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Left Atrial Appendage Segmentation and Analysis in Cardiovascular CT
Images, Joint Doctoral Thesis, c© December 2018

degrees:
Doctor of Computer Science Engineering
Doctor of Electrical Engineering, branch Communications and
Informatics

supervisor [unios] :
Prof. Irena Galić, PhD
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For instance, on the planet Earth, man had always assumed that he
was more intelligent than dolphins because he had achieved so

much—the wheel, New York, wars and so on—whilst all the dolphins
had ever done was muck about in the water having a good time. But
conversely, the dolphins had always believed that they were far more

intelligent than man—for precisely the same reasons.

— Douglas Adams, Hitchhiker’s Guide to the Galaxy





It is known that there are an infinite number of worlds, simply because
there is an infinite amount of space for them to be in. However, not every

one of them is inhabited. Therefore, there must be a finite number of
inhabited worlds. Any finite number divided by infinity is as near to

nothing as makes no odds, so the average population of all the planets in the
Universe can be said to be zero. From this it follows that the population of

the whole Universe is also zero, and that any people you may meet from
time to time are merely the products of a deranged imagination.

— Douglas Adams, Hitchhiker’s Guide to the Galaxy
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S U M M A RY

Cardiovascular diseases are the main cause of death both in Europe
and globally. Predominantly the elderly population suffers from car-
diovascular diseases, especially in the developed countries, while at
the same time the world population is getting older. Globally, number
of people above 60 is estimated to more than double in thirty years
from now. Thus, any improvements in the methods for diagnosis,
treatment and prevention of cardiovascular diseases will significantly
increase the quality of life and reduce the cost of treatment.

Atrial fibrillation is a cardiovascular disease which mostly affects the
elderly population and it drastically increases the risk of stroke. The
disease is caused when the disorganized electrical signals in the upper
heart chambers overwhelm the normal electrical signals propagating
through the electrical pathways in the heart. This chaotic electrical
activity causes asynchronous contractions and the heart beats outside
of the regular sinus rhythm. The asynchronous contractions impede
the exchange of blood through the chambers, preventing the complete
filling and emptying of the chambers. The blood pools in the cham-
bers, enabling the formation of thrombi. When the thrombi become
dislodged and enter the blood circulation (becoming thromboemboli),
they can cause stroke. Estimates show that over 90% of strokes caused
by cardiovascular diseases are caused by the thromboemboli formed in
the left atrial appendage (LAA), small pouch-like structure protruding
from the left atrium.

A novel percutaneous procedure called the left atrial appendage
occlusion has recently been approved for the reduction of the risk of
stroke in patients suffering from atrial fibrillation. During the proce-
dure a device called the occluder is placed in the neck of the left atrial
appendage, effectively closing it off from the rest of the heart and stop-
ping the blood flow through the LAA. Several occluder device types are
available on the market from different manufacturers. Each occluder
device type comes in several predefined sizes. Physicians choose a de-
vice of the correct size according to each patient’s anatomy. Physicians
have to be able to determine the accurate anatomical measurement in
order to be able to properly size the device.

Advancements in the development of medical imaging modalities,
such as computed tomography (CT) or magnetic resonance imag-
ing (MRI), have enabled the acquisition of detailed three-dimensional
images of the patients cardiovascular anatomy. Physicians can deter-
mine detailed anatomical characteristics of patients’ cardiovascular
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anatomy from such three-dimensional images. The images can be
used for pre-procedural planning of the procedures, reducing the time
spent on administering the procedure and reducing the complication
rate of the procedure. For example, even though percutaneous LAA

occlusion can be administered without the prior CT scan, reports have
noted a decrease in total time required for the administration as well
as a decrease in the complications during the procedure if the pre-
procedural CT has been administered. Additionally, the patients prefer
the pre-procedural CT scan to the pre-procedural transesophageal
echocardiography (TEE), despite the increased irradiation during the
imaging. Currently, physicians perform the pre-procedural planning
with CT in two main ways: either (1) they measure the patients anatomy
directly in 2D slices, or (2) they analyse the 3D model of the LAA. Direct
analysis of the 2D slices, even when using the multi-planar reconstru-
tion (MPR), is subjective and error-prone. Certain characteristics of
the LAA can be determined differently depending on the plane of the
reconstruction, while determining them from the 3D visualization of
the LAA is less error-prone and less subjective. Thus, accurate 3D seg-
mentation methods of the LAA are very important for pre-procedural
planning.

This thesis is focused on the segmentation and the analysis in
the cardiovascular CT images in order to reduce the time physicians
spend on the pre-procedural planning of the LAA occlusion procedure.
The final goal of the thesis is to present the methods which will
enable the physicians to – with minimal interaction – determine the
feasibility of the procedure for the patient, segment the LAA and
determine the location for the placement of the device. The main
scientific contributions of this thesis are the three novel methods for
the LAA segmentation and analysis, which could improve the pre-
procedural planning of the occlusion. All presented methods require
minimal interaction, as the physician only has to select two parameters
in the input CT image: a single pixel (seed point) marking the location
of the appendage in one of the slices and a single parameter (threshold)
value. Both parameters are intuitive to trained medical users.

One of the most important scientific contributions of this work is
the method for the centerline detection through the appendage. The
detected centerline stretches from the seed point in the appendage to
the center of the left atrium. The proposed method detects a centerline
in the 3D image by tracking the voxels with the largest radius of the
maximum inscribed spheres. The detected centerline is used as an
input to the two subsequent methods: the LAA segmentation method
and the LAA orifice localization method. However, the reason for the
centerline detection is not only to use it as an input in the subsequent
methods. The detected centerline allows us to determine the length of
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the appendage, which is an important parameter for the sizing of the
device and an exclusion criteria for a certain types of devices (the ratio
of the width and the length of the appendage determines the exclu-
sion criterion for the Watchman and LARIAT devices). Currently the
length is determined by a direct measurement in the transesophageal
echocardiography (TEE) imaging during the procedure, by a direct
measurement in CT slices using the MPR, and finally by specialized
software where the physician manually selects the points on the cen-
terline. Our proposed method detects the centerline using only one
seed point. Finally, the length of the appendage is calculated from the
detected centerline.

The second key contribution of this work is the method for the
segmentation of the left atrial appendage based on the detected cen-
terline. Left atrial appendage segmentation methods are proving to
be increasingly clinically important because they enable the use of
different techniques for the pre-procedural planning. One of the most
important appendage characteristics is the type of the morphology,
which is an exclusion criterion for the procedure in certain types of
morphologies. The morphology can be simply determined visually by
the physician from the 3D model of the LAA. Determining the mor-
phology type from the 2D slices is error-prone, since the appendage
looks differently depending on the angle of the MPR reconstruction.
Additionally, accurate segmentation allows for the simple determi-
nation of the volume of the appendage, which is another factor in
determining the risk of stroke. Finally, proliferation of the 3D printing
in the pre-procedural planning, combined with the availability of the
accurate LAA segmentation methods, allows the physicians to 3D print
the model of the heart and the appendage and correctly determine the
correct size of the device prior to the procedure.

The proposed segmentation method gradually grows the region
marked by the detected centerline and accurately extracts the region
containing the LAA and most of the left atrium from an initial mask
image created by thresholding the input image. The extraction of the
appendage together with the left atrium (LA) area around the ap-
pendage allows better understanding of the appendage in the context
of the surrounding atrial anatomy (e.g. position and direction of the
appendage and proximity to blood vessels). The main advantage of
the proposed method is the robustness to the selected threshold value
and to the leaks occurring in the mask image. Currently, to the best
of our knowledge, very few LAA segmentation methods are available
on the market, while the standard region growing methods used in
the interactive segmentation software are not robust to leaks after
thresholding.
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The third major scientific contribution of the thesis is the method for
the localization of the LAA ostium which uses the detected centerline
to determine the plane in 3D space delineating the left atrium from the
appendage in the segmentation result from the previous method. The
shape of the LAA ostium, determined in the segmented image by inter-
section with the delineation plane, is an important factor in choosing
the type of the device used for the occlusion. Certain types of ostia also
indicate a greater risk of peri-device leakage of the blood. Currently,
the ostium shape is determined visually in the 2D slices using the
double oblique view – MPR centered in the neck of the appendage. By
using the proposed method, the physician does not have to modify
the MPR planes manually, as the ostium plane is determined by the
intersection of the segmented LAA and the determined delineation
plane. The ostium shape directly indicates the sizing of the device to
be used for the procedure.

All three proposed methods are validated against the ground truth
segmentations manually created by two medical experts (a radiologist
and a cardiosurgeon). The methods achieve large overlap coefficients
against the ground truth segmentations. Finally, we have developed
an application which enables the physician to visualize the LAA from
the input image and easily calculate the required parameters for the
procedure. Our work in this area resulted in two published papers in
journals in the Science Citation Index and appeared in proceedings of
four international conferences.
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S A M E N VAT T I N G

Hart- en vaatziekten zijn de belangrijkste doodsoorzaak in de Europese
Unie en zelfs wereldwijd. Hart- en vaatziekten treffen voornamelijk de
oudere bevolking, vooral in ontwikkelde landen waar de vergrijzing
meer en meer voelbaar wordt. Het aantal bejaarden (60 jaar en ouder)
zal naar schatting rond het midden van de eeuw verdrievoudigd zijn.
Daarom zal elke verbetering in diagnose, behandeling en preventie
van hart- en vaatziekten de levenskwaliteit van ouderen aanzienlijk
verbeteren en behandelingskosten verlagen.

Atriale fibrillatie is een cardiovasculaire aandoening die vooral de
oudere bevolking treft en het risico op een beroerte drastisch verhoogt.
De ziekte manifesteert zich wanneer de normale elektrische signalen
die zich voortplanten door de elektrische paden in het hart worden
overweldigd. Als gevolg van die chaotische elektrische signalen slaat
het hart dan buiten het normale sinusritme. Asynchrone contracties
belemmeren vervolgens de uitwisseling van bloed doorheen de hartka-
mers, waardoor het vullen en ledigen van de kamers wordt voorkomen.
Het bloed verzamelt zich in de kamers, waardoor de vorming van
trombi mogelijk wordt. De trombi kunnen losraken en in de bloeds-
omloop terechtkomen (waardoor trombo-embolie ontstaat). Dergelijke
trombo-embolieën veroorzaken vaak een beroerte. Schattingen tonen
aan dat meer dan 90beroertes veroorzaakt door hart- en vaatziekten
wordt veroorzaakt door de trombo-embolie gevormd in het linker
hartoor (LAA), een klein buidelachtig aanhangsel dat uitsteekt uit het
linker atrium.

Recent is een nieuwe percutane procedure, genaamd occlusie van
het linker atrium, goedgekeurd voor het verminderen van het risico
op een beroerte bij patiënten die lijden aan atriale fibrillatie. Tijdens
de procedure wordt een apparaat, de occluder, geplaatst in de nek
van het linker hartoor, waardoor die effectief wordt afgesloten van
de rest van het hart en de bloedstroom door de LAA wordt gestopt.
Verschillende occluder-apparaten, van verschillende fabrikanten, zijn
momenteel op de markt. Elk occluderapparaat wordt geleverd in
verschillende grootten. Artsen kiezen een occluder van de geschikte
grootte volgens de anatomie van de patiënt. Artsen moeten in staat
zijn om via een correcte anatomische meting te bepalen welke occluder
het best geschikt is.

Vooruitgang in medische beeldvorming, zoals computertomogra-
fie (CT) of magnetische resonantiebeeldvorming (MRI), hebben het
mogelijk gemaakt gedetailleerde driedimensionale beelden te maken
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van de cardiovasculaire anatomie van een patiënt. Die beelden kun-
nen worden gebruikt voor planning van procedures, waardoor het
tijdsbestek van de procedure wordt verkort en de complicatieratio
van de procedure wordt verlaagd. Hoewel de percutane LAA-occlusie
kan worden toegediend zonder de voorafgaande CT-scan, is in de
literatuur een verlaging van de proceduretijd en aantal complicaties
gerapporteerd wanneer wel een pre-procedurale CT-scan is gebeurd.
Patiënten geven bovendien vaak de voorkeur aan een pre-procedurale
CT-scan, ondanks de bestraling die daarmee gepaard gaat. Momen-
teel voeren artsen de pre-procedurele planning met CT uit op twee
manieren: ofwel (1) meten ze de anatomie van de patiënt in 2D-slices,
ofwel (2) analyseren ze een 3D-model van de LAA. Directe analyse
van de 2D-slices, zelfs bij gebruik van de multi-planaire reconstruc-
tie (MPR), is echter subjectief en foutgevoelig: afhankelijk van het
gekozen reconstructievlak kunnen LAA kenmerken er anders uit-
zien, terwijl het bepalen op basis van de 3D LAA-visualisatie minder
foutgevoelig en minder subjectief is. Daarom zijn nauwkeurige 3D-
segmentatiemethoden van de LAA erg belangrijk voor pre-procedurele
planning.

Dit proefschrift richt zich op de automatische segmentatie en analyse
van cardiovasculaire CT-beelden om de tijd te verminderen die artsen
besteden aan pre-procedurele planning van de LAA-occlusieprocedure.
Het uiteindelijke doel van dit proefschrift is om methoden te presen-
teren die de artsen in staat stellen om - met minimale interactie - de
haalbaarheid van de procedure voor een patiënt te bepalen, de LAA
te segmenteren en de locatie voor de plaatsing van het hulpmiddel
te bepalen. De wetenschappelijke bijdragen van dit proefschrift zijn
drie nieuwe methoden voor de LAA-segmentatie en analyse, die de
pre-procedurele planning van de occlusie kunnen verbeteren. Alle
voorgestelde methoden vereisen minimale interactie van de gebruiker:
enkel het plaatsen van een seedpunt in het aanhangsel en het kiezen
van een drempelwaarde.

Onze eerste wetenschappelijke bijdrage is een methode voor middel-
lijndetectie van de LAA. De gedetecteerde middellijn strekt zich uit van
het startpunt in het aanhangsel tot het midden van het linkeratrium.
De voorgestelde methode detecteert een middellijn in het 3D-beeld
door die voxels te volgen met de grootste straal van de maximaal inge-
schreven bollen. De gedetecteerde middellijn wordt gebruikt als invoer
voor de twee volgende methoden: de LAA-segmenteringsmethode en
de LAA-meetlocatiemethode. De motivatie voor het ontwikkelen van
middenlijndetectie is niet alleen om deze te gebruiken als invoer voor
andere methoden. De gedetecteerde middellijn stelt ons bovendien
ook in staat om de lengte van het aanhangsel te bepalen. Die lengte
is een belangrijke parameter bij de dimensionering van de occluder
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en een uitsluitingscriterium voor bepaalde soorten apparaten (de ver-
houding tussen de breedte en de lengte van het aanhangsel bepaalt
de uitsluitingscriteria voor de Watchman- en LARIAT-apparaten). Mo-
menteel wordt de lengte bepaald ofwel door directe metingen m.b.v.
transesofageale echocardiografie (TEE) beeldvorming tijdens de proce-
dure ofwel door directe meting in CT-slices met behulp van de MPR
ofwel met gespecialiseerde software waarbij de arts handmatig punten
op de middellijn aanduidt. Onze voorgestelde methode detecteert
de middellijn automatisch vanaf één gegeven startpunt. De lengte
van het aanhangsel wordt dan berekend op basis van de automatisch
gedetecteerde middellijn.

Onze tweede wetenschappelijke bijdrage is een methode voor seg-
mentatie van het linker hartoor op basis van een gegeven middel-
lijn. Deze segmentatiemethode is waarschijnlijk de belangrijkste bij-
drage van dit proefschrift omdat ze alternatieve technieken voor de
pre-procedurele planning mogelijk maakt. Een van de belangrijkste
LAA-kenmerken is de morfologie, een uitsluitingscriterium is voor
de procedure. De morfologie kan eenvoudig visueel worden bepaald
door de arts uit het 3D-model van de LAA. Het bepalen van het mor-
fologietype uit de 2D-slices is foutgevoelig, omdat het voorkomen van
het aanhangsel afhankelijk is van de hoek van de MPR-reconstructie.
Nauwkeurige automatische segmentatie vereenvoudigt de volumeme-
ting van het LAA, wat een andere kenmerk is voor het bepalen van het
risico op een beroerte. Ten slotte stelt de opkomst van 3D-printen in
de pre-procedurele planning, gecombineerd met nauwkeurige LAA-
segmentatiemethoden, artsen in staat om een model van het hart en
het aanhangsel in 3D te printen. Hierop kan de juiste maat van de
occluder voorafgaand aan de procedure worden vastgesteld.

De voorgestelde segmentatiemethode laat iteratief het gebied groeien
dat wordt gemarkeerd door de gedetecteerde middellijn. Zo onder-
scheidt de methode het gebied met de LAA en het grootste deel
van het linkeratrium van andere gebieden uit de maskerafbeelding
die is bekomen door het ingevoerde beeld te segmenteren met een
eenvoudige drempelwaarde. Het belangrijkste voordeel van de voor-
gestelde methode is robuustheid tegenover geselecteerde drempel-
waarden en lekken die typisch optreden in het maskerbeeld. Op
dit moment bestaan, voor zover wij weten, weinig specifieke LAA-
segmentatiemethoden. Standaard interactieve segmentatiesoftware,
gebaseerd op regio-groeimethoden is dan weer niet robuust tegen
lekken na drempelsegmentatie.

Onze derde wetenschappelijke bijdrage is een methode voor de loka-
lisatie van het LAA-ostium. Deze methode gebruikt de gedetecteerde
middellijn om het afbakeningsvlak te bepalen dat het linkeratrium
van het LAA scheidt in 3D-ruimte. De vorm van het LAA-ostium, i.e.
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de doorsnede van het gesegmenteerde LAA met afbakeningsvlak, is
een belangrijke factor bij het kiezen van het type occluder: Bepaalde
typen ostia duiden op een groter risico op peri-device leakage (PDL).
Momenteel wordt de ostiumvorm visueel bepaald in de 2D-slices, met
behulp van de “double oblique” weergave - MPR gecentreerd in de
nek van het aanhangsel. Dankzij de voorgestelde methode hoeft de
arts de MPR-vlakken niet meer handmatig aan te duiden. De osti-
umvorm geeft een directe indicatie van de vereiste grootte van het
occluderapparaat dat voor de procedure moet worden gebruikt.

De drie voorgestelde methoden zijn gevalideerd op basis een grond-
waarheid die handmatig werd gecreëerd door twee medische experts
(een radioloog en een hartchirurg). De methoden vertonen grote over-
lapcoëfficiënten met de grondwaarheid. Ten slotte hebben we een ap-
plicatie ontwikkeld waarmee de arts de LAA kan visualiseren vanuit
een invoerbeeld en waarmee die ook eenvoudig de vereiste parame-
ters voor een procedure kan berekenen. Ons werk resulteerde in twee
gepubliceerde tijdschriftartikelen opgenomen in de Science Citation
Index en vier artikelen als bijdrage aan internationale conferenties.
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S A Ž E TA K

Kardiovaskularne bolesti su glavni uzročnik smrti u Europskoj uniji te
jedan od glavnih uzročnika smrti globalno. Nadalje, kardiovaskularne
bolesti primarno pogad̄aju stariju populaciju, pogotovo u zemljama
razvijenog svijeta. Brojne projekcije pokazuju kako će se populacija
svijeta starija od 60 godina (osobe treće životne dobi) do sredine
stoljeća udvostručiti. Samim time povećat će se i negativan utjecaj
kardiovaskularnih bolesti na globalno stanovništvo. Kvalitetne metode
dijagnosticiranja, liječenja i prevencije kardiovaskularnih bolesti mogu
značajno povećati kvalitetu života osoba treće životne dobi i smanjiti
troškove liječenja.

Fibrilacija atrija je kardiovaskularna bolest koja drastično povećava
rizik od moždanog udara, a posebno pogad̄a upravo stariju populaciju
te se smatra kako je odgovorna za oko petinu moždanih udara. Fibri-
lacija atrija je kardiovaskularna bolest koja nastaje zbog poremećaja u
električnim putevima u srcu, kada zbog kaotičnih električnih signala
srce kuca van regularnog sinusnog ritma. Zbog asinkronih kontrakcija
koje se odvijaju van regularnog srčanog ritma, dolazi do nepotpune
izmjene krvi pri prolasku kroz srce. Zbog zadržavanja krvi u pretkli-
jetkama može nastati tromb. Ukoliko se takav tromb otkine dolazi do
tromboembolizma te ulaskom takvog tromboembolija u krvotok može
nastati moždani udar. Procjenjuje se kako preko 90% tromboembolija
koji izazovu moždani udar nastaje u aurikulu lijeve srčane pretklijetke
(engl. left atrial appendage (LAA)), maloj vrećastoj strukturi koja izlazi iz
lijeve pretklijetke.

Radi smanjenja rizika od moždanog udara kod pacijenata koji pate
od fibrilacije atrija uvedena je nova neinvazivna procedura – perkutana
okluzija lijevog srčanog aurikula. Ovom procedurom postavlja se
ured̄aj u aurikul lijeve srčane pretklijetke koji će zatvoriti aurikul i
tako zaustaviti protok krvi kroz njega. Postoji nekoliko proizvod̄ača
okludera, ured̄aja kojima se provodi zatvaranje (okluzija) LAA, a svaki
proizvod̄ač nudi svoj tip ured̄aja u više varijanti različitih dimenzija.
Svakom pacijentu tijekom provod̄enja procedure odabire se ured̄aj
čije dimenzije odgovaraju anatomiji tog pacijenta. Za odabir točne
dimenzije okludera potrebno je poznavati anatomiju lijevog atrija te
detaljne anatomske karakteristike aurikula.

Napretkom u razvoju medicinskih modaliteta snimanja, kao što
je kompjuterizirana tomografija (CT) ili magnetska rezonanca (MRI),
moguće je dobiti detaljne trodimenzionalne snimke kardiovaskularne
anatomije pacijenta. Detaljne anatomske karakteristike aurikula pojedi-
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nog pacijenta mogu se odrediti iz takvih trodimenzionalnih snimaka.
Pred-operativno planiranje provedbe okluzije pomoću CT snimki pa-
cijenta može značajno ubrzati provedbu same procedure, kao i omo-
gućiti rano prepoznavanje pacijenata kod kojih provedba okluzije nije
moguća. Trenutno se preoperativno planiranje pomoću CT snimaka
provodi na dva osnovna način: mjerenjem anatomskih dimenzija di-
rektno u 2D presjecima u CT snimci te analizom 3D modela LAA.
Direktna analiza LAA korištenjem 2D presjeka, čak i ako se koristi
više-ravninska rekonstrukcija (engl. MPR) je subjektivna i podložna
pogrešci. Odred̄ene značajke aurikula je puno lakše odrediti iz 3D mo-
dela te je postojanje metoda koje mogu odrediti preciznu segmentaciju
aurikula vrlo bitno za planiranje provedbe okluzije.

