Analiza ušteda energije nakon rekonstrukcije javne rasvjete

Žeravica, Toni

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:818325

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-09-30

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
Analiza ušteda energije nakon rekonstrukcije javne rasvjete

Diplomski rad

Toni Žeravica

Osijek, 2018.
Imenovanje Povjerenstva za obranu diplomskog rada

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Toni Žeravica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij, smjer:</td>
<td>DEB – Održiva elektroenergetika</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>D 996, 2015.</td>
</tr>
<tr>
<td>OIB studenta:</td>
<td>34103151466</td>
</tr>
<tr>
<td>Mentor:</td>
<td>Doc.dr.sc. Danijel Topić</td>
</tr>
<tr>
<td>Sumentor:</td>
<td>Jurica Perko, mag.ing.</td>
</tr>
<tr>
<td>Predsjednik Povjerenstva:</td>
<td></td>
</tr>
<tr>
<td>Član Povjerenstva:</td>
<td></td>
</tr>
<tr>
<td>Naslov diplomskog rada:</td>
<td>Analiza ušteda energije nakon rekonstrukcije javne rasvjete</td>
</tr>
<tr>
<td>Znanstvena grana rada:</td>
<td>Elektroenergetika (zn.polje elektrotehnika)</td>
</tr>
<tr>
<td>Zadatak diplomskog rada:</td>
<td></td>
</tr>
<tr>
<td>Prijedlog ocjene pismenog dijela ispita (diplomskog rada):</td>
<td></td>
</tr>
<tr>
<td>Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:</td>
<td></td>
</tr>
<tr>
<td>Datum prijedloga ocjene mentora:</td>
<td></td>
</tr>
</tbody>
</table>

Potpis mentora za predaju konačne verzije rada u Studentsku službu pri završetku studija:

<table>
<thead>
<tr>
<th>Potpis:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum:</td>
<td></td>
</tr>
</tbody>
</table>
IZJAVA O ORIGINALNOSTI RADA

Osijek,

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Toni Žeravica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij:</td>
<td>DEB – Održiva energetika</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>D 996, 2015.</td>
</tr>
<tr>
<td>Ephorus podudaranje [%]:</td>
<td></td>
</tr>
</tbody>
</table>

Ovom izjavom izjavljujem da je rad pod nazivom: **Analiza ušteda energije nakon rekonstrukcije javne rasvjete**

izrađen pod vodstvom mentora Doc.dr.sc. Danijel Topić i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljenih ili neobjavljenih pisani materijali drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:
SADRŽAJ

1 UVOD .. 1

2 JAVNA RASVJETA.. 3

2.1 Zakonodavni okvir i norme .. 3

2.2 Svjetlotehničke veličine i karakteristike javne rasvjete .. 4

2.3 Izvori svjetlosti .. 6

2.3.1 Živine žarulje ... 7

2.3.2 Metalhalogena žarulja (HQ/HCI) ... 8

2.3.3 Natrijeve žarulje (NAV) ... 9

2.3.4 Niskotlačne natrijeve žarulje ... 10

2.3.5 LED izvori svjetlosti ... 11

2.4 Svjetlosno onečišćenje .. 11

3 ANALIZA STANJA JAVNE RASVJETE PRIJE REKONSTRUKCIJE 15

3.1 Zaštita okoliša .. 17

3.2 Klasifikacija sustava javne rasvjete prema HRN EN 13201 17

3.3 Energetska analiza postojećeg stanja javne rasvjete .. 19

3.4 Svjetlotehnička analiza postojećeg stanja javne rasvjete 23

4 PLAN UNAPRIJEĐENJA JAVNE RASVJETE ... 26

4.1 Odabir svjetiljki za rekonstrukciju javne rasvjete .. 26

4.2 Tehničke karakteristike odabranih LED svjetiljki za proračun nove rasvjete 27

4.3 Proračun novo predviđene rasvjete ... 29

5 KONAČNA ANALIZA ... 33

5.1 Usporedba postojećeg i LED sustava javne rasvjete ... 33

6 ZAKLJUČAK .. 37

LITERATURA.. 38

SAŽETAK... 39

ABSTRACT ... 40
ŽIVOTOPIS ... 41
PRIOLOZI .. 42
P.1. Stanje sustava javne rasvjetne prije rekonstrukcije, Čepin .. 42
P.2. Stanje sustava javne rasvjetne prije rekonstrukcije, Livana ... 48
P.3. Stanje sustava javne rasvjetne nakon rekonstrukcije, Čepin i Livana 54
1 UVOD

Vanjska rasvjeta u koju možemo ubrojiti rasvjetu prometnica, igrališta, šetnica, parkova, spomenika i tako dalje, nešto je što nas okružuje i postalo je dijelom naše svakodnevnice. Za njom se u modernom svijetu pojavila potreba kako si se povećala sigurnost, unaprijedio ekonomski razvoj, te se rasvijetlili spomenici i znamenitosti. U trenutku kada čovjek počinje funkcionirati dvadeset i četiri sata na dan, ukazala se potreba za stvaranjem (psihološki i fizički) noćnih uvjeta koji će ispuniti gore navedene potrebe. Ubrzanim razvojem potreba za javnom rasvjetom, korištena su rješenja koja su postojala i tehnološki bila moguća, tako da je uz zadovoljenje potreba za rasvjetom, jačao i negativan utjecaj iste rasvjeti na prirodu i samog čovjeka. Zbog toga se, nakon niza istraživanja kojima je neosporno dokazan negativna utjecaj nekvalitetne javne rasvjete na čovjeka, prirodu i potrošnju energije, pristupilo izradi zakonskih okvira za poboljšanje stanja takvih sustava. Zapravo, tehnologije je doprinijelo da danas imamo široku lepezu, cjelovito gledano, povoljnijih rješenja sustava javne rasvjete.

Javna rasvjeta mora zadovoljavati četiri osnovna zahtjeva, bez obzira na njenu namjenu:

- funkcionalnost,
- estetiku,
- ekonomičnost i
- ekološke zahtjeve.

Osnovna funkcija cestovne rasvjete je osigurati minimalnu propisanu vrijednost osvjetljenja prometnica, ravnomjernu rasvjetljenost, te smanjiti efekt bliještanja farova.

Obično se za rasvjetljenje građevina, spomenika i slično koriste natrijeve žarulje s lošim faktorom uzvrate boje, odnosno žutom bojom svjetlosti koja dovodi do upavljivanja ljudi i umravljanja okoline. Kako bi se neki prostor mogao „oživjeti“, danas se koriste izvori bijele svjetlosti koji imaju efekt sličan prirodnoj Sunčevoj svjetlosti, to jest metalhalogene ili fluokompaktne žarulje, te LED (skr. od engl. Light Emitting Diode) svjetlosne diode.

U troškove rasvjete se ubrajaju troškov održavanja i uređenja objekata, upravljanja, izgradnje te troškovi električne energije za rasvjetljanje javnih površina cesta. Kako troškovi električne energije konstantno rastu, time se konstantno povećavaju i financijski troškovi javne rasvjete na teret gradova i općina.
Sa ekološke strane iznimno je bitno da današnjim djelovanjem ne ugrožavamo resurse generacija koje tek dolaze.
2 JAVNA RASVJETA

2.1 Zakonodavni okvir i norme

U ovom poglavlju ukratko je analizirana zakonska regulativa koja uređuje područje javne rasvjete kao komunalne djelatnosti u pogledu učinkovitog korištenja energije, svjetlosnog onečišćenja, te zadovoljavanja svjetlotehničkih parametara.

Prilikom provedbe energetskih pregleda, projektiranja javne rasvjete, te provođenja modernizacije ili rekonstrukcije postojeće javne rasvjete, važno je pridržavati se načela propisanih zakonima i podzakonskim aktima navedenim u nastavku. Smjernice za izradu provođenja mjera te općenito provođenje mjera poboljšanja sustava javne rasvjete upravo počivaju na zakonodavnom okviru opisanom kako slijedi [13, 14]:

- Zakon o komunalnom gospodarstvu (NN 36/95, 70/97, 128/99, 57/100, 129/00, 59/01, 26/03, 82/04, 110/04, 178/04, 38/09, 79/09, 153/09, 49/11, 84/11, 90/11, 144/12, 94/13, 153/13, 147/14, 36/15)
- Zakon o gradnji (NN 153/13)
- Zakon o prostornom uređenju (NN 153/13)
- Zakon o zaštići od svjetlosnog onečišćenja (NN 114/11)
- Zakon o energetskoj učinkovitosti (NN 127/14)
- Pravilnik o energetskom pregledu zgrade i energetskom certificiranju (NN 48/14, 150/14, 133/15, 22/16, 49/16, 87/16)
- Pravilnik o uvjetima i mjerilima za osobe koje provode energetske pregledove građevina i energetsko certificiranje zgrada (NN 81/12, 64/13)
- Pravilnik o kontroli energetskih certifikata zgrada i izvješća o energetskim pregledima građevina (NN 81/12, 79/13)
- Pravilnik o metodologiji za praćenje, mjerenje i verifikaciju ušteda energije u neposrednoj potrošnji (NN 77/12)
• Pravilnik o sustavnom gospodarenju energijom u javnom sektoru (NN 18/15)
• Prijedlog Uredbe o standardima upravljanja rasvjetljenosću
• Norma HRI CEN/TR 13201-1 i Norma HRN EN 13201-2/5
• Norma HRN EN 12464-2
• Norma HRN EN 12193
• Norma HRN EN 50160

Također, bitno je navesti i EU Uredbu o eko-dizajnu, te Direktivu o ograničenju korištenja opasnih tvari jer one od 2015. godine zabranjuju upotrebu visokotačnih živinih izvora svjetlosti, te zamjenskog natrija zbog nepodobnosti:

• Uredba 245/2009 o eko-dizajnu
• Direktiva 2011/65/EU o ograničenju korištenja opasnih supstanci u elektroničkim i električnim opremama.

