta spoja	D	y11
Nazivna		
frekvencija,	5	0
f_n [Hz]		

Tab. 4.1. Podaci s nazivne pločice transformatora

Iz podataka o transformatoru u tablici 4.1. taj se transformator može odrediti kao niskonaponski transformator. Njegova je primjena ograničena na laboratorijska ispitivanja, stoga je i laboratorijski transformator. Prema imenu transformatora, *Elektrosklop TPTO 200 VA*, nazivna snaga toga transformatora iznosi 200 VA. Osim podataka iz tablice 4.1., na natpisnoj pločici je naveden proizvođač Elektrosklop d.o.o. – Zagreb i 2016. godina je godina proizvodnje. Za modeliranje su računalnog modela transformatora potrebni podaci o geometriji transformatora, te njegova mehanička i električna svojstva. Ti su podaci pribavljeni iz [13] i [14]. Na slici 4.1. je

dvodimenzionalno prikazan oblik transformatorskih limova koji čine jezgru promatranog transformatora i njegove dimenzije u milimetrima.

Slika 4.1. Dimenzije i oblik transformatorskih limova trofaznog transformatora Elektrosklop TPTO 200 VA

Iz slike 4.1. jasno je da je jezgra transformatora naizmjenično sastavljena od dva različita oblika transformatorskih limova (takozvani *E* i *I* oblik). Prema slici 4.1. vanjske su dimenzije, visina i širina, jezgre transformatora 150x150 mm, a treća dimenzija, debljina jezgre, određena je mjerenjem pomoću pomične mjerke i iznosi 30 mm. Dimenzije prozora transformatorske jezgre su 90x30 mm što je uočljivo na slici 4.1. Materijal jezgre je M530-50A i njegove karakteristike su opisane u [14] i [15]. Transformator je trostupni i sa dva jarma koji povezuju stupove, a na sva se tri stupa nalaze plastične špule visine, prema [16], 85.5 mm. Nadalje, na svakom se stupcu nalaze namoti transformatora i to tako da je donjonaponski namot namotan na špulu, bliže jezgri, a na njega opet namotan gornjonaponski namot koji je tako udaljeniji od jezgre u odnosu na donjonaponski namot. Prema [17], oba su namota bakrena, donjonaponski namot ima na svakom stupu jezgre 2064 zavoja. Poprečni je presjek vodiča donjonaponskog namota 1.32 mm, a gornjonaponskog namota 0.35 mm.

Nakon prikupljanja informacija o dimenzijama i svojstvima stvarnog trofaznog transformatora *Elektrosklop TPTO 200 VA* može se započeti crtanje trodimenzionalnog računalnog modela tog transformatora u računalnom programu *Ansys Maxwell* u *Ansys Maxwell*

3D području. Za početak, potrebno je pokrenuti računalni program *Ansys Maxwell* čija je radna površina prikazana na slici 4.2.

Slika 4.2. Radna površina računalnog programa Ansys Maxwell

Radna je površina računalnog programa podijeljena na nekoliko prozora, a u gornjem se dijelu nalaze alatne trake i tekstualni izbornik. Najveći je prozor, s pravokutnim Kartezijevim koordinatnim sustavom, namijenjen crtanju računalnog modela, dok su ostali manji prozori (*Properties, Message Manager, Progress*) prazni s izuzetkom *Project Manager*-a koji ukazuje da je pokrenut projekt *Maxwell3DDesign1 (Magnetostatic)*. Na traci je tekstualnih izbornika lijevim klikom miša potrebno otvoriti izbornik *Tools*, a zatim je opet lijevim klikom miša u padajućem izborniku potrebno odabrati opciju *General Options* kako je prikazano na slici 4.2. Time se otvara prozor koji je prikazan na sljedećoj slici.

E General	*	Desktop Configuration			
Besktop Configuration Project	1	Set targeted configuration:	EM	•	
Miscellaneous		Custom Menu Set:	EM	•	
User Interface Directories		Schematic Environment:	Maxwell	•	
Deskup Performance Default Units Remote Analysis Web Update Component Libraries Options		New Project Options When creating a new project: (* Insert a design of type: C Don't insert a design Save Options	Maxwell 3D	•	
HFSS 3D Layout HFSS-IE Maxwell 2D Maxwell 3D		Autosave interval: 25 edits			
± Simplorer ± 3D Modeler					
I avout Editor					

Slika 4.3. Options prozor

Otvaranjem se sekcije *General* u prozoru *Options* omogućuje podešavanje željenog područja rada i tipa problema prilikom pokretanja računalnog programa *Ansys Maxwell*. Za *Desktop Configuration, New Project Options* i *Save Options* se odabiru opcije koje su odabrane na slici 4.3. Prema tome, po otvaranju računalnog programa radi se u elektromagnetskom području (*Maxwell, EM*) i pokreće se novi projekt u trodimenzionalnom prostoru (*Maxwell 3D*). Automatsko se spremanje izvršava nakon svakih 25 promjena na projektu učinjenih od strane korisnika računalnog programa *Ansys Maxwell*. Sljedeći je korak vrlo jednostavan, a to je promjena imena projekta.

Slika 4.4. Promjena imena projekta

Slika 4.4. pokazuje promjenu imena projekta koja se omogućuje desnim klikom na projekt u *Project Manageru* i lijevim klikom miša na opciju *Rename*. Ime projekta je bilo, prema slici 4.2., *Maxwell3DDesign (Magnetostatic)*, a sada je *TROFAZNI_TRANSFORMATOR_01_07*. Nakon ovog koraka dolazi definiranje vrste problema koja se u programu obrađuje.

Slika 4.5. Odabir Solution Type-a u Ansys Maxwell-u

Na slici 4.5. u pravokutniku je na traci tekstualnih izbornika označen izbornik *Maxwell 3D*. Lijevim klikom miša na izbornik *Maxwell 3D* u padajućem izborniku odabire se *Solution Type* te se za slučaj simulacije trofaznog transformatora *Elektrosklop TPTO 200 VA* odabire područje *Magnetic: Transient*, a zatim se to potvrdi lijevim klikom miša na *OK*, kako je prikazano na slici 4.5. Dakle, simulacija će se vršiti u prijelaznom ili tranzijentnom području.

Slika 4.6. Izbor mjerne jedinice u Ansys-u

Na traci s tekstualnim izbornicima se lijevim klikom miša odabere *Modeler*, a zatim u padajućem izborniku opcija *Units*. Dalje je moguće odabrati mjernu jedinicu u kojoj je najpogodnije crtanje geometrije transformatora.

et Model Units	
Select units:	•
Rescale to new units	
	a 1 1

Slika 4.7. Izbor mjerne jedinice modela u Ansys-u

Lijevim klikom miša na opciju *Units* sa slike 4.6. otvara se prozor *Set Model Units* sa slike 4.7. U njemu je moguće mijenjati i odabrati mjernu jedinicu u kojoj se crta 3D računalni model koji se crta u *Ansys Maxwell*-u. Od ponuđenih se mjernih jedinica odabire milimetar (mm) kako je

prikazano na slici 4.7. Na početku se crtanja modela crta jezgra modela trofaznog transformatora *Elektrosklop TPTO 200 VA* i prije toga je potrebno definirati materijal od kojeg je izgrađena jezgra transformatora.

Slika 4.8. Izbor materijala u Ansys-u

Na slici 4.8. je prikazan prvi korak u definiranju materijala koji će činiti nacrtanu jezgru modela trofaznog transformatora. Lijevim klikom miša, sa slike 4.8., na trokut koji je uokviren crvenim pravokutnikom otvara se padajući izbornik na kojem je potrebno lijevim klikom miša odabrati opciju *Select* ..., koja je uokvirena crnim pravokutnikom na slici 4.8. Time se otvara prozor na sljedećoj slici.

earch by Name	- Search Cr	iteria me	C by Property	Libraries V Show [svs] HitachiMetals [sys] JFE_Steel	Project definitions 🦳 Sha	ow all li	braries
Search	Relative	Permittivity					-
/ Nam	ie	Location	Origin	Relative Permeability	Bulk Conductivity	Τ	•
tin		SysLibrary	Materials	1	8670000siemens/m	0	-
titanium		SysLibrary	Materials	1.00018	1820000siemens/m	0	
tungsten		SysLibrary	Materials	1	18200000siemens/m	0	
vacuum		Project	Materials	1	0	0	
vacuum		SysLibrary	Materials	1	0	0	
water_distilled		SysLibrary	Materials	0.999991	0.0002siemens/m	0	
water_fresh		SysLibrary	Materials	0.999991	0.01siemens/m	0	
water_sea		SysLibrary	Materials	0.999991	4siemens/m	0	
ZEONEX RS420 (tm)		SysLibrary	Materials	1	0	0	
ZEONEX RS420-LDS (tm)		SysLibrary	Materials	1	0	0	-
zinc		SysLibrary	Materials	1	16700000siemens/m	0	-
						-	

Slika 4.9. Prozor za definiranje materijala

Zatim je potrebno lijevim klikom miša odabrati skupinu materijala pod nazivom [sys] JFE_Steel koja je uokvirena crnim pravokutnikom na slici 4.9. Materijal je jezgre M530-50A i potrebno ga je definirati jer se ne nalazi u bibliotekama materijala koje se nalaze u Ansys Maxwell-u. Nakon otvaranja biblioteke [sys] JFE_Steel potrebno je lijevim klikom miša označiti jedan od materijala u biblioteci [sys] JFE_Steel i odabrati opciju Clone Material(s) kako je uokvireno na sljedećoj slici. Alternativa tome je odabir opcije Add Material sa slike 4.9. koja isto pruža mogućnost stvaranja materijala sa željenim električnim i magnetskim svojstvima.

Search by Name	Search Cr by Nar Relative	teria ne Permittivity	C by Property	Libraries V Show [sys] Materials [sys] RMxprt [sys] ShinEtsu	Project definitions 🗌 Sho	ow all librarie
/	ie	Location	Origin	Relative Permeability	Bulk Conductivity	-
JFE_Steel_20JNEH1200		SysLibrary	JFE_Steel	B-H Curve	1818182siemens/m	0A_ =
JFE_Steel_20JNEH1500		SysLibrary	JFE_Steel	B-H Curve	2127660siemens/m	0A_
JFE_Steel_35JN210		SysLibrary	JFE_Steel	B-H Curve	1694915siemens/m	0A_
JFE_Steel_35JN230		SysLibrary	JFE_Steel	B-H Curve	1818182siemens/m	0A_
JFE_Steel_35JN250		SysLibrary	JFE_Steel	B-H Curve	1851852siemens/m	0A_
JFE_Steel_35JN270		SysLibrary	JFE_Steel	B-H Curve	1851852siemens/m	0A_
JFE_Steel_35JN300		SysLibrary	JFE_Steel	B-H Curve	1960784siemens/m	0A_
JFE_Steel_35JN360		SysLibrary	JFE_Steel	B-H Curve	2127660siemens/m	0A_
JFE_Steel_35JN440		SysLibrary	JFE_Steel	B-H Curve	2631579siemens/m	0A_
JFE_Steel_35JNE230		SysLibrary	JFE_Steel	B-H Curve	1818182siemens/m	0A_
JFE_Steel_35JNE250		SysLibrary	JFE_Steel	B-H Curve	2127660siemens/m	0A
			· ·	1		

Slika 4.10. Korištenje opcije Clone Material(s)

Opcija Clone Material(s) sa slike 4.10. omogućuje definiranje materijala s određenim elektromagnetskim i mehaničkim svojstvima. Na taj se način definira za jezgru potrebni materijal M530-50A. Alternativa tome je odabir opcije Add Material sa slike 4.9. koja isto pruža mogućnost stvaranja materijala sa željenim električnim i magnetskim svojstvima. Opcija *Clone* Material(s) obavlja se na materijalima iz [sys] JFE Steel biblioteke jer se tada nudi uređenje BH karakteristike materijala koji se definira. Tako je ime novog materijala u Ansys Maxwell-u M530-50A što je prikazano uokvireno crvenim pravokutnikom na slici 4.11. Svojstva su materijala M530-50A usklađena s onima iz [14] pa je specifična električna vodljivost $\sigma = 2631579$ [S/m], gustoća $\rho = 7700$ [kg/m³], dok je jezgra lamelirana postavljanjem opcije Lamination u sekciji Composition. Faktor je ispune proizvoljno odabran i iznosi uobičajenih 0.96. Na slici 4.11. su prikazani i u programu definirani gore navedeni podaci o jezgri transformatora M530-50A. Ostali su podaci o transformatoru koji su prikazani u prozoru na slici 4.11. automatski postavljeni. Za daljnje je definiranje materijala nužno u View/Edit Material prozoru sa slike 4.11. odabrati Electrical Steel za opciju Core Loss Model. Korekcija i definiranje se BH krivulje vrši otvaranjem opcije B-H Curve ... koja je uokvirena crnim pravokutnikom na slici 4.11. Lijevim klikom miša na opciju *B-H Curve* ... otvara se novi prozor koji je prikazan na slici 4.12.

operties of the Material				View/Edit Material for
Name	Туре	Value	Units	 Active Design
Relative Permeability	Nonlinear	Bi-H Curve		C Autim British
Bulk Conductivity	Simple	2631579	siemens/m	Active Project
Magnetic Coercivity	Vector			C All Properties
- Magnitude	Vector Mag	0	A_per_meter	Physics:
- X Component	Unit Vector	1		Electromagnetic
- Y Component	Unit Vector	0		Thomas 1
- Z Component	Unit Vector	0		I menna
Core Loss Model		Electrical Steel	w/m^3	Structural
- Kh	Simple	173.295800803324		
- Kc	Simple	0.0859561716280974		-View/Edit Modifier for-
- Ke	Simple	2.06787925813399		
- Kdc	Simple	0		i nermai Modifier
Mass Density	Simple	7700	kg/m^3	
Composition		Lamination		
- Stacking Factor	Simple	0.96		
- Stacking Direction		V(1)		
Young's Modulus	Simple	0	N/m^2	
Poisson's Ratio	Simple	0		
Magnetostriction	Custom	E dit		Validate Material
Inverse Magnetostriction	Custom	Edit		

Slika 4.11. Definiranje novog materijala M530-50A u Ansys Maxwell-u

Slika 4.12. Definiranje BH krivulje materijala M530-50A

Definiranje se *BH* krivulje materijala M530-50A obavlja tako da se unose tablični podaci o vrijednostima magnetske indukcije *B* za određenu vrijednost jakosti vanjskog magnetskog polja *H*. Korištenjem opcije *Import Dataset* ... u prozoru *BH Curve* omogućuje se grupni unos vrijednosti *B* i *H* te se tako dobiva *BH* krivulja materijala M530-50A koja je prikazana u prozoru

BH Curve na slici 4.12. Na slici 4.12. su uokvirene najveće vrijednosti jakosti magnetskog polja i magnetske indukcije, a to je područje duboke zasićenosti materijala M530-50A. Nakon definiranja *BH* krivulje materijala M530-50A slijedi unos podataka o gubicima u jezgri transformatora. Podaci se uzimaju iz [15] gdje su tablično navedeni gubici u jezgri transformatora *P* [W/kg] pri određenim vrijednostima magnetske indukcije *B* [T] uz frekvenciju napajanja od 50 Hz. U prozoru *View/Edit Material* materijala M530-50A je potrebno odabrati opciju *Calculate Properties for: Core Loss at One Frequency* ... kako je prikazano na sljedećoj slici.

0-50A	Cartesian	-			
perties of the Material					_ View/Edit Material for
Name	Туре	Value	Units	^	Active Design
Relative Permeability	Nonlinear	Bi-H Curve			0.1.0.0.1
Bulk Conductivity	Simple	2631579	siemens/m		C Active Project
Magnetic Coercivity	Vector				C All Properties
- Magnitude	Vector Mag	0	A_per_meter		Physics:
 X Component 	Unit Vector	1			Electromagnetic
- Y Component	Unit Vector	0			
Z Component	Unit Vector	0		1	I_ i nermai
Core Loss Model		Electrical Steel	w/m^3	=	🗖 Structural
- Kh	Simple	204.316872579059			
- Kc	Simple	0.530274808471043			
- Ke	Simple	13.1673839528039			
- Kdc	Simple	0			i nermai modirier
Mass Density	Simple	7700	kg/m^3		
Composition		Lamination			
- Stacking Factor	Simple	0.96			
- Stacking Direction		V(1)			
Young's Modulus	Simple	0	N/m^2		
Poisson's Batio	Simple	n		-	
Calculate Properties for					Validate Material

Slika 4.13. Odabir opcije računanja gubitaka u jezgri transformatora za jednu frekvenciju

Na slici 4.13. je prikazan prozor *View/Edit Material* u kojemu je moguće odabrati računanje koeficijenata nužnih za model transformatora s gubicima u jezgri. Stoga se u sekciji *Calculate Properties for:* odabire *Core Loss at One Frequency* ... kako je uokvireno na slici 4.13. Time se otvara prozor sa slike 4.14.