Ova disertacija se fokusira na segmentaciju i analizu kardiovasku-
larnih CT snimaka kako bi omogućili liječnicima lakše planiranje pro-
vedbe okluzije LAA. Konačni cilj metoda predstavljenih u ovoj diserta-
ciji je, uz minimalnu interakciju liječnika, segmentirati LAA i predložiti
lokaciju za postavljanje okludera. Predstavljena su tri izvorna znans-
tvena doprinosa – nove metode računalne obrade CT snimki – čija
primjena može olakšati i ubrzati proces planiranja provedbe okluzije.
Sve predstavljene metode zahtijevaju samo dva ulazna podatka od
liječnika: postavljanje u ulaznu CT snimku jedne početne točke (engl.
seed point) unutar aurikula te odabir vrijednosti jednog parametra (in-
tenzitet praga) za tu snimku. Oba parametra su intuitivna obučenim
medicinskim korisnicima.

Prvi znanstveni doprinos je metoda za odred̄ivanje centralne linije
kroz aurikul, od početne odabrane točke do centra lijeve pretklijetke.
Predložena metoda traži put u 3D slici od početne točke prateći voksele
duž središta LAA dok ne dod̄e do centra lijeve pretklijetke. Odred̄ena
centralna linija se koristi kao ulaz u naredne korake – metodu za
segmentaciju te metodu za odred̄ivanje lokacije ostiuma LAA. Ipak,
bitno je napomenuti kako je centralna odred̄ena centralna linija sama
po sebi bitan rezultat za odred̄ivanje mogućnosti provod̄enja okluzije.
Na primjer, duljina centralne linije predstavlja duljinu LAA, a duljina
LAA u odnosu na širinu je indikacija za korištenje Watchman i LARIAT
okluder ured̄aja. Trenutno se duljina LAA odred̄uje mjerenjem u pri-
kazu transesofagealne ehokardiografije (engl. TEE) tijekom provod̄enja
same procedure, direktnim mjerenjem u 2D presjecima CT snimke
nakon odred̄ivanja pogodnog kuta za MPR, te konačno specijaliziranim
softverom koji omogućuje ručno odred̄ivanje centralne linije postavlja-
njem više točaka u 2D presjeke. Naša predložena metoda omogućuje
detekciju centralne linije iz samo jedne početne točke. Iz odred̄ene
centralne linije možemo jednostavno izračunati i prikazati liječniku
duljinu LAA, što će pomoći liječniku planiranje provod̄enja procedure
okluzije.
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Drugi znanstveni doprinos ove disertacije je metoda za segmentaciju
aurikula lijeve srčane pretklijetke bazirana na detektiranoj centralnoj
liniji. Segmentacija LAA je vjerojatno najbitniji rezultat predloženih me-
toda, omgućujući različite primjene u planiranju provedbe procedure
okluzije. Med̄u najbitnijim značajkama aurikula koje je moguće direk-
tno odrediti vizualizacijom segmentacije je tip morfologije aurikula,
koji utječe na mogućnost provedbe procedure. Postoji četiri različita
tipa morfologije, a svaki od njih indicira različit rizik od pojave mo-
ždanog udara. U različitim kutevima MPR rekonstrukcije LAA izgleda
kao da ima drugačiji tip morfologije, dok je iz 3D modela puno lakše
točno odrediti tip morfologije. Nadalje, iz precizne segmentacije mo-
guće je odrediti i volumen aurikula u odnosu na volumen lijevog
atrija, veličinu koja takod̄er ukazuje na rizik od moždanog udara.
Posljednjih godina, popularizacijom 3D printanja za predoperativno
planiranje, precizne metode segmentacije su posebno dobile na važ-
nosti. Iz precizne segmentacije LAA moguće je isprintati 3D model u
stvarnoj veličini, na kojem se može uživo isprobati odabrana veličina
okludera s obzirom na anatomiju pacijenta.

Predložena metoda za segmentaciju vrši segmentaciju iterativnim
rastom regije odred̄ene detektiranom centralnom linijom. Metoda iz
binarne maske (odred̄ene pomoću vrijednosti praga koju je postavio
korisnik) izdvaja regiju koja sadrži LAA i većinu lijeve pretklijetke.
Izdvajanjem i područja pretklijetke u okolici aurikula liječniku omo-
gućujemo bolje razumijevanje anatomije aurikula u kontekstu lokalne
anatomije pretklijetke (npr. poziciju i smjer aurikula u zidu atrija,
blizinu plućnih vena i slično). Glavna odlika metode je robusnost na
odabranu vrijednost praga i na curenje (engl. leaks) koje se pojavljuje u
maskiranoj slici. Trenutno na tržištu postoji vrlo malen broj metoda za
segmentaciju LAA, dok standardne metode rasta regije koje se koriste
za interaktivnu segmentaciju često nisu robusne na curenje.

Treći znanstveni doprinos ovog rada predstavlja metoda za lokali-
zaciju ostiuma LAA koja korištenjem odred̄ene centralne linije i seg-
mentiranog aurikula odred̄uje ravninu presjeka koja odvaja aurikul od
pretklijetke. Oblik presjeka LAA u području ostiuma, koji se dobije pre-
sjekom segmentiranog aurikula i odred̄ene ravnine presjeka, definira
oblik ostiuma LAA. Oblik ostiuma takod̄er indicira koji je tip ured̄aja
moguće koristiti za provod̄enje okluzije. Trenutno se oblik ostiuma
odred̄uje vizualno iz odgovarajućeg 2D presjeka nakon prilagodbe
prikaza presjeka korištenjem MPR (double oblique prikaz centriran u
ostium LAA). Korištenjem predložene metode liječnik ne mora ručno
prilagod̄avati MPR rekonstrukciju, već se ona odred̄uje automatski iz
presjeka segmentiranog LAA i odred̄ene ravnine presjeka. Oblik osti-
uma takod̄er odred̄uje maksimalni i minimalni promjer ostiuma, koji
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direktno utječu na veličinu ured̄aja za okluziju koji će se koristiti za
provedbu okluzije.

Sve tri predstavljene metode validirane su na ground-truth segmen-
tacijama koje su ručno kreirala dva medicinska stručnjaka (radiolog
i kardiokirurg) te postižu visoke koeficijente poklapanja s ručnim
segmentacijama. Konačno, razvili smo i aplikaciju koja korištenjem
navedenih metoda omogućuje liječniku lakše planiranje provod̄enja
okluzije. Rezultati dobiveni tijekom istraživačkog rada u području
obrade kardiovaskularnih snimaka, osim što su rezultirali ovom di-
sertacijom, objavljeni su i u dva rada u časopisima indeksiranim u
Science Citation Index te četiri rada na med̄unarodnim znanstvenim
konferencijama.
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1
I N T R O D U C T I O N

Cardiovascular diseases (CVD) have been identified as the leading
cause of death in the developed world [130, 183]. Diagnosis and treat-
ment of cardiovascular diseases (CVDs) has significantly improved
in recent years due to the advances in cardiovascular imaging tech-
nologies. However, fast and accurate extraction of clinically relevant
data from cardiovascular images still presents a challenge. Clinically
relevant data is necessary for both the diagnosis of CVDs and for the
planning of medical procedures. The field where researchers develop
methods and algorithms for extraction of such data from medical
images is called medical image analysis. This thesis is focused on
cardiovascular image analysis for the purpose of stroke prevention.

The methods presented in this thesis are aimed to aid physicians in
planning and execution of a procedure that reduces the risk of stroke
– the left atrial appendage (LAA) occlusion. We present three novel
methods that facilitate the pre-procedural planning of the occlusion
procedure: the method for the detection of the LAA centerline, the
method for the centerline-based LAA segmentation and the method
for the localization of the LAA orifice. The research work reported in
this thesis appeared in two journals in the Science Citation Index and
four proceedings of international conferences.

1.1 cardiovascular image analysis

Cardiovascular image analysis is the process of extracting the mean-
ingful and relevant data to support the CVD diagnosis and therapy.
Recent advances in computational power have enabled new types of
methods for interpretation of medical images. Until recently, most
physicians performed the diagnosis by visual inspection of 2D images.
This involved interpreting the images on a slice-by-slice basis, even
when the imaging was performed in three dimensions. Necessary
measurements were often taken manually on 2D slices. The precision,
quality and the amount of data in medical images have increased along
with the increase in available computational power. Today, physicians
routinely perform advanced medical imaging procedures which often
result in multidimensional medical images — 4D images (consist of 3D
images acquired in different time frames during an examination, e.g.
during different phases of a cardiac cycle) and increasingly 5D images
(the term used for images consisting of 4D images acquired during

1
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Figure 1.1: Four panel view of cardiac CT imaging. Panels show: 3D render-
ing of the heart (top left), axial (bottom left), sagital (top right)
and coronal (bottom right) views. Image source: LaBarbera and
Donnino [93]

several examinations). Visual inspection and interpretation of such
multidimensional images is a time-consuming process. Fortunately,
developments in the medical image analysis field have followed the
advances in both the imaging and the computational power. A large
number of advanced medical image analysis and visualization meth-
ods are available today. Using these methods physicians can quickly
and accurately interpret the images, set the diagnosis and plan the
necessary treatments. Figure 1.1 shows an example of a four-panel
view of a cardiac CT image.

There are an increasing number of methods which extract clinically
relevant information from the images and present it to physicians
in an intuitive way. The most often used imaging modalities for the
CVD diagnosis are ultrasound, cardiovascular CT imaging and MRI.
Each modality has its advantages and disadvantages which will be
explained in detail in the later chapters. The methods presented in this
thesis will focus on the CT images, which are at the present the most
frequently used imaging modality for high resolution cardiovascular
anatomic imaging [62, 115].
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Figure 1.2: The location of the LAA in the heart and the placement of
the Watchman occluder in the neck of the LAA. Image source:
Whisenant and Lindley [180]

1.2 stroke prevention

The main goal of this thesis is to propose a collection of image pro-
cessing methods for helping physicians plan the procedure aimed at
reducing the risk of stroke. Stroke is the third leading cause of death
worldwide [183], accounting for about a third of all deaths caused by
cardiovascular diseases. One of the cardiovascular diseases which is
a main risk factor for stroke is the atrial fibrillation [57, 181]. Atrial
fibrillation manifests as the asynchronous chaotic contractions of the
atria. Due to the disorganized electrical signals in the heart, the atrium
fibrillates – contracts outside the standard regular sinus rhythm of
the heart. Incomplete and improperly timed contractions of the atria
cause the blood to pool in the atria, enabling the formation of a blood
clot. If such a clot becomes dislodged it can enter the bloodstream and
cause a stroke. It is estimated that around 20% of all strokes are caused
by atrial fibrillation [24]. Additionally, the majority of strokes caused
by non-rheumatic atrial fibrillation is thought to originate in the left
atrial appendage (LAA). Left atrial appendage is a small pouch-like
structure protruding from the wall of the left atrium, located between
the mitral anulus and the root of the left pulmonary veins [25].

The blood flow through the LAA can be closed off with a novel
percutaneous procedure called the left atrial appendage occlusion
(LAAO). During the procedure, the physician deploys a device inside
the neck of LAA which closes the blood flow through the appendage,
preventing the blood clot from exiting the appendage and entering the
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circulatory system. Figure 1.2 on the left shows the catheter entering
the right heart through the femoral vein, passing from the right heart
to the left through the interatrial septum and deploying the occluder
device inside the LAA. The right side of the figure shows the device
firmly placed in the neck of the appendage.

Multiple occluder devices are available on the market, each with
their own set of requirements about the LAA anatomy. In order to be
able to choose the device of the correct type and size for the patient’s
anatomy, the physicians need to be able to perform accurate measure-
ments of the heart and the appendage. Currently, most physiscians
perform the occlusion without the pre-procedural CT imaging, sizing
the device with measurements obtained from standard fluoroscopy
and TEE modalities. However, there is a growing trend of using pre-
procedural CT imaging to plan the procedure and to guide the sizing of
the device. The benefits of the pre-procedural CT scanning, compared
to standard pre-procedural TEE evaluation, include better prediction
of the appropriate device size [158, 176], and better determination of
patient’s suitaility for the procedure [176]. Still, even physicians that
do use pre-procedural CT evaluation rarely use specialized software to
plan the occlusion. They often perform measurements directly in 2D
slices of different MPR views. Very few software packages focused on
the pre-procedural planning of the left atrial appendage occlusion are
available on the market, due to the relative novelty of the procedure
(it has only been FDA approved in 2015). The goal of this thesis is
the development of a pre-procedural planning software capable of
automating certain parts of the planning workflow (using the methods
proposed in later chapters) and in turn reducing the time required for
the pre-procedural planning.

1.2.1 Clinical goals

This thesis presents new signal and image processing approaches to
support the planning of the LAA occlusion. From the point of view
of the clinical application, the following requirements have to be
met: the user interaction should be minimal; accurate segmentation
has to be guaranteed, along with the proper visualization; and the
results should be presented in such a way that the physician can easily
calculate the parameters of the LAA needed for the planning of the
occlusion procedure. Some of the most important parameters to the
physician are:

1. type of the appendage morphology,

2. maximal and minimal diameters of the ostium,

3. length of the appendage,
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4. volume of the appendage.

The performance of the methods should be fast enough to represent
an improvement over the manual analysis of the images.

1.3 novelties and contributions

In this thesis we develop three novel methods for medical image
processing to support the planning of the occlusion procedure. The
proposed methods are:

1. The method for the detection of the centerline through the ap-
pendage. This method is semi-automatic. It requires only one
seed point and a threshold value. The centerline is important for
the determination of the length of the appendage.

2. An accurate method for the left atrial appendage segmentation
based on the detected centerline. Thorough validation against
the ground truth segmentations by two medical experts showed
an excellent performance of this method. The segmentation step
is crucial for determining the appendage morphology, as well as
for the volume calculation.

3. The method for the localization of the LAA orifice. This method
localizes the orifice of the appendage and proposes the loca-
tion for the occluder placement. The locations proposed by the
method are very close to the locations determined by a medical
expert.

1.4 organization of the thesis

This section present an overview of the content of the various chapters
of the thesis.

chapter 2 : medical background. In this chapter we introduce
the medical background concerning the left atrial appendage and the
left atrial appendage occlusion. We cover the most common cardio-
vascular diseases and their causes and effects on the patients’ health.
Special focus is given to stroke prevention techniques, especially the
left atrial appendage occlusion procedure. We give an overview of the
cardiovascular anatomy with special focus on the left atrium and the
left atrial appendage. Several occluder devices are currently available
on the market. The devices are available in a range of predetermined
sizes (diameters). For every patient, the physician chooses a device
of the correct size according to patient’s anatomy. Several medical
imaging modalities are routinely used before, during and after the
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occlusion procedure. We explain their advantages and disadvantages
in the context of the occlusion procedure. The methods for planning
the occlusion procedure presented in this thesis use the coronary CT
angiography (CCTA) images for both the evaluation of the patient’s suit-
ability for the procedure, as well as the pre-procedural device sizing.
The CCTA pre-procedural planning demonstrated certain advantages
which are described in the chapter.

chapter 3 : current segmentation approaches . This chap-
ter covers the current state-of-the-art approaches for cardiovascular
segmentation from medical images. The covered methods are aimed
at extracting necessary anatomical information about the heart to aid
physicians in diagnosis and treatment of cardiovascular diseases. In
terms of underlying methods the available state-of-the-art approaches
can be divided into four categories: partial differential equation-based
methods, graph-cuts methods, clustering and classification methods
and model-based methods. The methods with the highest performance
often combine more than one approach. Historically, most of the meth-
ods were heuristical in nature. Nowdays, most of the methods are
based on some kind of machine learning, due to the rise in the avail-
able computing power since the beginning of the decade. However,
cardiovascular segmentation is not inherently suited for machine learn-
ing algorithms as the sizes of individual images are very large (3D and
often even 4D images). Consequently, sample sizes of most datasets
are very small (datasets with more than 100 individual images are
rarely reported in the literature). Thus, most of the machine learning-
based approaches are specially designed to handle that limitation.
Approaches most commonly used in the image processing in the last
few years, such as deep neural networks, are rarely used for this
purpose, even though several approaches have been presented in the
last few years. Nevertheless, specialized machine learning algorithms,
such as the marginal space learning algorithm, are still among the top
performers in the field.

The approaches for the segmentation and analysis of the left atrial
appendage are a lot less researched. To the best of our knowledge,
only a few methods for the LAA segmentation have been published,
most of them semi-automatic. We have found only few automatic LAA

segmentation methods. The lack of development in the area pointed us
to the existence of real clinical needs, in turn providing the motivation
for the development of the methods proposed in this thesis.

chapter 4 : centerline extraction In this chapter we intro-
duce our novel method for the detection of the left atrial appendage
centerline. The method for centerline detection is based on tracking
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the voxels with the largest radius of maximum inscribed sphere. The
tracking step detects voxels in path between the seed point and the
center of left atrium. The extraction step extracts the centerline from
the set of tracked voxels using the skeletonization approach. The pur-
pose of the detected centerline is twofold: while the centerline is useful
to determine the length of the appendage, it is also used as as an input
to the subsequent methods presented in the thesis. The validation
of the extraction method is performed by measuring the Hausdorff
distance between the centerline created by a medical professional and
the centerline detected with our method.

chapter 5 : centerline based laa segmentation In this
chapter we present our method for the centerline based LAA seg-
mentation. The proposed method performs the growing of a region
determined by the centerline. The method is designed to grow the
region towards the border regions of the anatomy, segmenting the
border regions of the LAA in the process. We also explain the method’s
robustness to leaks and the selected threshold value. The chapter also
presents the results of the validation of the method and discusses the
demonstrated segmentation results.

chapter 6 : localization of the laa orifice In this chapter
we describe our novel method for the localization of the LAA orifice.
The method determines the location of the orifice by analysing the
cross-sectional areas along the centerline. We explain in the chapter
the process of searching for minimal cross-sectional areas along the
centerline and present our novel algorithm called weighted rising
slopes, which localizes the orifice. Finally, we explain how the results
are validated and what are the clinical implications thereof.

chapter 7 : conclusions The final chapter states the global
conclusions of the thesis and points to some directions for further
research continuing on this work.





2
M E D I C A L B A C K G R O U N D

In this chapter we introduce the medical background concerning the
cardiovascular system. We will give a short overview of the heart
anatomy and the anatomy of the cardiovascular system. We will ex-
plain common cardiovascular diseases and the often-used treatment
procedures. Cardiovascular diseases are diseases which are affecting
the heart and the cardiovascular system. Main clinical manifestations
of cardiovascular diseases can be split into three groups: the manifes-
tations affecting the heart and the cardiovascular system, the mani-
festations affecting the brain and the cerebrovascular system and the
manifestations affecting the lower limbs. We will predominantly focus
on the cerebrovascular manifestations of the cardiovascular diseases –
mainly the cardiovascular diseases as the common cause of stroke and
the methods for stroke prevention. The sections on stroke and stroke
prevention will explain the role of the atrial fibrillation as the main
cause of stroke from cardiovascular diseases.

2.1 cardiovascular system

In this section we give a brief overview of the Cardiovascular system
(CVS) including the anatomical properties of the heart and the vessels.
The cardiovascular system is also often called the circulatory system.
The CVS is a system of organs which enables the blood to circulate
throughout the body, delivering oxygen and transporting nutrients [1].
The parts composing the cardiovascular system are: the heart, blood
vessels and blood. The structure and the function of the circulatory
system is adapted to its primary function: to continuously deliver
oxygen and nutrients to every cell of the person’s body [131]. Cells use
the delivered oxygen to generate the energy sources needed for all the
functions of the body. Additional functions of the CVS (according to
[1]) are: the transportation of the metabolic waste products and CO2

to organs which eliminate them from the body; distribution of water,
electrolytes and hormones; cooperation with the immune system and
thermoregulation.

The heart is the main driver of the CVS , a muscular pump driving
the blood through the blood vessels to the rest of the body. The heart
is divided into the left and the right side, with each side containing
two chambers, an atrium and a ventricle. Both chambers are mostly
composed of cardiac muscle cells. The atria have thin muscle walls

9
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Figure 2.1: Diagram of the human heart. Image source: Wikimedia [144]

and their primary function is to fill or prime the ventricles. The ven-
tricles drive the blood collected from the atria to the rest of the body
through the forceful constriction of their thick muscle walls. Figure
2.1 illustrates the heart anatomy, with the four chambers in the center
of the figure.

Let’s observe the blood flow starting from the left ventricle (LV),
the largest chamber in the heart, at the moment when it’s full of
blood collected from the left atrium (LA). The mitral valve is closed,
preventing the return of the blood to the left atrium and ensuring the
unidirectional flow of blood trough the heart. The LV muscle walls
forcefully constrict, creating an increased pressure that drives the
blood out of the LV and into the body. As the pressure rises, the aortic
valve opens and the contraction expels the blood from the LV into the
aorta. Aorta is the largest artery in the body and the first blood vessel
of the systemic circulation (also called the systemic circuit). The period
of the ventricular contraction (and the transferring of the blood into
the aorta) is called the systole, while the maximal pressure during the
systole is called the systolic pressure. During the systole the blood is
pushed through the aorta and the aorta distends due to its elasticity.
After the blood ejection from the LV the aortic valve closes and the
LV relaxes. This period of relaxation is called the diastole. During
the diastole the blood continues to flow through the aorta because
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Figure 2.2: Cardiovascular circulation. The image shows the heart, the sys-
temic and the pulmonary circulations. Image source: Wikimedia
[16]

the elastic recoil of the aorta continues to exert pressure on the blood.
This residual pressure is called the diastolic pressure and it gradually
decreases during the diastole, until it reaches its minimal level. For a
textbook person (typical 70kg 20-25 years old male [131]) the systolic
pressure is around 120mmHg, the diastolic pressure (at its minimal
level) is around 80mmHg and the difference between the two is called
the pulse pressure.

The blood pressure creates the blood flow from the aorta into the
major arteries. The blood flows through the arteries into different parts
of the body. The Figure 2.2 shows the illustration of the circulatory
system. As visible in the figure, the major arteries divide carrying the
arterial blood rich in oxygen and nutrients to different organs or body
regions (illustrated in dark red). These arteries further subdivide into
increasingly smaller vessels: muscular arteries subdivide into arterioles
(arteries with diameters of < 100µm), which further subdivide into
the smallest vessels called the capillaries. The capillaries form a dense
network within all body tissues, performing the exchange of the
gasses, delivering nutrients and collecting waste from the tissues. The
capillaries progressively merge into larger vessels – venules, which in
turn converge to become veins, which finally join together to become
one of the two main veins in the body, the superior and the inferior
venae cavae. The transition from the arterial to the venous blood is
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Figure 2.3: Illustration of the pulmonary circuit. Image source: Wikimedia
[133]

illustrated in the Figure 2.2 by a transition from the dark red to the
dark blue color. The superior and inferior venae cavae are shown as
the two largest dark blue vessels, returning the de-oxygenated blood
to the heart from the upper and lower body, respectively.