2.2 Svjetlotehničke veličine i karakteristike javne rasvjete

U današnjoj javnoj rasvjeti postoji više različitih vrsta izvora svjetlosti, te su opisani fizikalno-matematičkim parametrima boja (uzvrat boje i temperatura boje), a njihova svjetlost se očituje svjetlotehničkim veličinama. Svjetlost je vidljivi dio spektra elektromagnetskog zračenja, te je dvojne prirode. U doticaju sa čvrstom tvari, ponaša se kao čestica (foton), dok se širenjem u prostoru ponaša kao elektromagnetski val širenja energije. Svjetlotehničke veličine opisuju svjetlost prema osjetilnom efektu te su ograničene vidljivim spektrom zračenja od 380 do 780 nm. Veličine koje promatramo u rasvjeti opisane su u nastavku (Tablica 2.1), one su svjetlosni tok, jakost svjetlosti, sjajnost i rasvijetljenost.

Tablica 2.1 Karakteristične veličine u rasvjeti. [10]

<table>
<thead>
<tr>
<th>Oznake</th>
<th>Mjerne jedinice</th>
<th>Formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svjetlosni tok</td>
<td>Φ</td>
<td>(\Phi = I \times \Omega)</td>
</tr>
<tr>
<td>Jakost svjetlost</td>
<td>I</td>
<td>(I = \frac{\Phi}{\Omega})</td>
</tr>
<tr>
<td>Rasvijetljenost</td>
<td>E</td>
<td>(E = \frac{\Phi}{A})</td>
</tr>
<tr>
<td>Sjajnost</td>
<td>L</td>
<td>(L = \frac{I}{A})</td>
</tr>
</tbody>
</table>
Količina svjetla koju emitira neki izvor svjetlosti u svim smjerovima, nazivamo svjetlosnim tokom. Mjerna jedinica za svjetlosni tok jest lumen [lm]. Jakost svjetlosti je mjerna veličina koja opisuje svjetlosni tok u određenom smjeru, a njena mjerna jedinica je kandela [cd].

Slika 2.1 Grafički prikaz svjetlosnog toka i jakosti svjetlosti [1]

Količinu svjetlosnog toka koji pada na neku određenu površinu nazivamo rasvijetljenost, koja se opisuje u mjernoj jedinici lux [lx]. Međutim veličina kojom se opisuje ljudskom oku vidljiva rasvijetljenost površine (rasvijetljene ili svjetleće) se naziva sjajnost ili luminancija i mjeri se u kandelama po jedinici površine [cd/m²].

Slika 2.2 Grafički prikaz rasvijetljenosti i sjajnosti [1]
Ljudsko oko, osim sjajnosti, razlikuje i boje svjetla, koje se označavaju temperaturom boje. Temperatura boje označava boju izvora svjetlosti u odnosu na boju svjetlosti koju zrači idealno crno tijelo. Temperatura pri kojoj crno tijelo emitira jednaku svjetlost kao mjereni izvor naziva se temperaturom boje navedenog izvora svjetlosti i izražava se u kelvinima. Prema tome se temperature boje izvora svjetlosti mogu podijeliti u tri skupine:

- hladno bijelo svjetlo > 5 000 K
- neutralno bijelo svjetlo 3 000 – 5 000 K
- toplo bijelo svjetlo < 3 000 K.

Umjetno svjetlo, ovisno o primjeni, treba omogućavati vidljivost boje kao da je obasjana prirodnom svjetlošću. Ta karakteristika izvora svjetlosti naziva se uzvrat boje i izražava se njegovim faktorom.

Temperatura boje i uzvrat boje nisu direktno povezani, pa se kvaliteta svjetla ne može odrediti na osnovu temperature boje tog svjetla. To jest, potrebno je usporediti objekt osvijetljen izvorom s bojom tog objekta pod referentnim izvorom svjetlosti (Ra=100) kako bi se odredio faktor uzvrata boje.

U rasvjeti se često spominje i pojam svjetlosna iskoristivost, koja predstavlja omjer svjetlosnog toka i količine energije potrebne za dobivanje tog toka [lm/W], odnosno ona pokazuje iskoristivost pretvorbe električne energije u svjetlost. Kao takva predstavlja osnovni pokazatelj ekonomičnosti rasvjetnog sustava.

2.3 Izvori svjetlosti

Postoje dva načina „proizvodnje“ svjetlosti: termičko i luminiscentno zračenje, pa se prema tome vrši osnovna podjela izvora svjetlosti na one koji koriste princip termičkog zračenja kao žarulje za žarnom niti i oni koji koriste princip luminiscencije kao žarulje na izboj.
2.3.1 Živine žarulje

Prve žarulje na izboj su živine žarulje, koje rade na principu generiranja živinih para pri pojavi početnog izboja u argonu. Potreban pogonski tlak iznosi 200 do 400kPa, te bitno utječe na spektar zračenja. Rade obično u hladnijem području na temperaturi od 4000K i to sa iskoristivošću od 60 lm/W, dok im faktor uzvrata boje pripada kategoriji 3. Za paljenje ovakvih žarulja potrebne su startna elektroda i prigušnica, a sam postupak traje od 3 do 6 minuta, odnosno od 5 do 10 minuta pri paljenju „na toplo“. Snaga im se kreće od 50 do 1000W pri naponu od 230V, a prosječan vijek trajanja im je oko 16000 sati, pa se zbog toga najviše koriste u javnoj rasvjeti i industriji. Međutim zbog velike količine Žive koja je otrovna zabranjene su za korištenje u Europskoj Uniji od travnja 2015. godine.
2.3.2 Metalhalogena žarulja (HQ/HCl)

Metalhalogene žarulje rade na sličnom principu kao živine, uz dodatak metalhalogenida živinom punjenju, koji se raspadaju pri višim temperaturama od žive pri čemu dolazi do generiranja vidljivog zračenja kompletnog spektra od strane metala. Kako se šire prema stjenci balona koja ima nižu temperaturu, dolazi do rekombiniranja metalhalogena i ponavljanja prethodno opisanog procesa. Plin u balonu se nalazi pod tlakom od 400 do 2000 kPa, a dodatak metalhalogenida osigurava veću kvalitetu svjetla (uzvrat boje je 1 A), te veću iskoristivost (do 120 lm/W). Različite boje, odnosno temperature boja (od 3000 do 6500K) moguće je postići kombinacijom različitih metala. Nazivna snaga im se kreće od 20 do 20000W, što omogućuje veću različitost primjene (od unutarnje javne rasvjete, preko foto i efekt rasvjete do rasvjete u automobilima). Za paljenje se koristi propaljivač, odnosno visokonaponski startni element koji generira naponski impuls jačine od 3 do 6kV, a proces paljenja traje od 3 do 6 minuta, odnosno od 5 do 20 minuta prir paljenju „na toplo“. Uz vrlo jak propaljivač (generirani napon do 40kV) koji se koristi u posebnim izvedbama moguće je postići trenutno pokretanje.
2.3.3 Natrijeve žarulje (NAV)

U natrijevima žaruljama se osim natrija koristi i ksenon za lakše pokretanje, te kako bi se povećala iskoristivost žive. Do izboja dolazi u natrijevim parama i to pri pogonskom tlaku od 20 do 40 kPa. Iskoristivost ovih žarulja je 150 lm/W, uzvrat boje pripada kategoriji 4, a temperatura boje je oko 2000K (žuta). Za paljenje im je potrebno do 5 minuta, odnosno 1 do 2 minute za ponovno paljenje, što ga čini bržim nego kod metalhalogenih žarulja. Zbog ovakvih karakteristika, te dug životni vijek od 32000 sati (do 95% žarulja radi i nakon 16000 sati pogona, odnosno četiri godine uporabe u javnoj rasvjeti) natrijeve žarulje se najviše koriste za cestovnu rasvjetu.
2.3.4 Niskotlačne natrijeve žarulje

Tlak plina u niskotlačnim natrijevim žaruljama je tek nekoliko milibara, iako je emitirana svjetlost vidljiva i nalazi se u monokromatskom spektru zračenja (585nm). Zbog toga se znatno razlikuju od niskotlačnih živinih žarulja.
2.3.5 LED izvori svjetlosti

LED rasvjeta osim što predstavlja potrebu za svjetlošću, također je postala važna sastavnica pri unutarnjem uređenju prostora. Istosmjerni je potrošač, odnosno radi se o poluvodičkoj komponenti koja ima mogućnost emitiranja svjetlosti u uskom spektru pri određenom smjeru proticanja električne struje. Osnovna prednost LED rasvjete je ta što imaju veću svjetlosnu iskoristivost (50 do 130 [lm/W]), odnosno s manjim snagama zamjenjuju postojećeg izvora svjetlosti. Imaju dobar uzvat boje, prihvatljiv je za okoliš te ima usmjereno svjetlo. Prosječan vijek trajanja iznosi 60.000 sati.