Slika 4.14. Prozor BP Curve

Na slici 4.14. je prikazan prozor *BP Curve* i *BP* krivulja koja je izvedena iz tabličnih podataka odnosno parova vrijednosti *B* i *P* koji se nalaze na lijevoj strani prozora pod nazivom *Coordinates*. Ti se tablični podaci grupno unose pomoću naredbe *Import Dataset* ... i prikupljeni su iz izvora [15]. Osim toga, potrebno je odabrati mjernu jedinicu gubitaka u jezgri, gustoću materijala, frekvenciju pri kojoj se računaju gubici u jezgri, debljinu pojedinog lima jezgre transformatora i specifičnu vodljivost materijala M530-50A prema slici 4.14. Na kraju se sve potvrđuje lijevim klikom na *OK* u prozoru sa slike 4.14. Ovime je završen proces definiranja novog materijala M530-50A u *Ansys Maxwell*-u.

Proces crtanja jezgre transformatora započinje korištenjem ikone *Draw box* koja se nalazi na alatnoj traci. Prije crtanja jezgre je potrebno obratiti pozornost da je materijal koji se trenutno koristi M530-50A.

Slika 4.15. Korištenje ikone Draw box

Na slici 4.15. u pravokutnom okviru i strelicom prikazana je ikona *Draw box* pomoću koje se crta jezgra transformatora. Nakon odabira ikone *Draw box* potrebno je unijeti početne koordinate i pomake po osima koji definiraju veličinu jezgre transformatora. Početne su koordinate jezgre transformatora za x os -15, y os -75 i za z os 0. Pomak po x osi je 30, po y osi 150 i po z osi 150. Sve su dimenzije izražene u milimetrima. Sljedeća slika prikazuje geometrijsko tijelo dobiveno unošenjem navedenih početnih koordinata i pomaka po osima.

Slika 4.16. Kvadar iz kojeg se izvodi jezgra transformatora

Kako bi se dobio oblik jezgre transformatora s tri jednaka stupa kojeg povezuju dva jarma, tvoreći tako dva prozora, potrebno je upotrijebiti naredbu *Subtract* koja se nalazi na alatnoj traci. Prije korištenja naredbe *Subtract* potrebno je nacrtati dva kvadra koji se nalaze unutar većeg kvadra sa slike 4.15. Početne koordinate prvog kvadra su x:-15, y:-45 i z:30, a pomak po x osi je 30, po y osi je 30 i po z osi je 90. Drugi se kvadar lako nacrta korištenjem ikone *Duplicate Around Axis* koja se nalazi na alatnoj traci. Potrebno je napraviti duplikat kvadra koji se nalazi unutar većeg kvadra tako da su manji kvadri međusobno simetrični s obzirom na z os. To se postiže postavljanjem vrijednosti kao na sljedećoj slici.

Axis:	$\odot \times$	CΥ	€Ζ		
Angle:	180	-	deg	•	
Fotal number:	2	<u>.</u>			
Attach To Origi	inal Objec	st: 🗖			

Slika 4.17. Korištenje naredbe Duplicate Around Axis

Na slici 4.17. je strelicom i pravokutnikom označena ikona *Duplicate Around Axis* koja služi za stvaranje duplikata geometrijskih tijela, u ovom slučaju jednog kvadra, oko odabrane osi, u ovom slučaju oko z osi za 180°.

Slika 4.18. Korištenje naredbe Subtract

Na slici 4.18. prikazana su tri kvadra, od kojih se oblikuje konačni oblik jezgre transformatora. Potrebno je izuzeti dva manja kvadra od većeg kvadra sa slike 4.18. tako da jezgra transformatora ima tri stupca povezana gornjim i donjim jarmom. To se ostvaruje tako da se označe sva tri kvadra sa slike 4.18., a to su *Box1*, *Box2* te *Box2_1*. Nakon toga treba lijevim klikom miša kliknuti na ikonu *Subtract* koja je uokvirena i strelicom označena na slici 4.18.

Blank Parts	-	Tool Parts
Box1	->	Box2 Box2_1
	<	
Clone tool obje	ects before i	operation

Slika 4.19. Subtract prozor

Nakon odabira naredbe *Subtract* otvara se prozor na slici 4.19. Veliki je kvadar *Box1* u dijelu *Blank Parts*, a dva manja kvadra *Box2* i *Box2_1* pripadaju dijelu *Tool Parts* kako je prikazano na slici 4.19.

Slika 4.20. Oblik magnetske jezgre transformatora u Ansys Maxwell 3D području

Na slici 4.20. se nalazi konačni oblik magnetske jezgre modela trofaznog transformatora *Elektrosklop TPTO 200 VA* koja je izgrađena od materijala M530-50A i modelirana u *Ansys* *Maxwell 3D* području. Po završetku konstruiranja jezgre transformatora započinje modeliranje špula koji se nalaze na stupovima jezgre iz izolacijskih razloga.

Špule je potrebno postaviti na sva tri stupa transformatorske jezgre sa slike 4.20. Njihova visina je, prema [16], 85.5 mm, a odabrana je debljina špule od 0.5 mm. Na špule se prvo namata donjonaponski, a zatim gornjonaponski namot transformatora. Visina je prozora transformatorske jezgre 90 mm, a špule su postavljene na sredinu stupca odnosno prozora jezgre tako da za smještaj špula odnosno namota transformatora nije iskorištena cijela visina prozora. Crtanje špule počinje s crtanjem pravokutnika u XZ ravnini koji svojom duljom stranicom dodiruje jezgru transformatora.

	Properties: TROFAZNI_TR/ Command	adel I I I I I I I I I I I I I I I I I I I	Modeler) ~ (<mark>□</mark>)	
CreateBox	Name	Value	Unit	Evaluated Value	Description
	Command	CreateRectangle			
Rectangle1	Coordinate Sys.	Global			
- CreateRectangle	Position	15.0.117.75	mm	15mm , 0mm , 1	
CoverLines	Axis	Y			
📿 Coordinate Systems	XSize	0.5	mm	0.5mm	
B Planes	ZSize	-85.5	mm	-85.5mm	
					Show Hidden
				ОК	Cancel Apply

Slika 4.21. Crtanje pravokutnika i njegove dimenzije

Prije crtanja pravokutnika potrebno je na alatnoj traci odabrati XZ ravninu u kojoj se crta pravokutnik. Na slici 4.21. crno je uokvirena ikona *Draw rectangle* koja omogućuje crtanje pravokutnika. Početne su koordinate pravokutnika za x os 15, za y os 0 i za z os 117.75, a pomak po x osi je 0.5, po y osi pomak je 0, a po z osi pomak je -85.5. Sve su koordinate i svi pomaci po osima izraženi u milimetrima. Taj pravokutnik *Rectangle1* crveno je uokviren na slici 4.21. i pripada grupi *Sheets*. Nakon crtanja pravokutnika *Rectangle1* potrebno je nacrtati još jedan pravokutnik u XY ravnini. Početne su koordinate drugog pravokutnika *Rectangle2* za x os 15.5,

za y os -15.5 i za z os 75. Pomak po x osi je -31, pomak po y osi je 31, a pomak po z osi je 0. Sve su koordinate i pomaci izraženi u milimetrima.

Slika 4.22. Dva pravokutnika iz kojih će se oblikovati špula

Na slici 4.22. su prikazani pravokutnici *Rectangle1* i *Rectangle2* koji su postavljeni oko srednjeg stupa jezgre transformatora. Nakon kreiranja pravokutnika *Rectangle1* i *Rectangle2* potrebno je označiti *Rectangle2* i na izbornoj traci odabrati opciju *Modeler* te u padajućem izborniku odabrati naredbu *Delete Last Operation*. To je prikazano na sljedećoj slici.

Slika 4.23. Primjena naredbe Delete Last Operation

Slika 4.24. Realizacija naredbe Delete Last Operation nad Rectangle2

Naredbom *Delete Last Operation* briše se zadnja funkcija koja je automatski obavljena nad pravokutnikom *Rectangle2* i naziva se *Cover Lines*. Poništavanjem funkcije *Cover Lines* nad pravokutnikom *Rectangle2* ostali su samo okviri pravokutnika *Rectangle2* što je prikazano na slici 4.24. Funkcija *Cover Lines* primijenjena je na pravokutniku *Rectangle1* i uokvirena je na

slici 4.24. Nakon toga potrebno je označiti oba pravokutnika, *Rectangle1* i *Rectangle2*, te je desnim klikom miša na *Rectangle1* ili *Rectangle2* u sekciji *Sheets* i *Lines* potrebno u padajućem izborniku odabrati naredbu *Edit*. U naredbi *Edit* potrebno je u padajućem izborniku odabrati naredbu *Sweep*, a zatim opet u padajućem izborniku odabrati opciju *Along Path* ...

Slika 4.25. Odabir naredbe Sweep Along Path za Rectangle1 i Rectangle 2

Angle of twist:	0	deg 💌
)raft angle:	0	deg 💌
)raft type:	Round	-

Slika 4.26. Prozor Sweep Along Path

Nakon odabira opcije *Sweep Along Path* ... sa slike 4.25. otvara se prozor sa slike 4.26. koji treba biti popunjen kako je i prikazano na slici 4.26. Lijevim klikom miša na *OK* u prozoru sa slike 4.26. dobiva se geometrija špule na srednjem stupcu jezgre transformatora.

Slika 4.27. Jezgra transformatora i špula na srednjem stupu jezgre

Jezgra je transformatora definirana u sekciji *Solids* kao materijal *M530-50A*, a špula je također u sekciji *Solids* definirana kao materijal *PVC plastic*, što je u skladu sa stvarnim transformatorom *Elektrosklop TPTO 200 VA*. Slika 4.27. prikazuje jezgru transformatora i špulu na srednjem stupu jezgre transformatora koja se nalazi neposredno uz jezgru tako da se jezgra i špula međusobno dodiruju. Sada je potrebno smjestiti špule i na preostala dva stupa jezgre transformatora. Za smještaj se špula na preostale stupove koristi ikona *Duplicate Along Line*.

Slika 4.28. Korištenje naredbe Duplicate Along Line

Prvo je potrebno označiti špulu na srednjem stupu, a zatim je potrebno na alatnoj traci odabrati strelicom označenu i uokvirenu ikonu *Duplicate Along Line* sa slike 4.28. Pomoću naredbe *Duplicate Along Line* moguće je stvarati identične objekte duž nekog pravca. U ovom slučaju, nakon označavanja špule na srednjem stupu i naredbe *Duplicate Along Line*, potrebno je unijeti početne koordinate i pomake po osima. Početna koordinata za x os je 0, za y os je 0 i za z os je 0. Pomak po x osi je 0, po y osi je 60, a po z osi je 0. Sve su koordinate i dimenzije iskazane u milimetrima. Nakon unosa početnih koordinata i pomaka po osima otvara se prozor u kojem je pod opciju *Total number* potrebno postaviti 2 i to potvrditi s *OK*. Navedenim postupkom postavljena je identična špula na desni stup transformatorske jezgre sa slike 4.28. Postavljanje se špule na lijevi stup transformatorske jezgre sa slike 4.28. ostvaruje na isti način, a jedina razlika u odnosu na postavljanje špule na desni stup je pomak po y osi koji sada iznosi -60 mm. Sve ostale početne koordinate i pomaci po osima su jednaki onima pri opisanom postupku postavljanja špule na desni stup transformatorske jezgre sa slike 4.28.

Slika 4.29. Jezgra transformatora i špule na sva tri stupa

Na slici 4.29. je prikazana jezgra transformatora sa svim potrebnim špulama, a to je ostvareno gore navedenim postupkom. Time je proces postavljanja špula na stupove transformatorske jezgre završen.

Na sva tri stupa transformatorske jezgre potrebno je postaviti namote transformatora. Prvi se do špula, odnosno jezgre, postavlja donjonaponski namot, a zatim se neposredno na donjonaponski namot postavlja gornjonaponski namot. Postupak postavljanja namota na stupove transformatorske jezgre analogan je postupku postavljanja špula na stupove transformatorske jezgre. Iz tog će razloga postupak postavljanja namota na stupove magnetske jezgre biti ukratko opisan. Prije crtanja namota nužno je postaviti bakar kao materijal od kojega će biti građeni namoti. Prvi donjonaponski namot može se postavljati na bilo koji od tri stupa transformatorske jezgre sa slike 4.29. Na alatnoj je traci postavljena XZ ravnina crtanja. Početak crtanja namota je crtanje prvog pravokutnika čije su početne koordinate za x os 15.5, za y os 0, a za z os 117.75. Pomak po x osi je 3, po y osi je 0 te je pomak po z osi -85.5. Na taj je način nacrtan prvi pravokutnik. Sve su početne koordinate i pomaci po osima iskazani u milimetrima. Drugi se pravokutnik crta u XY ravnini i ima početne koordinate za x os 17, za y os -17 i za z os 75. Pomak po x osi je -34, po y osi je 34, a po z osi je jednak nuli. Tako su stvorena dva
pravokutnika iz kojih će se, redom pomoću naredbi *Delete Last Operation* pa korištenjem opcije *Edit* te naredbom *Sweep Along Path*, napraviti prvi donjonaponski namot na srednjem stupu transformatorske jezgre. Postavljanje se namota identičnih donjonaponskom namotu sa srednjeg stupa na preostale stupove transformatorske jezgre obavlja pomoću naredbe *Duplicate Along Line*. Početne koordinate su za sve tri osi jednake nuli, a pomak po y osi je 60 mm za postavljanje donjonaponskog namota na desni stup transformatorske jezgre sa slike 4.29., dok je pomak po y osi -60 mm za postavljanje donjonaponskog namota na stupovima jezgre transformatorske jezgre sa slike 4.29. Debljina donjonaponskih namota na stupovima jezgre transformatora je 3 mm (pomak po x osi za prvi pravokutnik). Na taj su način stvoreni donjonaponski namoti. Na slici 4.30. je prikazana jezgra transformatora na kojoj su smještene tri špule i tri donjonaponska namota.

Slika 4.30. Jezgra transformatora, špule i donjonaponski namoti

Na kraju ostaje crtanje gornjonaponskih namota koji se postavljaju oko stupova transformatorske jezgre direktno uz donjonaponske namote. Postupak je crtanja gornjonaponskih namota analogan postupku crtanja donjonaponskih namota pa se prije crtanja prvog pravokutnika postavlja XZ ravnina crtanja. Prvi se gornjonaponski namot crta proizvoljno na srednjem stupu transformatorske jezgre. Početne su koordinate crtanja prvog pravokutnika za x os 18.5, za y os 0 i za x os 117.75. Pomak po x osi je 11, pomaka po y osi nema i pomak po z osi je -85.5. Sve su koordinate i pomaci iskazani u milimetrima. Time je oblikovan prvi pravokutnik. Drugi se

pravokutnik crta u XY ravnini pa je potrebno postaviti XY ravninu crtanja. Početne koordinate crtanja su za x os 24, za y os -24, a za z os 75. Pomak po x osi je -48, a po y osi je 48. Pomaka po z osi nema, jednak je nuli. Iz tih će se pravokutnika oblikovati prvi gornjonaponski namot uz pomoć naredbi *Delete Last Operation*, zatim korištenjem opcije *Edit* pa *Sweep Along Path*. Pomoću naredbe *Duplicate Along Line* konstruirat će se gornjonaponski namoti na preostalim stupovima transformatorske jezgre. Početne koordinate prilikom korištenja naredbe *Duplicate Along Line* su za sve tri osi jednake nuli, a pomak po y osi je 60 mm za postavljanje gornjonaponskog namota na desni stup transformatorske jezgre sa slike 4.30. dok je pomak po y osi -60 mm za postavljanje gornjonaponskog namota na lijevi stupac transformatorske jezgre sa slike 4.30. Debljina gornjonaponskog namota je 11 mm (pomak po x osi prvog pravokutnika). Bakar je materijal od kojeg je građen gornjonaponski namot.