The blood returning to the heart through the venae cavae enters the
right atrium (RA). The right atrium serves the same function as the
left atrium, collecting the blood from the venae cavae and filling the
right ventricle (RV) through the tricuspid valve (Figure 2.1). The right
ventricle (same as the left ventricle) expels the blood collected from
the atrium to the pulmonary artery, starting the pulmonary circulation.
The contractions of left and the right heart occur simultaneously: both
atria contract simultaneously – pushing the blood to their respective
ventricles, while both ventricles contract simultaneously – pushing the
blood to their respective circulations.

Pulmonary circulation is shown in the Figure 2.3. Pulmonary ar-
teries, carrying the de-oxygenated blood from the heart to the lungs,
are shown in light blue. Pulmonary circulation is shorter and has a
much lower pressure than the systemic circulation. The arteries pro-
gressively subdivide in the lungs, forming the pulmonary capillary
network, which performs the exchange of gasses and the oxygenation
of the blood. Oxygenated blood passes through the capillary network,
which progressively merges into larger vessels, with the blood finally
returning to the heart through the pulmonary veins (red vessels in
Figure 2.3). The pulmonary veins carry the oxygenated blood back to
the left atrium, which pumps it into the left ventricle, from where the
next systemic cycle begins.



2.1 cardiovascular system 13

2.1.1 Heart anatomy

The heart has four chambers – two atria and two ventricles – divided
into two groups, often referred to as the left and right heart [1]. The
chambers of the left heart are the left atrium (LA) and the left ventricle
(LV), while the chambers of the right heart are the right atrium (RA) and
the right ventricle (RV). The atria (the receiving chambers) receive the
blood from the veins and fill the ventricles (the discharging chambers),
which push the blood out through the arteries. The ventricles are
filled with the blood from the atria through the atrioventricular (AV)
valves (the mitral or bicuspid valve between the LA and the LV and
the tricuspid valve between the RA and the RV). The AV valves are
passive and open depending on the pressure inside the chambers.
When the pressure in the atria exceeds the ventricular pressure, the AV

valves open. Similarly, when the pressure in the ventricles exceed the
pressure in the atria, the AV valves close. However, to prevent them
from being everted during systole (when the ventricular pressure
is at its highest), the valves are attached to the capillary muscles in
the ventricles by fine cords (lat. chordae tendineae). This prevents the
return of the blood to the atria, ensuring that the blood flow is always
unidirectional.

During systole the ventricles contract, the pressure inside the ven-
tricles rises and the semilunar valves between the ventricles and the
atria open, allowing the blood flow into the arteries. The blood from
the left ventricle drains through the aortic semilunar valve into the
aorta, while the blood from the right ventricle drains through the
pulmonary semilunar valve into the pulmonary artery. These valves
are also passive, closing at the end of systole, when the pressure inside
the ventricles drops below the pressure inside the arteries.

The filling of the ventricles occurs during the diastole, when the AV

valves are open. Initiation of the heartbeat starts the atria contraction
which completes the filling of the ventricles. When the ventricles start
the contraction, the ventricular pressure quickly increases and the AV

valves close, preventing the return of the blood to the atria. When the
ventricular pressure exceeds the arterial pressure, the semilunar valves
open and the blood ejects from the ventricles and into the arteries. As
the blood leaves the ventricles and the systole ends, the ventricular
pressure drops and the semilunar valves get closed by the backflow of
the blood from the arteries.

The heart muscle – the generator of the force necessary for the
contraction of the heart– is called the myocardium. The heart muscle
is located inside the walls of the heart chambers. The walls of the
atria are thin and the force generation during the contraction of the
atria is relatively low, because the ventricles are mostly empty at the
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Figure 2.4: Illustration of the heart wall. Image source: Medical gallery of
Blausen Medical 2014 [17]

time of atrial contraction. The walls of the ventricles are a lot thicker
because the force required to push the blood to the rest of the body is
a lot higher. We stated previously that the pulmonary circulation has
much lower pressure than the systemic circulation, thus the RV has to
generate less force than the LV. Consequently, the muscle walls of the
RV are thinner than the muscle walls of the LV. The left ventricle has
the greatest wall thickness of all heart chambers. The whole heart is
surrounded by the paricardium, a thin sac which protects the heart and
prevents excessive enlargement. The space between the heart and the
pericardium is called the pericardial space or the pericardial cavity and
it contains the interstitial fluid which acts as a lubricant. The Figure
2.4 illustrates the composition of the heart wall. The myocardium itself
is surrounded by two layers: the endocardium on the inside of the
chambers and the epicardium on the outside.

The heart muscle – myocardium – works very hard to supply the
rest of the body with nutrients and oxygen. However, the myocardium
itself also needs the oxygen and the energy to be able to work. Coro-
nary circulation supplies the myocardium (as well as the other parts of
the heart) with oxygen and necessary nutrients. Coronary circulation
consists of the coronary arteries which supply the oxygenated blood to
the heart, and the cardiac veins which drain away the de-oxygenated
blood. Figure 2.5 show the illustration of the coronary circulation with
coronary arteries labeled in red text. The heart gets its blood supply
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Figure 2.5: Illustration of coronary arteries with coronary arteries labeled in
red text and other landmarks labeled in blue text. Image source:
Wikimedia [110]

from two coronary arteries, the left and right coronary artery, extend-
ing from the aortic sinuses – the dilations in the wall of the aorta just
superior of the aortic valve. The two pulmonary arteries branch into a
number of smaller arteries along the heart. The right coronary artery
runs along the right heart, eventually dividing into the right posterior
descending artery and the right marginal artery. The left coronary Posterior in biology

and medicine refers
to the back side of
things – the opposite
of anterior, which
refers to the front
side [122]

artery runs for a short length (approx. 2cm) before dividing into the
left circumflex artery, the left marginal artery and the left anterior de-
scending artery. The de-oxygenated blood returns to the right atrium
via the coronary sinus and anterior cardiac veins. Coronary arteries
are functionally end arteries, meaning that the blockage of a coronary
artery generally results in the death of the heart tissue supplied by
that artery [70]. Thus, the blockage of coronary arteries often results
in myocardial infarction [191] which will be explained in more detail
in the later sections.

2.1.2 Left atrium

In this subsection we explain in more detail the anatomy of the left
atrium. The left atrium the most posteriorly located of all the heart
chambers [68]. Relative to the right atrium, the left atrial chamber is
both more superiorly and more posteriorly located. The walls of the
left atrium are slightly ticker than the walls of the right atrium. It’s
primary function is to collect the blood from the lungs during systole
and modulate the filling of the ventricle during the diastole [18]. The
left atrium receives oxygenated blood from the lungs through the
pulmonary veins (PVs). Normal inflow of the blood through PVs is
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Figure 2.6: Variations in the anatomy of pulmonary veins. Images show the
left atrial body (green), pulmonary veins (violet) and the LAA

(mint green). Left: typical variation. Middle: CLT. Right: RMPV.
Image source: Kutra et al. [92]

continuous and non-pulsatile, while the output of the heart is pulsatile
(due to ventricular contractions). Without the atria, the venous inflow
to the heart would be interrupted during the ventricular systole. Four
essential characteristics of the atrium [6] enable the uninterrupted
venous inflow:

• The veins entering the atria have no inlet valves which interrupt
the blood flow during the atrial contractions;

• During the atrial systole, the venous blood flows uninterrupted
through the atria into the ventricle. This is facilitated by incom-
plete atrial contractions which do not impede the atrial inflow.

• Tied to the above item, the gentle atrial contractions do not create
significant back pressure which will impede the blood inflow.

• Finally, the timing of the atrial contractions results in the atrium
that is relaxed before the start of the ventricular contraction,
allowing it to accept the venous inflow without interruption.

The pulmonary veins enter the left atrium from the posterior side.
Typically, the left atrium has four pulmonary veins joining the LA on
each side through individual ostia [92]. The left superior pulmonaryostium (pl. ostia): a

mouthlike opening in
a bodily part (as a
fallopian tube or a
blood vessel) [121]

vein (LSPV) and the left inferior pulmonary vein (LIPV) connect to the
LA from the left posterior side, while the right superior pulmonary
vein (RSPV) and the right inferior pulmonary vein (RIPV) connect to
the LA from the right posterior side. This typical four ostia pattern
occurs in around 60% of the patients [117]. Diverging from the typical
pattern, there are possible anatomical variations on both the left and
the right side. The most common variations are either: the common left
trunk (CLT) on the left side or the right middle pulmonary vein (RMPV)
on the right side. However, patients with simultaneous variations on
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Figure 2.7: Left atrial appendage anatomy. Image show a cross-section of the
left atrium and the left ventricle, with the left atrial appendage
marked by a black-white circle. Image source: Wikimedia [111]

both sides are very rare. The CLT variation is characterized by both
left PVs merging in the proximity of the LA body and entering the LA

through a single ostium. Configurations where the distance from the
ostium to the bifurcation is less than 1cm are called the short CLT and
occur in about 10% of the patients [117]. The CLT occurs in about 4

to 8 % of the patients. Both the typical configuration and the short
CLT are considered normal [82]. The RMPV configuration manifests
with an additional PV joining the right side of the LA body with a
separate ostium. This kind of configuration is found more often, in
about 13% to 24% of the patients. The Figure 2.6 shows the examples
of the described PV configurations.

2.1.3 Left atrial appendage

Due to the focus of this thesis on the left atrial appendage, in this sec-
tion we explain in more detail the anatomy of the left atrial appendage.
The left atrial appendage is a small pouch-like structure located in
the wall of the left atrium [25], most often next the mitral annulus
(the anatomical junction between the LA and the LV). The illustration
of the LAA is shown in the Figure 2.7 in a circle. It is still somewhat
unclear what is the function of the LAA. For a long time it was thought
that the LAA is a relatively insignificant part of the heart [15], being
a remnant of the development during gestation [4]. Currently, it is
thought that the LAA functions as a decompression chamber during
left ventricular systole and other periods of heightened atrial pressure
[4]. It is also thought to contribute towards the left atrial reservoir
and contractile functions [166]. However, it seems that the LAA has
additional functions related to the neurohormonal regulation [12, 94].
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(a) (b)

(c) (d)

Figure 2.8: Renderings of LAAs (white) in posterior view with the left atrium
(green) and pulmonary veins visible. Segmentation results from
the LASC datasets [167] segmented with [197]

Nonetheless, we do know that there are real pathological concerns
associated with its structure [15]. Primary concern is the increased
possibility of the thrombus formation inside the LAA in patients with
atrial fibrillation [63, 135, 181]. The role of the LAA in the increased
risk of stroke in patients with atrial fibrillation will be explained in
more detail in sections 2.3 and 2.3.1. For now, we will focus on the
anatomical characteristics of the LAA.

location As stated previously, the LAA is a pouch-like structure
in the wall of left atrium. The LAA is located within the confines of the
pericardium in close relation to the free wall of the left ventricle [4]. The
LAA comes in various shapes and sizes [24], but most often it is a long,
tubular, hooked, finger-like structure protruding from the main body
of the LA. There is a lot of variation in the size, shape and relationship
of the LAA to other parts of the heart. Most often the appendage
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Figure 2.9: LAA location relative to other blood vessels. The posterior aspect of
the LAA lies close to left-side pulmonary veins (LSPV and LIPV) and
ligament of Marshall (LOM). Figures A and B show the relation of
the superior aspect of the LAA to the left pulmonary artery (PA)
and the relation of the inferior aspect to the left circumflex artery
(LCX) and the great cardiac vein (GCV). On the endocardial aspect
(C), the LAA ostium and the LSPV ostium are divided by the left
lateral ridge (LLL). Image source: Naksuk et al. [128].

extends between the anterior and the lateral walls of the atrium.
Even though its tip is most often directed anterosuperiorly, it’s not
uncommon for it to be directed laterally and backward. The superior
part of the appendage is often located proximal to left pulmonary
artery (PA) (Figure 2.9). The appendage is trabeculated, with muscle
bars mostly running parallel to each other, resulting in a comb-like
appearance. However, its wall are remarkably thin ( 1mm) [128]. From
the outside (Figure 2.8), the appendage looks like a tubular, slightly
flattened structure with crenellation, ending with a pointed tip. It
can often have one or more bends in the structure [13]. The neck
of the appendage is located in close proximity to the left circumflex
artery (LCX).

ostium There is often no clear boundary between the atrium and
the appendage, thus the ostium can be defined somewhat arbitrary.
Budge et al. [24] defines it by the curvature of the geometry on the
junction between the atrium and the appendage. However, the junction
between the LAA and the atrium can be defined by a narrowing in
the LAA neck [13, 175]. This definition, albeit somewhat imprecise,
is often used in the literature. In that case, most appendages have a
well-defined orifice which opens to the body of the appendage. Figure
2.10 shows the view from inside of the left atrium looking down the
appendage.

Wang et al. [179] performed a quantitative study of the LAA on 612

CT images, classifying the ostial relationship to the LSPV into three
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Figure 2.10: LAA view from the inside. Endoluminal CT (top row) and post-
mortem (bottom row) views of the lateral wall of the right atrium,
showing the ostial relationship of the left superior pulmonary
vein (LSPV) and the LAA . In most cases the LAA is located either
at the same level (B) or anterosuperior (A) to the LSPV ostium.
The thickness of the lateral ridge between the LAA and the PVs

varies between patients, while in rare cases there is no ridge
between them. Image source: Cabrera et al. [25].

Figure 2.11: Morphological shape of LAA ostium: round (a), oval (b), trian-
gular (c), water drop-like (d) and foot-like (e). Image source:
Cabrera et al. [25].

groups: the high type (Figure 2.10 left), the mid type (Figure 2.10

middle) and the low type (Figure 2.10 right). Mid type (58.1% cases)
and the high type (30.2% cases) are the more common cases, while the
low type configuration was present in only 11.7% of cases.

Looking from the inside, the shape of the LAA orifice can also
vary significantly. Wang et al. also classified the orifice shape into 5

categories:

• oval shape present in 68.9%,

• foot-like shape present in 10%,

• triangular shape present in 7.7%,

• water drop-like shape present in 7.7%, and finally
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Table 2.1: Criteria for defining the LAA lobes. Reprinted from Veinot et al.
[171].

Criteria for an LAA lobe according to [171]

(1)
it was a visible outpouching from the main tubular body of the LAA,

usually demarcated by an external crease;

(2)
it was internally capable of admitting a 2-mm probe (ie, it was not simply a

tag of external adipose tissue);

(3)
it was occasionally but not necessarily associated with a change in direction

of the main tubular body of the LAA;

(4) it could lie in a different anatomic plane than the main tubular body; and

(5)
by definition, the LAA must have at least one lobe (ie, a tubular body with a

blind-ending sac).

• round shape present in 5.7% of the patients.

Figure 2.11 shows the postmortem specimens of the orifice shape
categories. The shape of the orifice is important for the planning of the
occlusion procedure and is usually defined by two measure: the long
diameter (the maximal diameter in the orifice) and the short diameter
(perpendicular to short long diameter). Orifice dimensions also vary
significantly, with a long diameter ranging from 10mm to 40mm [165].
Interestingly, Wang et al. [179] determined the orifice dimensions in
CCTA images in both the 2D oblique and the 3D views, and found an
average difference in dimensions between the two modalities of almost
5mm (average long diameter of 26.5± 5.8mm and 21.7± 5.7mm in 2D
oblique and 3D view, respectively).

shape Another large study of postmortem hearts by Veinot et
al. [171] analyzed the morphology of the normal LAAs and defined
the lobes with the criteria shown in the Table 2.1. Analysis on 500

postmortem hearts of all ages, according to the above criteria, has
found that the appendage with two lobes is the most common (54%
cases), followed by 3 lobes (23%), 1 lobe (20%) and 4 lobes (3%).
They haven’t found any significant age- or sex-related differences in
morphologies.

The shape of the LAA can vary significantly and the number of lobes,
while it is a useful measure in itself, is not enough to describe the
variations in the morphology. Thus, Wang et al. [179] proposed to
classify the LAA morphology into four types:

• Chicken-wing — the most common morphology type present
in 48% of patients. This morphological type is characterized by
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(a) Cactus (b) Chicken wing

(c) Windsock (d) Cauliflower

Figure 2.12: Types of LAA morphology. Each subfigure shows the rendering
of a CT dataset (left) and an MRI dataset (right). Image source:
Di Biase et al. [42].

a dominant lobe that has an obvious bend in its proximal or
middle part. The distal part often folds back on itself. May have
secondary lobes.

• Cactus — found in 30% of patients and characterized by a central
dominant lobe, from which secondary lobes extend in both
superior and inferior direction.

• Windsock — present in 19% of patients and also characterized by
a dominant lobe as a primary structure, from which secondary
or even tertiary lobes can arise in inferior direction.

• Cauliflower — rarest morphological type (3%) and most often
associated with embolic events. Often characterized by its short
overall length and lack of a dominant lobe.

The proposed classification was derived from a sample of 612 patients’
CT images. Population consisted of patients both with and without non-
valvular atrial fibrillation. The examples of the proposed morphology
types are depicted in the Figure 2.12. The original criteria for the
morphology classification is reprinted in the table 2.2. Additionally,
Wang et al. [179] determined the average dimensions of the appendage
necessary for the occlusion procedure. The approximate LAA length
for the orifice to the LAA apex of the primary lobe was measured at
48± 12.1mm. The appendage volume was 8.8± 5.6mL. Obvious bend
in the primary lobe was observed in the majority of patients (73.2%,
n = 448). The angle of the first bend, observed from 2D axial slices,
was measured at 97.6± 20.3◦, while the distance from the orifice to
the first bend was 14.1± 4.0mm.
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Table 2.2: Criteria for each morphology type. Table from Wang et al. [179].

LAA with obvious bend

1

The ChickenWing LAA is an anatomy whose main characteristic is an

obvious bend in the proximal or middle part of the dominate lobe or folding

back of the LAA anatomy on itself at some distance from the perceived LAA

ostium. This LAA type may vary with or without secondary lobes or twigs,

with the different measured distance to this bend as well as with the

different orientation (anterior, superior, inferior, etc.) of the bend relative to

the main lobe.

LAA without obvious bend

2

The WindSock LAA is an anatomy in which 1 dominant lobe of sufficient

length is the primary structure. Variations of this LAA type arise with the

location and number of secondary or even tertiary lobes arising from the

dominate lobe in inferior direction.

3

The Cauliflower LAA is an anatomy whose main characteristic is an LAA

that has limited overall length with more complex internal characteristics.

Variations of this LAA type are demonstrated by a more irregular shape of

the perceived LAA ostium (oval vs. round), the number of significant lobes

present and lack of 1 dominate lobe and the close proximity of internal

separations or prominent pectinate ridges to the perceived LAA ostium.

4

The Cactus LAA is an anatomy whose main characteristic is a dominant

central lobe with secondary lobes extending from the central lobe in both

superior and inferior directions. Variations of this type relate to the number,

location and orientation of the secondary lobes. This type of LAA may

present like a fork with a dominant lobe and with 2 or 3 secondary lobes at

the top of LAA.
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Figure 2.13: Distribution of deaths for males (left) and females (right) due
to six common types of cardiovascular diseases. Image source:
World Health Organization (WHO) [174].

2.2 cardiovascular diseases

This section gives a short overview of major cardiovascular diseases
(CVDs). Cardiovascular diseases kill more people every year than any
other cause: with an estimated 17.9 million deaths in 2016, CVDs

account for 31% of all worldwide deaths [183]. The term cardiovascular
diseases refers to a group of disorders which include diseases of the
heart, vascular diseases and diseases of blood vessels.

World Health Organization divides the diseases into two groups:
diseases due to atherosclerosis and other cardiovascular diseases [174].
Cardiovascular diseases due to atherosclerosis are:

• ischaemic heart disease or coronary artery disease — disease of
the blood vessels supplying the heart muscle (e.g. heart attack);

• cerebrovascular disease — disease of the blood vessels supplying
the brain (e.g. stroke);

• diseases of the aorta and arteries — including hypertension and
peripheral vascular disease (disease of blood vessels supplying
the arms and legs);

Other major cardiovascular diseases include:

• congenital heart disease — malformations of heart structure
existing at birth;

• rheumatic heart disease — damage to the heart muscle and heart
valves from rheumatic fever, caused by streptococcal bacteria;

• cardiomyopaties — disorders of the heart muscle;

• cardiac arrhythmias – disorders of the electrical conduction sys-
tem of the heart.
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Figure 2.14: Blood flow obstruction due to build-up of fatty deposits in
coronary vessels. Image source: Wikimedia [17].

Figure 2.13 shows the distribution of deaths from six main categories
of cardiovascular diseases among males and females (WHO report in
[172]). Among the CVD-induced deaths, most people die because of
ischemic heart diseases, with the cerebrovascular diseases (stroke)
following closely at the second place. These two diseases alone account
for about 85% of all CVD induced deaths.

2.2.1 Atherosclerosis

Atherosclerosis is a disease affecting the blood vessels, which results
in ischemic heart disease (heart attack) and cerebrovascular disease
(stroke). Heart attacks and strokes are usually acute events which
occur due to the obstruction of blood supply to the heart or the brain.
The obstruction of the vessels supplying the heart can result in reduced
blood flow to the heart tissue (ischemia) or a complete prevention of
the blood flow so that the heart tissue dies (infarction). The prevention
of blood supply to the brain is called a stroke. These cardiac events
are often called major adverse cardiac events (MACEs) and include
nonfatal stroke, nonfatal myocardial infarction and cardiovascular
death [211]. Both myocardial infarction and stroke commonly occur
due to thromboembolism – the blocking of the blood flow through the
vessel by a blood clot originating somewhere else in the circulatory
system.

Major underlying cause of MACE is a build-up of fatty deposits on
the inner walls of blood vessels (Figure 2.14) due to atherosclerosis.
Atherosclerosis is a long lasting disease, developing gradually over
many years. Fatty material and cholesterol are gradually deposited
inside the lumen of blood vessels, causing the lumen to become narrow. lumen (pl. lumina):

inside space of a
tubular structure,
such as an artery or
intestine [109]
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Figure 2.15: Development of coronary artery disease and forming of a blood
clot after rupture. Top: Healthy artery. Middle: Diseased artery
with plaque deposits. Bottom: The plaque ruptures, forming a
blood clot and preventing the blood flow. Image source: Albert.io
[71].

Additionally, while healthy blood vessels are flexible and elastic, over
time the walls in the vessels can harden, making them less pliable.
Consequently, all these effects can make it harder for the blood to flow
through the vessel.

Certain types of plaque are vulnerable to rupture due to external
stress, triggering the formation of a blood clot which obstructs the
blood flow through the vessel [50]. (Figure 2.15). If the blood clot
forms in a narrow vessel, such as coronary arteries or brain arteries, it
can prevent the blood flow and cause a heart attack or a stroke.