![LED izvor svjetlosti](https://example.com/image.png)

Slika 2.8 LED izvor svjetlosti [6]

2.4 Svjetlosno onečišćenje

Jedan od negativnih efekata javne rasvjete je svjetlosno onečišćenje, odnosno emitiranje svjetla i rasvijetljenost područja u bližoj okolini objekta koji je potrebno osvijetliti, što predstavlja bespotrebno i neželjeno emitiranje određene količine svjetlosti. U to su uključeni rasvjetljavanje neba, blještavilo te ometajuća rasvijetljenost. To se obično događa zbog nepravilno konstruiranih ili nepravilno postavljenih rasvjetnih tijela (izvora svjetlosti) kojima je svjetlosni snop usmjeren lateralno ili prema nebu. Takvo „zagadenje“ neba i okoline neiskoristivom svjetlošću uzrokuje smanjenje rasvijetljenosti ciljanog objekta i narušavanje ostalih parametara osvjetljenja. Naredna
Slika prikazuje svjetlosno onečišćenje svijeta gdje je vidljivo da je ona veća u gušće naseljenim područjima.

Slika 2.9 Prikaz svjetlosnog onečišćenja svijeta [2]

Zbog opisane pojave dolazi do smanjenja vidljivosti zvijezda što je i uzrokovalo prvotno uočavanje ovog problema od strane astronoma. To jest, zaključak je da ne dolazi do tako velikog broja gašenja zvijezda, nego je njihova vidljivost smanjenja uslijed osvijetljenosti neba. Procijenjeno je da je 30% do 50% svjetlosnog onečišćenja uzrokovano rasvjetom prometnica. Osnovna tri elementa koji opisuju svjetlosno onečišćenje su: povećanje svjetline neba, ometajuća svjetlost i bliještanje.

Na svjetlinu neba utječu prirodne komponente na koje se ne može utjecati, te umjetne koje predstavljaju rasvjetna tijela. Svjetlost emitirana iz rasvjetnih tijela se sastoji od tri osnovne komponente:

- direktne uzlazne svjetlosti,
- reflektirane uzlazne svjetlosti i
- apsorbirane svjetlosti.

Reflektirana uzlazna svjetlost je komponenta koja se u ovom slučaju teško može kontrolirati. Naime, pri odbijanju svjetlosti o površinu dolazi do lomljenja uzlazne komponente između brojnih čestica prašine i aerosolnih mjehurića u atmosferi što dovodi do stvaranja disperznog
oblaka svjetlosti. Također se rasi o varijabilnoj komponenti koja osim što stvara neželjenu svjetlost, ovisi i o vremenskim uvjetima i zagađenju atmosfere u datom trenutku. Ustanovljeno je od strane astronoma (pri pojavi nevidljivosti određenih zvijezda s pojedinih područja Zemlje) kako je svjetlina neba u zenitu iznad gradova čak 25% do 50% veća, nego u slabije rasvijetljenim ruralnim područjima. Mjerenja utjecaja ovog elementa svjetlosnog onečišćenja započela su tek nedavno i nisu dovoljno istražena. [11]

Provalno svjetlo je komponenta rasvjete koja se nekontrolirano širi i prodire u prostore u kojima borave ljudi. Ona ima veliki utjecaj na ugodaj ljudske okoline i zdravlja, jer ovakva svjetlost doseže i u spavaonice. Prema istraživanjima se može zaključiti da umjetno svjetlo ima negativan utjecaj na san, životni ritam, alergijske i hormonske poremećaje kod ljudi. Jedan od primjera rezultata ovakvih istraživanja je povećana vjerojatnost obolijevanja od tumora dojke kod žena koje su noću više izložene umjetnoj svjetlosti. Takav utjecaj umjetne rasvjete na ljudski organizam je povezan s melatoninom – hormonom koji se proizvodi tokom spavanja, odnosno povećana rasvjetljenost okoline smanjuje proizvodnju melatonina što povećava vjerojatnost od obolijevanja od različitih vrsta tumora. To je i jedan od razloga zašto dnevni san nije jednako koristan kao noćni. Slika 2.10 prikazuje primjer korisnog svjetla javne rasvjete te onaj dio svjetla javne rasvjete koji se nastoji izbjeći i koji je štetan. [11]

Slika 2.10 Primjer korisnog i štetnog svjetla javne rasvjete [3]
Bliještanje je vizualni osjećaj koji nastaje uslijed ulaska prevelike količine svjetlosti u oko. Takav osjećaj u oku je vrlo neugodan, te ga je zbog toga potrebno što više ograničiti i smanjiti. U osnovi se razlikuju tri kategorije bliještanja:

- zasljepljujuće bliještanje,
- onesposobljavajuće bliještanje i
- neugodno bliještanje.

3 ANALIZA STANJA JAVNE RASVJETE PRIJE REKONSTRUKCIJE

Temeljni zadatak projekta rekonstrukcije javne rasvjete Općine Čepin je snimanje postojeće infrastrukture (određivanje količine, tipova i snaga postojećih svjetiljki), te davanje prijedloga za optimiziranje sustava javne rasvjete na način da se na prometnicama zadovolj norma za cestovnu rasvjetu HRN EN 13201 i da se sva neefikasna i dotrajala rasvjetna tijela zamjene svjetiljkama novih generacija s boljom iskoristivošću.

Temeljem Zakona o prostornom uređenju (NN 153/13), Zakona o gradnji (NN 153/13) i Pravilnika i jednostavnim građevinama i radovima (NN 21/09, 57/10, 126/10, 48/11, 81/12, 68/13) članak 3, stavak 7. [13], radovi predviđeni projektom rekonstrukcije spadaju u jednostavne radove jer se izvođenje radova vrši na postojećim instalacijama sustava javne rasvjete radi povećanja energetske učinkovitosti. Obzirom da se njima ne mijenjaju bitna svojstva građevine, nije potrebno ishoditi lokacijsku i/ili građevinsku dozvolu.

Rekonstrukcijom postojećeg sustava javne rasvjete Općine Čepin obuhvaćena je Osječka Ulica, Ulica Kralja Zvonimira, Ulica Kralja Tomislava i naselje Livana, točnije Omladinska ulica. Slika 3.1 prikazuje Općinu Čepin i površinu koju obuhvaća, a Slika 3.2 prikazuje ulice koje su obuhvaćene rekonstrukcijom javne rasvjete.
Slika 3.1 Prikaz Općine Čepin na karti [4]

Slika 3.2 Ulice obuhvaćene rakonstrukcijom javne rasvjeta [4]
3.1 Zaštita okoliša

Trenutno se koriste natrijeve žarulje koje su u uporabi već dulji niz godina, te su ekološki neprihvatljive. U procesu njihove zamjene postojeće žarulje je potrebno zbrinuti na odgovarajući i ekološki prihvatljiv način. Nakon postavljanja novih izvora svjetlosti veće energetske učinkovitosti postigla bi se manja zagađenost okoliša, te bi se smanjile emisije stakleničkih plinova i efekt globalnog zatopljenja. Također bi došlo i do smanjenja negativnog utjecaja na životinjski i biljni svijet, smanjila bi se svjetlosna zagađenost uključujući provalnu svjetlost prema stambenim objektima, te bi promjene bile u skladu s Zakonom o zaštiti od svjetlosnog onečišćenja i normom HRN EN 13201. Međutim, važno je napomenuti da je potrebno paziti na pravilno postavljanje nove rasvjetne kako bi se ispunila prethodno navedena očekivanja.

3.2 Klasifikacija sustava javne rasvjete prema HRN EN 13201

Ovisno o konfiguraciji prometnice (vrsta vozila koji prometuju prometnicom, prosječna brzina kretanja vozila, gustoća prometa koji se odvija zadanom prometnicom, broj konfliktnih zona) odabire se klasa osvjetljenja prometnice. Tablica 3.1 prikazuje svjetlotehničke zahtjeve ovisno o klasi prometnice, koji se moraju zadovoljiti odabirom rasvjetnih tijela. Ovaj projekt je realiziran 2012. godine, a 2015. godine je došlo do promjene norme HRN EN 13201 gdje su klase rasvjete zamijenjene (M1-M6) kao i metodologija određivanja klasa.