Slika 4.31. Kompletna geometrija modela transformatora Elektrosklop TPTO 200 VA u Ansys Maxwell 3D području

Nakon što je dovršeno crtanje i oblikovanje transformatorske jezgre, špula i namota potrebno je definirati priključnice na namotima transformatora. Da bi se definirale priključnice na svakom donjonaponskom i gornjonaponskom namotu za početak je neophodno označiti sve namote transformatora sa slike 4.31.

Slika 4.32. Prvi korak u postavljanju priključnica na sve namote transformatora

Nakon što se označe svi namoti transformatora kako je prikazano na slici 4.32. desnim klikom na namote u padajućem izborniku odabire se opcija *Edit*, te se u podizborniku *Edit* odabire *Surface* te se na kraju lijevim klikom odabere *Section*. Nakon odabira opcije *Section* otvara se prozor *Section* u kojem se bira ravnina *Section Plane* u kojoj će biti postavljene priključnice svih namota transformatora. Odabire se YZ *Section Plane*. Time su stvorene po dvije priključnice na svakom donjonaposnkom i gornjonaponskom namotu u YZ ravnini. Sljedeći je zadatak odvajanje priključnica na svakom pojedinom namotu jer se dvije priključnice na svakom namotu trenutno promatraju kao cjelina. Za razdvajanje priključnica prvo je potrebno označiti sve priključnice namota kako je označeno na slici 4.33., zatim je potrebno desnim klikom na sve označene priključnice otvoriti padajući izbornik i odabrati opciju *Edit*, a nakon toga je potrebno odabrati opcije *Boolean* i *Separate Bodies*. To je prikazano na slici 4.33.

Slika 4.33. Postupak odvajanja priključnica u zasebne dijelove područja Sheets

Nakon odabira opcije *Separate Bodies* sve su priključnice postale zasebne cjeline na svakom od namota transformatora.

Slika 4.34. Odvojene priključnice u području Sheets

Nakon razdvajanja priključnica na svakom namotu transformatora uklanjaju se priključnice s namota transformatora tako da na svakom namotu transformatora ostane po jedna priključnica. Na slici 4.34. označene su priključnice koje se uklanjaju, a ostale se priključnice koje nisu označene, *PRIMAR_DESNI_STUP_Section1*, *PRIMAR_LIJEVI_STUP_Section1*, itd., ne uklanjaju. Sada se može definirati uzbuda na svakoj priključnici transformatora.

Slika 4.35. Dodjeljivanje uzbude na priključnici primarnog namota na desnom stupu jezgre transformatora

Na slici 4.35. je prikazano dodjeljivanje željene vrste uzbude na priključnicu primarnog namota na desnom stupu jezgre transformatora. Nakon što se označi primarni namot na desnom stupu jezgre transformatora, desnim se klikom miša na označeni namota otvara padajući izbornik u kojem je potrebno izabrati opciju *Assign Excitation*, a zatim *Add Winding*. Nakon toga se otvara *Winding* prozor.

Name:	Primar_desni_stup	
Parameters		
Туре:	External	Solid 🖲 Stranded
Initial Current	0	mA 💌
Resistance:	0	ohm 💉
Inductance:	0	nH 💌
Voltage:	0	mV _
Number of par	allel branches: 1	
	Use Defa	ults

Slika 4.36. Winding prozor

Na slici 4.36. je prikazan Winding prozor u kojem je prikazano kako je potrebno postaviti parametre uzbude. Tip je uzbude *External* što odgovara vanjskoj uzbudi koja se kasnije definira u *External Circuit*-u, a *Stranded* označava da namot nije iz jednog komada bakra, nego da je sastavljen od mnoštva zavoja bakrene žice. Parametar je *Initial Current* jednak nuli. Nakon ovoga je potrebno zadati broj zavoja primarnog namota na desnom stupu transformatorske jezgre.

Slika 4.37. Korištenje opcije Assign Coil Terminal ...

Za postavljanje je broja zavoja primarnog namota na desnom stupu jezgre transformatora najprije potrebno označiti priključnicu *PRIMAR_DESNI_STUP_Section1* koja je uokvirena na slici 4.37. Nakon toga potrebno je, prema slici 4.37., desnim klikom u *Project Manager-u na Primar_desni_stup* odabrati opciju *Assign Coil Terminal*. Nakon toga se otvara prozor *Coil Terminal Excitation*.

Name:	CoilTerminal1
Parameters	
Number of Conductors:	2064
	Swap Direction
	Use Defaults

Slika 4.38. Postavljanje broja zavoja primarnog namota na desnom stupu transformatorske jezgre

Na slici 4.38. je prikazan prozor *Coil Terminal Excitation* u kojem se postavlja broj zavoja primarnog namota desnog stupa transformatorske jezgre. Broj zavoja se definira pomoću parametra *Number of Conductors* i za svaki primarni namot iznosi 2064. Za svaki je primarni i sekundarni namot potrebno obaviti definiranje uzbude i postavljanje broja zavoja. Postupak je definiranja uzbude i postavljanja broja zavoja za svaki namot identičan osim što se za sve sekundarne namote postavlja 114 zavoja.

Sada se, nakon definiranja uzbude i postavljanja broja zavoja svih namota, nameće potreba da se svi primarni namoti transformatora električki izoliraju od svih sekundarnih namota transformatora. Izolacija je između transformatorske jezgre i sekundarnih namota osigurana korištenjem plastičnih špula na sva tri stupa transformatorske jezgre.

Slika 4.39. Postavljanje izolacije na sekundarne namote transformatora

Na slici 4.39. je prikazan postupak električnog izoliranja sekundarnih namota od primarnih namota transformatora. U ovom slučaju izolacija je postavljena na sekundarne namote transformatora, iako se izolacija mogla postaviti i na sve primarne namote transformatora umjesto na sve sekundarne namote transformatora. Prvo je potrebno označiti sve sekundarne namote, a zatim desnim klikom miša na označene sekundarne namote otvoriti padajući izbornik u kojemu se odabire opcija *Assign Boundary* i nakon toga se odabire opcija *Insulating* ... Time je sekundarni namot izoliran od primarnog i obrnuto. Postavljanjem se izolacije na sve sekundarne namote galvanski odvajaju svi primarni namoti od svih sekundarnih namota pa nije potrebno postavaljati izolaciju na primarne namote transformatora.

Prema [18], mreženje ili diskretizacija je podjela nekog volumena računalnog modela u konačan broj manjih volumena konačnih dimenzija. Nadalje, na svim je dijelovima transformatora potrebno postaviti željeno mreženje. Dakle, mreženje će se vršiti na jezgri transformatora, svim primarnim i sekundarnim namotima i na svim špulama. Dio se transformatora kojemu se planira postaviti mreženje prvo mora označiti. Neka kao primjer postavljanja željenog mreženja bude jezgra transformatora. Dakle, prvo se označi jezgra transformatora kako je prikazano na slici 4.40.

Slika 4.40. Postavljanje mreženja unutar jezgre transformatora

Desnim se klikom na označenu jezgru transformatora, prema slici 4.40., otvara padajući izbornik u kojem se odabire naredba *Assign Mesh Operation*, zatim opcija *Inside Selection* te na kraju lijevim klikom miša *Length Based* ... opcija. Time je postavljeno mreženje unutar odabranog objekta, u ovom slučaju unutar jezgre transformatora. Klikom se na opciju *Length Based* ... otvara novi *Element Length Based Refinement* prozor.

ame: <u>L'angun l</u>	🔽 Enable
_ength of Elements	
Restrict Length of Elements	
Maximum Length of Elements:	
17.1 mm	-
Restrict the Number of Elements:	₹ २
4000	

Slika 4.41. Prozor Element Length Based Refinement

Na slici 4.41. je prikazan prozor *Element Length Based Refinement* u kojem je moguće odabrati mreženje prema duljini diskretiziranih elemenata i mreženje nekog objekta u kojem je ograničenje maksimalni broj diskretiziranih elemenata. Odabire se jedino mreženje s ograničenim maksimalnim brojem diskretiziranih elemenata i prema tome je najveći broj diskretiziranih elemenata za jezgru transformatora 4000 elemenata. Povećanjem broja diskretiziranih elemenata produljuje se izvođenje simulacije na računalu jer računalo rješava matematičke operacije nad svakim diskretiziranim elementom. Postupak se postavljanja željenog mreženja dalje obavlja na svim namotima i špulama transformatora. Za svaki je navedeni dio transformatora postavljeno mreženje ograničeno s obzirom na najveći dopušteni broj diskretiziranih elemenata koji iznosi 4000 elemenata.

Sljedeći je zadatak definiranje objekta pod nazivom *Region* u *Ansys Maxwell 3D* području. Unutar tog objekta ili regije moraju se nalaziti svi prethodno stvoreni objekti koji čine računalni model transformatora. Regija je objekt koji sadrži sve objekte računalnog modela, u ovom su slučaju to jezgra transformatora, sve špule i svi namoti transformatora. Pomoću regije definira se područje promatranja i simuliranja računalnog modela pa regija predstavlja granicu računalnog modela u *Ansys Maxwell 3D* području. Izrada je regije moguća na dva načina, a to su izbor ikone *Create Region* na alatnoj traci *Ansys Maxwell 3D* području ili stvaranje objekta bilo kojeg geometrijskog oblika, pomoću naredbi *Draw box, Draw cylinder, Draw sphere*, itd., unutar kojega se nalaze svi objekti računalnog modela. Na sljedećoj je slici prikazano korištenje naredbe *Create Region*.

Slika 4.42. Korištenje naredbe Create Region i podešavanje dimenzija regije

Na slici 4.42. je uokvirena ikona *Create Region*. Lijevim klikom miša na ikonu *Create Region* otvara se prozor *Region* sa slike 4.42. u kojemu se podešavaju dimenzije regije. U prozoru je *Region* potrebno pod *Padding Data* odabrati *Pad individual directions*. Time se dimenzije regije podešavaju proizvoljno. Vrijednost 100% u pozitivnom dijelu X osi, u prozoru *Region* sa slike 4.42., označava da je granica regije udaljena od modela transformatora za X dimenziju modela transformatora, a to je 59 mm. Isto vrijedi i za granicu regije u negativnom dijelu X osi. Granice su regije za oba područja (pozitivno i negativno) preostale dvije osi udaljene od modela

transformatora za polovicu Y i Z dimenzija transformatora. To je u skladu s vrijednostima *Percentage Offset* u prozoru *Region* na slici 4.42.

Slika 4.43. Model transformatora i regija u Ansys Maxwell 3D području

Na slici 4.43. su prikazani model transformatora i regija koja predstavlja granicu promatranja fizikalnih pojava. Regija koja je definirana prema gore navedenom postupku je kvadar sa slike 4.43. Vakuum je automatski podešen unutar regije.

Sljedeći je zadatak u *Ansys Maxwell 3D* području podešavanje vremenskih karakteristika simulacije. Potrebno je desnim klikom na *Analysis* u prozoru *Project Manager* u padajućem izborniku odabrati opciju *Add Solution Setup*.

oject Manager				Ψ×
TROFAZNI_TR	ANSI	FORMATOR_01_07*		
🖻 🙀 Maxwell30	Des	ign1 (Transient)*		
- 🚑 3D Com	ooner	nts		
Model	2107			
Handar	ies			
	ins			
	ers oerati	005		
		0115		
Optime1	Ê	Paste	Ctrl+V	
Results		Add Solution Setup		
Definitions		List		
		Analyze		
		Reset to Time Zero		
		Revert to Initial Mesh		
		Apply Mesh Operation	ns	
		Export ECE Data		
		0		

Slika 4.44. Add Solution Setup

Odabirom se opcije Add Solution Setup otvara prozor Solve Setup.

eneral Save Fields	Advanced Solver Expressio	n Cache Defaults
Name:	Setup 1	Finabled
Transient Setup		
Stop time:	100	ms 💌
Time step:	0.1	ms 💌
	Use Default	
	Use Default	HPC and Analysis Options

Slika 4.45. Prozor Solve Setup

Na slici 4.45. je prikazan *Solve Setup* prozor u kojemu je moguće postaviti vrijeme trajanja tranzijentne simulacije, *Stop time*. U ovom je slučaju vrijeme trajanja tranzijentne simulacije 60

ms, a simulacija se vrši u koracima, *Time step*, koji iznose 0.5 ms. Prema tome, računalni će program u 200 koraka izvesti simulaciju tranzijentne pojave na modelu transformatora u *Ansys Maxwell 3D* području.

aeneral Save Fields Advance	d Solver Expression Cacl	he Defaults	
Sweep Setup	[Time	-
Type: Linear Step	▼ Add to List >>	5000000ns	
		5050000ns	
Start: 50000000 ns	Replace List >>	5100000ns	
Ston: 60 ma	ㅋ [5150000ns	
Stop. 100 Juis		5200000ns	
Step Size: 0.5 ms	✓ Add Single Point	5250000ns	
		5300000ns	
	Delete Selection	5350000ns	
	Close All	5400000ns	_
		54500000ns	
	Undo Last Change	5500000ns	
		55500000ns	
	Ĩ	5600000ns	
Please note the stop time define	d in the General Page	5650000ns	
will be included automatically.		5700000ns	
		57500000ns	
		5800000ns	
		5850000ns	
		5900000ns	
		5950000pp	

Slika 4.46. Save Fields podizbornik u Solve Setup prozoru

Na slici 4.46. se nalazi prozor *Solve Setup* u kojemu je otvoren dio za postavljanje vremenskih karakteristika u kojima se simulira magnetsko polje. U *Save Fields* podizborniku prozora Solve Setup je podešeno vrijeme početka promatranja magnetskih polja pod nazivom *Start* u trenutku 50 ms. Simualcija polja i njihovo promatranje traje 10 ms, pa je kraj simulacije pod nazivom *Stop* u trenutku 60 ms. Korak simulacije (*Step Size*) je 0.5 ms. Prema tome, nakon simulacije modela transformatora moći će se promatrati magnetska polja u modelu transformatora u točno određenim trenucima koji se nalaze u rasponu od 50 do 60 ms i prikazani su tablično u desnom dijelu prozora *Solve Setup* na slici 4.46. Time je određena vremenska karakteristika simulacije.

Kako je uzbuda transformatora, prema prozoru sa slike 4.36., postavljenja kao vanjska uzbuda (*External*), nužno je zadati uzbudu posredstvom *External Circuit*-a u *Ansys Maxwell*-u. To se ostvaruje na sljedeći način.

TRAFO_ELEKTROSKL	OP_200VA_TROFAZNI_MODEL530_07_07_2* n1 (Transient)*		a - [∠ Coordinate Systems a - ∰ Planes a - ∰ Lists
Parameters Parameters Parameters Parameters Mesh Opera Parameters Parame	Assign List Reassign Delete All Visualization Set Default Base Name		
	External Circuit		Edit External Circuit
	Add Winding Setup Co-Simulation with Simulink Set Eddy Effects Set Core Loss		Set Minimum Time Step
Properties	Set Magnetization Computation	р×	c

Slika 4.47. Korištenje opcije Edit External Circuit ...

Na slici 4.47. je prikazan padajući izbornik koji se otvara desnim klikom na *Excitations* u *Project Manager*-u. Za dodavanje vanjske uzbude modelu transformatora u padajućem je izborniku potrebno odabrati opciju *External Circuit* te *Edit External Circuit* u skladu sa slikom 4.47. Nakon toga se otvara novi prozor *Edit External Circuit*.