2.2.2 Rheumatic heart disease

Rheumatic fever is a common cause of heart disease which pre-
dominantly affects children and adolescents living in poverty. Acute
rheumatic fever is caused by an abnormal response of the body to
infection with streptococcal bacteria. The infection usually begins as a
pharyngitis or tonsillitis and, if left untreated, develops into a fever
that primarily affects the heart, joints and central nervous system. The
inflammation and scarring cause by the fever can damage the heart
muscle and heart valves [173], leading to rheumatic heart disease.
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Figure 2.16: Congenital heart disease. Left: Healty heart. Right: Heart suffer-
ing from tetralogy of Fallot. Image source: Wikimedia [17].

2.2.3 Congenital heart disease

Congenital heart disease is an important cause of childhood morbidity
and mortality worldwide, being the leading cause of birth defects
and the second leading cause of death in infants. It manifests as a
defect in the structure and function of the heart due to abnormal
heart development before birth [174]. Birth defects can be caused by
genetical factors, as well as behavioral and environmental factors [174].

Congenital heart diseases are usually divided into cyanotic and
non-cyanotic, depending on whether the defect in the heart causes
mixing of blood between the two sides of the heart [174]. Figure 2.16

shows an example of a cyanotic disease — tetralogy of Fallot — where
several congenital defects are found together and the mixing of the
blood between left and right ventricle does occur. Ventricular septal
defect is the most common type of congenital heart defect, where the
blood communicates between the left and the right ventricle. Figure
2.17a shows atrial septal defect, another common defect characterized
by a hole in the septum between the atria [29]. Some defects, such
as coarctation of the aorta (Figure 2.17b), may not cause problems
for many years, while other defect may require immediate medical
attention or surgery.

2.2.4 Cardiomyopaty

Cardiomyopaties refers to disorders of heart muscle, where the heart
muscle becomes enlarged, thick, or rigid. In rare cases, the muscle
tissue is replaced with scar tissue. The disease can be both acquired
(develops over time due to another disease, condition or factor) and
inherited [129]. Often the cause of the disease is not known. Usually,
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(a) atrial septal defect (b) coarctation of the aorta

Figure 2.17: Congenital heart defects. Image source: Wikimedia [17].

as the disease worsens, the heart becomes weaker. Weaker heart is less
capable of pumping the blood through the body and maintaining a
regular electrical rhythm. This can cause many complications, such
as heart failure, arrhythmia, heart valve problems and similar [129].
Some patients that have cardiomyopathy do not show any symptoms
and do not require treatment, while in others the disease develops
quickly and causes serious complications. It can affect people of any
age (although some age groups are more susceptible) and affects both
sexes equally.

2.2.5 Cardiac arrhythmia

Heart’s electrical system initiates and regulates the beating of the heart
(Figure 2.19). Each heartbeat is controlled by an electrical impulse orig-
inating in the sinoatrial node in the right atrium of the heart [65].
Under normal conditions, sinoatrial node generates such electrical im-
pulses regularly, between 60 and 100 times per minute. Each impulse
propagates through the heart’s conduction pathways, causing the con-
traction of the tissues. Initially, the impulse causes both of the atria
to contract. Next, the impulse travels down through the conduction
pathways, where it reaches and activates the atrioventricular node.
Normally, the atrioventricular node is the only electrical connection
between the atria and the ventricles. Here, the impulse slows down
for a very short period of time. The impulse then continues down the
pathways, via the atrioventricular bundle (called bundle of His) into
the ventricles. The bundle of His divides into left and right bundle
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Figure 2.18: Hypertrophic cardiomyopaty is characterized by thickening of
the left ventricular heart wall. Image source: Wikimedia [17].

branches, which are used to propagate the impulse to the left and right
ventricles. Finally, while traveling the bundle branches, the impulse
spreads through Purkinje fibers to the myocardium of the ventricle,
causing the muscle tissue of the ventricle to contract.

Contraction of the ventricle generates the force required to eject
blood out of the heart and to the rest of the body. Each contraction of
the ventricle represents one heartbeat. The atrium contracts a fraction
of a second before the ventricle and fills the ventricle with blood. This
is possible because the impulse is delayed in the atrioventricular node,
before it reaches the ventricle.

Abnormal electrical activity in the heart is known as cardiac ar-
rhythmia. The irregular heartbeat due to arrhythmia can be too fast
(tachycardia) or too slow (bradycardia). Arrhythmia can also be clas-
sified by site of origin, into: atrial arrhythmia, junctional arrhythmia,
and ventricular arrhythmia [157]. Sometimes cardiac arrhythmia is
life threatening and requires immediate medical care, sometimes it
may give rise to palpitations and finally, sometimes it does not show
symptoms at all.

Atrial fibrillation is a common type of arrhythmia, characterized by
uncoordinated activation of atrial contractions, outside of the normal
heart rhythm [85]. According to the above classification, atrial fibril-
lation can be classified as an atrial tachycardia. Atrial fibrillation is
correlated to the deterioration of mechanical function of the heart and
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Figure 2.19: Electrical system of the heart. Image source: Medical Center
Rochester [65].

commonly associated with stroke and congestive heart failure [85].
Atrial fibrillation drastically increases the risk of stroke.

While a detailed overview of all arrhythmias is outside the scope of
this thesis, in the next section on stroke prevention we will describe
the atrial fibrillation in more detail.

2.3 stroke prevention

Cardiovascular diseases (CVD) disproportionately affect the elderly
population [132]. Stroke is the second leading cause of death globally,
being responsible for around third of all deaths from CVDs [183]. For
the last two decades the rate of new strokes, when adjusted for age,
has steadily declined in the whole European Union [49]. However,
the population in all of EU is aging [55] and the percentage of the
population over 65 years of age is rising. Due to the strong association
between stroke risk and age, the number of stroke incidents continues
to rise. The Burden of Stroke in Europe report [49] quantified the effects
of stroke on the EU economy:

In 2015, direct healthcare costs alone added up to e20

billion in the EU, while indirect costs of stroke due to the
opportunity cost of informal care by family and friends
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and lost productivity caused by morbidity or death were
estimated to be another e25 billion.

The same report identified two most important risk factors for stroke
as high blood pressure and atrial fibrillation (AF). Throughout this
thesis we will focus on the stroke prevention due to atrial fibrillation.
Specifically, the proposed methods aid the physicians in planning
of percutaneous LAA occlusion – the procedure which is shown to
drastically reduce the risk of stroke due to atrial fibrillation.

2.3.1 Atrial Fibrillation

Atrial fibrillation is an important risk factor for stroke – responsible
for almost 20% of all strokes [24] and for the majority of cardioemoblic
strokes [89]. Most cardioembolic strokes are the result of thromboem-
boli originating in the LAA. The disease manifests as arrhythmia, when
the normal regular rhythm of the heart becomes irregular, due to
disorganized electrical signals in the atria.

In a normal, healthy heart, the atria contract a fraction of a second
before the ventricles, as the contracting impulses travel first through
the atria and then, through the AV node, to the ventricles (Figure
2.19). With atrial fibrillation, the chaotic electrical activity causes asyn-
chronous contractions of the atria – quivering or fibrillation – as the
atria contract quickly and unevenly, instead of pumping rhythmically
and forcefully [119]. The ventricles also beat rapidly, but slower than
the atria, as AV node does not let all the impulses through to the
ventricles. This prevents the heart chambers from filling and emptying
properly.

Without effective blood pumping, the blood can sometimes pool
in the heart and form a blood clot. Pieces can break off from a clot,
forming thromboemboli, which can be passed from one chamber to
the next and enter the circulatory system. When the clot ends up in a
brain artery, it can stop the blood flow to the brain and cause a stroke.
Estimates show that over 33 million people worldwide suffer from
atrial fibrillation [34], as it is the most common type of arrhythmia.
The disease predominantly affects the older population. Consequently,
the number of people suffering from atrial fibrillation is expected to
increase due to the increase in age of population, especially in the
countries of the developed world [85, 208].

The most common method for stroke prevention in patients with
atrial fibrillation is anticoagulation therapy. Anticoagulants block the
activity of coagulation factors, reducing the body’s ability to form
blood clots. Anticoagulation therapy reduces the risk of stroke by
∼ 60% [63]. However, patients often have contraindications to antico-
agulation therapy, patients with higher risk of stroke are more likely
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to have such contraindications [135] and nearly 40% of patients do not
receive such therapy because of them [137].

2.3.2 Left atrial appendage closure

Left atrial appendage closure is an alternative stroke prevention
method for patients with contraindications to anticoagulation therapy.
It has recently been approved for clinical use by Food and Drug Ad-
ministration in USA [137]. The procedure demonstrated non-inferiority
to anticoagulation therapy [11, 69, 150] while avoiding most of the
contraindications.

There are several LAA occlusion devices currently on the market
available for the procedure, but their availability varies in different
parts of the world. According to the American College of Cardiology
[137] the only device approved by the Food and Drug Administration
(FDA) for percutaneous LAA closure in the USA is the WATCHMAN
device (Boston Scientific; Natick, MA). WATCHMAN is also the most
extensively studied device to date through the PROTECT AF trial [149].
Two other popular devices for LAA closure are: PLAATO [125, 135]
which was available in Europe, but is discontinued, and Amplatzer
Cardiac Plug [140, 170] which is available in Europe, Canada and other
parts of the world.

Left atrial appendage closure procedure is performed by percuta-
neously deploying the occluder device to the neck of the appendage.
The device stops the blood flow between left atrium and LAA and
prevents the trombi formed in the LAA from leaving the LAA and
causing stroke. Closure devices are available in several predefined
sizes. Physicians choose an appropriately sized device for each patient.
Selection of the correctly sized device requires accurate measurements
of the appendage. Usually, the measurements are obtained either from
a CT image or during the TEE examination. However, for selecting
the device of an appropriate size, the measurements obtained from
CCTA images have shown to be superior to measurements derived
from other modalities [56, 158, 185]. The work of Cabrera et al. [25]
presents the complete list of 27 anatomic and imaging landmarks
that determine the feasibility of LAA occlusion. However, the most
important anatomic LAA measurements for the closure procedure are:

• diameter/circumference of the LAA orifice,

• shape of LAA orifice,

• LAA length and volume,

• maximal length of the dominant LAA lobe,
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• type of LAA morphology.

All of the above measurements can be adequately determined from
an accurate LAA segmentation. The type of the morphology can be
easily determined from a visualized 3D rendering, while in 2D the
process is error prone. In 2D, the LAA can appear as a different mor-
phology type depending on the viewing angle of the reconstruction.
LAA morphology is among the most important parameters that deter-
mine the feasibility of the LAA closure procedure and likelihood of
post-procedural complications [25].

2.4 conclusion

In this chapter we gave a broad overview of the cardiovascular anatomy,
the functioning of the cardiovascular system and the cardiovascular
pathology. Especially, we aimed to introduce the medical concepts
necessary for understanding the need for the left atrial appendage
segmentation methods. While reviewing the necessary medical back-
ground, we focused on the stroke prevention techniques, the role of
the atrial fibrillation and the left atrial appendage in increasing the risk
of stroke, and finally the percutaneous left atrial appendage occlusion
procedure – a novel method for reducing the risk of stroke in patients
with atrial fibrillation. The left atrial appendage occlusion procedure,
despite being only recently approved by the FDA, is experiencing
a steep rise in popularity, as the number of performed procedures
rises and the costs drop. Although the procedure can be carried out
without the pre-procedural CT scan using only the transesophageal
echocardiography (TEE), the use of the CT based pre-procedural plan-
ning workflow reduces the time spent performing the procedure and
increases the patient satisfaction. In order to effectively perform the
pre-procedural planning and choose the device of the correct size,
more sophisticated algorithms are required that can quickly and with
minimal interaction determine accurate measurements of the LAA and
surrounding structures.
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S E G M E N TAT I O N A P P R O A C H E S

This chapter reviews major state-of-the-art image segmentation ap-
proaches in cardiovascular anatomy with the special focus on left atrial
appendage segmentation. The available approaches can be divided
according to part of the heart anatomy they are focused on: methods
focused primarily on the segmentation of the whole heart (all four
chambers) and the methods focused on the segmentation of the left
atrium or the left atrial appendage. Alternatively, categorization can
be made based on the type of computational approaches used in the
methods, as was done in the review paper by Kang et al. [80]. We also
make such a categorization based on the predominant computational
and image processing concepts, and we review where appropriate the
anatomical aspects too.

This chapter is organized in the following manner. First, we present
an overview of the cardiovascular segmentation methods divided
into categories according to the computational approach used. The
methods are based on the four main approaches presented in the
following subsections: methods based on partial differential equations
(PDEs) in Section 3.1; methods based on graph-cuts in Section 3.2;
model-based methods in Section 3.3; and methods based on clustering
and classification in Section 3.4. In each of these sections we will
explain the methods for the whole heart segmentation, including the
methods for extraction of the heart as a whole from the images as well
as the methods which will segment the chambers separately. Next, we
give an overview of methods focused solely on the segmentation of
the left atrial appendage – the main focus of the thesis. Some of the
presented methods focus on the segmentation of the left atrium, with
the LAA being an integral part of the left atrium. Finally, the Section
3.6 provides a short recap of the content of this chapter.

3.1 pde-based segmentation methods

Image segmentation methods based on partial differential equations
(PDEs) rely on the concept of an evolving contour. The evolution of the
contour is performed by deforming the contour from the initial to the
final position. Seminal work of Kass et al. [83] introduced the Active
Contour Models (ACMs) also known as Snakes, one of the most widely
used PDE-based approaches. Active contour models can be divided

35
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in two main groups: the edge-based models and the region-based
models.

The boundary of the object in the edge-based ACMs is identified
using the image gradient. The advantage of the edge-based model
is primarily in the ease of obtaining the final segmentation – object
boundary identification from image gradient is intuitive even to non-
technical users. The main drawback is the dependence of the final
result on the initial contour. On the other hand, the region-based
contour model uses a statistical approach to segment the region of
interest from the background. This type of method calculates the
optimal match of a model to the image which minimizes some kind of
energy functional. This type of method is less dependent on the initial
contour and more resistant to the noise in images, but obtains lower
results when the objects in the image are heterogeneous.

3.1.1 Active contour model

The work of Kass et al. [83] introduced the energy minimization
concept in their Active Contour Model (ACM) approach. The approach
is based on the evolving curve, defined in the image domain, which is
deformed (evolves) under the influence of internal and external forces.
Internal forces try to control the smoothness of the curve during
the deformation. External forces attract the curve towards the salient
features in the image. The energy function controlling the deformation
is defined as:

Etotal =
∫ 1

0
[Einternal(x(y)) + Eexternal(x(y))] dy (3-1)

where x(y) is the contour, Einternal represents the internal energy and
Eexternal represents the external energy function. The internal energy
function is defined as:

Einternal =
∫ 1

0

[
a
∣∣x′(y)∣∣2 + b

∣∣x′′(y)∣∣2] dy (3-2)

where a is weight parameter which controls tension, b is weight pa-
rameter for stiffness control and x′(y), x′′(y) are first and second
derivatives of the contour with the respect to x(y). The external en-
ergy function is defined as:

Eexternal =
∫ 1

0
P(x(y))dy (3-3)

where P is a scalar potential function defined in the image domain.
For energy minimization, contour x(y) has to satisfy Euler-Lagrange
equation:

ax′(y)− by′′(s)−∇(P)(x(y)) = 0 (3-4)
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Figure 3.1: Active contour-based whole heart segmentation. Figure shows the
initial contour (left) and the final result after contour evolution
(right). Image source: Bai et al. [10].

where ∇ is gradient operator.
The work proposed by Bai and Li [10] performs the whole heart seg-

mentation using the original Snakes approach proposed by Kass [83].
Figure 3.1 shows one slice from the resulting segmentation. The work
performs the evolution of the initial contour, where the seed points
for the initialization of the contour were obtained using watershed
segmentation. The use of the ACM enables the iterative deformation
of the initial contour until it conforms to the heart boundaries in the
image. Additionally, one way to overcome the limitations of the ex-
plicit boundary identification approach is to combine the region and
boundary information.

Lankton et al. [95] have proposed a novel concept of localizing
region-based active contour (LACM) in order to deal with the intensity
inhomogeneities. Their method enables the segmentation of objects
with discontinuous and heterogeneous boundaries by using the ap-
proach based on probability of appearance of certain regions in the
image. This is especially important for cardiac segmentation. In im-
ages acquired at a cardiac phase when the mitral valves are open, the
contrasted blood is freely flowing from the atrium to the ventricle. The
result is the lack of boundary between the atrium and the ventricle.
This lack of boundary confuses the edge-based ACMs.

To overcome this problem, Wu et al. [184] proposed an adaptive
diffusion flow (ADF) model. Later, Zhou et al. [204] merged these two
approaches (the LACM and the ADF models) by using both the localiz-
ing region and the edge-based intensity information to perform the
segmentation. Two main advantages of the Zhou approach are: (1) the
ability of the model to handle both the weak edges and the intensity
inhomogeneities; and (2) robustness to the contour initialization. Fig-
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Figure 3.2: Active contour-based whole heart segmentation combining LACM

and ADF with the initial contour (left) and the final resulting
contour (right) in one CT slice. In this case, despite the closed
mitral valve, the boundary in the image defined by the mitral
area is still a rather weak one. Nonetheless, the method success-
fully segments the LV, demonstrating robustness to the contour
initialization. Image source: Wu et al. [184].

Figure 3.3: The initial slice (left), the smoothed image after the diffusion
(middle) and the final masked image (right). Image source: Livada
et al. [102].

ure 3.2 shows the example of the left ventricle segmentation using this
approach.

Another relatively novel approach proposed by Soomro et al. [161]
implements a region-based ACM which takes both the local and global
information into account. Energy functional guiding the evolution
is implemented using the signed pressure force (SPF) function. This
approach diverges from the approaches presented above by using the
level sets for evolution. The SPF function in the Soomro’s approach
drives the evolution of the zero level set curve towards the object
boundary. The use of the Gaussian kernel instead of traditional reini-
tialization approach gives the benefit of regularizing the level set curve
while removing the computationally expensive reinitialization step.
The example of the approach is shown in Figure 3.4.
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Figure 3.4: Region-based ACM segmentation of the left and right ventricles
by Soomro et al. [161] (Image source). Figure shows (by columns
from left to right): original slices from MICCAI 2012 database
[143] with the initial contour (first and fourth columns); interme-
diate results (second and fifth columns) and the final resulting
contours (third and sixth columns)

Our previous approach for heart segmentation [102] used Perona-
Malik nonlinear diffusion [142] in pre-processing phase for edge en-
hancement and noise removal. The segmentation is performed in the
enhanced image, where the detected boundary serves as a mask for
the original image. An example is shown in Figure 3.3. We also pro-
posed additional noise removal approaches [97, 98] to improve the
segementation results.

Approach proposed by Koopert et al. [88] combined the traditional
active contour method with feature function based on Lorenz et al.
approach [105] for the epicardial and endocardial atrial wall segmenta-
tion. Daoudi et al. [39] presented an automatic segmentation method
of the left atrium based on active contour model with gradient vector
flow (GVF). The gradient vector flow (GVF) was proposed by Xu and
Prince [186, 187] as an improvement of the traditional ACM when
handling the convergence in the concave regions. Through the GVF,
Daoudi et al. introduced a new external force which defines a vector
diffusion equation in order to diffuse the gradient of the edge map
extracted from the image. The initialization in their approach is per-
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Figure 3.5: Interactive segmentation of the LAA using the ITK-SNAP software
package. Initial segmentation was performed using the Snakes
algorithm implemented in the ITK-SNAP package. The refinement
was performed using the paintbrush tool.

formed after the pre-processing step which performs the adaptive
histogram equalization. In their approach the proposed gradient vec-
tor flow (GVF) is one of the main driving forces which attracts the
model to the enhanced borders in the equalized image.

3.1.2 Geodesic active contour model

In their seminal work on geodesic active contours, Caselles et al. [27,
28] introduced the idea of the Euclidean curve shortening and the use
of level sets for the contour evolution. The main advantage of this
approach is the implicit parameterization which can automatically
handle the changes in the topology. Their use of geometric flow for
the deformation of the curve was subsequently adapted by Sethian et.
al. [3, 159]. This combination of the level set representation, combined
with the geodesic active contours, has become the basis for a large
number of segmentation methods [30, 138, 139], some of which will
be explained in more detail in the next section.

Appleton [7] proposed a method for the automatic left ventricle
segmentation using geodesic active contours by selecting the closed
curves in every slice which are most likely to identify the myocardium.
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Figure 3.6: Geodesic active contour-based left ventricle segmentation Image
source: Appleton et al. [7].

Figure 3.6 shows the segmentation result in one MRI slice. While the
method segments clear borders exceptionally well, the strength of the
approach is in handling the indistinct fuzzy boundaries and back-
ground clutter. The main source of error is the inclusion of papillary
muscle fibers.

Finally, widely used in the medical imaging community is the work
of Yushkevich et al. [194, 195]. Their work on the ITK-SNAP software
package (Figure 3.5) represents one of the most widely distributed
implementations of the geodesic active contours in a software package.
The ITK-SNAP package was also used by our medical experts for all
ground truth segmentations.

3.1.3 Chan-Vase model

The contour evolution in the classical active contour models is con-
strained by the image gradient. Thus, such methods work best for the
objects where edges are defined by image gradients. In order to ac-
commodate for this limitation, the seminal work of Chan and Vese [30]
introduced an active contour model without stopping edge function.
Their approach uses the Mumford-Shah functional [127] for control-
ling the evolution of the contour. Simply stated, the Mumford-Shah
functional handles differently the smoothness of the region at object
boundary and the smoothness of the region outside the boundary,
allowing the segmentation of object with weak edges.

One direct application of the Chan-Vese model to the heart segmen-
tation is proposed by Kang et al. [81]. Their approach segments the
left and right heart from the image in several steps: first it detects
the volume of interest in the preprocessed image (smoothing), next
it determines the seed points by geometric analysis using the prior
anatomical knowledge of the heart, and then the coarse segmentation



42 segmentation approaches

Figure 3.7: Whole heart segmentation in CT images using the Chan-Vese
active contour model. Image source: Kang et al. [81].

using the power watershed segmentation separates the left from the
right heart. Finally, the active contour model without edges refines the
coarse segmentation. Figure 3.7 shows the segmentation results. Simi-
lar approach for whole heart segmentation is proposed by Rousseau
and Bourgault [152].

3.2 graph techniques

Variety of graph techniques for image segmentation have been pro-
posed during the years, some of which are graph-cuts, minimum
spanning trees, shortest path etc. Graph-cuts techinque, commonly
used for the segmentation in medical images, was originally intro-
duced by Greig et al. [60]. The adaptation of the method by Boykov
and Jolly [19, 20] introduced graph optimization algorithm as the com-
bination of max-flow and min-cut. The adaptated is commonly used
for boundary and region segmentation in N-dimensional data. The
starting goal of the method was to automatically identify the object
(marked by one or more seed points) from the background. The back-
ground contains hard and soft constrains to obtain the information
about the region.