Tablica 3.1 Klasifikacija prometnica prema HRN EN 13201. [12]

<table>
<thead>
<tr>
<th>Klasa</th>
<th>Osvjetljenje cestovne površine pri suhim uvjetima na cesti</th>
<th>Bliještanje</th>
<th>Osvjetljenje okoline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{L}) in [cd/m(^2)] (minimalno održavanje)</td>
<td>(U_0) (minimum)</td>
<td>(U_1) (minimum)</td>
</tr>
<tr>
<td>ME1</td>
<td>2,0</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>ME2</td>
<td>1,5</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>ME3a</td>
<td>1,0</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>ME3b</td>
<td>1,0</td>
<td>0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>ME3c</td>
<td>1,0</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>ME4a</td>
<td>0,75</td>
<td>0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>ME4b</td>
<td>0,75</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>ME5</td>
<td>0,5</td>
<td>0,35</td>
<td>0,4</td>
</tr>
<tr>
<td>ME6</td>
<td>0,3</td>
<td>0,35</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Gdje je:
• L – srednja razina sjajnosti kolnika izražena u [cd/m²]
• U₀ – opća jednolikost rasvijetljenosti
• U₁ - srednja (uzdužna jednolikost rasvijetljenosti)
• TI – relativni prag porasta u [%], to jest povećanje praga uočavanja kontrasta (prepreke i njezine zaleđine) koje će osiguravati istu razinu njegovog uočavanja sa vozačeve strane sa bliještanjem ili bez njega
• SR – faktor rasvijetljenosti okoliša

Zona rasvijetljenosti za obuhvaćeni dio javne rasvjete jest E2 – područja niske ambientalne rasvijetljenosti rezidencijalne zone. Tablica 3.2 izvadak je iz standarda HRN EN 13201-1 te prikazuje odabir klase rasvijetljenosti za zadanu prometnicu. Brzina kretanja za sve navedene ulice je 70 [km/h]. Moguće je promet sporijih vozila, pješaka ili biciklista, dok je dnevni promet između 7.000 i 15.000 vozila dnevno.

Tablica 3.2 Izvadak iz standarda HRN EN 13201-1

<table>
<thead>
<tr>
<th>Tipična brzina glavnog korisnika [km/h]</th>
<th>Tipovi korisnika u području</th>
<th>Setovi situacija osvjetljenja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glavni korisnici</td>
<td>Drugi dozvoljeni korisnici</td>
</tr>
<tr>
<td>Veća od 60</td>
<td></td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td>Između 30 i 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td>Između 5 i 30</td>
<td>Biciklisti</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td>Brzina hoda</td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
<tr>
<td></td>
<td>Motorizirani promet</td>
<td>Sporo kretajuća vozila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biciklisti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pješaci</td>
</tr>
</tbody>
</table>
Tablica 3.3 Prikaz klase rasvijetljenosti

<table>
<thead>
<tr>
<th>Glavni tip vremena</th>
<th>Odvajanj e teretnih puteva</th>
<th>Gustoća križanja [križanja/km]</th>
<th>Gustoća prometa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>< 7000</td>
<td>≥ 7000, < 15000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>← o → ← o → ← o → ← o → ← o →</td>
<td></td>
</tr>
<tr>
<td>Suho</td>
<td>Da < 3</td>
<td>ME5 ME5 ME4a ME5 ME5 ME4a ME5 ME4a ME3b ME4a ME3b ME3b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 3 ME5 ME4a ME3b ME5 ME4a ME3b ME4a ME3b ME2 ME3b ME2 ME2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ne < 3</td>
<td>ME5 ME4a ME3b ME5 ME4a ME3b ME4a ME3b ME2 ME3b ME2 ME2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 3 ME4a ME3b ME3b ME4a ME3b ME2 ME3b ME2 ME ME3b ME2 ME1</td>
<td></td>
</tr>
<tr>
<td>Mokro</td>
<td></td>
<td>Jednak izbor kao i za suhe uvjete</td>
<td></td>
</tr>
</tbody>
</table>

Prema prikazanim parametrima, zadana klasa rasvijetljenosti prometnica je ME4a.

3.3 Energetska analiza postojećeg stanja javne rasvjete

Dio sustava javne rasvjete Čepin obuhvaćen projektom rekonstrukcije sadrži visokotlačne natrijeve svjetiljke (Siemens, Siteco, snage 250 [W]) sa isupčenim staklom. U naselju Livana, Omladinska ulica, instalirane su svjetiljke sa visokotlačnim natrijevim izvorima svjetlosti snage 250 [W], te isupčenim staklom.

Mjerna mjesta na ovom dijelu rasvjete nisu postavljena zasebno, nego se nalaze u sklopu pojnih točaka gdje su priključeni i ostali potrošači. Paljenje rasvjete je automatizirano prema ljetnom i zimskom režimu, te ne postoji sustav regulacije.

Sustav javne rasvjete ima prosječno 4100 radnih sati u godini. Tarifa potrošnje električne energije je „ŽUTI“ i iznosi 0,87 kuna bez PDV-a.

Pri povećanju nazivne snage starih žarulja za 25%, odnosno novih žarulja za 19% u obzir se mogu uzeti gubici koji nastaju u prigušnicama,transformatorima i mreži u proračunu ušteda.

U ovom dijelu biti će prikazani zbirni energetski podatci sustava obuhvaćenih ovim projektom. Popis vrsti i količina rasvjetnih tijela po ulicama prikazana je u nastavku (Tablica 3.4).
Tablica 3.4 Postojeće javne rasvjete

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Livana: Omladinska ulica</td>
<td>Na</td>
<td>250</td>
<td>62,5</td>
<td>43</td>
<td>13,44</td>
</tr>
<tr>
<td>2</td>
<td>Čepin: Ulica K. Zvonimira</td>
<td>Na</td>
<td>250</td>
<td>62,6</td>
<td>115</td>
<td>35,94</td>
</tr>
<tr>
<td>3</td>
<td>Čepin: Osječka ulica</td>
<td>Na</td>
<td>250</td>
<td>62,7</td>
<td>49</td>
<td>15,31</td>
</tr>
<tr>
<td>4</td>
<td>Čepin: Ulica K. Tomislava</td>
<td>Na</td>
<td>250</td>
<td>62,8</td>
<td>66</td>
<td>20,63</td>
</tr>
<tr>
<td></td>
<td>Ukupno:</td>
<td></td>
<td>273</td>
<td>85,31</td>
<td></td>
<td>85,31</td>
</tr>
</tbody>
</table>

Projektom je obuhvaćeno sveukupno 273 svjetiljke instalirane snage 85,31 [kW]. Tablica 3.5 prikazuje proračunsku potrošnju električne energije.

Tablica 3.5 Proračunska potrošnja električne energije postojeće javne rasvjete

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalirana snaga [kW]</td>
<td>85,31</td>
</tr>
<tr>
<td>Godišnje radno vrijeme [h]</td>
<td>4.100</td>
</tr>
<tr>
<td>Sveukupno [kWh]</td>
<td>349.771</td>
</tr>
<tr>
<td>Tarifa Žuti [kn/kWh]</td>
<td>0,87</td>
</tr>
<tr>
<td>Naknada za obnovljive izvore energije [kn/kWh] 2014. godine</td>
<td>0,035</td>
</tr>
<tr>
<td>Godišnji trošak el. energije</td>
<td>316.542,76 kn</td>
</tr>
<tr>
<td>PDV 25%</td>
<td>79.135,69 kn</td>
</tr>
<tr>
<td>Sveukupno</td>
<td>395.678,44 kn</td>
</tr>
</tbody>
</table>

Izračunati referentni godišnji trošak električne energije iznosi 395.678,44 kune sa PDV-om. Tablica 3.6 prikazuje godišnju emisiju CO₂ te količinu onečišćenja koje ono stvara.

Tablica 3.6 Izračun emisija CO₂

<table>
<thead>
<tr>
<th></th>
<th>Godišnji utrošak el. energije [kWh]</th>
<th>Faktor emisije CO₂ [kg CO₂/kWh]</th>
<th>Emisija CO₂ [t/god]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postojeće stanje JR</td>
<td>349.771</td>
<td>0,376</td>
<td>131,51</td>
</tr>
</tbody>
</table>
Tablica 3.7 prikazuje troškove održavanja na godišnjoj razini, ukoliko bi zamijenili sve postojeće žarulje i prigušnice u istoj godini.