Winding Name	Has Inductor in Circuit	Inductor Name
PRIMAR_DESNI_STUP		
PRIMAR_LIJEVI_STUP	Γ	
PRIMAR_SREDNJI_STUP		
SEKUNDAR_DESNI_STUP		
SEKUNDAR_LIJEVI_STUP		
SEKUNDAR_SREDNJI_STUP		
	Impat Circu	it Notlist

Slika 4.48. Prozor Edit External Circuit

Na slici 4.48. je prikazan Edit External Circuit prozor u kojemu je potrebno odabrati opciju Create Circuit koja namote transformatora sa slike 4.43. u novom External Circuit radnom prostoru predstavlja sa šest zavojnica. Tri od ukupno šest zavojnica u novom radnom prostoru predstavljaju gornjonaponske zavojnice, a to su redom: LPRIMARNI_NAMOT_L_S (gornjonaponska zavojnica na lijevom stupu jezgre transformatora), LPRIMARNI NAMOT S S (gornjonaponska zavojnica na srednjem stupu jezgre transformatora) *LPRIMARNI_NAMOT_D_S* (gornjonaponska zavojnica na desnom stupu jezgre transformatora). U skladu s vrstom spoja namota transformatora iz tablice 4.1. gornjonaponski su namoti, odnosno zavojnice i radni otpori, spojeni u trokut spoj. U seriji je sa svakom zavojnicom primara dodan radni otpor primarnog namota po fazi koji je naknadno izračunat, a prvotno je multimetrom UNI-T UT71A između dvaju priključnica gornjonaponskog namota, na stvarnom transformatoru *Elektrosklop TPTO 200 VA*, izmjeren radni otpor $R_{m\Delta}$ u iznosu od 37.56 Ω . Kako je izmjeren radni otpor $R_{m\Lambda}$ između dvije gornjonaponske priključnice U i V, za dobivanje je radnog otpora gornjonaponskog namota po fazi potrebno izmjereni radni otpor protumačiti kao paralelni spoj jednog faznog radnog otpora $R_{1_{t\Delta}}$ i dva u seriju spojena fazna radna otpora $2R_{1f\Delta}$. Prema tome, radni otpor gornjonaponskog namota po fazi iznosi $R_{1f\Delta} = 56.34 \ \Omega$. Za lakše shvaćanje računanja radnog otpora gornjonaponskog i donjonaponskog namota po fazi služi slika 4.49.

a) mjereni radni otpor na gornjonaponskim stezaljkama UV

b) mjereni radni otpor na donjonaponskim stezaljkama uv

Slika 4.49. Mjereni radni otpori i izračunavanje vrijednosti faznih radnih otpora

Na slici 4.49. su prikazane električne sheme gornjonaponskog i donjonaponskog namota, gdje su prikazani samo radni otpori, promatrani sa strane dvaju priključnica prilikom mjerenja njihovog radnog otpora. Preostale su tri zavojnice u External Circuit radnom području, stvorene opcijom Create Circuit, donjonaponske zavojnice koje nose imena: LSEKUNDARNI_NAMOT_L_S (donjonaponska zavojnica lijevom transformatora), na stupu jezgre LSEKUNDARNI_NAMOT_S_S (donjonaponska zavojnica na srednjem stupu jezgre transformatora) i LSEKUNDARNI_NAMOT_D_S (donjonaponska zavojnica na desnom stupu jezgre transformatora). Svakoj je donjonaponskoj zavojnici u seriju dodan fazni radni otpor tako da zajedno čine donjonaponske namote. Isto kao i na gornjonaponskom namotu, i na donjonaponskom je namotu stvarnog transformatora Elektrosklop TPTO 200 VA između dvaju priključnica u i v mjeren radni otpor donjonaponskog namota R_{mY} u iznosu od 0.52 Ω . Donjonaponski je namot u zvijezda spoju te je zato radni otpor jedne faze donjonaponskog namota $R_{1,ty}$ jednak polovini izmjerenog radnog otpora R_{my} , $R_{1,ty} = 0.26 \ \Omega$. Dakle, gornjonaponski su namoti spojeni u trokut spoju, a donjonaponski su namoti spojeni u zvijezda spoju. Gornjonaponski namoti nisu spojeni na teret i njihove priključnice su otvorene pa se prema tome model transformatora nalazi u praznom hodu. Gornjonaponski je namot potrebno uzemljiti u nekoj proizvoljno odabranoj točki električnog kruga kako je prikazano na slici 4.50. Na donjonaponski je namot priključen trofazni izvor električne energije u zvijezda spoju. Zvijezdište je trofaznog izvora električne energije uzemljeno, a svaki je izvor električne energije sinusoidalan s amplitudom faznog napona u iznosu od 31.11 V i frekvencijom od 50 Hz. Efektivna vrijednost podešenog napona izvora ($U_2 = 22$ V) je nazivna vrijednost faznog napona na donjonaponskom namotu stvarnog transformatora Elektrosklop TPTO 200 VA. Izvori su međusobno fazno pomaknuti za 120°, tako da je fazni pomak jednog izvora 0°, drugog 120°, a trećeg 240°. Izuzetno je važno uskladiti polaritete izvora električne energije koji trebaju biti postavljeni tako da je isti pol (npr. negativan pol) svakog izvora postavljen bliže zvjezdištu (u odnosu na pozitivan pol svakog izvora električne energije). Između faza donjonaponskog namota prikladno su priključeni voltmetri zbog mjerenja linijskih napona, ali nisu nužni. Pomoću njih je moguće detektirati pogrešku jer poznavanjem faznih napona donjonaponskih namota poznat je i linijski napon čije veće odstupanje od poznate vrijednosti ukazuje na grešku. Sljedeća slika prikazuje električnu shemu modela transformatora iz Ansys Maxwell 3D područja sa slike 4.43.

Slika 4.50. Električna shema modela transformatora Elektrosklop TPTO 200 VA

Na slici 4.50. se nalazi električna shema modela transformatora *Elekrosklop TPTO 200 VA* i izvora napajanja. Prethodno opisan postupak spajanja gornjonaponskih i donjonaposnkih namota realiziran je u *External Circuit* području *Ansys Maxwell*-a. Priključkom trofaznog izvora napajanja na donjonaponski namot sa slike 4.50. postavljena je vanjska (*External*) uzbuda. Prema shemi sa slike 4.50. simulira se uklop transformatora u praznom hodu. Sada je potrebno pohraniti električni krug sa slike 4.50. kako bi se mogao postaviti i definirati kao uzbuda modela transformatora u *Ansys Maxwell 3D* tranzijentnom području sa slike 4.43. Spremanje se električnog kruga vrši odabirom *Maxwell Circuit*-a u traci s izbornicima u *External Circuit* radnom području. Lijevim klikom na izbornik *Maxwell Circuit* otvara se padajući izbornik u kojemu je za spremanje električnog kruga potrebno ga je unijeti u *Ansys Maxwell 3D* područje desnim klikom na *Excitations* u *Project Manager*-u, a zatim u padajućem izborniku opet *External Circuit* u kojemu je potrebno odabrati opciju *Import Circuit Netlist ...*, a zatim je potrebno odabrati unos tog istog *External Circuit*-a koji je nedavno spremljen. Unosom je spremljenog električnog kruga u *Ansys*

Maxwell 3D područje podešena vanjska uzbuda 3D modela transformatora *Elektrosklop TPTO* 200 VA.

Simulacija će se vršiti u dva područja s obzirom na računanje matrice induktiviteta, a odabir se računanja matrice induktiviteta ostvaruje na sljedeći način.

Slika 4.51. Podešavanje dizajna

Na slici 4.51. je prikazan postupak u kojemu je desnim klikom na 3D model transformatora Maxwell3DDesign1 (Transient), u Project Manager-u, potrebno izabrati opciju *Design Setings* ... u padajućem izborniku. Time se otvara novi prozor *3D Design Settings*.

tation

Slika 4.52. Prozor 3D Design Settings

Na slici 4.52. se nalazi prozor 3D Design Settings. Potrebno je odabrati podizbornik *Matrix Computation*, a tada postaviti računanje matrice induktiviteta što je označeno kvačicom uz *Compute Inductance Matrix* u prozoru sa slike 4.52. Za jedan se slučaj simuliranja modela transformatora odabire *Incremental*, a za drugi slučaj *Apparent*. Kada se odabere *Incremental*, tada se računaju dinamički induktiviteti modela transformatora u *Ansys Maxwell*-u. Za slučaj odabira *Apparent* računaju se statički induktiviteti modela transformatora.

Osim toga, u Ansys Maxwell 3D području je potrebno definirati dio modela transformatora u kojemu će egzistirati gubici u jezgri. Za odabir gubitaka u jezgri potrebno je desnim klikom na Excitations, u Project Manager-u, otvoriti padajući izbornik i odabrati opciju Set Core Loss ...

Slika 4.53. Odabir opcije Set Core Loss ...

Na slici 4.53. se nalazi padajući izbornik pomoću kojega se otvara novi prozor Set Core Loss.

Use sett defi	e checkboxes to turn on/off core l ing will only take effect if the obje nition in the material library.	oss settings. Please ct has a correspondir	note the ng core lo	ss
	Object	Core Loss Setting	Define	*
	magnetska_jezgra	~		
	SPULA_SREDNJI_STUP			E
	SEKUNDAR_SREDNJI_STUP	Γ		
	PRIMAR_SREDNJI_STUP			1
	Region			
	SPULA_DESNI_STUP			
	PRIMAR DESNI STUP		•	Ŧ

Slika 4.54. Set Core Loss prozor

Za prisutnost je gubitaka u jezgri modela transformatora *Elektrosklop TPTO 200 VA* potrebno odabrati *Core Loss Setting* samo za model magnetske jezgre kako je i prikazano na slici 4.54. Osim postavljanja gubitaka u jezgri u točno određenom objektu, *Ansys Maxwell* nudi i postavljanje vrtložnih struja u objektima računalnog modela. Na slici 4.53. u padajućem izborniku moguće je odabrati i opciju *Set Eddy Effects* ... kako bi se postavila prisutnost vrtložnih struja u nekom objektu. U ovom je slučaju potrebno isključiti prisutnost vrtložnih struja u svim objektima računalnog modela transformatora *Elektrosklop TPTO 200 VA*.

Prije samog pokretanja simulacije je pogodno provjeriti i utvrditi valjanost modela u *Ansys Maxwell 3D* području. Na alatnoj traci u *Ansys Maxwell 3D* području postoji ikona *Validation Check* pomoću koje se provjerava ispravnost modelirane geometrije, definirane uzbude, izolacije, vremenskih postavki simulacije, mreženja, itd. i ukazuje na moguće greške u modelu.

Slika 4.55. Provjera ispravnosti modela i pokretanje simulacije

Na slici 4.55. je crnom bojom uokvirena ikona *Validation Check*. Lijevim klikom na ikonu *Validation Check* otvara se prozor *Validation Check* sa slike 4.55. u kojemu je iskazana ispravnost modela u *Ansys Maxwell*-u. Na slici 4.55. je crvenom bojom uokvirena ikona *Analyze All* pa se lijevim klikom na tu ikonu s alatne trake u *Ansys Maxwell 3D* području pokreće simulacija.

5. REZULTATI SIMULACIJE U RAČUNALNOM PROGRAMU ANSYS MAXWELL

Nakon izvršenja tranzijentne simulacije uklopa računalnog modela transformatora Elektrosklop TPTO 200 VA, pri praznom hodu, u Ansys Maxwell-u su dostupni rezultati tranzijentne simulacije u grafičkom i tabličnom obliku. Osim toga, moguć je trodimenzionalni prikaz raspodjele i promjene jakosti magnetskog polja H i magnetske indukcije B na i u odabranim dijelovima transformatora. Za stvaranje je grafičkog ili tabličnog prikaza neke fizikalne veličine, u vremenu, koja je obuhvaćena simulacijom na modelu transformatora potrebno koristiti opciju Results u Project Manager-u. Desnim klikom na opciju Results otvara se padajući izbornik u kojemu je potrebno odabrati opciju Create Transient Report, a zatim Rectangular Plot za grafički prikaz ili Data Table za tablični prikaz vremenske promjene određene fizikalne veličine iz računalnog modela transformatora. Promatraju se samoinduktiviteti i međuinduktiviteti namota transformatora, a za prvu je simulaciju postavljen Incremental način računanja matrice induktiviteta. To znači da se računaju dinamički induktiviteti računalnog modela transformatora Elektrosklop TPTO 200 VA.

5.1. Rezultati simulacije za Incremental tip rješavanja matrice induktiviteta

Slika 5.1. Samoinduktivitet gornjonaponskog namota na lijevom stupu modela transformatora

Slika 5.2. Samoinduktivitet gornjonaponskog namota na srednjem stupu modela transformatora

Slika 5.3. Samoinduktivitet gornjonaponskog namota na desnom stupu modela transformatora

Slika 5.4. Samoinduktivitet donjonaponskog namota na lijevom stupu modela transformatora

Slika 5.5. Samoinduktivitet donjonaponskog namota na srednjem stupu modela transformatora

Slika 5.6. Samoinduktivitet donjonaponskog namota na desnom stupu modela transformatora

Iz prikazanih vrijednosti promjena samoinduktiviteta jasno je da se oni mijenjaju tijekom vremena s promjenom struje kroz namote. Uzrok ovih promjena leži u nelinearnosti magnetskih svojstava materijala jezgre. Zbog ove je nelinearnosti određivanje vrijednosti induktivnih reaktancija u nadomjesnim shemama na slikama 2.16 i 2.17 vrlo kompleksno. Naime, ove nadomjesne sheme predstavljaju matematički model u obliku električne mreže s linearnim elementima. Zbog prije spomenute nelinearnosti jezgre magnetskog kruga vidljivo je da određivanje konstantnih vrijednosti induktivnih reaktancija nije moguće niti za ustaljena stanja, a pogotovo ne za prijelazna stanja poput ovoga nakon uklopa transoformatora u praznom hodu.

Osim induktiviteta, promatraju se i inducirani naponi u namotima, struje donjonaponskog namota i gubici u jezgri računalnog modela transformatora Elektrosklop TPTO 200 VA. Nakon odabira opcije Rectanguar Plot otvara se novi prozor u kojemu je potrebno odabrati neku od gore navedenih fizikalnih veličina koja će se prikazati u ovisnosti o vremenu. U Category je dijelu novootvorenog prozora potrebno odabrati grupu Winding, a zatim se za prikaz induciranih na donjonaponskim namotima u vremenu, odabire Induced Voltage napona (SEKUNDARNI_NAMOT_L_S), Induced Voltage (SEKUNDARNI_NAMOT_S_S) i Induced *Voltage* (*SEKUNDARNI_NAMOT_D_S*). Na taj se način dobiva sljedeća slika.

Slika 5.7. Inducirani naponi na donjonaponskim namotima

Na slici 5.7. je grafički prikazan valni oblik induciranih donjonaponskih faznih napona. Inducirani su naponi na slici 5.7. prikazani u vremenskom području, od 0 ms do 60 ms. Inducirani naponi sa slike 5.7. su inducirani fazni naponi u tri donjonaponska namota, a u gornjem je desnom kutu na slici 5.7. legenda koja objašnjava kojom bojom je označen inducirani napon pojedinog donjonaponskog namota. Nužno je napomenuti da su donjonaponski namoti modela transformatora *Elektrosklop TPTO 200 VA* u slučaju ove simulacije primarni namoti jer se preko njih dovodi energija u modelu transformatora. Zbroj induciranih faznih napona donjonaponskih namota u bilo kojem trenutku mora biti jednak nuli, a to je potvrđeno slikom 5.7.

Slika 5.8. Inducirani naponi na gornjonaponskim namotima

Na slici 5.8. je prikazana vremenska promjena induciranih napona u gornjonaponskim namotima modela transformatora *Elektrosklop TPTO 200 VA*. Na okomitoj osi je postavljen napon [V], a na vertikalnoj se osi nalazi vrijeme u razdoblju od 0 do 60 ms jer toliko traje simulacija u računalnom programu *Ansys Maxwell*. Inducirani naponi sa slike 5.8. su fazni naponi, a ujedno su i linijski naponi jer su gornjonaponski namoti modela transformatora *Elektrosklop TPTO 200 VA* u trokut spoju. Legenda u gornjem desnom kutu slike 5.8., pomoću različitih boja valnih oblika sa slike 5.8., objašnjava pripadnost induciranih napona gornjonaponskim namotima. Zbroj induciranih napona gornjonaponskih namota u bilo kojem trenutku mora biti jednak nuli što se može provjeriti na slici 5.8.