The requirement for the initialization with seed point prevents the
graph-cuts method (in its original form) from being fully automatic.
However, medical image segmentation methods often deterime seed
points according to the prior anatomical knowledge. Very efficient ap-
proach for fully automatic whole heart segmentation using graph-cuts
technique is proposed by Funka-Lea [54]. Their approach determines
the seed points within the heart by computing the weighted volu-
metric barycenter. The determined seed point is then used by the
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Figure 3.8: Graph-cuts based kidney segmentation in 3D angio MRI. Image
source: Boykov et al. [20].

Figure 3.9: The graph-cuts based segmentation of the whole heart. Figure
shows the expansion of the balloon within the heart. From left to
right: initialized balloon, original heart volume, inflated balloon
and resulting segmentation. Image source: Funka-Lea et al. [54].

graph-cut algorithm to determine the ellipsoid of the maximum vol-
ume (called the balloon) containing the heart region. The segmentation
is performed by inflating the balloon and limiting its inflation where
it touches the heart wall. The segmentation stops when the balloon
cannot be inflated any further. Results of whole heart segmentation
proposed in [54] are shown in Figure 3.9.

Grosgeorge et al. [61] proposed the method based on a statistical
shape model obtained with principal component analysis (PCA). This
approach presents the shapes of the RV with distance maps to their
contour. The use of distance maps improves the performance of the
landmark detection and matching. The method computes the PCA to
describe the shape variations. The user registers the resulting shape
model onto the image and the graph-cut refines the segmentation.
Figure 3.10 shows the resulting segmentation in several MRI slices.
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Figure 3.10: Graph-cuts for the purpose of right ventricle segmentation in
MRI image. Image source: Grosgeorge [61].

Figure 3.11: Seed placement for graph-cuts based refinement of the LA seg-
mentation. Left: The detected region of interest (ROI) of the left
atrium. Right: distribution of positive and negative seeds in the
image. Image source: Yang et al. [189].

Similar method was proposed by Jolly [78] for the segmentation of the
left ventricle. This method works on both CT and MRI images. Deng et
al. [40] adapted the approach for the segmentation of the aorta.

The graph-cuts method can also be used for the segmentation re-
finement. Yang et al. [189] used the graph-cuts approach to refine
the already segmented left atrium in C-arm CT images. First, the left
atrium was segmented using the Marginal Space Learning approach
(described in detail in section 3.4.4), then the region growing method
was used for construction of graphs within the regions of interest.
Finally, the graph-cuts optimization segments the voxels missed by the
previous algorithm. Newly segmented voxels are assigned to different
parts of the left atrium. Usually the graph-cuts methods are computa-
tionally expensive, but Yang et al. achieved the average runtime of 5

seconds with the described algorithm. Figure 3.11 shows the automatic
seed placement for graph-cuts refinement of the LA. Figure 3.12 shows
the results pre- and post-refinement.
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Figure 3.12: Segmentation result before and after graph-cuts based refine-
ment of the left atrium segmentation. Image source: Yang et al.
[189].

3.3 model-based segmentation techniques

Model-based segmentation techniques can be thought of as a group
of techniques where the segmentation approach is based on using
a predefined geometric model. The methods deform the model to
match the locations of the extracted image features. Usually the first
step for this type of method is the creation of the geometric model
from the set of training data. In the next step the created model is
matched to a new image. Being created from the training data, the
model usually encapsulates some prior knowledge about anatomical
structures which have to be segmented. The matching of a model to
the new image is performed by a parametric deformation, in order to
match the model to the detected features of the image. Thus, the goals
of the model-based techniques are twofold: (1) extraction of features
from the image and (2) generating the model with the best fit to the
extracted features. Deforming the model to match the new image can
be seen as an optimization problem, where the goal is to find the best
model parameters for a given image.

We divide the deformation strategy into two main categories: tech-
niques modifying the model shape parameters (deformable models),
and techniques deforming the shape’s embedding space (registration).

3.3.1 Active Shape Model

The Active Shape Models (ASMs)-based methods employ an iterative
algorithm to detect the object of interest in an image. The iterative
algorithm is similar to the one used in active contour models, but
instead of evolving a contour, here we evolve a predefined model.
Additionally, ASMs can only deform to fit the data consistent with the
training set data [37].

Let vector of shape parameters b describe the object in an image,
transforming it from model coordinate frame to the image coordinate
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Figure 3.13: Visualization of the surface of the mean mesh prior to deforma-
tion. Image source: Ecabert et al. [47].

frame. Let T be the transformation function. The position of the model
points X in the image can be defined as:

X = TXtYtΦs(X + Φb) (3-5)

where Xt, Yt, Φ and s are shape parameters which describe similarity
transformation, orientation and scale of the points, respectively.

The iterative deformation algorithm performs the fitting in three
main steps:

1. For each point of the model Xi, search the neighborhood pixels
around the point and find the best match for X

′
i ;

2. Update the shape parameters according to 3-5, determining the
best fit to the newly found points;

3. Repeat until convergence.

Points of the model do not have to be placed on the locally strongest
edge. Instead, they can represent a weaker secondary edge or some
other image structure. This can often complicate the matching process.
There are three most often used approaches for matching which can
handle this problem. We can either build statistical models of the
image structure around the point, we can find the points which most
closely match the points from the training set model, or we can treat
the matching as a classification task.

A fully automatic model-based segmentation approach was pro-
posed by Ecabert et al. [46, 47], which introduced the progressive
increase in the deformation degrees-of-freedom, increasing segmen-
tation accuracy and improving the convergence. Additionally, they
replaced the commonly used PCA-based initialization step with the
piecewise affine transformation. The model used for the method was
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Figure 3.14: Vertex distribution in the mesh of the four-chamber heart model.
First row shows the mean mesh prior to deformation, while
second and third rows show the model after fitting to CT datasets.
Models were deformed with piecewise affine transformation.
The meshes remain regular even after the deformation. Image
source: Ecabert et al. [47].

constructed as a four-chamber heart model, created from manually
segmented ground truth images. Figure 3.15 shows the flowchart of
the proposed segmentation method. An improvement to the method
was proposed in [48], where the segmentation using the four-chamber
heart model was improved by adding meshes of the great vessels to
the original model. First, the main heart region of interest was detected
using the generalized Hough transform. Afterwards, the method per-
forms segmentation by adapting the four-chamber heart model to the
chambers in the extracted region of interest using the ASM. Figure 3.16

shows the results of the segmentation using the proposed method.
The work of Zhao et al. [196] proposed the improvements to the

standard ASM approach in terms of outliers sensitivity by using
RANSAC [51] for the robust transformation estimation. Their work
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Figure 3.15: Automatic model-based segmentation flow example. Image
source: Ecabert et al. [47].

Figure 3.16: Segmentation results of the four-chamber heart model-based
segmentation method. Image source: Ecabert et al. [48].

also introduced active contour-based model deformation called Shape-
constrained Active Contour (SAC). The SAC evolves the model as if it
were a contour, while retaining the prior knowledge about the shape
of the model.

Ordas et al. [134] proposed a method for heart segmentation based
on ASM which is able to perform automatic delineation of the training
set, overcoming common practical limitation in building statistical
shape models. Inspired by work of Rueckert et al. [153] they used
algorithm based on free-form deformations (FFDs) and normalized
mutual informations (NMIs) as shown in Figure 3.17. The model build-
ing algorithm has shown to be convergent, but suffered from severe
performance penalties. Both the required computational time and
the processing power were high. Ma et al. [112] proposed the use of
Haar classifier for the localization of the heart ROI in input images.
This approach treats the matching as a classification task, where the
pre-built ASM is initialized on the detected ROI.

Finally, the work of Fritz et al. [52, 53] extracts the left ventricular
functional parameters from the prior segmentation, obtained with
region-growing. Figure 3.18 illustrates the workflow of the method
[52]. The center of the ventricle coordinate system and the z-axis
(Figure 3.18a) are determined from the pre-processed region-growing
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Figure 3.17: The algorithm for the shape model construction. Image source:
Ordas et al. [134].

segmentation of the LV. A model is placed in the ventricle coordinate
system along the short-axis with the model points in parallel short-axis
slices (Figure 3.18b). The model geometry uses 72 rays per short-axis
slice (Figure 3.18c shows a simplified view with only 4 rays per slice).
Model points are in spherical coordinates at the base and the apex.
Fitting of the model is based on local gray values along the rays in
the model. The resulting segmentation is shown in Figure 3.18d. The
novelty of their approach in [53] is in concatenating models of left
and right ventricle into a single vector, and in turn segmenting both
chambers simultaneously. This concatenation demonstrated superior
results than segmenting each chamber independently.

3.3.2 Active Appearance Model

The concept of Active Appearance Models (AAMs) is an extension
of Active Shape Model (ASM) which takes into account the texture
information in the image. The concept was first introduced by Cootes
et al. [35, 36]. The main advantage of the AAM over ASM is in the
fact that the ASM is scanning only lines when searching for the best
match, while AAM searches the complete volume. The additional
information contained in the texture of the image results in improved
fitting accuracy. However, this additional information results in the
significant increase in computation time.
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(a) LV-centered short-axis view (b) Model in long-axis view

(c) Model (d) Resulting fit in long-axis view

Figure 3.18: Segmentation of the left ventricle using the ASM fitting with prior
region-growing pre-processing step. Image source: Fritz et al.
[52].

The AAMs treat the matching as an optimization problem where the
main objective is to minimize the difference between a new image and
the training set model image. A difference vector is defined as:

δI = Ii − Im (3-6)

where Ii represents a vector of intensity values in the new image and
Im represents a vector of intensity values of the current image model.
The quality of the match is represented with the magnitude of the
difference vector, defined as:

∆ = |δI|2 (3-7)

Finding the best match between the new image and the model is
performed by minimizing the value of ∆.

Originally, AAMs were only defined in two-dimensional domain, but
the work by Mitchell et al. [124] generalized it to three-dimensional
spaces. The work of Stegman and Pedersen [163] introduced the bi-
temporal model which could calculate the left ventricular ejection
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Figure 3.19: Model fitting using the conventional AAM and multistage hybrid
ASM/AAM approach. Left: Original slice. Middle: Conventional
AAM results in a good gray level appearance fit, but the border
positioning accuracy is low (arrows). Right: Multistage hybrid
ASM/AAM demonstrates a significant improvement in the accu-
racy. Image source: Mitchell et al. [123].

Figure 3.20: Flowchart of the registration process.

fraction (LVEF). The model combines the shape and the appearance
information from the end-diastole and end-systole phases. The LVEF

calculations are performed on the subsampled data (128x128 pixels),
due to the computational complexity of the model. Finally, Mitchell
et al. [123] introduced a combined approach which incorporates the
advantages of both the ASM and the AAM. The approach is developed
as a multistage framework in which AAM guaranteed better conver-
gence while ASM improved boundary segmentation. Comparison of
the hybrid approach results compared to the conventional AAM is
shown in Figure 3.19.

3.3.3 Registration and Atlas-based Segmentation

Image registration represents the process of mapping points in one
image (floating image) to equivalent points in another image (reference
image) [154]. In the context of medical images, the mapping between
equivalent points means the mapping between the points in the same
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Figure 3.21: Illustration of the registration process. The process finds a trans-
formation of the image space such that the transformed im-
age spatially corresponds to the reference image. Image source:
Rouhanni et al. [151].

anatomical position. Image registration process is shown in Figure
3.20. The registration process is an iterative approach searching for
the best transformation of the floating image which maximizes the
similarity between the reference image and the floating image. The
cost function calculates the similarity between the transformed image
(interpolated floating image after transformation) and the reference
image, i.e. the quality of the mapping. The similarity between the
reference image and the transformed image is directly affected by the
transformation model and the interpolation method. The optimization
method guides the search for the transformation which provides the
best mapping (highest similarity) between the two images. Figure 3.21

illustrates the registration process.
Most often used interpolation methods are nearest-neighbour, lin-

ear and B-spline interpolation. The accuracy of the chosen interpo-
lation method is in the direct relation with the computational cost
of the method. Nearest-neighbour interpolation is computationally
the fastest while being the least accurate method. On the other hand,
the B-spline interpolation is the most accurate while being the most
computationally expensive method. Linear interpolation provides a
good trade-off between the two requirements.

Transformation model estimates the spatial difference between the
images. We can divide them according to their most important char-
acteristic – linearity – into three groups: linear, non-linear and locally
affine transformations. Linear transformations maintain the global
shape of objects in the image. Depending on the number of degrees
of freedom (DOFs), we can divide the linear transformations for three-
dimensional problems into following groups:

1. rigid transformation defined with six degrees of freedom,

2. similarity transformation defined with nine degrees of freedom,
and
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3. affine transformation defined with fifteen degrees of freedom.

The linear transformations are computationally efficient, but provide
limited accuracy for images with local deformations.

Non-linear transformations (also called non-rigid or deformable)
can handle objects with local deformations due to a much higher
number of degrees of freedom than the linear transformations. How-
ever, higher number of DOFs directly results in a drastic increase in
the computational complexity, making the registration process a time-
consuming and computationally demanding task.

Locally affine transformations combine the advantages of both linear
and non-linear transformations. This type of transformation is actually
a set of locally defined rigid transformations. Thus, the interpolation
can be calculated directly for the regions where the transformations
are defined. However, for regions where the transformations are not
defined, the interpolation should be calculated according to a set of
local transformations close to that region. Mathematically, the locally
affine transformations model can be defined as:

T(x) =

Gi(x), x ∈ Vi, i = 1 . . . n

interpolate{Gi(xi)|i = 1, . . . , n}, x /∈ ⋃n
i=1 Vi

(3-8)

where {Gi} are local affine transformations which are describing the
local regions {Vi}.

Similarity measurement methods can be thought of as methods
that quantify the quality of the transformation by determining the
similarity between the reference image and the transformed image.
Most common methods are methods based on the intensity values in
the image, for example: mean of squared intensity difference, cross-
correlation and mutual information (MI).

Finally, the most common optimization methods are Powell’s con-
jugate gradient ascent/descent method and gradient ascent/descent
method [146], with a regularization scheme for advancing each itera-
tion step as described in [87].

atlas-based segmentation Previous paragraphs explained the
workings of the registration process. Let us now explain how the
registration can be used to perform the segmentation. The anatomy of
the heart, while varying between the patients, has a certain regularity,
meaning that the location of certain parts of the heart follows the same
pattern between the patients. We call the knowledge of those patterns
a priori knowledge. Explicitly incorporating the a priori knowledge into
the developed segmentation methods is not trivial. The atlas-based
segmentation is basically the segmentation process which uses a priori
knowledge of the heart by treating it like a registration problem. The
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Figure 3.22: Representation of an atlas. Left: original slice, middle: desired
anatomical regions are labeled – creating a slice of atlas based
on the original slice, right: 3D visualization of the whole atlas.
Image source: Zhuang et al. [207].

atlas is a combination of a medical image and a label map, where med-
ical experts label (usually manually) certain anatomy in the original
image. The labels now incorporate the a priori knowledge without
encoding it in explicit rules. Figure 3.22 shows an example atlas.

The basic algorithm for segmenting a previously unseen medical
image using an atlas-based method consists of three basic steps:

1. Register a new unseen image to the atlas. This step computes "a
dense deformation field that puts the atlas into a point-to-point
spatial correspondence with the target image" [9]. The spatial
locations of the desired anatomy in the registered (also called
transformed/deformed) image now correspond to the spatial
locations of the desired anatomy in the atlas.

2. Propagate the labels from the atlas to the registered image. The
registered image now contains the segmentation labels for the
anatomy labeled in the atlas.

3. Un-register the image, i.e. reverse the deformation field. This step
brings the segmentation labels from a spatial correspondence
with the atlas to a point-to-point spatial correspondence with
the input (unseen) image.

Even though the general algorithm is relatively simple, for the
purpose of cardiac segmentation a lot of edge cases have to be covered.
Some of them have already been mentioned, one of them being the
inability of registration to handle local deformations in images. A
lot of work has been published in the area of atlas-based cardiac
segmentation in the recent years.

Zhuang et al. [205] developed a single-atlas based segmentation
framework using enhanced locally affine registration method (LARM).
Their approach enabled the preservation of the relation of intensity
between local regions by computing and optimizing a global cost
function.
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Figure 3.23: The framework for automatic whole heart segmentation based
on atlas propagation. Image source: Zhuang et al. [206].

Figure 3.24: Two views showing the surface-to-surface segmentation error
map. Image source: Zhuang et al. [206].

Their following improvement to the framework was the combination
of the LARM approach with non-rigid transformation, published in
[206], which performed the whole heart segmentation from MRI images.
The approach implemented the non-rigid transformation using the free
form deformations (FFDs) with adaptive control point status (ACPS).
The LARM is used to initialize the cardiac substructures. With the new
approach, the transformation globally deforms while local regions
maintain their desired shape. This avoids the local optima during the
optimization phase of the global transformation. After the successful
initialization, the approach applies the ACPS FFDs registration to refine
the local details. The main advantage of this approach is the ability to
avoid myocardial leakage.

The last iteration of the framework [207], published in 2015., can
automatically segment the heart substructure and aorta using a priori
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Figure 3.25: Performance of the multi-atlas segmentation (MAS) scheme pro-
posed by Zhuang et al. Each column shows three-panel orthog-
onal view of a dataset. Two leftmost columns show two cases
with the lowest Dice overlap for whole heart segmentation (WHS),
while the rightmost two columns show datasets with median
scores. Image source: Zhuang et al. [207].

anatomical information incorporated into initialization. This iteration
of the framework can obtain sub-voxel segmentation accuracy as well
as register local regions separately. The main limitation of this frame-
work is the possibility of losing information about original geometrical
relations, which increases the probability of the initialization step fail-
ing. Segmentation results obtained through the framework are shown
in Figure 3.25.

Another approach for automatic whole heart segmentation using
registration is proposed by Lorenzo-Valdes et al. in [106]. They em-
ployed a global affine registration for atlas initialization, while the
fine-tuning of the details used non-rigid registration with a large num-
ber of degrees of freedom. Major disadvantage of the approach is
the inability to generalize the atlas – every heart atlas can only be
applied to a small number of similar images, with similar pathological
data. Isgum et al. [72] proposed an approach for multi-atlas-based
segmentation of the aorta and other cardiac structures. The approach
introduced a concept of spatially varying weights, which estimate the
success of local registrations. They also researched the possibility of
reducing the computational costs by reducing the numbers of atlases.

A similar approach, introduced by Depa et al. [41], segments the left
atrium with a label fusion algorithm [66]. The work of Van Rikxoort et
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Figure 3.26: Aorta and heart multi-atlas segmentation. Image source: Kirisli
et al. [86].

al. [212] introduced the automatic stopping criterion which stops regis-
tering atlases when it detects that no further improvement is possible.
Multi-atlas registration approach developed by Kirisli et al. [86] uses
the linear affine registration to align an image to an atlas. The result of
the linear affine registration is used as an initialization for a B-spline
registration. Figure 3.26 shows an example segmentation. Heinrich
and Oster [67] developed discrete registration framework which im-
proves the computational performance using continuous optimization.
First, the framework linearly and nonlinearly aligns all training images
to an unseen image. Afterwards, transformed segmentations from all
atlases are weighted using their patch similarity.

Yang et al. [190] introduced three-step multi-atlas method for heart
segmentation in CT images. First, they perform the heart localization
on isotropic down-sampled images of both the patient and the atlas.
The second step performs masking of the ROI and refines the segmen-
tation using affine and B-spline registration. The third step re-runs
the B-spline registration to refine the transformation from atlas to the
patient’s image. Finally, global fusion of the resulting segmentations
generated by majority voting obtains the final WHS.

Left atrium segmentation approach proposed by Sandoval, Betancur
and Dillenseger [155] used atlas-based registration followed by a
region-growing step. The affine registration performed the coarse
segmentation, while the region-growing step refined the segmentation
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to the smallest anatomical details. Finally, another interesting approach
for left atrium segmentation, similar to the Sandoval’s approach, was
proposed by Stender at al. [164]. The method works with both CT and
MRI images, utilizing the ASMs initialized with the affine registration,
followed by the atlas registration and a region-growing step.

3.4 clustering and classification techniques

Clustering is a general technique used for dividing a set of data
into a specific number of groups. Clustering is often considered an
unsupervised learning strategy because it does not require explicit
guidance. In the context of image processing, the clustering process
groups (clusters) together image pixels of similar characteristic. The
resulting clusters provide a segmentation of the image. Clustering
techniques can be divided into several types:

• K-means clustering, often referred to as Hard C-means clustering
[103, 113],

• mountain clustering [188],

• fuzzy C-means clustering [14] and

• subtractive clustering [31].

The K-means technique is still the most commonly used.
The term classification represents a technique where elements in a

dataset (data observations) are assigned to one of the pre-determined
classes (a label is assigned to each observation). Classification is con-
sidered a supervised learning strategy because the machine learns
from already labeled (classified) data. Some of the most popular clas-
sification techniques are:

• K-nearest neighbors [5],

• support vector machines [38],

• decision trees [23],

• artificial neural networks [120].

With the advent of high computational capacity, the artificial neural
network-based approaches have begun outperforming other tech-
niques in a lot of tasks.

3.4.1 K-means clustering

K-means clustering algorithm tries to divide a set of data observations
into k clusters, where each observation belongs to a cluster with
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Figure 3.27: Heart segmentation using K-means clustering and graph-cuts.
Image source: Yu-ke [192].

Figure 3.28: Automatic LV segmentation using K-means and graph searching.
Image source: Lee [96].

the nearest mean. Clusters are defined by cluster centers. K-means
algorithm tries to find cluster centers by minimizing the dissimilarity
of data observations according to some cost function. Commonly used
cost functions are often based on Euclidean distance. The centers of
the clusters are iteratively refined until the cost function starts to
converge.

The clustering approach by itself is rarely used for heart segmenta-
tion. It is mostly used as a pre-processing or pre-segmentation step.
Yu-ke [192] proposed a heart segmentation method which combines
the K-means clustering with graph-cuts approach. Figure 3.27 shows
an example of the approach. Lee [96] proposed an automatic LV seg-
mentation method based on K-means algorithm. The method consists
of five steps: preprocessing and seed points estimation, creation of cir-
cular map via polar mapping, segmentation of the LV using K-means,
graph searching to correct the errors of the K-means step, and finally
inverse polar mapping to obtain the final segmentation. Figure 3.28

shows the results of the method.
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Figure 3.29: Automatic LV segmentation using graph-cuts and fuzzy C-means
clustering. Image source: Wang [178].