Tablica 3.7 Troškovi održavanja

<table>
<thead>
<tr>
<th>Opis</th>
<th>Postojeća rasvjeta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komada</td>
<td>273</td>
</tr>
<tr>
<td>Interval zamjene žarulje [god]</td>
<td>3</td>
</tr>
<tr>
<td>Trošak zamjene žarulje</td>
<td>150,00 kn</td>
</tr>
<tr>
<td>Interval zamjene prigušnice [god]</td>
<td>5</td>
</tr>
<tr>
<td>Trošak zamjene prigušnice</td>
<td>300,00 kn</td>
</tr>
<tr>
<td>Ukupni trošak održavanja u 10 godina po svjetiljci</td>
<td>1.100,00 kn</td>
</tr>
<tr>
<td>Godišnji trošak održavanja po svjetiljci</td>
<td>110,00 kn</td>
</tr>
<tr>
<td>Sveukupan godišnji trošak održavanja po svjetiljci</td>
<td>30.030,00 kn</td>
</tr>
</tbody>
</table>

Svjetiljke nemaju ekološki pogodan dizajn te su postavljene pod kutom od 15° u odnosu na vodoravnu površinu koja se osvjetljava, pa zbog toga imaju visok faktor svjetlosnog onečišćenja. Osim toga, radi se o svjetiljkama prevelikog iznosa snage i svjetlosnog toka u odnosu na potrebe terena gdje se koriste. S obzirom na njihovu starost smanjila im se i svjetlosna propusnost zbog zamućenosti pokrovnog stakla. Također za ovakav tip žarulja je karakterističan eksponencijalno oslabljenje svjetlosnog toka tokom vremena, te loš faktor uzvratbe boja zbog čega je otežano uočavanje kontrasta i zapreka (Ra=25). I na posljedu, zbog sadržavanja žive ovakve žarulje imaju negativan utjecaj na ljudsko zdravlje, te predstavljaju problem pri zbrinjavanju nakon isteka vijeka uporabe.
Slika 3.3 Postojeće svjetiljke Omladinska ulica

Slika 3.4 Postojeće svjetiljke ulica Kralja Tomislava

Slika 3.5 Postojeće svjetiljke ulika Kralja Zvonimira
3.4 Svjetlotehnička analiza postojećeg stanja javne rasvjete

U navedenom dijelu izvršena je analiza svjetlotehničkih parametara prema postojećem stanju rasvjete. Proračuni su izrađeni u programu Dialux 4.12, te se nalaze u prilozima.

Za sve proračune postojećeg stanja rasvjete, osim ukoliko nije drugačije navedeno, postavljeni su slijedeći parametri:

- Faktor održavanja MF=0,6 uslijed trenutnog stanja izvora svjetlosti (pad svjetlosnog toka), lošeg stanja svjetiljke općenito
- Obloga ceste R2, q0 =0,070
- Dvosmjerni promet
- Jednostrano postavljanje svjetiljki

Konfiguracija promotnica je slijedeća:

- Prometnica za motorna vozila širine 7 metara, dvosmjeran promet
- Visina postavljenih svjetiljki 11 metara
- Razmak stupova 30 metara
- Udaljenost svjetiljke od ruba promotnice jest 1 metar
Obloga ceste R0, q0 = 0,070

Svjetlotehnički proračun je podijeljen na dva dijela, ovisno o tipu svjetiljke koji se nalazi na ulici.

Tablica 3.8 Čepin: Svjetlotehnički parametri postojećeg stanja

<table>
<thead>
<tr>
<th>Ulica</th>
<th>K. Zvonimira, Osječka, K. Tomislava</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip svjetiljki</td>
<td>Natrij</td>
</tr>
<tr>
<td>Snaga izvora svjetlosti [W]</td>
<td>250</td>
</tr>
<tr>
<td>Visina izvora svjetlosti [m]</td>
<td>11</td>
</tr>
<tr>
<td>Širina prometnice [m]</td>
<td>7</td>
</tr>
<tr>
<td>Udaljenost izvora svjetlosti od prometnice [m]</td>
<td>1</td>
</tr>
<tr>
<td>Razmak između svjetiljki [m]</td>
<td>30</td>
</tr>
<tr>
<td>Nagib svjetiljke [°]</td>
<td>15</td>
</tr>
</tbody>
</table>

Tablica 3.9 Čepin: Svjetlotehnički parametri postojećeg stanja

<table>
<thead>
<tr>
<th>Odabrana klasa: ME4a</th>
<th>Zahtjev</th>
<th>Proračun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lav [cd/m²]</td>
<td>≥ 0,75</td>
<td>1,07</td>
</tr>
<tr>
<td>U₀</td>
<td>≥ 0,40</td>
<td>0,75</td>
</tr>
<tr>
<td>U₁</td>
<td>≥ 0,60</td>
<td>0,63</td>
</tr>
<tr>
<td>T₁ [%]</td>
<td>≤ 15</td>
<td>12</td>
</tr>
<tr>
<td>SR</td>
<td>≥ 0,50</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Tablica 3.10 Livana: Svjetlotehnički parametri postojećeg stanja

<table>
<thead>
<tr>
<th>Ulica</th>
<th>Omladinska ulica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip svjetiljki</td>
<td>Natrij</td>
</tr>
<tr>
<td>Snaga izvora svjetlosti [W]</td>
<td>250</td>
</tr>
<tr>
<td>Visina izvora svjetlosti [m]</td>
<td>11</td>
</tr>
<tr>
<td>Širina prometnice [m]</td>
<td>7</td>
</tr>
<tr>
<td>Udaljenost izvora svjetlosti od prometnice [m]</td>
<td>1</td>
</tr>
<tr>
<td>Razmak između svjetiljki [m]</td>
<td>30</td>
</tr>
<tr>
<td>Nagib svjetiljke [°]</td>
<td>15</td>
</tr>
</tbody>
</table>

Tablica 3.11 Livana: Svjetlotehnički parametri postojećeg stanja

<table>
<thead>
<tr>
<th>Odabrana klasa: ME4a</th>
<th>Zahtjev</th>
<th>Proračun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lav [cd/m²]</td>
<td>≥ 0,75</td>
<td>0,88</td>
</tr>
<tr>
<td>U₀</td>
<td>≥ 0,40</td>
<td>0,60</td>
</tr>
<tr>
<td>U₁</td>
<td>≥ 0,60</td>
<td>0,72</td>
</tr>
<tr>
<td>T₁ [%]</td>
<td>≤ 15</td>
<td>12</td>
</tr>
<tr>
<td>SR</td>
<td>≥ 0,50</td>
<td>0,83</td>
</tr>
</tbody>
</table>
Razlike u parametrima kod proračuna postojećeg stanja za Čepin i Livanu događaju se zbog toga što na svim rasvjetnim stupovima nisu iste svjetiljke, to jest, svjetiljke nemaju istu kvalitetu niti proizvođača, što se ispravilo daljnjom rekonstrukcijom javne rasvjetе.

Postojeće stanje rasvjete s obzirom na svjetlotehničke parametre i udio bliještanja i rasipanja svjetlosti u okolinu, te odabranu klasu prometnice zadovoljava normu HRN EN 13201, ali je sustav predimenzioniran.
4 PLAN UNAPRIJEĐENJA JAVNE RASVJETE

Od postojeće instalacije javne rasvjete zadržavaju se stupovi, krakovi i mreža kabela, dok se svjetiljke uklanjaju i na njihovo mjesto postavljaju nove svjetiljke veće korisnosti. Nisu predviđeni nikakvi građevinski radovi ili postavljanje novih stupova, niti polaganje energetskih kabela. Novo predviđena rasvjeta je odabrana u potpunosti u skladu sa postojećim konfiguracijama stupova pojedine ulice tako da zadovoljava važeće norme i Zakon o zaštiti od svjetlosnog onečišćenja.

Postojeće svjetiljke se demontiraju, te zajedno sa svjetlosnim izvorima moraju se odgovarajuće zbrinuti zbog zaštite okoliša. U čeličnim stupovima se zadržavaju postojeći vodovi i montiraju se nove svjetiljke. Postojeći krakovi se zadržavaju no treba obratiti pozornost na sigurnu i adekvatnu montažu, vodeći računa o niveliranju novih svjetiljki na način da je svjetiljka paralelno sa horizontalnom površinom koja se osvjetljava, te o stanju postojećih krakova.

4.1 Odabir svjetiljki za rekonstrukciju javne rasvjete

Nakon vršenja analize nove rasvjete koja uključuje LED svjetiljke, napravljen je odabir svjetiljki. Zadane svjetiljke koje su korištene u novom proračunu rasvjete zadovoljile su parametre rasvjete zadane Zakonom o zaštiti od svjetlosnog onečišćenja i Tehničkim smjernicama za dodjelu sredstava (temperatura boje do 4000K i omogućeno reguliranje svjetlosnog toka), imaju manju snagu u odnosu na staru rasvjetu i omogućuju povećanje energetske učinkovitosti. Zbog male instalirane snage i niskih troškova održavanja, izabrane su LED svjetiljke kao one s najmanjim godišnjim troškovima eksploatacije.

Kako je referentni broj 4100 radnih sati godišnje, a vijeka trajanja LED svjetiljki preko 90000 sati (prema atestu i garanciji proizvođača) izračunat je radni vijek nove rasvjete u trajanju od 21,95 godina. Svjetiljke korištene u proračunu koriste se i za javnu rasvjetu, rasvjetu autoputova, mostova i slično.
4.2 Tehničke karakteristike odabranih LED svjetiljki za proračun nove rasvjete

Osnovni element LED svjetiljki su poluvodičke komponente, koje za razliku od starijih vrsta svjetiljki ne sadrže štetne plinove, pa time ne zahtijevaju posebne uvjete zbrinjavanja po isteku radnog vijeka. LM80 testom im je određen radni vijek od preko 90000 radnih sati, za koji nisu potrebne dodatne zamjene izvora svjetlosti, ni zbrinjavanja starih u tom periodu. Čak i nakon isteka radnog vijeka moguće je napraviti samo zamjenu LED modula zadržavajući istu svjetiljku.

Kućišta LED svjetiljki se izrađuju od legura koje su otporne na vanjske utjecaje, uključujući koroziju, što produljuje vijek trajanja samih svjetiljki uz rijetke izmjene LED implemenata. Otpornost svjetiljki na koroziju ispitana je prema propisima HRN EN 9227:2012 na osnovu čega je priloženo testno izvješće o antikorozivnosti.