Slika 5.9. Struje donjonaponskih namota

Na slici 5.9. su prikazane struje donjonaponskih namota pri uklopu modela transformatora *Elektrosklop TPTO 200 VA* u praznom hodu. Na okomitoj se osi nalaze vrijednosti struje [A], a na horizontalnoj je osi smješten vremenski raspon od 0 ms do 60 ms. Struje koje su prikazane na slici 5.9. su struje praznog hoda u donjonaponskim namotima modela transformatora. Struja praznog hoda je puno manja u odnosu na nazivnu struju i obično iznosi nekoliko postotaka nazivne struje. Nazivna struja donjonaponskog namota je 3.03 A pa se na slici 5.9. može vidjeti da je struja praznog hoda po iznosu puno manja od nazivne struje.

Gubici se u jezgri transformatora mogu podijeliti na gubitke uslijed magnetske histereze i gubitke uslijed vrtložnih struja. U ovom slučaju promatraju se ukupni gubici u jezgri i gubici uslijed magnetske histereze. Da bi se dobio grafički prikaz ukupnih gubitaka u magnetskoj jezgri i gubitaka uslije magnetske histereze, potrebno je u *Project Manager*-u odabrati *Results*, a zatim *Create Transient Report* te *Rectangular Plot*. Tada se u novootvorenom prozoru pod Category treba odabrati *Loss*, a zatim *CoreLoss* za ukupne gubitke u magnetskoj jezgri, a *HysteresisLoss* za gubitke u magnetskoj jezgri uslijed magnetske histereze. Gubici uslijed vrtložnih struja ovise o kvadratu magnetske indukcije i o kvadratu frekvencije napajanja, a gubici uslijed magnetske histereze također ovise o indukciji, ali ne kvadratno. Stoga je za očekivati da se tijekom vremena variraju i nisu konstantna vrijednost.

Slika 5.10. Ukupni gubici u magnetskoj jezgri modela transformatora Elektrosklop TPTO 200 VA

Na slici 5.10. su prikazani ukupni gubici u magnetskoj jezgri pri uklopu transformatora u praznom hodu u vremenskom razdoblju od 0 ms do 60 ms. Gubici nisu konstanti jer se magnetska indukcija mijenja po petlji histereze za materijal M530-50A. U desnom se gornjem kutu nalazi legenda koja opisuje ukupne gubitke u magnetskoj jezgri. Na legendi se nalazi maksimalna, minimalna i prosječna vrijednost ukupnih gubitaka u vremenskom periodu od uklopa pa do 60 ms. Desnim klikom na legendu otvara se padajući prozor u kojemu je potrebno odabrati *Trace Characteristic* zatim *Add* kako bi se otvorio novi prozor u kojemu se bira neka od karakteristika krivulje ukupnih gubitaka u magnetskoj jezgri. Za dobivanje maksimalne, minimalne i prosječne vrijednosti krivulje gubitaka u novom prozoru bira se katergorija *Math*, i redom *max, min* i *avg*.

Slika 5.11. Gubici uslijed magnetske histereze u jezgri modela transformatora Elektrosklop TPTO 200 VA

Na slici 5.11. su prikazani gubici uslijed magnetske histereze u jezgri modela transformatora u vremenskom razdoblju od 0 ms do 60 ms. Istim su postupkom kao i kod ukupnih gubitaka prikazane maksimalna, minimalna i prosječna vrijednost gubitaka uslijed magnetske histereze.

Ansys Maxwell u tranzijentnom području pruža mogućnost prikaza jakosti magnetskog polja i intenziteta magnetske indukcije, a isto tako moguće je prikazati silnice magnetskog polja i indukcije na površini i unutar objekta koji čine računalni model u *Ansys Maxwell 3D* području.

Slika 5.12. Odabir trenutka u kojemu će se prikazati polje

Na slici 5.12. prikazan je odabir trenutka u kojemu će se prikazati trenutna jakost magnetskog polja ili indukcije. Prozor na slici 5.12. otvara se dvostrukim klikom na pravokutnik, unutar kojeg piše Time = -1, koji se nalazi u donjem lijevom kutu slike 5.12. U prozoru je moguće odabrati bilo koji trenutak simulacije u kojemu su se pratila polja pomoću opcije *Save Fields*. Kako je ranije podešeno u opciji *Save Fields*, polja se promatraju u razdoblju od 50 do 60 ms, a korak je 0.5 ms. S tim u skladu je odabir trenutaka sa slike 5.12. u kojima se mogu prikazati polja.

Slika 5.13. Odabir objekta i veličine koja će se prikazati

Nakon što se odabrao trenutak u kojemu će se promatrati magnetsko polje ili magnetska indukcija, potrebno je odabrati objekt u kojemu će se prikazati magnetsko polje ili magnetska indukcija. Na slici 5.13. odabrana je magnetska jezgra i prikazan je padajući izbornik koji se otvara nakon desnog klika na magnetsku jezgru. U padajućem izborniku potrebno je odabrati opciju *Fields*, a zatim jednu od veličina *H* ili *B*. Proizvoljno se odabire *B*, a zatim *Mag_B*. Time će se prikazati intenzitet magnetske indukcije u magnetskoj jezgri transformatora u odabranom trenutku.

Slika 5.14. Prikaz intenziteta magnetske indukcije u magnetskoj jezgri

Na slici 5.14. je prikazan intezitet magnetske indukcije u magnetskoj jezgri modela transformatora Elektrosklop TPTO 200 VA za karakterističan trenutak (60 ms) u kojemu je intenzitet magnetske indukcije veći u lijevom i srednjem stupu u odnosu na desni stup modela transformatora. Intenzitet je magnetske indukcije u pojedinim dijelovima magnetske jezgre iskazan različitim bojama. Crvena boja označava najveći intenzitet magnetske indukcije, zatim zelena boja pokazuje slabiji intenzitet magnetske indukcije da bi plava boja pokazivala najslabiji intenzitet magnetske indukcije.
Istim postupkom se odabire grafički prikaz jakosti magnetskog polja unutar magnetske jezgre modela transformatora *Elektrosklop TPTO 200 VA* u *Ansys Maxwell 3D* području.

Slika 5.14. Prikaz intenziteta magnetskog polja u magnetskoj jezgri

Slikom 5.14. je prikazana raspodjela jakosti magnetskog polja unutar magnetske jezgre transformatora modela transformatora. Prikazana je raspodjela jakosti magnetskog polja u trenutku 0.05 s odnosno 50 ms, a to je iskazano u pravokutniku u donjem lijevom kutu slike 5.14.

Naposljetku, promjena se jakosti magnetskog polja i promjena se intenziteta magnetske indukcije u nekom objektu modela u Ansys Maxwell 3D području može prikazati animacijom.

Project Manager		φ×	📮 🥎 Model	
Image: Second state sta	DDEL	530_1	Solids Solidas Solidas	etska_jezgra c
Mag_B1 (Setup 1 : Transient, 0.056)	×	Rena Delet Mod Set C Expo Anim Plot Selec	ime te ify Plot Context To Active Window rt Plot nate Visibility sign it Assignment	F2 Delete
<		×		

Slika 5.15. Odabir animacije intenziteta magnetske indukcije

Desnim se klikom na *Mag_B1(Setup1: Transient, 0.05s)* otvara padajući izbornik u kojemu se odabire opcija *Animate*...

Name: Animation1	Description:	
Swept Variable Design	n Point	
Swept variable:	Time	•
Select values:	0.05s 0.0505s 0.051-	<u>^</u>
	0.0515s 0.052s 0.052s 0.053s 0.053s 0.054s 0.054s 0.055s 0.055s 0.055s 0.055s 0.055s 0.055s 0.056s 0.056s 0.057s 0.057s 0.057s 0.05800000000001s 0.05800000000001s	E

Slika 5.16. Prozor Setup Animation

Na slici 5.16. je prikazan Setup Animation prozor u kojemu se odabiru trenuci u kojima će se odvijati animacija promjene intenziteta magnetske indukcije *B*. Trenuci koji se mogu odabrati za prikaz animacije su oni koji su podešeni ranije u opciji *Save Fields*.

5.2. Rezultati simulacije za Apparent tip rješavanja matrice induktiviteta

Slika 5.17. Samoinduktiviteti gornjonaponskih namota modela transformatora

Slika 5.18. Samoinduktiviteti donjonaponskih namota modela transformatora

Slika 5.19. Međuinduktiviteti između istoimenih namota modela transformatora

Na slikama 5.17., 5.18. i 5.19 se nalaze grafički prikazi samoinduktiviteta i međuinduktiviteta tijekom uklopa transforamtora u praznom hodu za prvih 60 ms. Kako se iz prikazanih vrijednosti promjena samoinduktiviteta međuinduktiviteta vidi, oni se mijenjaju u vremenu s promjenom struje kroz namote. Razlog ovih promjena je nelinearnost magnetskih svojstava materijala jezgre. Zbog ove je nelinearnosti određivanje vrijednosti induktivnih reaktancija u nadomjesnim shemama na slikama 2.16 i 2.17 vrlo kompleksno. Naime, ove nadomjesne sheme predstavljaju matematički model u obliku električne mreže s linearnim elementima. Zbog prije spomenute nelineaarnosti jezgre magnetskog kruga vidljivo je da određivanje konstantnih vrijednosti induktivnih reaktancija nije moguće niti za ustaljena stanja, a pogotovo ne za prijelazna stanja poput ovoga nakon uklopa transoformatora u praznom hodu.

ZAKLJUČAK

S obzirom na postavljene ciljeve u zadatku diplomskog rada, ovaj je diplomski rad ispunio očekivanja premda su moguća poboljšanja i proširenja u određivanju parametara nadomjesne sheme transformatora *Elektrosklop TPTO 200 VA*. Ostvareno je predstavljanje i upoznavanje osnovnih fizikalnih zakona na kojima se temelji transformator te je izvedena potpuna nadomjesna shema transformatora. Temeljito je predstavljeno stvaranje računalnog modela transformatora u *Ansys Maxwell*-u, što uključuje crtanje geometrije, postavljanje željenog mreženja, izolacije i uzbude. Nakon završetka simulacije prikazani su rezultati u vremenskoj domeni. Podaci koji bi zauzeli previše mjesta u diplomskom radu nalaze se u prilozima na kraju diplomskog rada.

LITERATURA

[1] B. Skalicki, J. Grilec, Električni strojevi i pogoni, Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, Zagreb, 2011.

[2] U. A. Bakshi, A. V. Bakshi, Electromagnetic Field Theory, Tehnical Publications Pune, Pune, 2008.

[3] B. Kuzmanović, Osnove elektrotehnike 1, 4. izdanje, Udžbenici Tehničkog veleučilišta u Zagrebu, Zagreb, 2012.

[4] hjp.znanje.hr

[5] http://www.enciklopedija.hr/

[6] V. Pinter, Osnove elektrotehnike, knjiga prva, 8. izdanje, Izdavačko trgovačko poduzeće TEHNIČKA KNJIGA, Zagreb, 1994.

[7] A. E. Fitzgerald, Charles Kingsley, Jr., Stephen D. Umans, Electric Machinery, Sixth Edition, McGraw-Hill Higher Education, 2003.

[8] B. Kuzmanović, Osnove elektrotehnike 2, 2. izdanje, Udžbenici Tehničkog veleučilišta u Zagrebu, Zagreb, 2002.

[9] Ramon Bargallo, FINITE ELEMENTS FOR ELECTRICAL ENGINEERING, Universitat Politecnica De Catalunya, Electrical Engineering Department, 2006.

[10] https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-641electromagnetic-fields-forces-and-motion-spring-2009/lecture-notes/MIT6_641s09_lec01.pdf

[11] J. Kožar, Određivanje električnih i mehaničkih prilika na kontaktima srednjenaponskog malouljnog prekidača simulacijom na računalu, Diplomski rad, Elektrotehnički fakultet Osijek, Osijek, 2013.

[12] Ansys Maxwell 3D, User's guide – Maxwell 3D, Ansys Inc., Canonsburg PA 15317, 2012.,

[13] http://www.trancerieemiliane.it/en/trasformatore.php

[14] https://perso.uclouvain.be/ernest.matagne/ELEC2311/T2006/NOFP.pdf

[15] https://cogent-power.com/cms-data/downloads/m530-50a.pdf

[16] http://www.cierreint.it/prodotti02_02.htm

[17] http://www.elektrosklop.hr/

[18] B. Jakovljević, Proračun asinkronog motora metodom konačnih elemenata, Diplomski rad, Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek, Osijek, 2016.

SAŽETAK

U ovom se radu rješava problem estimacije parametara transformatora *Elektroklop TPTO 200* VA pomoću mjerenja na stvarnom transformatoru i simulacije u programskom paketu Ansys Maxwell. Prvo se upoznaje s teorijskom podlogom transformatora, a to su elektromagnetski fizikalni zakoni. Zatim se, u Ansys Maxwell 3D području, crta geometrija modela transformatora, postavlja se prikladno mreženje, potrebna izolacija i uzbuda te se simulira kreirani model transformatora. Nakon simulacije se dobivaju rezultati koji se podudaraju s očekivanjima.

Ključne riječi: Transformator, nadomjesna shema transformatora, metoda konačnih elementata, Ansys Maxwell, simulacija, parametri nadomjesne sheme.

ABSTRACT

ESTIMATION OF EQUIVALENT TRANSFORMER'S CIRCUIT PARAMETERS USING COMPUTER PROGRAMME FOR ELECTROMAGNETIC FIELDS SIMULATION

This thesis deals with the problem about estimation of *Elektrosklop TPTO 200 VA* transformer's equivalent circuit parameters by real measurment with multimeter and by simulations in programme package *Ansys Maxwell*. First of all comes theory of transformers and that are electromagnetic physical laws. After that, in *Ansys Maxwell 3D* region, geometry of transformer model are drawing, appropriate meshing is setting and transformer excitation are modeling. Then, the simulations are running and results are given which correspond with expectations.

Key words: Transformer, transformer's equivalent circuit, finite element method, Ansys Maxwell, simulation, transformer's equivalent circuit parameters.

ŽIVOTOPIS

Domagoj Bilandžija je rođen 04. studenoga 1992. godine u Osijeku. Nakon završetka Osnovne škole Jagode Truhelke u Osijeku upisuje Prvu gimnaziju u Osijeku koju završava 2010./2011. nastavne godine. Nakon završetka srednjoškolskog obrazovanja polaže ispite državne mature i 2011. godine upisuje preddiplomski studij elektrotehnike na Elektrotehničkom fakultetu Sveučilišta Josipa Jurja Strossmayera u Osijeku. 2014. godine, nakon završetka preddiplomskog studija, upisuje diplomski studij, smjer Elektroenergetika, na Elektrotehničkom fakultetu u Osijeku.

PRILOZI

Tablice 6.1. do 6.7. se odnose na *incremental* slučaj, a tablice u nastavku, nakon tablice 6.7., odnose se na *apparent* slučaj računanja matrice induktviteta.