3.4.2 Fuzzy C-means clustering

The basic idea of Fuzzy C-means clustering (FCM) is an adaptation of
the K-means clustering, where the main difference is that in FCM an
observation can belong to several clusters. The term fuzzy in the name
refers to the fact that we attach a set of numbers (between 0 and 1)
to each observation, representing a degree to which an observation
belongs to each of the clusters. Thus, the observation can belong to
several clusters at the same time with different degrees of membership
(called the membership grade). The rest of the method is similar to
K-means, with the clusters still being determined by minimizing a cost
function. Still, the possibility of an observation belonging to several
clusters can be beneficial for the design of heart segmentation methods.
Wang et al. [178] proposed an approach for LV segmentation in MRI

images which combines the FCM with the modified level set method.
The level set method delineates the endocardium and estimates the
bias field, which decreases the intensity inhomogeneity of the image.
The combination of FCM and morphologic segmentation extracts the
epicardium from the corrected image. The results can be seen in Figure
3.29.

3.4.3 Random Forests

Random forests algorithm, introduced by Breiman in [22], combines
two earlier techniques: decision trees (also called classification and
regression trees (CART)) [23] and bagging predictors [21]. Random
forest classifier contains a number of decision trees and each tree is
trained with a different subset of training data (bagging). The training
samples are randomly assigned across trees for processing, with the
samples passing through a tree from the root node to one of the leaf
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Figure 3.30: Data classification with random forests classifier. Image source:
Breiman [22].

nodes. Upon entering the tree, in each node the sample encounters a
binary test which compares a certain feature with a threshold. Node
passes the sample to one of its children depending on the test, until
the sample reaches a leaf. This concept is illustrated in Figure 3.30.
Training forests helps with identification of a set of tests that are
shown to best separate the data into training classes. The framework
has demonstrated high performance and accuracy in a large number
of general purpose classification tasks.

An example of adapting the framework to medical image segmenta-
tion was proposed by Mahapatra [114]. They proposed an automatic
right ventricle segmentation method which combined superpixel seg-
mentation [2] with random forests. First, the method determined the
region of interest containing the right ventricle using the superpixel
segmentation classified with random forests classifier. For the next
step, the second set of random forest classifiers calculates probability
values for all pixels in the determined region of interest. The calculated
probability map is used as a penalty cost in the second-order Markov
random-field [101] cost function. The final segmentation is obtained
by optimizing the cost function using the graph cuts approach.

The work of Margeta et al. [116] used the random forests classifier to
automatically segment the left atrium. Main novelty of the work con-
cerns the reduction of training time by selective sampling of the voxels
in the annotated training data. While the classifier was trained on
all positive samples (voxels labeled as belonging to the LA), negative



62 segmentation approaches

Figure 3.31: Coronal (left column), sagital (middle) and axial (right column)
views of the segmentation results obtained with random forests
based LA segmentation method by Margeta et al. Top row: origi-
nal slice with ground truth overlaid in yellow. Middle row: atrial
probability map where brighter values indicate higher proba-
bility (magenta contour = 0.6 probability). Bottom row: ground
truth (yellow), final segmentation (red). Image source: Margeta
et al. [116].

samples were sampled on a sparse regular grid. The final segmenta-
tion is obtained from an atrium probability map calculated for the
whole volume. Figure 3.31 shows the probability map in the middle
row, while Figure 3.32 shows the meshes of the final segmentation
result. Main limitation of the method is a frequent misclassification of
pulmonary veins.

3.4.4 Marginal Space Learning

Marginal Space Learning (MSL) is a generic learning-based method for
efficient 3D object detection developed and proposed by Zheng and
Comaniciu [198]. Here we describe the advantages of the MSL approach
compared to standard approaches. Standard learning approaches for
3D object detection exhaustively search the nine-dimensional pose pa-
rameter space, since the anisotropic similarity transformation has nine
degrees of freedom. The nine degrees of freedom are: three translation
parameters, three rotation angles and three scales. The MSL achieves
significant improvement in detection speed compared to full-space
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Figure 3.32: Visualization of the resulting atrial meshes obtained with the
Margeta et al. method. Image source: Margeta et al. [116].

Figure 3.33: Marginal Space Learning parameter search steps. Image source:
Zheng and Comaniciu et al. [198].

learning because the search is only performed in low-dimensional
marginal spaces instead of the full-space exhaustive search. Parame-
ter estimation is split into three steps: position estimation, position-
orientation estimation, and position-orientation-scale estimation (as
shown in Figure 3.33).

Each step increasingly narrows the search space, using a different
estimator for each step. The first step (position estimation) uses an
estimator trained to decide whether a position hypothesis represents a
good estimate of the target object’s position. The exhaustive search of
the position marginal space (three-dimensional) finds a small number
of best position candidates. The second step (position-orientation
estimation) uses an estimator trained to decide whether a position-
orientation hypothesis is a good estimate. The exhaustive search of
the orientation marginal space, while searching for every position
candidate retained in the previous step, finds a limited number of
good position-orientation candidates. Finally, the position-orientation-
scale candidates are found by using the position-orientation candidates
to exhaustively search the scale marginal space.

Even though in each step the method performs an exhaustive search,
only a small number of candidates are preserved for the next step.
In each step the method prunes a large portion of the search space
with low posterior probability, drastically increasing the efficiency.
The MSL, compared to the exhaustive full-space search, can reduce the
number of testing hypotheses by six orders of magnitude. The name
Marginal Space Learning comes from the fact that the learning and
detection is performed in a sequence of marginal spaces. Due to the
pruning, the method can reliably detect a 3D anatomical structure
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Figure 3.34: Marginal Space Learning-based whole heart segmentation frame-
work. Image source: Zheng and Comaniciu et al. [197].

Figure 3.35: Left ventricle segmentation using Marginal Space Learning, in
a method implemented by Lu et al. [108]. Image source: Zheng
and Comaniciu [198].

with a speed of 0.1–0.5 s/volume on an ordinary personal computer
(3.2 GHz duo-core processor and 3 GB memory) without the use of
special hardware such as graphics processing units.

Some of the works using the MSL for initial segmentation have
already been mentioned in this review. For example, the work by
Yang et al. [189] presented an approach combining the MSL based ASM

fitting with the graph-cuts refinement for the purpose of left atrium
segmentation (Figures 3.11 and 3.12 in Section 3.2). Lu et al. [108]
presented an MSL-based method for segmentation of the left ventricle
in MRI images (Figure 3.35).

Marginal Space Learning-based approaches are capable of working
in different imaging modalities. The MSL book by Zheng and Comani-
ciu [198] presents cases where the method is capable of handling the
modalities such as X-ray fluoroscopy, 2D and 3D ultrasound, 2D and
3D MRI and 3D CT. Detailed review of the MSL approach is outside
the scope of this thesis and the reader is referred to [198] for more
information.
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Figure 3.36: Whole heart segmentation using Marginal Space Learning. Im-
age source: Zheng and Comaniciu [198].

One of the more important MSL-based works by Zheng et al. team
was the whole heart segmentation method proposed in [197, 199].
The method is using the MSL to guide the shape deformation of
an active shape model in order to fit the input image. The whole
framework is shown in Figure 3.34. The third step of the MSL performs
the Similarity Transformation Estimation. Afterwards, the non-rigid
deformation estimation fits the model to the image. The example of the
segmentation results obtained with the method are shown in Figure
3.36.

Heart isolation (segmenting the heart as a whole from a 3D image)
is another technique with important clinical significance, but with
more focus on the dataset visualization than on the quantification of
the heart structures. It has clinical value in several applications, e.g.
3D volume visualization of coronary arteries, radiotherapy planning,
and automatic calculation of the calcium score [198]. Large shape
variations and weak image boundary complicate the isolation pro-
cess. Zheng et al. [200] overcame those challenges by calculating the
optimal mean shape from the training set, improving the shape initial-
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(a) Non-contrasted image

(b) Contrasted image

Figure 3.37: Transaxial, sagital and coronal views of the results of the MSL-
based whole heart segmentation on both non-contrasted and
contrasted CT images. Image source: Zheng and Comaniciu
[198].

ization accuracy. Their later work proposed by Zhong et al. [202, 203]
improved the result by removing the pulmonary veins and the left
atrial appendage from the final visualization. The method has been
demonstrated on both contrasted and non-contrasted CT images, as in
Figure 3.37. Resulting visualization of the heart enables easy visual
inspection of coronary arteries (Figure 3.38)

The shape and location of pulmonary veins, protruding from the
left atrium, can vary significantly between the patients (see Section
2.1.2 and especially Figure 2.6). The approach used in [200], which
calculated the optimal mean shape of the model, does not adequately
cover such large anatomical variations. Consequently, Zheng et al.
proposed in [201] a part-based method, which does not fit one model
to the image, but fits several different models to different parts of the
image. This part-based approach successfully segmented the atrium,
including the pulmonary veins. This approach will be explained in
more detail in Section 3.5, as it is one of approaches that successfully
segments the LAA as well.



3.4 clustering and classification techniques 67

Figure 3.38: 3D volume visualization of the whole-heart segmentation results.
(a) Before removal of pulmonary arteries, pulmonary veins, and
left atrial appendage. (b) After removal. Image source: Zheng
and Comaniciu [198].

3.4.5 Artificial neural networks-based methods

The concept of artificial neural networks (ANNs) was introduced in
1940s by McCulloch and Pitts [120]. The main idea behind the concept
was to try to emulate the learning ability of the biological neuronal
system. The basic mathematical model of ANNs consists of a parallel
structure with three layers: input, hidden and output layers. Training
information enters the network through the input layer and passes
through one or more hidden layers until it finally reaches the output
layer. Each layer transforms the input data depending on the type of
the layer and the configured parameters in the network. When the
input data reaches the output layer, the output of the network (i.e. the
transformed input data) is compared to the correct output for that
specific input data sample. The difference between the network result
and the correct output is an error which is propagated back through
the network, adjusting the parameters of the network. This process
of adjusting the network parameters to better match the output of
the network to the desired output is what we call the training or the
learning of the network.

Neural networks have experienced a significant proliferation during
the last decade. Ever since the seminal paper on Deep neural networks
by Krizevsky et al. [90, 91], the whole field of neural network based
image processing has been revived. The deep learning concept has
significantly outperformed other types of methods in a large num-
ber of applications, for example in image classification [64], semantic
segmentation [104], or image compression [168]. Artificial neural net-
works even started to outperform human experts. Rajpurkar et al.
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Figure 3.39: Convolutional neural network architecture for automatic LV seg-
mentation proposed by Zreik et al. For every voxel, the input to
the network are three orthogonal 48x48 patches centered around
the voxel (axial, saggital and coronal neighborhoods of the voxel).
The network classifies the voxel as belonging to (positive), or
not belonging to the LV (negative). The convolutional neural
network (CNN) has 4 convolutional layers, 3 max pooling layers,
two fully connected layers and one softmax output layer. Image
source: Zreik et al. [209].

[148] developed a neural network that outperforms human radiologist
in detecting pneumonia from chest X-ray images. Despite the advance-
ments in deep-learning-based methods, in the area of cardiovascular
segmentation from 3D images the results were not as groundbreaking.
Deep networks require massive datasets for training. Deep networks
work better with very large number of data samples and small size of
an individual data sample. The data available for cardiac segmentation
purposes could be considered as the opposite – small number of data
samples with large size of an individual sample (being a 3D image).

Shaikhina et al. [160] introduced a novel framework which enables
neural network (NN) analysis in medical applications involving small
datasets (despite not being focused on cardiac segmentation). The
work proposed by Payer et al. [141] performs a multi-label whole heart
segmentation using CNNs and anatomical label configurations. Poudel
et al. [145] are using a recurrent fully convolutional neural network
to perform a multi-slice MRI cardiac segmentation. Tran et al. [169]
proposed an approach where a fully convolutional neural network is
used for cardiac segmentation in short-axis MRI. Wolterink et al. [182]
proposed an approach using a dilated convolutional neural networks
for cardiovascular MR segmentation in congenital heart disease. Zreik
et al. [209] proposed an approach for automatic segmentation of
the left ventricle in CCTA images using CNNs. Their method used 60

CCTA datasets – 50 to train the LV localization network, five to train
the segmentation network and the final five to validate the method.
Dormer et al. [44] proposed a CNN based approach for heart chambers
segmentation trained and validated on only 11 3D CT datasets.
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Figure 3.40: LV segmentation results by Zreik et al. Figure shows original
slices (left column), ground truth annotations (middle column)
and segmentation results (right column). Image source: Zreik et
al. [209].

All of these approaches demonstrate the feasibility of the CNNs for
the purpose of cardiac segmentation, but they do not outperform the
more established methods, especially the atlas-based and model-based
methods presented in previous sections.

3.5 left atrial appendage segmentation approaches

Throughout the previous four sections we presented a wide review of
the work published in the area of cardiac segmentation. In this section
we cover only the approaches which segment or analyze the left atrial
appendage, whether directly or indirectly.

The area of left atrial appendage segmentation is generally under-
researched. To the best of our knowledge, a relatively few automatic
and semi-automatic LAA analysis and segmentation methods have
been published. Even though a number of methods concerning the left
atrium segmentation have been proposed, almost all of those methods
either discard or ignore the appendage.
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Figure 3.41: The general framework of the left atrium segmentation method
proposed by Daoudi et al. Image source: Daoudi et al. [39].

In the next subsection (Section 3.5.1) we will briefly summarize
major LA segmentation methods. Finally, in the Section 3.5.2 we will
explain in greater detail the state-of-the-art algorithms for LAA seg-
mentation.

3.5.1 Left atrium segmentation methods

In this subsection we briefly present the algorithms for left atrium
segmentation. We will comment on each algorithms’ treatment of the
LAA .

The algorithm proposed by Daoudi et al. [39] performs the LA seg-
mentation using an active contours-based algorithm. Their proposed
algorithm works in 2D space, segmenting the atrium per slice. The
method works on thresholded CT images and determines the correct
threshold for the image automatically. They determine the threshold
with gray level histogram analysis, after contrast correction with adap-
tive histogram equalization. The object in the image with the largest
volume is chosen as the location of left atrium. In all of their training
images the left atrium is located in the middle of the image and has
the largest volume – the method relies upon this characteristic of the
dataset for the localization step.

After obtaining the threshold and the seed point (the centroid of the
LA volume determined in the previous step), the method detects the
initial contour for the active contours step using the modified region
growing methods. The region growing method does not grow the
region in the binary thresholded image, but uses the grayscale values
of the image. Starting with the seed point, the region is grown only
in the homogeneous areas of the image, where the homogeneity is
determined according the previously determined threshold. Finally,
gradient vector flow (GVF) Snakes algorithm [187] segments the atrium.
Figure 3.41 shows the method diagram.
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Figure 3.42: The general framework of the left atrium segmentation method
proposed by Sandoval et al. The multi-atlas based approach
uses the affine registration to evaluate the similarity between
the input image and the atlas dataset. After atlas ranking, the
ground truth of the selected atlases are modified using the elastic
registration. Finally, the labels are propagated and fused to the
resulting segmentation. Image source: Sandoval et al. [155].

The strengths of the method are its speed of execution, automatic
initialization of snakes and high segmentation accuracy. The draw-
backs are high dependency on image quality and 2D implementation.
The method does not focus on the LAA segmentation and it is unclear
from the paper how much of the LAA is added to the segmentation
during the region-growing step, since LAA and LA are connected and
the intensity values of the contrasted blood in the LAA region will be
similar to the values inside the LA.

The algorithm proposed by Sandoval et al. [155] performs a fully
automatic left atrium segmentation based on multi-atlas registration
and region-growing. Figure 3.42 shows the method flow diagram. The
method is using affine registration to rank atlases to the input image.
The atlases are ranked using three similarity measures: sum of squared
differences, normalized correlation coefficient and mutual information.



72 segmentation approaches

(a) LA detection flow

(b) Segmentation initialization

Figure 3.43: Flow diagrams of Stender et al. approach. Image source: Stender
et al. [164].

Labels are propagated to the selected atlas using the majority-voting
fusion. Next, the method erodes the fused label image and refines
the segmentation using the eroded image as the initialization for the
region-growing step. The dilated fused label image is used as a ROI

to constrain the region growing. The region-growing step allows the
method to adapt to the peculiarities of each patient. The same method
works on both CT and MRI modalities, but uses different fusion rules.

The main strengths of the method are the use of the apriori anatom-
ical information and the robustness due to multiple atlases. However,
the method is computationally expensive, the global measure in atlas
ranking is unfavourable for PVs and the region-growing has challenges
in inhomogeneous regions. The method segments only a small part of
the LAA, probably due to the dilated ROI not encompassing the whole
appendage.

Stender et al. [164] developed two segmentation methods capable
of working with both CT and MRI modalities. The first algorithm is
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Figure 3.44: Segmentation results of statistical region growing method on an
MRI volume in axial (left) and coronal (right) cutting planes. Red
contour: initialized seed voxels. White contour: segmentation
results. Green contour: ground truth. Image source: Stender et
al. [164].

based on statistical shape models (SSM), while the second one uses
region-growing. Both algorithms work fully automatically, using the
same atlas information for initialization. First, the method creates two
modality specific atlases, one for the CT and the other for the MRI

images. Then, one of the images is selected as a reference and the
remaining images are mapped in the dataset onto the reference image
using the affine registration. After histogram equalization, the images
were merged into a mean volume used as a template.

Figure 3.43a shows workflow for detection of the LA ROI, used by
both methods. Basically, the method selects the ROI in the reference
image, registers the new image to the reference image and propagates
the ROI to the new image. The whole process is done on isotropically
down-sampled images to improve performance. The detected ROI is
then used as an initialization for both methods. Figure 3.43b shows
the segmentation initialization for both methods. The first method
(SSM-based) used the transformation obtained in the detection step to
propagate the average mesh. The mesh was subsequently adapted by
following the gradient features of the input image. A valid instance of
the deformed mesh was obtained using the statistical constraints of
the model. The second method used the voxels with high probability
of being inside the atrium as seed points for region growing. The
probability was determined from the probability density distribution
of the mean volume template.

The main strength of the region-growing-based method is that it can
handle anatomical variations of pulmonary veins. The main drawback
is that it leaks to LV if the mitral valve is open or barely visible. On
the other hand, the SSM-based method does not suffer from mitral
valve leakage, but cannot handle the anatomical variability without
sufficiently large training dataset. The region-growing-based method
does segment a part of the LAA in some of the datasets, while the
SSM-based method does not. That is to be expected, since the region
growing will at least partially grow into the appendage.
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The algorithm proposed by Margeta et al. [116] performs a fully
automatic left atrium segmentation based on random decision forests.
The proposed method consists of two steps. In the first step the struc-
ture of the decision forests is trained on all available datasets, then the
trained forest is used to separate the atrial voxels from the background
voxels in a previously unseen image. Each voxel was associated with
several features such as: local features based on mean intensity of
the voxel neighborhood; context rich features which capture strong
contrast changes and long-range intensity relationships; distance to
blood pool contours; and tubularity features encoding the vesselness
information using a multiscale vesselness filter [156]. The method was
trained on 10 provided datasets, using a leave-one-out cross-validation
to select the best parameters for the forests.

The online phase, which performs the segmentation of the previ-
ously unseen image, creates a probability map – each voxel is assigned
a probability of belonging to the left atrium. Thresholding the prob-
ability map creates the final segmentation. The online phase takes
around a minute to fully segment the LA in a new image. Figure 3.31

on page 62 shows the calculated probability maps, while Figure 3.32

on page 63 shows the final meshes. The strength of the method is
the fact that the training is done with few assumptions, everything
is learned directly from the training datasets. Main limitation of the
approach manifest in frequent misclassification of PVs. Due to the
really small training dataset (only 10 images), the method could not
handle variable LA anatomies present in the validation dataset. The
method also does not attempt to segment the LAA , nor does the paper
mention the LAA at all. The method does not have any assumptions
regarding the LAA, the training datasets do not include the labels for
the LAA and the method penalizes the voxels according to the vessel-
ness measure – all of that points to the method not being suitable for
the LAA segmentation tasks.

The algorithm proposed by Zuluaga et al. [210] performs a fully-
automatic left atrium segmentation based on multi-atlas segmentation
propagation. The method selects the best atlases for propagation with
a cross-correlation metric. The approach registers the input image to
all atlases in the atlas database. The registration is performed in two
stages to avoid the registration bias introduced by the structures sur-
rounding the heart. Figure 3.45 shows the framework of the proposed
approach (steps 1-3 belong to first stage, steps 4 and 5 to second stage).
The goal of the first stage is to define a ROI as a binary mask which
removes the structures surrounding the heart. First, the input image is
registered to the intensity images of the atlases using affine registra-
tion (step 1 in figure). After applying the obtained transformations to
the label images of the atlases (step 2), the majority voting is used to
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Figure 3.45: The framework for multi-atlas whole heart segmentation pro-
posed by Zuluaga et al. See the text for the description of the
steps. Image source: Zuluaga et al. [210].

create a fused label image (step 3). The second phase uses a non-rigid
free form deformation registration to align the atlases to the masked
input image (step 4). Finally, the resulting segmentation is obtained by
fusing the labels from the registered atlases (step 5). Labels are fused
from the most suitable atlases using the STEPS algorithm [26]. Suitable
atlases were determined after ranking them using the strategy based
on Locally Normalized Cross Correlation.

The approach is robust due to multiple atlases information, but
depends on the quality and morphology of training set and it’s com-
putationally expensive. Due to the label fusion approach from multiple
atlases, the approach does not segment the LAA as the LAA labels were
not present in the Left Atrium Segmentation Challenge (LASC) images.

3.5.2 LAA segmentation algorithms

This subsection covers the state-of-the-art methods for the segmenta-
tion of the left atrial appendage. As we previously stated, to the best
of our knowledge there are only a few LAA segmentation methods
published in the literature.

The only two fully automatic methods we are aware of were pro-
posed by Zheng et al. [197, 201] and evaluated in the LASC challenge
[167]. The methods are referred to as SIE-PMB and SIE-MRG in the
challenge, and we use the same labels throughout the text.

Zheng et al. (SIE-PMB) [197] uses a multi-part based approach to
automatically segment the left atrium, including the LAA and the
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Figure 3.46: Results for both Zheng et al. methods (SIE-PMB and SIE-MRG)
on two CT datasets from the LASC challenge. Dataset B007 (three
leftmost columns) is a high quality dataset and the dataset B013

(three rightmost columns) is a low quality dataset. Main LA re-
gion is shown in white, other anatomical regions are color coded
by the standardisation framework. The segmented LAA region
is given in green color. Transparent meshes are the parts of the
original segmentation results truncated by the standardization
framework. Image source: Tobon-Gomez et al. [167].

pulmonary veins. The approach automatically detects the LA ROI and
fits the multi-part based model to left atrium. The multi-part model
is divided into six parts: LA body, LAA part and one part for each
pulmonary vein. Individual models are fitted using Marginal Space
Learning (MSL) and later merged into a consolidated mesh. During
the MSL pose estimation phase, the statistical shape constraints were
enforced to improve detection robustness.