Slika 4.1 Svjetiljka korištena u javnoj rasvjeti [7]
Kod LED svjetiljki je moguća brza i jednostavna izmjena pojedinih dijelova poput dioda i napajanja što ispunjava zahtjev modularnosti. Također su izrađene tako da održavaju konstantan svjetlosni tok (engl. constant light output) tokom cijelog radnog vijeka, pa im je time i povećan i faktor održavanja (engl. maintenance factor).

Također je uključena i mogućnost nadogradnje bežičnog modula u slučaju potrebe za nadogradnjom sustava tako da se omogući daljinsko očitavanje potrošnje električne energije javne rasvjete (individualnih i grupa svjetiljki), njihovog statusa režima rada, te uvođenje izmjena u režimima paljenja i gašenja rasvjete. Imaju vrlo malu masu, pa ne predstavljaju veliko opterećenje za krakove i stupove, iako se ugrađuju na većim visinama gdje su izložene udarima vjetra i vibracijama. Međutim zbog postavljenih krakova na zakrivljenost od 15° potrebna je mogućnost promjene nagiba svjetiljki kako bi se postigla paralelna položenost u odnosu na površinu koju osvjetljava.

Tehničke karakteristike svjetiljki su slijedeće:

- boja svjetlosti maksimalno 4000 K, full cut off izvedba, poklopac izrađen od ravnog kaljenog, UV stabiliziranog stakla te minimalne debljine od 5mm,
- ULOR = 0%, LOR ≥ 89%
- minimalno 90.000 sati radnog vijeka prema LM80 testu,
- minimalno 90.000 sati radnog vijeka napajanja,
- faktor snage ≥ 0,95,
- minimalni stupanj zaštite IP66,
- minimalni stupanj zaštite od udarca IK08,
- prenaponska zaštita napajanja 9 kV
- mogućnost nadogradnje bežičnog modula, autonomna regulacija svjetlosnog toka i snage nakon ponoći na 50 % nazivnog svjetlosnog toka i snage,
- prenaponska zaštita dioda minimalno 4 kV, klasa izolacije II,
- IP66 utikač i pripadajuća utičnica za spajanje na strujni izvod,
- kućište izrađeno od alumiinijskog tlačnog lijeva, od legure sa visokom zaštitom od korozije, rebra na vrhu za odvođenje topline,
- montaža na prihvat 60 milimetara – na krak, mogućnost promjene nagiba u odnosu na horizontalnu površinu od -20° do +20°,
- radna temperatura -25°C do +50°C,
• posjedovanje certifikata ENEC, I.K certifikata, CE izjava o sukladnosti, testno izvješće svojstva kućišta o antikorozivnosti prema HRN EN ISO 9227:2012, (ocjena testa je zadovoljavajuća),
• minimalna garancija 5 godina,
• gubitci predspojne naprave od 3,9 W i
• svjetlosna iskorištivost izvora svjetlosti 116,5 lm/W.

4.3 Proračun novo predviđene rasvjete

Ovisno o potrebi klasi ceste, širini ceste, međusobnom razmaku stupova, udaljenosti pojedinog stupa od ruba ceste, visini postavljanja svjetiljke izvršeni su proračuni i proračunati odgovarajući tipovi svjetiljki. Tipovi svjetiljki su u projektu označeni slijedećim oznakama prikazanim u Tablici 4.1.

Tablica 4.1 Oznake predloženih svjetiljki za rekonstrukciju

<table>
<thead>
<tr>
<th>Redni broj</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oznaka</td>
<td>A</td>
</tr>
<tr>
<td>Tip izvora svjetlosti</td>
<td>LED</td>
</tr>
<tr>
<td>Snaga izvora svjetlosti [W]</td>
<td>69</td>
</tr>
<tr>
<td>Ukupna snaga sa predspojnom napravom [W]</td>
<td>73</td>
</tr>
<tr>
<td>Tip svjetiljke</td>
<td>Stratos N 9M700 N23a</td>
</tr>
</tbody>
</table>

Fotometrijske datoteke su dobivene od proizvođača svjetiljki.

Tablica 4.2 Čepin: novo stanje svjetlotehničkih parametara

<table>
<thead>
<tr>
<th>Odabrana klasa: ME4a</th>
<th>Zahtjev</th>
<th>Proračun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lav [cd/m²]</td>
<td>≥ 0,75</td>
<td>0,75</td>
</tr>
<tr>
<td>U₀</td>
<td>≥ 0,40</td>
<td>0,76</td>
</tr>
<tr>
<td>U₁</td>
<td>≥ 0,60</td>
<td>0,67</td>
</tr>
<tr>
<td>T₁ [%]</td>
<td>≤ 15</td>
<td>4</td>
</tr>
<tr>
<td>SR</td>
<td>≥ 0,50</td>
<td>0,83</td>
</tr>
</tbody>
</table>
Tablica 4.3 Livana: novo stanje svjetlotehničkih parametara

<table>
<thead>
<tr>
<th>Odabrana klasa: ME4a</th>
<th>Zahtjev</th>
<th>Proračun</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_a [cd/m2]</td>
<td>$\geq 0,75$</td>
<td>0,75</td>
</tr>
<tr>
<td>U_0</td>
<td>$\geq 0,4$</td>
<td>0,76</td>
</tr>
<tr>
<td>U_1</td>
<td>$\geq 0,6$</td>
<td>0,67</td>
</tr>
<tr>
<td>T_1 [%]</td>
<td>≤ 15</td>
<td>4</td>
</tr>
<tr>
<td>SR</td>
<td>$\geq 0,5$</td>
<td>0,83</td>
</tr>
</tbody>
</table>

Svjetiljke zadovoljavaju svjetlotehničke parametre za zadanu klasu prometnica i u skladu su sa HRN EN 13201 standardom.

Svjetlotehničkim proračunima i uvidom u pregled novo predviđene rasvjete uskladene sa normom HRN EN 13201, može se izračunati ukupna instalirana snaga novog predloženog stanja javne rasvjete. Tablica 10 prikazuje izračun faktora energetske učinkovitosti svjetiljki za zadanu konfiguraciju prometnica i korištenih novo predloženih svjetiljki. Faktori se računaju prema uputama Prijedloga uredbe o standardima upravljanja rasvijetljenošću.

Tablica 4.4 Faktori SL za zadane prometnice i svjetiljke [7]

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Stratos N 9M700</td>
</tr>
<tr>
<td>Snaga izvora uvećana za 19% [W]</td>
<td>82,23</td>
</tr>
<tr>
<td>Zadana sjajnost [cd/m2]</td>
<td>1</td>
</tr>
<tr>
<td>Širina površine [m]</td>
<td>7</td>
</tr>
<tr>
<td>Razmak između svjetiljki [m]</td>
<td>30</td>
</tr>
<tr>
<td>Faktor SL</td>
<td>0,39</td>
</tr>
</tbody>
</table>

Granična propisana vrijednost faktora SL Prijedlogom uredbe o standardima upravljanja rasvijetljenošću iznosi 0,974 [W/(cd/m2)m2)] dok u ovom slučaju faktor SL iznosi 40,2 [%] granične propisane vrijednosti.
Tablica 4.5 Instalirana snaga nove rasvjete

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Livana: Omladinska ulica</td>
<td>LED</td>
<td>69,1</td>
<td>13,129</td>
<td>43</td>
<td>3,54</td>
</tr>
<tr>
<td>2</td>
<td>Čepin: Ulica Kralja Zvonimira</td>
<td>LED</td>
<td>69,1</td>
<td>13,129</td>
<td>115</td>
<td>9,46</td>
</tr>
<tr>
<td>3</td>
<td>Čepin: Osječka Ulica</td>
<td>LED</td>
<td>69,1</td>
<td>13,129</td>
<td>49</td>
<td>4,03</td>
</tr>
<tr>
<td>4</td>
<td>Čepin: Ulica Kralja Tomislava</td>
<td>LED</td>
<td>69,1</td>
<td>13,129</td>
<td>66</td>
<td>5,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sveukupno: 273</td>
</tr>
</tbody>
</table>

Iako je deklarirana nazivna snaga svjetiljke 73 [W], prema Tehničkim smjernicama za izradu projekta vrijednost ukupne snage LED modula se uvećava za 19 [%] [8], da bi se dobila proračunska snaga novo predviđene LED rasvjete.

Regulaciju svjetlosnog toka treba primijeniti u kasnim noćnim satima kada su količina u gustoća prometa na cesti znatno smanjeni, minimalna vrijednost je 50 [%] ukupne vrijednosti svjetlosnog toka. Na taj način se podiže energetska učinkovitost rasvjete. Za izračun ukupne godišnje potrošnje koristi se podatak o 4 100 radnih sati javne rasvjete tijekom godine.

Novo predviđene svjetiljke snage 73 [W] (snaga LED modula 69,1 [W]) predlažu se sa mogućnošću autonomnog smanjenja snage u periodu manjeg cestovnog prometa. LumiStep preprogramirana redukcija svjetlosti, virtualna ponoć se automatski određuje na temelju vremena uključivanja i isključivanja rasvjete, moguće je reducirati do 50 [%] svjetlosti nakon virtualne ponoći (0+6) ili 2 sata prije i dodatno 6 sati poslije (2+6).