			5		
Vrijeme [ms]	L [mH]	Vrijeme [ms]	L [mH]	Vrijeme [ms]	L [mH]
0	9,575	7	1,268	14	112,873
0,5	13,037	7,5	0,093	14,5	127,048
1	37,459	8	0,092	15	144,533
1,5	119,694	8,5	0,092	15,5	159,403
2	126,057	9	0,092	16	169,357
2,5	135,260	9,5	0,092	16,5	157,212
3	137,181	10	0,093	17	15,829
3,5	134,600	10,5	0,095	17,5	16,558
4	112,540	11	0,684	18	111,831
4,5	92,040	11,5	3,303	18,5	128,263
5	74,065	12	5,536	19	137,520
5,5	41,108	12,5	13,172	19,5	142,725
6	8,397	13	49,063	20	155,547
6,5	4,336	13,5	93,723	20,5	128,974
Vrijeme	T C TD	Vrijeme		Vrijeme	T (TT)
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
21,0	153,734	28,0	3,883	35,0	163,354
21,5	140,327	28,5	2,106	35,5	175,437
22,0	13,352	29,0	0,107	36,0	171,728
22,5	27,152	29,5	0,097	36,5	137,735
23,0	116,496	30,0	0,098	37,0	13,272
23,5	129,284	30,5	1,925	37,5	82,745
24,0	133,551	31,0	2,871	38,0	134,569
24,5	115,719	31,5	4,756	38,5	140,539
25,0	95,105	32,0	8,311	39,0	150,397
25,5	78,739	32,5	27,784	39,5	140,785
26,0	67,938	33,0	70,272	40,0	184,045
26,5	39,519	33,5	104,839	40,5	186,290
27,0	10,705	34,0	120,907	41,0	148,192
27,5	5,991	34,5	139,255	41,5	174,782
Vrijeme [ms]	L [mH]	Vrijeme [ms]	L [mH]	Vrijeme [ms]	L [mH]
42,0	178,039	49,0	6,931	56,0	112,759
42.5	161,955	49.5	5,960	56.5	15.222
43.0	15 019	50.0	5 991	57.0	111 678
43,0	94 458	50,5	7.037	57,0	124 858
43,3	04,430	51.0	7,037	57,5	124,030
44,0	121,523	51,0	9,812	58,0	136,238
44,5	135,212	51,5	26,525	58,5	140,877
45,0	137,900	52,0	52,201	59,0	150,709
45,5	129,593	52,5	91,871	59,5	118,326
46,0	120,794	53,0	109,217	60,0	181,239
46,5	102,862	53,5	123,053		
47.0	83.402	54.0	134.668		
47.5	54 540	54.5	141 446	+ +	
48.0	27 857	55.0	150 572		
+0,0	0.561	55,0	159,372		
48,5	9,561	55,5	159,137		

Tab. 6.1. Iznosi samoinduktiviteta gornjonaponskog namota na lijevom stupu modelatransformatora

Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]		[ms]		[ms]	
0	13,021	7	13,804	14	115,272
0,5	119,556	7,5	17,580	14,5	129,976
1	172,441	8	50,730	15	151,541
1,5	247,757	8,5	100,164	15,5	166,472
2	230,982	9	108,509	16	179,218
2,5	219,670	9,5	103,735	16,5	179,675
3	210,300	10	91,489	17	117,374
3,5	198,659	10,5	62,960	17,5	133,491
4	136,333	11	36,016	18	223,816
4,5	75,595	11,5	14,251	18,5	245,402
5	47,885	12	12,020	19	250,637
5,5	15,526	12,5	17,283	19,5	155,792
6	9,759	13	52,616	20	162,999
6,5	11,576	13,5	96,020	20,5	33,569
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
21.0	154,923	28.0	66,492	35.0	184.084
21.5	187.378	28.5	99,332	35.5	194,396
22.0	122,148	29.0	120.333	36.0	195.231
22,5	158,227	29,5	119,918	36,5	187,869
23,0	201,603	30,0	112,937	37,0	154,487
23,5	200,685	30,5	102,583	37,5	182,655
24,0	194,914	31,0	97,978	38,0	219,599
24,5	127,171	31,5	70,333	38,5	221,677
25,0	76,197	32,0	50,503	39,0	227,343
25,5	21,637	32,5	25,466	39,5	146,231
26,0	15,408	33,0	86,543	40,0	203,096
26,5	14,576	33,5	118,451	40,5	186,868
27,0	11,092	34,0	134,494	41,0	39,370
27,5	42,923	34,5	157,763	41,5	155,171
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42.0	103 271	40.0	131 801	56.0	152 780
42,0	205 212	49,0	102 642	56.5	106.244
42,3	203,312	49,3	125,045	50,5	120,344
43,0	158,099	50,0	114,039	57,0	191,370
43,5	196,280	50,5	99,987	57,5	208,634
44,0	208,972	51,0	71,400	58,0	218,877
44,5	210,332	51,5	27,631	58,5	219,417
45,0	205,127	52,0	67,294	59,0	222,698
45,5	192,519	52,5	96,521	59,5	123,564
46,0	177,500	53,0	112,695	60,0	204,717
46,5	141,666	53,5	126,375		
47,0	90,874	54,0	138,518		
47,5	144,484	54,5	147,192		
48,0	147,889	55,0	164,137		
48.5	142,474	55.5	169,194		

Tab. 6.2. Iznosi samoinduktiviteta gornjonaponskog namota na srednjem stupu modelatransformatora

Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
[ms]		[ms]		[ms]	E[mi]
0	9,577	7	15,338	14	6,644
0,5	109,709	7,5	18,061	14,5	10,072
1	138,207	8	51,087	15	37,372
1,5	144,857	8,5	100,345	15,5	68,623
2	141,250	9	108,581	16	108,889
2,5	139,278	9,5	103,715	16,5	129,257
3	137,523	10	91,388	17	110,866
3,5	134,057	10,5	62,752	17,5	123,688
4	115,806	11	35,488	18	148,484
4,5	97,417	11,5	10,995	18,5	142,658
5	82,068	12	6,709	19	129,216
5,5	47,917	12,5	5,297	19,5	15,801
6	11,813	13	5,070	20	92,235
6,5	15,182	13,5	5,372	20,5	127,764
Vrijeme	× 5 × 10	Vrijeme	X (XX)	Vrijeme	X F X
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
21,0	169,871	28,0	68,712	35,0	102,743
21,5	176,669	28,5	100,067	35,5	121,986
22,0	116,833	29,0	120,419	36,0	140,664
22,5	141,580	29,5	119,963	36,5	154,816
23,0	138,591	30,0	112,944	37,0	147,341
23,5	135,653	30,5	101,918	37,5	121,536
24,0	133,338	31,0	96,596	38,0	138,879
24,5	116,447	31,5	67,476	38,5	126,645
25,0	97,976	32,0	44,646	39,0	100,898
25,5	80,979	32,5	28,412	39,5	12,912
26,0	71,096	33,0	37,283	40,0	156,973
26,5	46,262	33,5	39,945	40,5	177,282
27,0	10,586	34,0	46,299	41,0	146,974
27,5	46,544	34,5	71,898	41,5	180,859
Vrijeme	X (X)	Vrijeme		Vrijeme	X (X)
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42,0	184,799	49,0	130,633	56,0	116,373
42,5	180,034	49,5	121,892	56,5	119,251
43,0	153,196	50,0	111,765	57,0	132,319
43,5	144,118	50,5	97,082	57,5	139,141
44,0	140,432	51,0	65,845	58,0	138,059
44,5	138,521	51,5	29,335	58,5	125,684
45,0	135,542	52,0	26,997	59,0	97,134
45,5	127,154	52,5	11,449	59,5	13,371
46,0	117,733	53,0	9,715	60,0	160,209
46,5	76,307	53,5	10,681		
47,0	17,604	54,0	17,792		
47,5	141,575	54,5	40,209		
48,0	147,444	55,0	67,128		
48,5	141,825	55,5	102,087		

Tab. 6.3. Iznosi samoinduktiviteta gornjonaponskog namota na desnom stupu modelatransformatora

Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L[mH]
[ms]	20.000	[ms]	2.026	[ms]	211.122
0	29,283	7	3,826	14	344,429
0,5	39,796	7,5	0,177	14,5	387,674
1	114,223	8	0,176	15	441,031
1,5	365,246	8,5	0,175	15,5	486,401
2	384,679	9	0,175	16	516,759
2,5	412,762	9,5	0,176	16,5	479,688
3	418,622	10	0,178	17	48,303
3,5	410,736	10,5	0,181	17,5	50,509
4	343,434	11	2,217	18	341,270
4,5	280,904	11,5	10,108	18,5	391,405
5	226,071	12	16,904	19	419,646
5,5	125,474	12,5	40,235	19,5	435,526
6	25,656	13	149,740	20	474,637
6,5	13,237	13,5	286,012	20,5	393,587
Vrijeme	I [m]I]	Vrijeme	I [m]]]	Vrijeme	L[m]]]
[ms]	L[mH]	[ms]	L[mH]	[ms]	L[mH]
21,0	469,094	28,0	11,849	35,0	498,446
21,5	428,179	28,5	6,424	35,5	535,310
22,0	40,767	29,0	0,194	36,0	523,986
22,5	82,768	29,5	0,183	36,5	420,257
23,0	355,506	30,0	0,185	37,0	40,506
23,5	394,534	30,5	5,886	37,5	252,549
24,0	407,551	31,0	8,750	38,0	410,657
24,5	353,150	31,5	14,510	38,5	428,865
25,0	290,258	32,0	25,353	39,0	458,931
25,5	240,338	32,5	84,849	39,5	429,599
26,0	207,384	33,0	214,444	40,0	561,556
26,5	120,625	33,5	319,917	40,5	568,405
27,0	32,725	34,0	368,936	41,0	452,212
27,5	18,277	34,5	424,913	41,5	533,316
<u>.</u>		L ·		<u> </u>	
Vrijeme		Vrijeme	T C TD	Vrijeme	T (TT)
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42,0	543,242	49,0	21,139	56,0	344,066
42,5	494,156	49,5	18,181	56,5	46,439
43,0	45,843	50,0	18,276	57,0	340,806
43,5	257,725	50,5	21,466	57,5	381,027
44,0	370,849	51,0	29,927	58,0	415,747
44,5	412,618	51,5	80,997	58,5	429,896
45,0	420,811	52,0	159,300	59,0	459,882
45,5	395,450	52,5	280,359	59,5	361,074
46,0	368,597	53,0	333,274	60,0	552,989
46,5	313,897	53,5	375,487		
47,0	254,530	54,0	410,930		
47,5	166,405	54,5	431,615		
48,0	100,265	55,0	486,922		
48,5	29,157	55,5	485,583		

Tab. 6.4. Iznosi samoinduktiviteta donjonaponskog namota na lijevom stupu modelatransformatora

r					
Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
0	39 751	7	/1 980	1/	351 761
0.5	364 854	7.5	53 497	14.5	396.611
1	526 197	8	154 681	15	462 374
15	755 904	8.5	305 570	15.5	507 903
2	704 694	9	331.078	15,5	546 770
25	670 167	9.5	316 550	16.5	548 168
2,5	6/1 572	10	279 217	10,5	358 167
35	606.058	10.5	192 217	17.5	407 346
3,5	415.874	10,5	110.023	17,5	682 837
4.5	230 535	11.5	/3 668	18.5	7/8 703
т, ,5	1/5 982	11,5	36 855	10,5	76/ 691
55	47.234	12 12 5	52 861	19	475.408
5,5	20 726	12,5	160 660	20	475,408
6.5	25,720	13	203.034	20	497,277
0,5	33,204	15,5	293,034	20,3	102,270
Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
21.0	472 601	28.0	202 793	35.0	561 636
21,0	571 648	28,5	303.028	35.5	593.084
22,0	372 718	20,5	367,160	36.0	595,604
22,0	482 794	29,5	365 906	36.5	573 173
22,5	615 052	30.0	344 622	37.0	<u> </u>
23,0	612 242	30,5	313.047	37,5	557 298
23,5	594 632	31.0	299.018	38.0	669.950
24,0	387.910	31,0	214 693	38.5	676 296
25.0	232 370	32.0	154 215	39.0	693.615
25,0	65 871	32,0	77 629	39,5	4/6 196
25,5	46.865	33.0	264.097	40.0	619 608
26,5	40,805	33.5	361 /37	40,5	570.080
20,5	23.813	34.0	410 373	40,5	110.070
27,0	120.876	34,0	410,373	41,0	119,970
27,5	130,870	54,5	401,332	41,5	475,551
Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]	L [IIII1]	[ms]		[ms]	L [IIII]
42,0	589,621	49,0	402,160	56,0	466,126
42,5	626,372	49,5	377,288	56,5	385,528
43,0	482,400	50,0	348,001	57,0	583,839
43,5	598,840	50,5	305,136	57,5	636,497
44,0	637,531	51,0	217,943	58,0	667,746
44,5	641,672	51,5	84,245	58,5	669,401
45,0	625,791	52,0	205,396	59,0	679,444
45,5	587,333	52,5	294,559	59,5	377,038
46,0	541,520	53,0	343,898	60,0	624,559
46,5	432,231	53,5	385,627		
47,0	277,327	54,0	422,657		
47,5	440,817	54,5	449,096		
48,0	451,206	55,0	500,774		
48,5	434,704	55,5	516,190		

Tab. 6.5. Iznosi samoinduktiviteta donjonaponskog namota na srednjem stupu modelatransformatora

Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
	20.201		47.004	[IIIS]	20.258
0	29,291	75	47,004	14	20,238
0,3	334,782	7,3	156.021	14,5	50,702
1	421,758	0	206.259	15	200.269
1,5	442,033	8,5	306,258	15,5	209,368
2	431,033	9	331,354	16	332,257
2,5	425,022	9,5	316,484	16,5	394,393
3	419,666	10	278,845	17	338,318
3,5	409,095	10,5	191,450	17,5	377,434
4	353,431	11	108,266	18	453,096
4,5	297,341	11,5	33,499	18,5	435,327
5	250,521	12	20,454	19	394,307
5,5	146,355	12,5	16,155	19,5	48,210
6	36,108	13	15,457	20	281,457
6,5	46,510	13,5	16,378	20,5	389,890
Vrijeme	I [m]]]	Vrijeme	I [m]]]	Vrijeme	I [m]]]
[ms]	L[mH]	[ms]	L[mH]	[ms]	L[mH]
21,0	518,328	28,0	209,799	35,0	313,503
21,5	539,064	28,5	305,429	35,5	372,210
22,0	356,519	29,0	367,479	36,0	429,186
22,5	432,026	29,5	366,074	36,5	472,364
23,0	422,904	30,0	344,656	37,0	449,595
23,5	413,947	30,5	311,014	37,5	370,861
24,0	406,890	31,0	294,769	38,0	423,802
24,5	355,381	31,5	205,907	38,5	386,479
25,0	299,038	32,0	136,235	39,0	307,897
25,5	247,208	32,5	86,766	39,5	39,424
26,0	217,060	33,0	113,777	40,0	478,960
26,5	141,308	33,5	121,893	40,5	540,931
27,0	32,359	34,0	141,265	41,0	448,499
27,5	142,168	34,5	219,372	41,5	551,846
Vrijeme		Vrijeme	X F XX	Vrijeme	× 5 × 10
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42,0	563,855	49,0	398,628	56,0	355,098
42,5	549,314	49,5	371,948	56,5	363,892
43,0	467,455	50,0	341,048	57,0	403,760
43,5	439,768	50,5	296,255	57,5	424,593
44,0	428,532	51.0	200,934	58,0	421,302
44,5	422,710	51,5	89,581	58,5	383,544
45,0	413,625	52,0	82,388	59,0	296,409
45.5	388.036	52.5	34.917	59.5	40,823
46.0	359.288	53.0	29.630	60.0	488,833
46.5	232.842	53.5	32,574	,	, -
47.0	53,708	54.0	54,263		
47.5	432.017	54.5	122,698		
48.0	449.934	55.0	204,816		
48,5	432,790	55,5	311,509		

Tab. 6.6. Iznosi samoinduktiviteta donjonaponskog namota na desnom stupu modelatransformatora

Vrijeme	I [II]	Vrijeme	T [TT]	Vrijeme	I [II]
[ms]	L[mH]	[ms]	L[mH]	[ms]	L[mH]
0	0,528	7	0,068	14	6,234
0,5	0,719	7,5	0,003	14,5	7,017
1	2,067	8	0,003	15	7,983
1,5	6,611	8,5	0,003	15,5	8,804
2	6,962	9	0,003	16	9,354
2,5	7,471	9,5	0,003	16,5	8,683
3	7,577	10	0,003	17	0,873
3,5	7,434	10,5	0,003	17,5	0,913
4	6,216	11	0,038	18	6,177
4,5	5,083	11,5	0,181	18,5	7,084
5	4,091	12	0,305	19	7,595
5,5	2,270	12,5	0,727	19,5	7,883
6	0,463	13	2,709	20	8,591
6,5	0,238	13,5	5,176	20,5	7,124
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
21,0	8,491	28,0	0,213	35,0	9,022
21,5	7,750	28,5	0,115	35,5	9,690
22,0	0,737	29,0	0,004	36,0	9,485
22,5	1,498	29,5	0,003	36,5	7,607
23,0	6,434	30,0	0,003	37,0	0,732
23,5	7,141	30,5	0,105	37,5	4,570
24,0	7,376	31,0	0,157	38,0	7,433
24,5	6,391	31,5	0,261	38,5	7,762
25,0	5,253	32,0	0,458	39,0	8,307
25,5	4,349	32,5	1,534	39,5	7,776
26,0	3,752	33,0	3,881	40,0	10,165
26,5	2,182	33,5	5,790	40,5	10,289
27,0	0,591	34,0	6,678	41,0	8,185
27,5	0,330	34,5	7,691	41,5	9,654
Vrijeme	x <i>c</i> x x	Vrijeme	X (X)	Vrijeme	× r × v
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42,0	9,833	49,0	0,382	56,0	6,227
42,5	8,945	49,5	0,328	56,5	0,840
43,0	0,829	50,0	0,330	57,0	6,168
43,5	4,664	50,5	0,387	57,5	6,896
44,0	6,712	51,0	0,541	58,0	7,525
44,5	7,468	51,5	1,465	58,5	7,781
45,0	7,616	52,0	2,882	59,0	8,324
45,5	7,158	52,5	5,074	59,5	6,535
46,0	6,671	53,0	6,032	60,0	10,010
46,5	5,681	53,5	6,796		
47,0	4,606	54,0	7,438		
47,5	3,011	54,5	7,812		
48,0	1,814	55,0	8,813		
48,5	0,527	55,5	8,789		