This method was trained on an in-house CT dataset consisting of 457

cardiac CT scans, compared to previously described LASC approaches
which mostly used the provided LASC datasets for training. This is
the largest training dataset reported in the literature at the time of
publication, and to the best of our knowledge it remains one of the
largest ever reported. The size of the datasets required for training is
the main limitation of the method. Also, the method does not extract
the proximal side branches of PVs and does not handle extremely rare
anatomical variations of the PVs. The main strength of this approach
is the computational efficiency: the approach performs the complete
LA segmentation in 3 seconds on a multi-core CPU. Additionally, it is
very robust to image noise and artefacts (being able to handle even
the C-arm CT images) and accurately determines the position of the
mitral valve.

We were unable to determine if the SIE-PMB[197] method submit-
ted to the LASC challenge was modified from the original approach
published in 2008 [197]. The original paper performs the whole heart
segmentation and does not explicitly mention the handling of LAA

during the process. Due to the proprietary nature of the method, our
main source is the LASC benchmark paper by Tobon-Gomez et al. [167].
However, the segmentation results of the method provided by the
Challenge organizers’ include the appendage as well.
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(a) System diagram of the method

(b) Mesh and mask after parts
fitting

(c) Mask after resolving the
gaps between parts

(d) Mask after segmenting the
RMPV

(e) Final mesh

Figure 3.47: Workflow of the SIE-MRG method (a) and intermediate results
(b-e). Image source: Zheng et al. [201].

Zheng et al. [201] (SIE-MRG) is also based on multi-part based
approach using Marginal Space Learning. The method workflow is
shown in Figure 3.47a. Multi-part models in this approach include: the
LA chamber, appendage, and four major PVs. The part based approach
allows the method to use simpler models for each LA part and fit them
individually (Figure 3.47). Model fitting is performed with MSL-based
approach. Segmentation refinement (after fitting) is performed using
region growing based on adaptive thresholds, followed by removal of
the leakage using graph cuts (Figure 3.47b). Refinement step resolves
the gaps between LA parts resulting from the fitting of the individual
models and refines the ostia regions (Figure 3.47c). This approach
handles the anatomical variation where some patients may contain an
extra right middle PV (see Section 2.1.2 and Figure 2.6). The RMPV is not
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(a) (b) (c)

Figure 3.48: Meshes of the part-based LA model. (a) Meshes for the separate
LA parts. (b) Final mesh after fitting and refinement. (c) The
final model can be overlaid onto fluoroscopic images to provide
visual guidance during surgery. Part-based meshes include: the
LA chamber mesh (cyan), the appendage (dark red), left inferior
pulmonary vein (green), left superior pulmonary vein (magenta),
right inferior pulmonary vein (orange) and right superior pul-
monary vein (blue). Image source: Zheng et al. [201].

segmented using a model based approach. Instead, the method uses
a graph-cuts algorithm constrained by the already segmented major
right pulmonary veins (Figure 3.47d). The graph-cuts algorithm was
performed on a down-sampled volume to increase the performance.

Similarly to the SIE-PMB [197] method, we were unable to determine
if the SIE-MRG [201] method submitted to the LASC challenge was
modified from the original approach published in 2014 [201]. The
original paper performs the LA segmentation from non-gated C-arm
CT scans, while this approach works on ECG-gated multi-slice cardiac
CT images. Same as before, due to the proprietary nature of the method,
our main source is the LASC benchmark paper by Tobon-Gomez et
al. [167]. However, some notable differences in the method between
the benchmark paper and the original paper exist. Most important
difference is that in this version of the method the segmentation of
pulmonary veins is not model-based, but based on region-growing.
Only the LA chamber and the LAA segmentations are model-based.

The main strength of the method is the ability to handle rare anatom-
ical variations in patients, especially variations in the configuration
of the PVs. The method correctly extracts the proximal side branches
of PVs (due to the region-growing step) and correctly determines the
position of mitral valve plane (due to the model-based LA chamber
segmentation). However, the method requires sufficient contrast inside
the LA and the PVs, contrary to the SIE-PMB[197] method which is
shown to work even on non-contrasted images.

Compared to the SIE-PMB[197] method, this approach has an ad-
vantage when segmenting the appendage. The region-growing-based



3.5 left atrial appendage segmentation approaches 79

Figure 3.49: Flowchart of the LAA segmentation method proposed by Wang
et al. Image source: Wang et al. [177].

refinement allows this approach to better capture the varying mor-
phology of the LAA, as well as the trabeculations inside the LAA. Two
examples of the segmented LAA and the differences in the resulting
meshes can be seen in Figure 3.46. It should be noted that, because the
LAA was not included in the LASC ground truth datasets, neither of
the methods were evaluated on the accuracy of the LAA segmentation.

Zhong et al. [202, 203] used a model-based approach for whole heart
segmentation and removal of pulmonary veins and the appendage.
The goal of this approach was to remove all structures obstructing the
visualization of coronary arteries. The segmented appendage was only
a side result, to be removed from the final segmentation.

The method proposed by Wang et al. [177] segments the LAA from
3D cardiac computed tomography angiography (CTA) images using an
approach based on ranking 2D segmentation proposals. The flowchart
of the proposed method is shown in Figure 3.49. The method uses
a semi-automatic approach which requires manual determination of
the LAA bounding box from four manually selected points. The first
step of the method processes all slices of the determined LAA volume
and for each slice creates a pool of segmentation proposals. A trained
random forest regressor picks the best segmentation proposal for each
slice. Finally, best proposals are merged into a 3D volume using spatial
continuity to correct possible segmentation errors.

The pool of segmentation proposals for each slice is created using
a graph-cut method. The main advantage of the graph-cut method
over the model-based approach is that it does not have any shape con-
straints, as it is purely driven by the image. However, the final result
of the graph-cut approach is strongly dependent on the configuration
parameter λ. The correct λ value is not the same for all images and
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Figure 3.50: Generated segmentation proposals. The small magenta squares
in the leftmost image represent different foreground seed points
(seed hypothesis) for the graph-cut method. The bold blue lines
surrounding the image represent the negative (background)
seeds. For every seed hypothesis, the method creates a set of
segmentation proposals with different λ values (λ increases from
left to right). The image shows two generated proposal sets for
two seed hypotheses (orange arrows). Image source: Wang et al.
[177].

Figure 3.51: LAA delineation according to a plane determined from the
maximum curvature boundary. Image source: Jin et al. [74].

determining the correct value is not a trivial task. Thus, the proposed
method creates a pool of segmentation proposals using different λ

values and different seed hypotheses for each slice. Figure 3.50 shows
the generation of segmentation proposals.

The method achieves high Dice coefficient overlap (95.12%) with
ground truth segmentations. Evaluation was performed on 60 CTA

datasets using a four-fold cross-validation. The method takes about
3.5 minutes on a 4 CPU system (4 Intel Core i7 CPUs at 4.0GHz) to
perform the segmentation.

The method proposed by Jin et al. [74] uses the segmentation method
by Wang et al. [177] to create a model of the LAA neck and aid in oc-
clusion procedure planning. Building of the model of the LAA neck is
based on the segmentation results of maximal volume phase from a CT

image. The method automatically detects the LAA ostium, establishes
the standard coordinate system centered in the ostium and calculates
the neck dimensions. The ostium is detected as a smooth closed bound-
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Figure 3.52: LAA neck modelling process. (a) Determining the delineation
plane. (b) Traversing the slices. (c) Determining the bottom slice
of the model. (d) Determining the neck height. (e) Generating
the neck model where the colors represent the tensions of the
closure devices. Image source: Jin et al. [74].

Figure 3.53: Details of the network configuration. The network combines
abstract, high-level semantic features with low-level spatial in-
formation. Image source: Jin et al. [73].

ary of the highest surface curvature located in the transitional region
between the LA and the appendage. After obtaining the boundary, the
appendage is delineated from the left atrium according to the plane
defined by the boundary. The method creates a coordinate system
with the origin in the geometric centroid of the boundary. Finally,
the method creates a cylinder which will model the tension of the
LAA surface after placing the device (see Figure 3.52). This model will
assist the clinician in choosing the occluder of the appropriate size.
The method is evaluated on 100 CT datasets and 3 pig hearts. The
post-procedural follow-up of 67 patients indicated the 97.01% success
rate of occluder device implantation (only two failed implantation
cases).

Another method proposed by Jin et al. [73] performs the LAA seg-
mentation using fully convolutional neural networks and conditional
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Figure 3.54: Fusion of LAA segmentation in different phases of cardiac cycle.
Image source: Jin et al. [76].

random fields. This method is an improvement of the Wang et al. [177]
segmentation method and uses the similar approach. After manual
determination of the LAA bounding box (same as [177]), the method
segments the appendage in each 2D slice of the ROI.

Slices are pre-processed with histogram equalization to increase
contrast and a multi-scale method [77, 147] to enhance the CT im-
age. Subsequently, gray-level images are converted to 3-channel RGB
pseudo color images to enhance the resolution of local features. The
pre-processed pseudo color 2D slices are the input to the CNN (ar-
chitecture in Figure 3.53) which outputs 2D probability maps of the
regions containing the appendage. The final segmentation step merges
the 2D probability maps using the 3D conditional random fields [32]
into a final 3D volume.

The method is evaluated on 150 CCTA datasets obtained with Philips
256 slice scanner, using five-fold cross-validation. Four medical experts
carried out the ground truth segmentations to avoid observer bias.
The method achieves high Dice overlap to ground truth of 94.76%.
The performance of the method is significantly improved (compared
to [177]) and the segmentation of a LAA volume takes less than 35

seconds. However, the method requires powerful GPU card – the
evaluation was carried out using an NVIDIA Tesla K80 GPU.

Jin et al. also proposed two 4D based LAA analysis methods. The
first method [76] performs the segmentation of 4D CT LAA images
for diagnosis of atrial fibrillation using their graph-cuts based seg-
mentation method [177]. The method builds a 3-D model of each
time instance of the sequence. The method assists in the diagnosis
of the atrial fibrillation in a few ways: by calculating the volume of
3D models in different phases of the cardiac cycle; by generating the
"volume-phase" curve (showing the change of LAA volume throughout
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Figure 3.55: Flowchart of the LAA segmentation method proposed by
Grasland-Mongrain et al. Image shows the chain of mod-
ules which perform the segmentation. Image source: Grasland-
Mongrain et al. [59].

(a) Before growing (b) α = 0.2 (c) α = 1 (d) α = 2

Figure 3.56: Inflation of the deformable LAA model. Contours in the top
images show: LAA (dark green), LA (bright green), myocardium
(yellow). Bottom images: front view of the 3D mesh. Image
source: Grasland-Mongrain et al. [59].

the cycle); and obtain important dynamic LAA metrics. Finally, multi-
variate logistic regression analysis of the obtained metrics calculates
the risk of thrombus formation, while the SVM-based model predicts
the AF diagnosis.

The second method [75] uses the 4D CCTA images to detect sub-
stances inside the LAA using spatio-temporal motion analysis. The
method extracts the optical flow field for all adjacent phases in a
cardiac cycle. The cardiac cycle of 20 phases results in 19 optical flow
fields. Using the nearest neighbor interpolation, the method gener-
ates the motion trajectory of the key voxels throughout the cycle.
Hierarchical clustering tree finds the corresponding classification for
every trajectory track. Changes in classifications between the tracks
correspond to the division of substances in the appendage. Finally,
time-frequency analysis of the trajectories enables the detection of
different substances inside the appendage, including the thrombi in
different states of formation.
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Method proposed by Grasland-Mongrain et al. [58, 59] is an adapta-
tion of the whole heart segmentation method proposed by Ecabert et
al. [47] (explained in more detail in Section 3.3.1). First, the heart is
localized and segmented with shape-constrained deformable models
(ASM-based approach from [47] – first four modules in Figure 3.55).
The model-based approach segments the heart chambers and deter-
mines the position of the appendage (the position of the LA -LAA

interface). In the last step of the chain (Figure 3.55), the segmentation
of the appendage is performed by inflating the mesh at the LA -LAA

interface into the appendage.
Triangulation of the mesh at the LA -LAA interface with high resolu-

tion ensures reasonable triangle size when the mesh is inflated. The
inflation is guided by minimizing external and internal energy to fit
the exact shape of the appendage. The external energy (region-based
energy) is calculated according to the voxel gray values in the image.
This region-based energy decides whether the mesh has to inflate or
deflate based on the voxel intensity information at the center of the
triangle. This energy pushes the mesh towards the appendage edges
defined by the edges between the contrasted blood in the appendage
and the background. The internal energy is used to preserve a regular
triangle distribution during the inflation. In standard ASM methods
the internal energy is computed by comparing the deforming mesh to
a fixed reference shape. In this case, the calculation of the internal en-
ergy is using the deforming mesh at a previous iteration as a reference
shape.

Let Einternal and Eexternal be the internal and external energies de-
scribed in the above paragraph, respectively. The energy guiding the
deformation is defined as:

E = α · Eexternal + Einternal (3-9)

with α as weighting factor controlling the deformation. Mesh adapta-
tion is performed by iterating the mesh inflation and the minimization
of the Eq. (3-9) until a steady state is reached. Figure 3.56 shows the
LAA meshes inflated with different α values.

The method has been evaluated on images from 17 patients. The
inflation of the mesh has problems reaching the tip of the appendage,
as well as undersegmenting the appendage. Also, the value of α pa-
rameter has to be balanced. The value of α being too large can lead to
deformations in the wrong directions, while it being too small results
in undersegmentation. The method authors preferred the underseg-
mentation to the incorrectly twisted LAA mesh.
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3.6 conclusion

In this chapter we gave a broad overview of the methods used for
segmentation of the heart in cardiovascular images of various imaging
modalities. We divided the methods into four major categories: the
PDE-based methods, graph-based techniques, model-based segmen-
tation techniques and clustering and classification approaches. We
discussed their advantages, disadvantages and the applicability to
the task the thesis is attempting to solve – the pre-procedural plan-
ning of the left atrial appendage occlusion procedure. Consequently,
we gave a detailed overview of methods focused on the segmenta-
tion of the left atrium and the left atrial appendage. We pointed to
the limited number of published methods concerning the left atrial
appendage segmentation. To the best of our knowledge, only a few
methods have been published in the literature to date. Majority of
the published methods are implemented using a variation of machine
learning approach. The limitation of the model-based and atlas-based
segmentation methods for the LAA segmentation tasks manifests pri-
marily in the inability of the model to represent all the variations in
the shape of the LAA. The most popular machine learning approaches
today (CNNs and similar) are under-performing in this area, as they
require massive training datasets. The datasets available today are
quite limited in size. Consequently, at this time we believe that the
heuristics-based methods have a slight advantage compared to the
CNN-based approaches. However, the machine-learning-based meth-
ods (and especially CNN-based methods) could probably outperform
all other approaches with the appearance of sufficiently large training
datasets.





4
L A A C E N T E R L I N E D E T E C T I O N

In this chapter we propose a novel LAA centerline detection method.
The centerline detection is the first step in the whole chain of image
processing techniques proposed in this thesis for supporting the pre-
procedural planning of the left atrial appendage occlusion.

The detected centerline forms as a basis for both the LAA segmen-
tation (explained in Chapter 5) and the automatic localization of the
LAA orifice (explained in Chapter 6). The proposed method detects
the centerline using only one seed point inside the appendage. We
perform the automatic localization of the left atrium during the cen-
terline detection. The ending point for the centerline is determined
automatically and represents the center of the left atrium. Two main
advantages of the proposed centerline detection method are: 1) mini-
mal user interaction – the method requires only one seed point and
2) stand-alone operation without relying on other image processing
methods – the method does not require the segmented LAA as an
input. The contribution presented in this chapter is a novel method
for the detection of the LAA centerline and localization of the center of
the left atrium.

The detected centerlines are validated by calculating the Hausdorff
distance to the centerlines manually extracted from the LAA skeleton.
The results demonstrate a low calculated Hausdorff distance indicating
a potential for clinical use. Additionally, the results of the method are
indirectly validated in the two subsequent chapters, because both the
LAA segmentation and orifice localization methods use the detected
centerline as the input. The result a the localization of the left atrium
is validated visually by our medical expert. The work presented in
this chapter is published in a journal paper [100] and presented in
an international conference [99]. The skeletonization method used for
validation is published in [8].

4.1 introduction

The method proposed in this chapter performs the detection of the
centerline using only two inputs: a seed point placed inside the LAA;
and a threshold value. The result of the proposed method – the de-
tected centerline – is used as an input to both the segmentation and
the orifice localization methods explained in the later chapters.

87
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Figure 4.1: Flow diagram of the proposed centerline detection method

To the best of our knowledge, there is only one published LAA

segmentation method based on the LAA centerline proposed by Morais
et al. [126]. However, their method segments the LAA in a 3D TEE

image from a manually created centerline. The user manually places
several points in the image which determine the centerline. On the
other hand, in the current literature there are no reported methods
focused specifically on the detection of the centerline through the LAA.
For that reason our proposed method is validated on the centerlines
extracted from the skeleton of the segmented LAA. We perform the
skeletonization of the ground truth segmentation of the appendage
and manually extract the part of the skeleton representing the ground
truth centerline. Ground truth centerlines are validated by a medical
expert. The ground truth creation is explained in more detail in the
Results section (Section 4.6).

The main two features of the proposed centerline detection method
are: (1) the method automatically localizes the center of the left atrium
which serves as the ending point of the centerline; and (2) the result
of the method is an ordered set of points from the seed point to the
center of left atrium, allowing for easier traversal along the centerline.
The second feature is important for the orifice localization method
explained in Chapter 6.

The proposed method consists of the following steps depicted in
the Figure 4.1:

1. Thresholding produces a binary mask image using the provided
threshold value. The LAA centerline will be detected in the binary
mask image in subsequent steps.
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2. Radius image is created by calculating the distance transform
of the binary mask. Radius image is used to improve the per-
formance of the next step – maximum radius tracking – by
precomputing the radii of the maximum inscribed spheres in
every voxel in the mask image.

3. Maximum radius tracking algorithm – this step finds the path
from the seed point to the left atrium along the center of the
LAA by tracking the voxels with the largest maximum inscribed
sphere radii.

4. Centerline extraction is used to extract the centerline from the
tracked path and create a smooth centerline curve. This step
consists of three parts:

a) Ordered skeletonization is used for the thinning of the max-
imum radius path – removes blobs of voxels and enables
easier extraction of the centerline.

b) Extraction of the centerline from the created skeleton results
in an ordered one-voxel wide line from the seed point to
the center of the left atrium.

c) Smoothing the extracted centerline improves the orifice
localization results (Chapter 6) by minimizing the change
of direction vectors along the centerline.

The following sections will explain every step from the above in more
detail. It should be noted at this point that the first step in the method
(the thresholding) significantly affects the results of the segmentation
method explained in the following chapter. However, in this chapter
we will only explain the effects of the thresholding operation on the
centerline detection method. The effects of the thresholding operation
on the segmentation method will be explored in Section 5.2 in the next
chapter.

4.2 threshold selection

In this section we explain in more detail how the threshold selection
affects the centerline detection results. The threshold value should be
chosen by a trained medical professional based on the patient’s cardio-
vascular anatomy and the quality of the input image (the distribution
of the contrasted blood in the heart as well as the presence of noise).
The purpose of the thresholding step is to create a binary mask image
containing the correct amount of the LAA anatomy in the foreground
of the image. All other steps process and analyze the anatomy that
was masked by thresholding. Since the centerline is detected as a curve
along the center of the LAA anatomy in the foreground of the mask
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(a) Original slice (b) Threshold too low – oversegmented.

(c) Threshold correct. (d) Threshold too high – underseg-
mented.

Figure 4.2: The example of a single slice from the mask image created with
different threshold values. Blue star represents the seed point
inside the LAA.

image, choosing the incorrect threshold value can negatively affect the
performance of the method. Still, it should be noted that our proposed
methods are designed to be relatively robust to the selected threshold
value (see section 4.7 for more details).

The user selects the threshold value for the dataset with a simple
slider by visual inspection of 2D slices. A simple guideline for selecting
the threshold value is: the chosen threshold value should be the largest
value where the whole LAA is still in the foreground of the mask image,
but there is a clear delineation between the parts of the heart. Moreover,
the user should set the threshold to mask the contrasted blood in the
image. The heart muscle should not be part of the foreground in the
correctly thresholded image, especally the muscle of heart chambers.
Figure 4.2 shows the effects of thresholding on a single slice. Correct
threshold is shown in the Figure 4.2c. It is evident from the figure
that the LAA (blue star) is correctly masked and that the left atrium
(green star) is clearly delineated from the aorta (red star). This allows
the centerline detection method to find a path in the mask image,
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Figure 4.3: One slice of radius image quantized to 20 grayscale levels. Brighter
intensity in the image denotes higher radii, darker intensity de-
notes lower radii.

along the center of the LAA, connecting the blue star (seed point) with
the green star (center of the LA). If the chosen threshold is too low
(Figure 4.2b) the image gets oversegmented, the parts of the heart are
not clearly delineated and the centerline detection method can have
problems localizing the left atrium. On the other hand, high levels of
noise present in CCTA images can also result in holes in thresholded
image if the threshold value is too high. Figure 4.2d shows the problem
with holes in binary image formed inside the contrasted region due to
noise.

It should be noted that the centerline detection method is more
sensitive to the appearance of holes in the mask image (undersegmen-
tation) than to the oversegmentation. Still, the proposed method is
robust to the threshold selection and unless the selected threshold
value is very inaccurate, the selected threshold value will not disrupt
the functioning of the centerline detection. The threshold value has
a lot greater effect on the extent of the LAA anatomy that will be
segmented than on the accuracy of the detected centerline.

4.3 radius image

In this section we explain how the radius image is created and its
effects on the performance of subsequent steps in the method. We
calculate the radius image for every dataset. Radius image is calculated
from the thresholded image using the Euclidean distance transform.
The intensity value of every voxel in the radius image represents the
shortest distance from that voxel to the background. We can imagine
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the voxel intensity value as the radius of the largest sphere centered
in that voxel where all voxels inside the sphere are in the foreground
(i.e. the largest inscribed sphere). Subsequent steps in the proposed
method are based on finding the spherical neighborhoods of a certain
criteria. In this way the radius of a spherical neighborhood centered
in a voxel can be determined by a simple lookup of an intensity value
from the radius image.

Let us define the radius image more formally. Let B be the set of all
background voxels vB in the thresholded image. The intensity value
of each voxel v ∈ Z3 in the radius image will be:

r (v) =

{
min(d(v, vB)) ; v /∈ B, vB ∈ B

0 ; otherwise
, (4-1)

where d(v, vB) is the Euclidean distance between voxels v and vB.
Figure 4.3 illustrates one slice from a dataset with calculated distances
to the nearest background voxel. We calculate radius image using
Maurer Distance Map method [118] generalized to N-dimensional
spaces implemented inside SimpleITK framework [107]. Perfomance
of radius image calculation is additionaly improved by extracting only
the connected component in the thresholded image which contains the
seed point. This way radii do not have to be calculated for unconnected
anatomical structures in the image (e.g. ribcage).