Nakon svaka tri dana sustav određuje vrijeme paljenja i gašenja, što ga čini neovisnom o promjenama u trajanju dana odnosno noći tokom godine.
Vrijednost ukupne snage LED modula se uvećava za 19 [%] da bi se dobila proračunska snaga novo predviđene LED rasvjete. Ukupna snaga rasvjete je 16,28 [kW], što u usporedbi sa snagom postojećeg sustava predstavlja smanjenje za 80,92 [%].

Tablica 4.6 ukupna instalirana snaga uključujući regulaciju

<table>
<thead>
<tr>
<th>Izračun umanjenja snage nove rasvjete režimom regulacije rada svjetiljki</th>
<th>Nova rasvjeta s gubicima [kW]</th>
<th>Smanjenje snage regulacijom [%]</th>
<th>Smanjenje snage [kW]</th>
<th>Vrijednost ukupne snage [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulirajuća</td>
<td>22,46</td>
<td>27,50</td>
<td>6,18</td>
<td>16,28</td>
</tr>
</tbody>
</table>

Tablica 4.7 prikazuje izračun godišnje potrošnje i troška električne energije novog sustava javne rasvjete. Ukupni godišnji troškovi pojedinog sustava javne rasvjete dobiju se zbrajajući cijenu potrošene električne energije. Cijena utrošene energije je 0,87 [kn/kWh] i toj cijeni se još dodaje 0,035 [kn/kWh] za obnovljive izvore energije (2012. Godine). Navedene cijene se uvećavaju za PDV 25 [%].

Tablica 4.7 Parametri proračunskog troška električne energije novo predviđene rasvjete

<table>
<thead>
<tr>
<th>Instalirana snaga [kW]</th>
<th>16,28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godišnje radno vrijeme [h]</td>
<td>4100</td>
</tr>
<tr>
<td>Tarifa Žuti [kn/kWh]</td>
<td>0,87 kn</td>
</tr>
<tr>
<td>Naknada za obnovljive izvore energije [kn/kWh] 2014. godine</td>
<td>0,035 kn</td>
</tr>
<tr>
<td>PDV [%]</td>
<td>25</td>
</tr>
<tr>
<td>Sveukupno [kWh]</td>
<td>66.728,22</td>
</tr>
<tr>
<td>Godišnji trošak el. Energije (+ 25%) [kn]</td>
<td>75.486,30</td>
</tr>
</tbody>
</table>
5 KONAČNA ANALIZA

5.1 Usporedba postojećeg i LED sustava javne rasvjete

U ovom dijelu će se uspoređiti trošak postojećeg i novog LED stanja dijela javne rasvjete. Sa postojećom javnom rasvjetom godišnji troškovi održavanja iznose 36.855,00 kuna, dok troškovi održavanja nove LED rasvjete iznose 0,00 kuna. Što je iznimno bitan faktor u rekonstrukciji javne rasvjete.

U nastavku je prikazana usporedba instalirane snage između postojećeg stanja javne rasvjete i simulacijskog stanja rasvjete sa klasičnim izvorima svjetlosti i novo predviđenog stanja sa LED svjetiljkama (Slika 5.1).

![Diagram](image)

Slika 5.1 Usporedba instalirane snage javne rasvjete [kW]

Godišnja potrošnja električne energije između postojećeg stanja rasvjete, simulacijskog stanja rasvjete sa klasičnim izvorom svjetlosti, te novo predviđenog stanja rasvjete sa LED svjetiljkama biti će prikazan u nastavku (Slika 5.2).
U nastavku je prikazan godišnji trošak električne energije postojeće rasvjete i novo predviđenog stanja sa LED svjetiljkama (Slika 5.3).

Slika 5.3 Godišnji trošak električne energije [kn]

Manjim utroškom električne energije za 283.053,03 [kWh] godišnje, smanjuje se emisija CO₂ za 106,42 [t] po godini. Rezultati su prikazani u nastavku (Tablica 5.1).
Indikatori kvalitete ulaganja se dobiju odnosom ukupne investicije (sa PDV-om) potrebne za rekonstrukcije javne rasvjete i godišnjeg smanjenja CO₂, godišnje uštede električne energije i iznosu investicije po rasvjetnom mjestu, kako je i prikazano u nastavku (Tablica 5.2).

Tablica 5.2 Indikator kvalitete ulaganja

Vrijednost investicije sa PDV-om [kn]	1.254.896,19 kn
Smanjenje emisije CO₂ [t]	106,43
Indikator kvalitete ulaganja [kn/t CO₂]	11.791,03 kn
Godišnja ušteda energije [kWh]	283.053,03
Indikator kvalitete ulaganja [kn/kWh]	4,43 kn
Broj rasvjetnih mjesta (kom)	273
Indikator kvalitete ulaganja [kn/rasvj. mjestu]	4.596,69 kn

Izračun povrata investicije se računa usporedbom godišnjih troškova električne energije referentnog postojećeg i novog predloženog stanja rasvjete.
Omjer investicije i ostvarene uštede u godišnjim troškovima javne rasvjete daje vrijeme povrata investicije. Vrijednosti su izražene sa PDV-om.

Tablica 5.3 Prikaz godišnje uštede troškova javne rasvjete

<table>
<thead>
<tr>
<th></th>
<th>Godišnji trošak [kn]</th>
<th>Godišnja ušteda [kn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postojeće stanje rasvjete</td>
<td>395.690,04 kn</td>
<td>320.203,74 kn</td>
</tr>
<tr>
<td>Novoprojektirano stanje rasvjete</td>
<td>75.486,0 kn</td>
<td></td>
</tr>
</tbody>
</table>

\[
Povrat investicije = \frac{1254696,19 kn}{320203,74 kn} = 3,92 godina
\]
6 ZAKLJUČAK

Mnogi sadašnji sustavi javne rasvjete su predimenzionirani, pa prema tome imaju značajno veću potrošnju električne energije nego što treba. Usklađivanje potreba rasvijetljenosti i luminancije to jest, smanjenjem predimenzioniranosti sustava javne rasvjete, korištenjem ekološki prihvatljivih izvora svjetlosti (kao na primjer LED izvori svjetlosti), poticanjem svijesti građana o energetskoj učinkovitosti, štedimo na potrošnji električne energije, a korištenjem LED izvora svjetlosti u javnoj rasvjeti smanjujemo troškove održavanja, također smanjujemo emisije CO₂ u atmosferu i smanjujemo svjetlosno onečišćenje, ostvarujemo značajne financijske uštede i u konačnici podižemo razinu sigurnosti u prometu. Kako bi novi sustav javne rasvjete ispunio sve navedene prednosti mora biti projektiran i izvršen po svim važećim zakonima i normama, ističući normu HRN EN 13201. Pri rekonstrukciji javne rasvjete mora se izvršiti detaljna analiza i proračuni postojećeg stanja rasvjete kako bi se izabralo najbolje tehničko rješenje.
LITERATURA:

SAŽETAK

U diplomskom radu opisani su zakonodavni okviri i norme koje se moraju poštovati kod sustava javne rasvjetе, svjetlo-tehnički parametri, vrste izvora svjetlosti koji se koriste u javnoj rasvjeti te je napravljena analiza stanja prije i nakon rekonstrukcije sustava javne rasvjetе u Općini Čepin. U DIALux programskom paketu izrađen je proračun stanja javne rasvjetе prije rekonstrukcije i nakon rekonstrukcije LED tehnologijom te uspoređeni rezultati.

Ključne riječi: javna rasvjeta, LED, analiza, energetska učinkovitost, DIALux
ABSTRACT

The graduate thesis describes legal framework and norms that have to be in place within the system of public lighting, light parameters, different light sources that are used in public lighting and an analysis has been conducted in municipality Čepin, between the state of public lighting before and after the reconstruction. Calculations for the state of the public lighting, before and after the reconstruction, have been made with DIALux software, the results of the calculation before reconstruction and after reconstruction with new LED technology have been compared.

Key words: public lighting, LED, analysis, energy efficiency, DIALux
ŽIVOTOPIS

PRILOZI

P.1. Stanje sustava javne rasvjeta prije rekonstrukcije, Čepin
Street Profile

Roadway 1 (Width: 7.000 m, Number of lanes: 2, tarmac: R2, q0: 0.070)

Maintenance factor: 0.60

Luminaire Arrangements

Luminaire: Silco 5NA52E1ST03 SR 100 factory setting; LPV=30, RP=8
Luminous flux (Luminaire): 22876 lm
Luminous flux (Lamps): 28000 lm
Luminaire Wattage: 285.0 W
Arrangement: Single row, bottom
Pole Distance: 30,000 m
Mounting Height (1): 11.300 m
Height: 11.010 m
Overhang (2): -1,000 m
Boom Angle (3): 15.0°
Boom Length (4): 0.000 m

Maximum luminous intensities
at 70°: 497 cdklm
at 80°: 212 cdklm
at 90°: 57 cdklm

Any direction making the specified angle from the downward vertical, with the luminaire installer for use.