Tab. 6.7. Iznosi međuinduktiviteta između gornjonaponskog i donjonaponskog namota nalijevom stupu modela transformatora

Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]	L[IIII]	[ms]	L[IIIII]	[ms]	L[IIIII]
0	9,605	7	4,781	14	15,355
0,5	11,038	7,5	3,411	14,5	16,766
1	16,307	8	0,909	15	17,581
1,5	23,002	8,5	0,583	15,5	18,753
2	27,281	9	0,479	16	20,157
2,5	27,701	9.5	0,436	16,5	20,129
3	28,042	10	0,419	17	20,022
3.5	27.622	10.5	0.428	17.5	18.750
4	24.205	11	0.462	18	18.316
4.5	17.365	11.5	0.555	18.5	18.517
5	11.369	12	0.812	19	19.852
5.5	7.564	12.5	0.727	19.5	7.883
6	5.268	13	2.709	20	8.591
6.5	5 232	13.5	5,176	20.5	7 124
0,5	5,252	15,5	5,170	20,5	7,124
Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]	L [IIII]	[ms]	L [IIII]	[ms]	E [mm]
21,0	38,841	28,0	0,552	35,0	15,802
21,5	41,854	28,5	0,429	35,5	17,566
22,0	42,168	29,0	0,362	36,0	19,166
22,5	39,108	29,5	0,329	36,5	19,864
23,0	33,566	30,0	0,320	37,0	20,242
23,5	31,203	30,5	0,325	37,5	20,945
24,0	34,156	31,0	0,347	38,0	21,059
24,5	35,354	31,5	0,393	38,5	21,659
25,0	33,824	32,0	0,493	39,0	22,326
25,5	26,034	32,5	0,714	39,5	25,053
26,0	16,383	33,0	1,697	40,0	28,986
26,5	9,088	33,5	5,316	40,5	34,987
27,0	5,530	34,0	9,629	41,0	40,638
27,5	0,961	34,5	12,534	41,5	41,117
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42.0	41 079	49.0	0.264	56.0	18 862
42.5	37.655	49.5	0.252	56.5	20.108
43.0	31,648	50.0	0.248	57.0	20,653
43.5	32,050	50,5	0.251	57.5	21,086
44.0	34,255	51.0	0,251	58.0	21,000
44,0	34,233	51,0	0.283	58.5	22,240
45.0	28 086	52.0	0,203	59.0	23,093
45.5	16 815	52.5	0 385	59.5	27,341
45,5	8 281	53.0	0,505	60.0	30,710
46.5	2 474	53.5	1 059	00,0	50,710
47.0	0.630	54.0	3 773		
47,0	0,037	54.5	0 503	+ +	
47,5	0,420	55.0	12 / 181	+ +	
40,0	0.287	55,0	15 126	+ +	
40,3	0,207	55,5	13,120		

Tab. 6.8. Iznosi samoinduktiviteta gornjonaponskog namota na lijevom stupu modelatransformatora

Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
	13 059		15 /61		15 133
0.5	25 251	7.5	22 289	14.5	15,910
1	36 521	8	26,229	15	16 952
15	44 094	85	28,229	15.5	18,952
2	42 904	9	25,170	16	22 843
2.5	32 779	95	18 429	16.5	22,045
3	24 101	10	13 658	10,5	34 670
35	17 1/6	10.5	9.8/9	17.5	37 522
3,5	11 729	10,5	8 172	17,5	39,870
4.5	9.77/	11 5	6 793	18.5	39,680
4,5	9,774	11,5	6 564	10,5	37,000
55	8,000	12 12 5	7 013	19	35,273
5,5	9.680	12,5	10 187	20	37.69/
65	11 426	13.5	14 760	20 5	41 255
0,5	11,420	15,5	14,700	20,5	41,235
Vrijeme [ms]	L [mH]	Vrijeme [ms]	L [mH]	Vrijeme [ms]	L [mH]
21,0	45,633	28,0	36,113	35,0	15,575
21,5	46,687	28,5	36,051	35,5	17,463
22,0	46,449	29,0	34,615	36,0	21,447
22,5	41,968	29.5	27,769	36,5	26,210
23,0	33,500	30,0	21,190	37,0	32,402
23,5	28,830	30,5	16,330	37,5	36,180
24,0	26,845	31,0	12,444	38,0	38,162
24,5	23,038	31,5	10,025	38,5	40,200
25,0	18,441	32,0	7,652	39,0	40,543
25,5	15,045	32,5	7,373	39,5	39,333
26,0	14,164	33,0	7,201	40,0	39,077
26,5	15,556	33,5	9,022	40,5	42,720
27,0	21,590	34,0	10,934	41,0	46,824
27,5	30,939	34,5	12,784	41,5	46,241
Vallama		Valiana		Valiana	
[ms]	L [mH]	(ms)	L [mH]	v njenie [ma]	L [mH]
42.0	45 850		35.000	56.0	10.650
42,0	43,833	49,0	27 270	56.5	25.081
42,5	32 705	49,5	10 216	57.0	23,081
43,0	20.027	50,5	13,210	57.5	35 506
43,5	29,027	51.0	<u> </u>	58.0	37,560
44,0	20,032	51,0	7.050	58.5	38 200
44,5	16 852	52.0	6 110	50.0	30,209
45,0	10,002	52,0	2 970	59,0	40 352
45,5	12,015	53.0	2,019	60.0	40,332
40,0	14.900	53,0	2,223	00,0	40,773
40,5	20 242	54.0	4 212		
47,0	20,343	54,0	4,313		
47,5	36,017	55.0	<i>3,190</i> 12 <i>4</i> 71		
40,0	30,942	55.5	12,4/1		
40,J	51,131	55,5	13,017		

Tab. 6.9. Iznosi samoinduktiviteta gornjonaponskog namota na srednjem stupu modelatransformatora

Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]		[ms]		[ms]	
0	9,604	7	17,027	14	7,402
0,5	20,976	7,5	22,631	14,5	10,686
1	29,020	8	26,218	15	15,311
1,5	33,113	8,5	28,433	15,5	21,213
2	32,932	9	25,055	16	26,123
2,5	30,647	9,5	18,169	16,5	29,801
3	28,890	10	13,276	17	32,058
3,5	27,408	10,5	9,360	17,5	31,400
4	24,643	11	7,638	18	31,344
4,5	19,969	11,5	6,141	18,5	29,575
5	15,825	12	5,730	19	24,627
5,5	13,370	12,5	6,241	19,5	19,640
6	12,235	13	6,879	20	18,117
6,5	13,666	13,5	6,098	20,5	16,153
	•	•			
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
21.0	15 001	28.0	36 151	35.0	9 304
21,5	14 100	28,5	36,054	35.5	15 252
22.0	14,676	29.0	34.528	36.0	21.495
22.5	16.231	29.5	27.575	36.5	25.820
23.0	18,286	30.0	20.933	37.0	28.025
23.5	22,399	30.5	16.004	37.5	27,908
24.0	28.389	31.0	12.029	38.0	27.039
24,5	32,337	31,5	9,557	38,5	28,101
25,0	33,783	32,0	7,067	39.0	27,225
25,5	29,241	32,5	6,675	39,5	22,851
26,0	23,422	33,0	5,870	40,0	18,498
26,5	20,123	33,5	5,499	40,5	16,415
27,0	23,270	34,0	4,229	41,0	15,148
27,5	31,124	34,5	2,453	41,5	14,703
		•			
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42.0	15 739	49.0	34 915	56.0	15 138
42.5	16 689	49.5	27.059	56.5	21 964
43.0	18,804	50.0	18 925	57.0	25 358
43.5	24,865	50.5	12,782	57.5	27.091
44.0	29.225	51.0	8.363	58.0	25.677
44.5	32,137	51.5	6.531	58.5	24.263
45.0	29.397	52.0	5,586	59.0	24.370
45.5	22,699	52.5	2.117	59.5	22.595
46.0	17.772	53.0	1.304	60.0	19.751
46.5	16,361	53.5	0,937	7 -	, • -
47,0	20,821	54,0	0,972		
47,5	32,480	54,5	0,924		
48,0	37,019	55,0	1,063		
48,5	37,772	55,5	4,087		

Tab. 6.10. Iznosi samoinduktiviteta gornjonaponskog namota na desnom stupu modelatransformatora

Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
[ms]	20.276	[ms]	14 557		46.047
0	29,376	/	14,557	14	46,947
0,5	33,725	/,5	10,347	14,5	51,260
1	49,785	8	2,640	15	53,730
1,5	70,213	8,5	1,640	15,5	57,286
2	83,290	9	1,323	16	61,558
2,5	84,599	9,5	1,192	16,5	61,470
3	85,653	10	1,144	17	61,132
3,5	84,375	10,5	1,172	17,5	57,242
4	73,935	11	1,279	18	55,912
4,5	53,021	11,5	1,563	18,5	56,519
5	34,699	12	2,343	19	60,606
5,5	23,064	12,5	6,341	19,5	70,310
6	16,037	13	15,130	20	82,926
6,5	15,937	13,5	43,340	20,5	100,525
Vrijeme	I [mH]	Vrijeme	I [mII]	Vrijeme	I [m]]
[ms]		[ms]	L[IIII]	[ms]	L[IIII]
21,0	118,573	28,0	1,548	35,0	48,323
21,5	127,773	28,5	1,175	35,5	53,688
22,0	128,737	29,0	0,981	36,0	58,541
22,5	119,414	29,5	0,888	36,5	60,660
23,0	102,514	30,0	0,861	37,0	61,815
23,5	95,292	30,5	0,878	37,5	63,956
24,0	104,325	31,0	0,944	38,0	64,294
24,5	107,988	31,5	1,081	38,5	66,127
25,0	103,298	32,0	1,384	39,0	68,162
25,5	79,485	32,5	2,053	39,5	76,485
26,0	49,992	33,0	5,051	40,0	88,496
26,5	27,705	33,5	16,163	40,5	106,812
27,0	16,817	34,0	29,425	41,0	124,061
27,5	2,794	34,5	38,347	41,5	125,528
	·			•	
Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
	105.415	[ms]	0.601	[ms]	57 (22)
42,0	125,417	49,0	0,691	56,0	57,633
42,5	114,977	49,5	0,657	56,5	61,406
43,0	96,650	50,0	0,646	57,0	63,065
43,5	97,892	50,5	0,655	57,5	64,391
44,0	104,639	51,0	0,688	58,0	67,933
44,5	105,009	51,5	0,750	58,5	70,510
45,0	85,771	52,0	0,860	59,0	74,319
45,5	51,316	52,5	1,057	59,5	83,316
46,0	25,236	53,0	1,447	60,0	93,762
46,5	7,442	53,5	3,102		
47,0	1,811	54,0	9,747		
47,5	1,170	54,5	29,058		
48,0	0,888	55,0	38,194		
48,5	0,761	55,5	46,266		

Tab. 6.11. Iznosi samoinduktiviteta donjonaponskog namota na lijevom stupu modelatransformatora

Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]	L [IIII]	[ms]	E [IIII]	[ms]	E [IIII]
0	39,868	7	47,122	14	46,161
0,5	77,097	7,5	68,004	14,5	48,508
1	111,484	8	80,064	15	51,676
1,5	134,575	8,5	86,810	15,5	57,517
2	130,905	9	76,881	16	69,643
2,5	99,964	9,5	56,351	16,5	86,052
3	73,450	10	41,822	17	105,777
3,5	52,210	10,5	30,218	17,5	114,515
4	35,668	11	25,106	18	121,709
4,5	29,705	11,5	20,903	18,5	121,149
5	27,353	12	20,200	19	113,821
5,5	27,104	12,5	6,341	19,5	70,310
6	29,455	13	15,130	20	82,926
6,5	34,790	13,5	43,340	20,5	100,525
Vrijeme		Vrijeme		Vrijeme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
21.0	139,299	28.0	110.217	35.0	47.495
21.5	142.491	28.5	110,039	35.5	53.239
22.0	141.746	29.0	105.685	36.0	65.397
22.5	128.048	29.5	84.834	36.5	79,940
23,0	102,179	30,0	64,780	37.0	98,862
23,5	87,908	30,5	49,969	37.5	110,422
24,0	81,825	31,0	38,130	38,0	116,500
24,5	70,189	31,5	30,753	38,5	122,728
25,0	56,153	32,0	23,516	39,0	123,781
25,5	45,791	32,5	22,655	39,5	120,091
26,0	43,112	33,0	22,117	40,0	119,301
26,5	47,376	33,5	27,627	40,5	130,408
27,0	65,830	34,0	33,408	41,0	142,922
27,5	94,410	34,5	39,034	41,5	141,127
Vrijeme		Vriieme		Vriieme	
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
42.0	139,944	49.0	106.863	56.0	59.927
42,5	125,011	49,5	83,316	56,5	76,509
43.0	100,036	50,0	58,769	57.0	93,962
43,5	88,500	50,5	40,342	57,5	108,637
44,0	79,402	51,0	27,166	58,0	114,686
44,5	68,941	51,5	21,694	58,5	116,652
45,0	51,311	52,0	18,851	59,0	120,791
45,5	40,534	52,5	8,990	59,5	123,189
46,0	39,278	53,0	6,999	60,0	124,470
46,5	45,270	53,5	7,485		
47,0	62,025	54,0	13,326		
47,5	98,553	54,5	29,953		
48,0	112,741	55,0	38,075		
48,5	115,178	55,5	45,818		

Tab. 6.12. Iznosi samoinduktiviteta donjonaponskog namota na srednjem stupu modelatransformatora