Arrangement complies with glare index class D.6.
See our luminaire catalog for an image of the luminaire.

Luminous emittance 1:

Due to missing symmetry properties, no UGR table can be displayed for this luminaire.

Luminaire classification according to CIE: 100
CIE flux code: 34 69 96 100 82
Street / Luminaire parts list

Sitaco 5NA552E1ST03 SR 100 factory setting: LPV=30, RP=9

Article No.: 5NA552E1ST03
Luminous flux (Luminaire): 22876 lm
Luminous flux (Lamps): 28000 lm
Luminaire Wattage: 285.0 W
Luminaire classification according to CIE: 100
CIE flux code: 34 69 06 100 82
Fitting: 1 x HST-MF 250W/220 LL (Correction Factor 1.000).

See our luminaire catalog for an image of the luminaire.
Street / Valuation Field Roadway 1 / Observer 1 / Isolines (L)

Values in Candela/m², Scale 1 : 258

Grid: 10 x 6 Points
Observer Position: (-60.000 m, 1.750 m, 1.500 m)
tarmac: R2, q0: 0.070

<table>
<thead>
<tr>
<th>Calculated values:</th>
<th>Lav [cd/m²]</th>
<th>U0</th>
<th>UI</th>
<th>TI [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.07</td>
<td>0.76</td>
<td>0.69</td>
<td>8</td>
</tr>
<tr>
<td>Required values according to class ME4a:</td>
<td>≥ 0.75</td>
<td>≥ 0.40</td>
<td>≥ 0.60</td>
<td>< 15</td>
</tr>
<tr>
<td>Fulfilled/Not fulfilled:</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Street / Valuation Field Roadway 1 / Observer 2 / Isolines (L)

Values in Candela/m², Scale 1 : 258

Grid: 10 x 6 Points
Observer Position: (-60,000 m, 5,250 m, 1,500 m)
Tarmac: R2, q0: 0.070

Calculated values:
\[L_{av}[\text{cd/m}^2] \quad 1.15 \]
\[U_0 \quad 0.75 \]
\[U_1 \quad 0.03 \]
\[T_I \% \quad 12 \]

Required values according to class ME4a:
\[\geq 0.75 \quad \geq 0.40 \quad \leq 0.50 \quad \leq 15 \]

Fulfilled/Not fulfilled:
\[\checkmark \quad \checkmark \quad \checkmark \quad \checkmark \]
P.2. Stanje sustava javne rasvjete prije rekonstrukcije, Livana
Street Profile

Roadway 1 (Width: 7.000 m, Number of lanes: 2, tarmac: R2, q0: 0.070)

Maintenance factor: 0.60

Luminaire Arrangements

- Luminaire: Tep ϑ-3-250PSMH Gamalux
- Luminous flux (Luminaire): 16298 lm
- Luminous flux (Lamps): 28500 lm
- Luminaire Wattage: 291.0 W
- Arrangement: Single row, bottom
- Pole Distance: 30.000 m
- Mounting Height (1): 11.000 m
- Height: 11.000 m
- Overhang (2): -1.000 m
- Boom Angle (3): 0.0°
- Boom Length (4): 0.000 m

Maximum luminous intensities
at 70°: 360 cd/km
at 90°: 126 cd/km

Any direction forming the specified angle from the downward vertical, with the luminaire installed for use.

Arrangement complies with luminous intensity class L1.
Arrangement complies with glare index class D5.
Tep g-3-250P SMH Gamalux / Luminaire Data Sheet

See our luminaire catalog for an image of the luminaire.

Luminous emittance 1:

Luminaire classification according to CIE: 100
CIE flux code: 32 09 93 100 57

Due to missing symmetry properties, no UGR table can be displayed for this luminaire.
Street / Luminaire parts list

Top g-3-250PSMH Gamalux
Article No.: g-3-250PSMH
Luminous flux (Luminaire): 16238 lm
Luminous flux (Lamps): 28500 lm
Luminaire Wattage: 291.0 W
Luminaire classification according to CIE: 100
CIE flux code: 32 69 03 100 57
Fitting: 1 x CLEAR HORIZONTAL 250 - 291.00 W (Correction Factor 1.000).

See our luminaire catalog for an image of the luminaire.
Street / Valuation Field Roadway 1 / Observer 1 / Isolines (L)

Grid: 10 x 5 Points
Observer Position: (-00.000 m, 1.750 m, 1.500 m)
larmac: R2, q0. 0.070

Values in Candela/m², Scale 1 : 256

<table>
<thead>
<tr>
<th>Calculated values:</th>
<th>Lav [cd/m²]</th>
<th>U0</th>
<th>UI</th>
<th>TI [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.88</td>
<td>0.81</td>
<td>0.73</td>
<td>12</td>
</tr>
</tbody>
</table>

Required values according to class ME4a:

- Lav [cd/m²]: > 0.75
- U0: > 0.40
- UI: > 0.80
- TI [%]: < 15

Fulfilled/Not fulfilled:

- ✔
- ✔
- ✔
- ✔
Street / Valuation Field Roadway 1 / Observer 2 / Isolines (L)

Values in Candela/m², Scale 1 : 258

Grid: 10 x 6 Points
Observer Position: (-60.000 m, 5.250 m, 1.500 m)
tarmac: R2, q0: 0.070

Calculated values:

<table>
<thead>
<tr>
<th>L_a [cd/m²]</th>
<th>U_0</th>
<th>U_1</th>
<th>T_1 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.60</td>
<td>0.72</td>
<td>10</td>
</tr>
</tbody>
</table>

Required values according to class ME4a:

- L_a: ≥ 0.75
- U_0: ≥ 0.40
- U_1: ≥ 0.60
- T_1: ≤ 15

Fulfilled/Not fulfilled:

- ✔️
- ✔️
- ✔️
- ✔️
P.3. Stanje sustava javne rasvjeta nakon rekonstrukcije, Čepin i Livana
Street Profile

Roadway 1

- Width: 7.000 m, Number of lanes: 2, tarmac: R2, q0: 0.070

Maintenance factor: 0.90

Luminaire Arrangements

Luminaire: Dlods Stratos N9N700 N23A Stratos N9N700 N23A
Luminous flux (Luminaire): 8042 lm
Luminous flux (Lamps): 8050 lm
Luminaire Wattage: 73.0 W
Arrangement: Single row, bottom
Pole Distance: 30.000 m
Mounting Height (1): 11.045 m
Height: 11.000 m
Overhang (2): -1.000 m
Boom Angle (3): 0.0°
Boom Length (4): 0.000 m

Maximum luminous intensities
- at 70°: 498 cd/km
- at 80°: 73 cd/km
- at 90°: 0.00 cd/km

Any direction forming the specified angle from the downward vertical, with the luminaire installed for use.

No luminous intensities above 90°.

Arrangement complies with luminous intensity class G4.
Arrangement complies with glare index class D.6.
See our luminaire catalog for an image of the luminaire.

Luminous emittance:

Luminaire classification according to CIE: 100
CIE flux code: 36 72 96 100 103

Due to missing symmetry properties, no UGR table can be displayed for this luminaire.
Street / Luminaire parts list

Dieds Stratos N 9M700 N23A Stratos N 9M700 N23A
Article No.: Stratos N 9M700 N23A
Luminous flux (Luminaire): 8042 lm
Luminous flux (Lampa): 8050 lm
Luminaire Wattage: 73.0 W
Luminaire classification according to CIE: 100
CIE flux code: 30 72 96 100 103
Fitting: 1 x Stratos N 9M700 N23A (Correction Factor 1.000).

See our luminaire catalog for an image of the luminaire.
Grid: 10 x 6 Points
Observer Position: (-60.000 m, 1.750 m, 1.500 m)
tarmac: R2, q0: 0.070

Calculated values:

<table>
<thead>
<tr>
<th>Lav [cd/m²]</th>
<th>U0</th>
<th>UI</th>
<th>TI [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.76</td>
<td>0.67</td>
<td>4</td>
</tr>
</tbody>
</table>

Required values according to class ME4a:

- \(\geq 0.75 \)
- \(\geq 0.40 \)
- \(\geq 0.60 \)
- \(\leq 15 \)

Fulfilled/Not fulfilled:

- ✓
- ✓
- ✓
- ✓
Street / Valuation Field Roadway 1 / Observer 2 / Isolines (L)

Grid: 10 x 6 Points
Observer Position: (-60.000 m, 5.250 m, 1.500 m)
tarmac: R2, q0: 0.070

Calculated values:

\[
\begin{array}{c}
L_{av} [cd/m^2] \\
U_0 \\
U_1 \\
T_1 [%]
\end{array}
\begin{array}{c}
0.78 \\
0.76 \\
0.77 \\
4
\end{array}
\]

Required values according to class ME4a:

\[
\begin{align*}
L_{av} &\geq 0.75 \\
U_0 &\geq 0.40 \\
U_1 &\geq 0.60 \\
T_1 &< 15
\end{align*}
\]

Fulfilled/Not fulfilled:

\[
\begin{array}{c}
\checkmark \\
\checkmark \\
\checkmark \\
\checkmark
\end{array}
\]