$\begin{array}{ $	Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	[[mH]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[ms]	E [iiii]	[ms]	E[IIII]	[ms]	E [IIII]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	29,372	7	52,106	14	22,614
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,5	64,069	7,5	69,184	14,5	32,707
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	88,612	8	80,101	15	46,846
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,5	101,100	8,5	86,845	15,5	64,845
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	100,551	9	76,511	16	79,813
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,5	93,592	9,5	55,470	16,5	91,025
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	88,240	10	40,521	17	97,889
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,5	83,726	10,5	28,557	17,5	95,848
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	75,307	11	23,300	18	95,658
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4,5	61,063	11,5	18,719	18,5	90,237
5.5 40,953 12,5 19,049 19,5 59,893 6 37,473 13 21,010 20 55,250 6,5 41,841 13,5 18,613 20,5 49,273 Vrijeme [ms] L [mH] Vrijeme [ms] L [mH] L[mH] L[mH] 21,0 45,773 28,0 110,406 35,0 28,477 21,5 43,024 28,5 110,095 35,5 46,648 22,0 44,787 29,0 105,411 36,0 65,673 23,0 55,831 30,0 63,895 37,0 85,565 23,5 68,403 30,5 48,848 37,5 85,180 24,0 86,695 31,0 36,705 38,0 82,506 24,5 98,753 31,5 29,159 38,5 85,744 25,0 103,188 32,0 21,550 39,0 83,066 25,5 89,350 32,5 20,365 39,5 6	5	48,437	12	17,474	19	75,117
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5,5	40,953	12,5	19,049	19,5	59,893
6,5 $41,841$ $13,5$ $18,613$ $20,5$ $49,273$ Vrijeme [ms] L [mH] Vrijeme [ms] L [mH] Vrijeme [ms] L [mH] $21,0$ $45,773$ $28,0$ $110,406$ $35,0$ $28,477$ $21,5$ $43,024$ $28,5$ $110,095$ $35,5$ $46,648$ $22,0$ $44,787$ $29,0$ $105,411$ $36,0$ $65,673$ $22,5$ $49,544$ $29,5$ $84,169$ $36,5$ $78,857$ $23,0$ $55,831$ $30,0$ $63,895$ $37,0$ $85,565$ $23,5$ $68,403$ $30,5$ $48,848$ $37,5$ $85,180$ $24,0$ $86,695$ $31,0$ $36,705$ $38,0$ $82,506$ $24,5$ $98,753$ $31,5$ $29,159$ $38,5$ $85,744$ $25,0$ $103,188$ $32,0$ $21,550$ $39,0$ $83,066$ $25,5$ $89,350$ $32,5$ $20,365$ $39,5$ $69,716$	6	37,473	13	21,010	20	55,250
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,5	41,841	13,5	18,613	20,5	49,273
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,		· · · · ·	,	· · · ·	*
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vaiiomo		Valiana		Vaiiomo	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v njeme	L [mH]	v njeme	L [mH]	v njeme	L [mH]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.0	15 773	28.0	110 406	35.0	28 477
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21,0	43,773	28,0	110,400	35,0	26,477
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21,5	43,024	28,5	105 411	35,5	65 673
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22,0	44,787	29,0	84 160	36,5	78 857
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22,5	55 921	29,5	62 905	30,5	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23,0	53,031	30,0	10 040	37,0	85,303
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23,3	08,405	30,3	40,040	37,3	83,180
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24,0	80,095	31,0	30,705	38,0	82,500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24,5	98,/33	31,5	29,159	38,5	85,744
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25,0	105,188	32,0	21,550	39,0	83,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25,5	89,550	32,5	20,305	39,5	69,710
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26,0	/1,012	33,0	17,912	40,0	50,430
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26,5	61,549	33,5	10,///	40,5	50,084
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27,0	/1,13/	34,0	12,862	41,0	46,235
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27,5	95,088	34,5	7,394	41,5	44,885
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
[ms]L [nn][ms]L [nn][ms]L [nn]42,048,04849,0106,57956,046,25042,550,95749,582,57756,567,07443,057,42350,057,74357,077,43043,575,93850,538,98157,582,69944,089,24951,025,47358,078,36344,598,14651,519,87758,574,04345,089,81552,017,00359,074,37245,569,40452,56,35159,568,96346,054,38653,03,85560,060,28247,063,68254,02,84347,599,22754,52,69348,0113,05255,03,120	Vrijeme	I [mH]	Vrijeme	I [m]]	Vrijeme	I [mII]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[ms]	L[IIIII]	[ms]	г (шп)	[ms]	L[IIII]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42,0	48,048	49,0	106,579	56,0	46,250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42,5	50,957	49,5	82,577	56,5	67,074
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43,0	57,423	50,0	57,743	57,0	77,430
44,089,24951,025,47358,078,36344,598,14651,519,87758,574,04345,089,81552,017,00359,074,37245,569,40452,56,35159,568,96346,054,38653,03,85560,060,28246,550,08253,52,735	43,5	75,938	50,5	38,981	57,5	82,699
44,598,14651,519,87758,574,04345,089,81552,017,00359,074,37245,569,40452,56,35159,568,96346,054,38653,03,85560,060,28246,550,08253,52,735	44,0	89,249	51,0	25,473	58,0	78,363
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44,5	98,146	51,5	19,877	58,5	74,043
45,5 69,404 52,5 6,351 59,5 68,963 46,0 54,386 53,0 3,855 60,0 60,282 46,5 50,082 53,5 2,735 60,0 60,282 47,0 63,682 54,0 2,843 60,0 60,282 47,5 99,227 54,5 2,693 60,0 60,282 48,0 113,052 55,0 3,120 60,0 60,282 48,5 115,336 55,5 12,407 60,0 60,282	45,0	89,815	52,0	17,003	59,0	74,372
46,0 54,386 53,0 3,855 60,0 60,282 46,5 50,082 53,5 2,735	45,5	69,404	52,5	6,351	59,5	68,963
46,5 50,082 53,5 2,735 47,0 63,682 54,0 2,843 47,5 99,227 54,5 2,693 48,0 113,052 55,0 3,120 48,5 115,336 55,5 12,407	46,0	54,386	53,0	3,855	60,0	60,282
47,0 63,682 54,0 2,843 47,5 99,227 54,5 2,693 48,0 113,052 55,0 3,120 48,5 115,336 55,5 12,407	46,5	50,082	53,5	2,735		
47,5 99,227 54,5 2,693 48,0 113,052 55,0 3,120 48,5 115,336 55,5 12,407	47,0	63,682	54,0	2,843		
48,0 113,052 55,0 3,120 48,5 115,336 55,5 12,407	47,5	99,227	54,5	2,693		
48,5 115,336 55,5 12,407	48,0	113,052	55,0	3,120		
	48,5	115,336	55,5	12,407		

Tab. 6.13. Iznosi samoinduktiviteta donjonaponskog namota na desnom stupu modelatransformatora

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vrijeme		Vrijeme		Vrijeme	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0,530	7	0,263	14	0,848
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,5	0,609	7,5	0,187	14,5	0,926
1.5 1.270 8.5 0.030 15.5 1.035 2 1.506 9 0.024 16 1.113 3 1.530 9.5 0.022 16.5 1.111 3 1.549 10 0.021 17.5 1.035 4 1.337 11 0.023 18 1.011 4.5 0.958 11.5 0.022 18 1.011 4.5 0.958 11.5 0.028 18.5 1.022 5 0.627 12 0.042 19 1.096 5.5 0.416 12.5 0.115 19.5 1.271 6 0.289 13 0.273 20 1.800 6.5 0.288 13.5 0.028 35.0 0.873 21.0 2.145 28.0 0.028 35.0 0.873 21.0 2.145 28.0 0.018 36.0 1.058 22.0 1.854 30.0 <td< td=""><td>1</td><td>0.900</td><td>8</td><td>0.048</td><td>15</td><td>0.971</td></td<>	1	0.900	8	0.048	15	0.971
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.5	1.270	8.5	0.030	15.5	1.035
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1,506	9	0.024	16	1.113
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5	1,530	95	0.022	16.5	1,110
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1,530	10	0.021	17	1 105
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	1,515	10.5	0.021	17.5	1,105
1 11<	4	1,323	10,5	0.023	18	1,033
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.5	0.958	11.5	0.028	18.5	1,011
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	0,530	12	0.042	19	1,022
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55	0.416	12.5	0.115	19.5	1,090
3 1 3 <td>6</td> <td>0.289</td> <td>13</td> <td>0.273</td> <td>20</td> <td>1,271</td>	6	0.289	13	0.273	20	1,271
Vrijeme [ms] L [mH] Vrijeme [ms] L [mH] Vrijeme [ms] L [mH] Vrijeme [ms] L [mH] 21,0 2,145 28,0 0,028 35,0 0,873 21,5 2,311 28,5 0,021 35,5 0,970 22,0 2,329 29,0 0,016 36,5 1,096 23,0 1,854 30,0 0,015 37,0 1,117 23,5 1,723 30,5 0,016 36,5 1,996 24,0 1,886 31,0 0,017 38,0 1,162 24,5 1,953 31,5 0,019 38,5 1,196 25,0 1,868 32,0 0,025 39,0 1,232 25,5 1,437 32,5 0,037 39,5 1,383 26,0 0,904 33,0 0,091 40,0 1,600 26,5 0,501 33,5 0,292 40,5 1,932 27,0 0,304 34,0 0,531 41,	6.5	0,289	13.5	0.783	20.5	1,500
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,5	0,200	15,5	0,705	20,5	1,010
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		I				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[ms]		[ms]	2 []	[ms]	2 []
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21,0	2,145	28,0	0,028	35,0	0,873
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21,5	2,311	28,5	0,021	35,5	0,970
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22,0	2,329	29,0	0,018	36,0	1,058
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22,5	2,160	29,5	0,016	36,5	1,096
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23,0	1,854	30,0	0,015	37,0	1,117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23,5	1,723	30,5	0,016	37,5	1,156
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24,0	1,886	31,0	0,017	38,0	1,162
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24,5	1,953	31,5	0,019	38,5	1,196
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25,0	1,868	32,0	0,025	39,0	1,232
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25,5	1,437	32,5	0,037	39,5	1,383
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26,0	0,904	33,0	0,091	40,0	1,600
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26,5	0,501	33,5	0,292	40,5	1,932
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27,0	0,304	34,0	0,531	41,0	2,244
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27,5	0,051	34,5	0,692	41,5	2,271
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vrijeme		Vrijeme		Vrijeme	X (X)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42,0	2,269	49,0	0,012	56,0	1,041
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42,5	2,079	49,5	0,012	56,5	1,110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43,0	1,748	50,0	0,012	57,0	1,140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43,5	1,770	50,5	0,012	57,5	1,164
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44,0	1,892	51,0	0,012	58,0	1,228
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44,5	1,899	51,5	0,013	58,5	1,275
45,5 0,928 52,5 0,019 59,5 1,507 46,0 0,456 53,0 0,026 60,0 1,696 46,5 0,134 53,5 0,056	45,0	1,551	52,0	0,015	59,0	1,344
46,0 0,456 53,0 0,026 60,0 1,696 46,5 0,134 53,5 0,056	45,5	0,928	52,5	0,019	59,5	1,507
46,5 0,134 53,5 0,056 47,0 0,033 54,0 0,176 47,5 0,021 54,5 0,524 48,0 0,016 55,0 0,689 48,5 0,014 55,5 0,835	46,0	0,456	53,0	0,026	60,0	1,696
47,0 0,033 54,0 0,176 47,5 0,021 54,5 0,524 48,0 0,016 55,0 0,689 48,5 0,014 55,5 0,835	46,5	0,134	53,5	0,056	, ,	
47,5 0,021 54,5 0,524 48,0 0,016 55,0 0,689 48,5 0,014 55,5 0,835	47,0	0,033	54,0	0,176		
48,0 0,016 55,0 0,689 48,5 0,014 55,5 0,835	47,5	0,021	54,5	0,524		
48,5 0,014 55,5 0,835	48,0	0,016	55,0	0,689		
	48,5	0,014	55,5	0,835		

Tab. 6.14. Iznosi međuinduktiviteta između gornjonaponskog i donjonaponskog namota nalijevom stupu modela transformatora

Vrijeme	I [II]	Vrijeme	I [II]	Vrijeme	I []I]
[ms]	L [mH]	[ms]	L [mH]	[ms]	L [mH]
0	0,720	7	0,852	14	0,835
0,5	1,394	7,5	1,230	14,5	0,877
1	2,017	8	1,448	15	0,935
1,5	2,435	8,5	1,570	15,5	1,041
2	2,369	9	1,390	16	1,260
2,5	1,809	9,5	1.018	16,5	1,557
3	1,329	10	0,755	17	1,914
3.5	0.945	10.5	0.544	17.5	2.072
4	0.646	11	0.452	18	2.202
4.5	0.538	11.5	0.376	18.5	2.191
5	0.495	12	0.363	19	2.058
5.5	0.490	12.5	0.437	19.5	1.987
6	0.533	13	0.562	20	2.082
6.5	0.629	13.5	0.814	20.5	2.278
-,-	•,•_>	,-		_ *,•	_,
		X7 ··		X7 ··	
Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
[ms]	2.520		1.004	[ms]	0.950
21,0	2,520	28,0	1,994	35,0	0,859
21,5	2,578	28,5	1,990	35,5	0,903
22,0	2,305	29,0	1,911	36,0	1,185
22,5	2,317	29,5	1,554	30,5	1,440
23,0	1,849	30,0	1,170	37,0	1,789
23,5	1,591	30,5	0,902	37,5	1,998
24,0	1,481	31,0	0,688	38,0	2,107
24,5	1,270	31,5	0,554	38,5	2,220
25,0	1,016	32,0	0,423	39,0	2,239
25,5	0,829	32,5	0,407	39,5	2,172
26,0	0,780	33,0	0,398	40,0	2,158
26,5	0,857	33,5	0,498	40,5	2,359
27,0	1,191	34,0	0,603	41,0	2,586
27,5	1,708	34,5	0,705	41,5	2,553
Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mII]
[ms]		[ms]		[ms]	L[IIIII]
42,0	2,532	49,0	1,933	56,0	1,084
42,5	2,262	49,5	1,506	56,5	1,384
43,0	1,810	50,0	1,061	57,0	1,700
43,5	1,602	50,5	0,728	57,5	1,965
44,0	1,437	51,0	0,489	58,0	2,074
44,5	1,248	51,5	0,390	58,5	2,110
45,0	0,929	52,0	0,338	59,0	2,185
45,5	0,734	52,5	0,160	59,5	2,228
46,0	0,711	53,0	0,124	60,0	2,252
46,5	0,819	53,5	0,132		
47,0	1,122	54,0	0,238		
47,5	1,783	54,5	0,540		
48,0	2,040	55,0	0,688		
48,5	2,084	55,5	0,828		

Tab. 6.15. Iznosi međuinduktiviteta između gornjonaponskog i donjonaponskog namota nasrednjem stupu modela transformatora

Vrijeme	L [mH]	Vrijeme	L [mH]	Vrijeme	L [mH]
[ms]	_ []	[ms]	_ []	[ms]	_ []
0	0,530	7	0,941	14	0,408
0,5	1,158	7,5	1,250	14,5	0,590
1	1,602	8	1,448	15	0,846
1,5	1,828	8,5	1,570	15,5	1,172
2	1,818	9	1,383	16	1,443
2,5	1,692	9,5	1,003	16,5	1,646
3	1,595	10	0,732	17	1,770
3,5	1,514	10,5	0,516	17,5	1,734
4	1,361	11	0,421	18	1,730
4,5	1,103	11,5	0,338	18,5	1,632
5	0,874	12	0,315	19	1,359
5,5	0,739	12,5	0,344	19,5	1,083
6	0,676	13	0,379	20	0,999
6,5	0,755	13,5	0,336	20,5	0,891
Vrijeme	I [mH]	Vrijeme	I [mII]	Vrijeme	I [mH]
[ms]		[ms]		[ms]	
21,0	0,827	28,0	1,997	35,0	0,513
21,5	0,778	28,5	1,991	35,5	0,842
22,0	0,809	29,0	1,907	36,0	1,187
22,5	0,895	29,5	1,522	36,5	1,426
23,0	1,009	30,0	1,155	37,0	1,547
23,5	1,237	30,5	0,883	37,5	1,541
24,0	1,568	31,0	0,663	38,0	1,492
24,5	1,786	31,5	0,527	38,5	1,551
25,0	1,866	32,0	0,389	39,0	1,503
25,5	1,615	32,5	0,367	39,5	1,261
26,0	1,294	33,0	0,323	40,0	1,020
26,5	1,112	33,5	0,302	40,5	0,905
27,0	1,285	34,0	0,232	41,0	0,836
27,5	1,719	34,5	0,133	41,5	0,811
Vrijeme	I [mH]	Vrijeme	I [mH]	Vrijeme	I [mH]
[ms]	E [m1]	[ms]	E [IIII]	[ms]	E [iiii]
42,0	0,868	49,0	1,928	56,0	0,835
42,5	0,921	49,5	1,494	56,5	1,213
43,0	1,038	50,0	1,044	57,0	1,400
43,5	1,373	50,5	0,705	57,5	1,496
44,0	1,614	51,0	0,460	58,0	1,417
44,5	1,775	51,5	0,359	58,5	1,339
45,0	1,624	52,0	0,307	59,0	1,345
45,5	1,254	52,5	0,115	59,5	1,247
46,0	0,982	53,0	0,070	60,0	1,090
46,5	0,904	53,5	0,049		
47,0	1,150	54,0	0,051		
47,5	1,794	54,5	0,049		
48,0	2,044	55,0	0,056		
48,5	2,086	55,5	0,224		

Tab. 6.16. Iznosi međuinduktiviteta između gornjonaponskog i donjonaponskog namota nadesnom stupu modela transformatora