4.4 maximum radius tracking

In this section we explain the first step in the centerline detection
method – the maximum radius tracking – whose goal is to find a path
from the seed point placed in the LAA to the center of left atrium. The
center of the left atrium is determined automatically. The centerline is
detected by extracting the voxels belonging to the centerline from the
detected path. The method works by iteratively tracking the voxels
with the maximal radii of the largest inscribed spheres, starting from
the seed point placed in the LAA and ending somewhere near the
center of the left atrium. Since we only use one seed point, we track
the maximum radius voxels for a predefined number of iterations N.
The ending point of the path (the center of the left atrium) is then
selected among the tracked points along the path. We discard all
the tracked voxels added after the selected ending point (the located
center of the LA). The resulting path between the seed point and the
ending point will extend approximately through the center of the LAA.
Voxel radii values tested during the tracking are looked up as the
voxel’s intensity values from the radius image. The algorithm of the



4.4 maximum radius tracking 93

Figure 4.4: Example of a result of the maximum radius tracking method – the
detected maximum radius path (red). Parts of the heart marked
with numbers are: (1) the LAA, (2) the left atrium, (3) the left
ventricle and (4) the aorta.

method is presented in the Algorithm 4.1, while the formal definition
of the method follows.

Let S(v) be a set of voxels belonging to the maximum inscribed
sphere in the mask image centered at voxel v ∈ Z3:

S(v) =
{

q ∈ Z3 ∣∣ d(v, q) ≤ r(v)
}

, (4-2)

where r(v) is a radius of the maximum inscribed sphere contained in
the radius image, as defined in (4-1). The maximum radii tracking is
iteratively performed for N iterations and consists of the following
steps:

1. The initial step (performed only once): Let us denote with Pi the
set of voxels in which the search for the highest radii value is
performed (in a given iteration step i). The initial search set P1

will be the set of voxels within the maximum inscribed sphere
of the first seed point vseed:

P1 = S(vseed). (4-3)

2. In the search set Pi we locate the voxel with the highest value in
the radius image vi

rmax:

vi
rmax = arg max

v∈Pi
r(v), (4-4)
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Figure 4.5: Centerline tracking by iterative selection of maximum radii voxels
in the largest inscribed spherical neighborhood. This image was
reported in our work: [100]

and we add it to the output set of tracked maximum radii voxels
Ti:

Ti = Ti−1 ∪ L(vi−1
rmax, vi

rmax), (4-5)

where Ti−1 indicates the tracked maximum radii voxel set from
the previous iteration (in the initial iteration this set is an empty
set) and L(vi−1

rmax, vi
rmax) is the set of voxels on the line segment

between the previous and current maximum radii voxel.

3. We extend the search set Pi to include the set of voxels defined
by the maximum inscribed sphere of the newly added voxel
vi

rmax to the output set Ti:

Pi = Pi−1 ∪ S(vi
rmax), (4-6)

where Pi−1 indicates the search voxel set from the previous
iteration step.

The general idea of the algorithm is illustrated in Figure 4.5. Masked
LAA region is represented with gray area. Each colored circle in the
figure represents a sphere in 3D space, while white dots represent the
selected voxels vrmax in each iteration. Color codes for each iteration
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are given in the legend on the left side of the figure). The initial search
set P in Figure 4.5 is illustrated by the circle (representing a sphere in
3D) generated in the first iteration (color code 1). The initial search
set P contains voxels from the seed voxel’s sphere. In first iteration
we find the maximum radius voxel vrmax in the initial search set P
and add it to the output set T. We also add the voxels on the line
connecting it with seed voxel. The search set P is extended by the
sphere of the found maximum radius voxel. This means that the search
set P has grown and includes the first two spheres (color codes 1 and
2). New maximum radius voxel is found in the extended search set P
and added to the output set T. The search set P is again extended by
the sphere of a newly found maximum radius voxel. This process is
repeated for N iterations. The robustness of the algorithm to the seed
point placement is discussed in more detail in the Discussion section
of this chapter 4.7.

After running the tracking for N iterations we find a voxel in T with
the largest radius. This voxel represent the center of LA. Let the voxel
in T with largest radius be defined as:

vC = arg max
v∈T

r(v). (4-7)

Finally, all voxels added to T after vC are removed from T. To reiterate,
even though the tracking algorithm has run for N iterations, the final
detected path (set T) does not have N elements. We have discarded
from T all voxels added after adding the vC voxel, which is now
considered the center of left atrium. The tracking is performed for a
predefined number of iterations in order to avoid the need for setting
the second seed point. The goal is to run the iterative tracking long
enough to allow the maximum radius path to leave the LAA and enter
the left atrium. There are no negative side-effects of letting the tracking
running longer than necessary, except for a small performance penalty.

4.4.1 Anatomical widening

Due to the variable anatomy of the LAA, on some datasets the tracking
can enter an anatomical widening. We explain in this subsection the
handling of such a widening by the tracking algorithm. We could say
that the shape of the LAA is generally tubular, even if the tube is often
very deformed. The centerline through the LAA would then represent
the line along that tube, through its center. The result of the maximum
radius tracking will be a set of voxels approximately along the center
of the LAA resembling a centerline. Note that maximum radius path
is not a line, it is a set of voxels which at certain segments are often
wider than one pixel, thus we refer to it as path. Still, since the points
of the actual LAA centerline are later extracted from the path, we can
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Algorithm 4.1 Tracking maximum radii voxels algorithm

P1 = S(vseed) according to (4-2)
T1 ← ∅
for i = 1 until i = N do

Find vi
rmax in Pi according to (4-4)

Append vi
rmax to Ti according to (4-5)

Append S(vrmax) to P according to (4-6)
end for
T ← TN

Find vC according to (4-7)
for each v ∈ T do

if v added after vC then
remove v from T

end if
end for

say that the detected path resembles the centerline. The term radius
along the LAA represents the radius of voxels along that LAA centerline.
In case of the illustration on Figure 4.5, the radius along the LAA
would represent the radius of each point along the white line.

Often patients have large variations of the radius along the LAA.
Even though the radius along the LAA is increasing from the tip
to the orifice, rarely will the increase be slow and consistent (like
in the example in Figure 4.5). The width along the LAA can change
unpredictably and LAA can contain additional branches or lobes which
complicate the detection of the maximum radius path. The width of
the anatomy along the LAA will vary until the centerline reaches the
left atrium (see the result of the maximum radii voxel tracking in
Figure 4.6b). Figure 4.6 illustrates the handling of the widening along
the LAA. When the algorithm enters the widening it will iteratively
add to the output path T all the large radius voxels in the widening.
When all the large radius voxels have been added to T and the next
maximum radius voxel is the voxel outside of the widening, the path
tracking will continue towards the left atrium. Figure 4.6a illustrates
the order in which the voxels are added to T. Figure 4.6b shows the
detected path T from one of our datasets. Red voxels in the figure are
voxels which belong to the output of the tracking method – the voxel
set T. Red dashed circle shows the handling of such widening inside
the LAA.
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(a) (b)

Figure 4.6: Example of a widening in the anatomy during the maximum
radii tracking. (a) Illustration of the order of voxels added to the
tracked maximum voxel radii, where pixel gray value represents
the radius value. (b) Example of tracked maximum radius path
(blue) after N iterations. Red and green circles are widenings in
the LAA anatomy, handled according to the illustration (a) in this
figure.

4.4.2 Left atrium localization

Radii of voxels inside the left atrium will smoothly and consistently
increase towards the LA center, due to a generally spherical internal
shape of the atrium. Consequently, after the path enters the left atrium,
the voxel tracking routine will proceed directly towards the voxel with
the largest radius in the left atrium. The method will add the voxel
with the largest radius in the LA to the path and continue adding
smaller voxels around it until the number of iterations runs out. The
intuition behind this is the same as with handling of the widening.
The left atrium has a generally spherical shape and the center of the
LA has a very large number of voxels with large radii. Thus, from the
perspective of the tracking method, the LA is treated as a very large
anatomical widening. Green circle in Figure 4.6b shows the handling
of a widening after the tracking reaches the LA center. The method
will continue adding voxels in the center to the path until the number
of iterations runs out. Due to the size and shape of the left atrium, the
method will not continue the tracking to some other part of the heart
before the number of iterations runs our.

After the number of iterations runs out, a single voxel in the path T
will have the largest radius of all the voxels in the path. We denoted
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(a) (b)

Figure 4.7: Localization of the LA center. (a) Maximum radius path T before
discarding voxels in the LA center. (b) Maximum radius path
when all voxels added to T after vC are discarded.

that voxel as vC as per (4-7). We set that voxel as the location of the
center of left atrium. All voxels added after that center voxel are voxels
in its neighborhood and have a radius value smaller than the center
voxel. We can safely discard all such voxels and use the center voxels
location as the location of the LA center and the ending point of the
maximum radius path. Figure 4.7 shows the path T before (blue) and
after (red) the removal of all voxels added after vC.

The number of iterations N for the method is set to a predefined
value depending on the image size. For our datasets we set the value
of N = 4000. In almost all of our tests the maximum radius voxel
in path was found in under 1000 iterations, while in only two tests
the number of iterations was around 1500. The performance of the
method remains stable (the method converges) after some N, thus it
is important to set N to a value large enough to reach convergence.
However, even significantly overestimating the number of iterations
N required for convergence will not have any negative effects on the
tracking result (the detected path). In other words, after the tracking
converges to a voxel with the largest radius in the left atrium, the
voxels added to the path in subsequent iterations do not affect the
final result (the final detected path). Consequently, we can safely set
the number of iterations N to a value considerably larger than the
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value that the tracking would require to achieve convergence. The
performance penalty will be small even if we significantly overestimate
N, as the computational cost of the tracking is considerably lower than
the subsequent methods in the proposed LAA segmentation framework.
We have run tests with up to N = 10000 iterations and the tracking
still behaves appropriately, i. e. the method converges to the same
voxel in the LA center regardless of the number of iterations.

All things considered, we propose to pre-configure the number of
iterations parameter to N = 4000 for several reasons:

• This value is more than enough for our datasets.

• It provides enough iterations to reach convergence even if the
atrial anatomy of a new patient is significantly different from
the ones in our dataset.

• The incurred performance penalty is small.

• Finally, we do not have to require the user to configure one
additional parameter, but allow her the opportunity to do so if
the dimensions of the input image differ significantly from the
images in our dataset.

4.5 centerline extraction

In this section we explain how the detected maximum radius path
is used for centerline extraction. As stated in the previous section,
maximum radius tracking method determines the set of voxels in the
image from seed point to the center of left atrium which defines the
path for the centerline. Second part of the centerline detection method
(centerline extraction) extracts from the maximum radius path the
set of ordered voxels which represent the centerline. Afterwards, the
extracted centerline is smoothed and used as input for the LAA orifice
localization method (described in the next chapter).

The centerline extraction step is based on the work published in
[8]. The centerline extraction step of the centerline detection method
consists of three parts:

1. Ordered skeletonization of the maximum radius path.

2. Extraction of the longest path in skeleton – the centerline.

3. Centerline smoothing.

We explain each of these parts in the following subsections.
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(a) Maximum radius path

(b) Created skeleton

Figure 4.8: Skeleton created by ordered skeletonization. [100]

4.5.1 Ordered skeletonization

In this subsection we explain how we process the tracked maximum
radius path in order to create the skeleton which contains the center-
line. We use the ordered skeletonization to create a one-voxel wide
line of voxels connecting the seed point with the center of left atrium.
Ordered skeletonization is the process of iterative thinning of a binary
image. The method iteratively discards voxels until the remaining
skeleton is one-voxel wide line. Resulting skeleton image contains
the LAA centerline in its central part, but it also contains stubs and
multiple paths which are byproduct of skeletonization process, as
visible in Figure 4.8. The centerline will be extracted from the skeleton
in the next step.

The ordered skeletonization process consists of the following steps:
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• Computing the Euclidean distance transform of the input image.
The input image is the tracked maximum radius path image as
shown in Figure 4.8a. In this case we are computing squared
Euclidean distance transform, where the intensity value of every
voxel in the output image is the squared distance of the voxel to
the nearest background voxel in the input image. Details of the
Euclidan distance transform are explained in section 4.3.

• Sorting of voxels into an ascending distance value ordered list.

• Removing the redundant voxels according to the voxel redun-
dancy criteria proposed in [8]. The redundancy criteria states
that a voxel v is redundant if all foreground voxels in its 26-
neighborhood belong to the same connected component. Iterat-
ing through the list, we are discarding any voxel that fulfills this
criteria.

Since the ordered skeletonization method works on binary images,
redundant voxels are discarded by setting their label to background
(zero gray value):

s(v) =

0, v is redundant

g(v), otherwise
, (4-8)

where g(v) is the voxel gray value in the input image. Skeletonization
removes redundant voxels while preserving connectivity of all other
voxels.

After the ordered skeletonization the center part of the resulting
skeleton image is the LAA centerline. However, skeleton image also
contains stubs and multiple paths which are byproduct of skeletoniza-
tion process, as visible in Figure 4.8b, which have to be removed. In
the figure the skeletonization method removed a large cluster of voxels
in the widening of the LAA. However, multiple stubs and loops in the
skeleton will complicate further processing. For that reason we remove
the stubs and loops by extracting the longest path in the skeleton.

4.5.2 Extraction of the longest path in skeleton

In this subsection we explain how the longest path extraction is per-
formed. The extraction of the longest path in skeleton results in an
ordered set of voxels, starting from the seed voxel to the center of the
left atrium and forming a centerline through the LAA. This centerline
(after smoothing) is used for LAA orifice localization described in the
next chapter.
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Figure 4.9: 2D example of extraction and ordering of voxels in skeleton. This
method also removes stubs and multiple paths.

We extract the voxels forming the centerline by searching for the
shortest path between two farthest voxels inside skeleton. The search
for the longest path is perfomed in three passes.

• The first pass performs the search for the farthest voxel starting
from the seed voxel, assigning the seed voxel the label value
of 1. All 26-neighbors in skeleton are given the label value of
2. In each iteration unlabeled neighbors of a voxel labeled in
the previous iteration are assigned a value of label + 1. After the
first pass all voxels in skeleton image have a label representing
the distance in number of steps from the seed voxel. Voxel with
largest label value is the voxel that is farthest from the seed
point. In this case farthest means the number of steps needed to
traverse the skeleton to get from seed voxel to that voxel, not in
the sense of Euclidean distance. Let denote that voxel as v1.

• In the second pass we perform the same labeling again, this time
starting from v1 voxel. Now the v1 voxel has the label value of
1, while the new voxel with the largest label value will be the
voxel that is farthest from v1. Let denote that voxel as v2. The v2

voxel will not necessarily be the seed voxel, but it will be very
close to seed voxel, inside the LAA.
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(a) Centerline extracted from the skeleton

(b) Centerline after smoothing

Figure 4.10: Detected centerline: a) before smoothing, b) after smoothing.
This image was reported in our work: [100]

• The extraction of ordered set of voxels representing the extracted
centerline Ce is performed in the final pass. The extraction of
the ordered path from v2 to v1 is preformed by traversing the
labels backwards, starting with v2, and iteratively adding to Ce

the 26-neighbor of the current voxel with the smallest label. The
extraction is illustrated in Figure 4.9 and represents the extraction
of shortest path between two farthest voxels in skeleton. Also,
extracted voxels in path are now ordered from v2 (near the seed
voxel) towards v1 (the center of the LA). This extracted ordered
set of voxels represents the extracted centerline. It should be
noted that at this point in the method the centerline consists of
elements with discrete coordinates (voxels). Figure 4.10a shows
the extracted centerline in one image from our datasets.
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Figure 4.11: Centerline smoothing: (blue) voxels of the extracted centerline
Ce, (magenta) smooth centerline C, (red point) seed point.

4.5.3 Centerline smoothing

The final step for centerline detection is smoothing of the extracted
centerline Ce. The purpose of the centerline smoothing step in the de-
tection method is to improve the results of the LAA orifice localization
method presented in the next chapter. A smooth centerline allows
better orifice localization because the localization method depends on
directional vectors at each point along the centerline. Thus, the use
of the smooth centerline avoids large changes in direction during the
calculation of directional vectors. Figure 4.11 shows the voxel values
from the extracted centerline (blue) and the final smoothed centerline
(magenta).

The centerline smoothing is performed by fitting a smooth curve to
the voxels of the extracted centerline. The curve fitting calculation uses
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the implementation described in [43]. For simplicity, let us consider a
two-dimensional example of curve fitting where original data values
yr, r = 1, . . . , m, and xr, r = 1, . . . , m belong to the dependent variable
y and independent variable x, respectively. The goal of curve fitting is
to fit to the yr a function y(x) := y(x; θ) of known form but dependent
on the vector of parameters θ. The fitting is performed by determining
the parameters in vector θ such that y(xr) ' yr. Since the resulting
function will be an approximation to the original data it will be
specified through what is called the approximation criterion.

The curve fitting is mostly done using polynomials or spline func-
tions. We use spline functions because they are more flexible. Contrary
to polynomials, they are well suited for smoothing as well as for in-
terpolation. Also, they work well regardless of the number and the
position of the data points. Additional bonus is the availability of
spline based curve fitting and interpolation functionalities for almost
all popular scientific programming packages.

Employing splines as the approximation functions, requires specify-
ing the following parameters of the vector θ:

• the degree k of the spline,

• the number and position of the knots λi,

• the coefficients ci which form the spline.

According to [43], cubic splines (degree k = 3) are recommended
because they give a good compromise between efficiency and quality
of fit. The smoothing is performed according to the smoothing criterion
described in [43]. We determine a spline of degree k = 3 by finding
the solution for the constrained minimization problem presented in
the following equations.
Minimize

η :=
g

∑
i=1

(
s(k)(λi+)− s(k)(λi−)

)2
, (4-9)

subject to the constraint

δ :=
m

∑
r=1

(wr(yr − s(xr))) ≤ S. (4-10)

In the above equations g denotes the initial number of knots of the
spline, function s denotes the spline, wr denotes the weight for every
data point r = 1, . . . , m, while S is a specified number denoting the de-
sired smoothness of the curve. In order to get some intuition about the
above equations, we can interpret η as a measure of non-smoothness
of y(x) and δ as a measure of closeness of fit (least-squares criterion,
a well known and general approximation criterion). Thus, η will be
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larger the more wiggly the graph of y(x) looks, while the δ will be
smaller the closer y(x) fits the data values yr. The solution of the
above equations is an approximation of the curve which makes a
compromise between the following two objectives:

• find a curve with a smooth behaviour (η should be as small as
possible),

• find a curve which appropriately approximates the data values
(δ should not be too large).

These two objectives are often contradictory and the parameter S
(called the smoothing factor) determines the trade-off between the
smooth behaviour of the curve and the fitting of the curve to the
real data values.

After the curve fitting is performed, we have a parametric curve
representing the centerline. Finally, we create the smooth centerline
as a set of points in 3D space by sampling the fitted parametric curve.
The number of samples can be configured depending on the input
image size. In our case the number of samples is 300, determined
experimentally.

4.6 results

In this section we present the results of the proposed centerline de-
tection method. The method is evaluated on 17 CCTA images of real
patients, where the detected centerlines are validated by calculating
the Hausdorff distance to the ground truth centerlines. All images
were acquired using a Siemens Somatom 64-slice scanner for the
purpose of Coronary CT Angiography. All patients have given their
informed consent for the inclusion in the study. The patient data is
presented in Table 5.1.

To the best of our knowledge, no other centerline detection method
is specialized to handle the variable anatomy of the LAA. Hence, we
validate our centerline detection method against the ground truth cen-
terlines extracted manually from ground truth segmentations for the
images in our dataset. Evaluation against the ground truth centerlines
is performed with the following procedure and illustrated in Figure
4.12:

1. The LAA in every dataset is manually segmented by a medical
expert (a cardiovascular surgeon). Ground truth segmentations
were created using the ITK-SNAP software [194]. The expert
selected the appropriate threshold and used the Geodesic active
contours method [27] implemented in ITK-SNAP [107] to seg-
ment the LAA. Finally, the segmentation was manually corrected
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Table 4.1: Validation dataset (17 patients)

N %

Patient age

Under 35 3 17.65%

35 - 44 2 11.76%

45 - 54 2 11.76%

55 - 64 6 35.29%

65 and older 4 24.53%

Patient gender

Male 6 35.29%

Female 11 64.71%

using the paintbrush tool. Example of a manually segmented
LAA is shown in Figure 4.12a.

2. We perform an ordered skeletonization of the ground truth seg-
mentation with the method presented in [8]. The skeletonization
method is described in more detail in section 4.5.1, but here the
input to the skeletonization is the ground truth segmentation
instead of the maximum radius path. The result is the skeleton
shown in the Figure 4.12b.

3. We manually extract the part of the skeleton from the seed
point up to the center of the LAA orifice. The extracted part of
the skeleton is the ground truth centerline. The example of the
extracted ground truth centerline is shown in the Figure 4.12c.

4. We discard the part of our detected centerline that extends
after the LAA orifice plane selected by our medical expert. The
accuracy of the part of the centerline located outside the LAA

does not affect the results of the segmentation and analysis
methods, described in the following chapters. Therefore, we do
not validate that part of the centerline. Figure 4.12d shows our
detected centerline in green and the ground truth centerline in
blue.

Figure 4.13 shows another comparison between our detected center-
line and the ground truth centerline, with and without the skeleton. It
should be noted that the ground truth segmentation used for skele-
tonization extends a little into the left atrium. Both the ground truth
segmentation and the skeleton are delineated with the plane selected
by the medical expert as the location of the LAA orifice. Parts located
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(a) Segmentation (b) Skeleton

(c) Ground (d) Our vs. ground

Figure 4.12: The ground truth centerline extraction process.

inside the left atrium are discarded after delineation. This is why the
part of the skeleton near the orifice plane is wider.

Finally, we calculate the Hausdorff distance [45] between our de-
tected centerline and the ground truth centerline. This metric, com-
monly used in computer vision, measures how far two subsets of a
metric space are from each other. An intuitive, but slightly informal,
explanation of the metric could be: given that both our centerline and
the ground truth centerline are comprised of points in 3D space, for
every point in one centerline we can find the distance to its closest
point in the other centerline. The Hausdorff distance then represents
the greatest of all the distances. In other words, two centerlines will be
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(a) With skeleton

(b) Without skeleton

Figure 4.13: Centerline validation example with/without skeleton.

close in Hausdorff distance if every point on either centerline is close
to some point on the other centerline.

A formal definition of the Hausdorff distance follows. Let C be
the set of all points p ∈ R3 comprising the final smooth centerline.
Similarly, let G be the set of all points q ∈ R3 comprising the ground
truth centerline. We define their Hausdorff distance dH(C, G) as:

dH(C, G) = max{sup
p∈C

inf
q∈G

d(p, q), sup
q∈G

inf
p∈C

d(p, q)}, (4-11)

where sup represent the supremum of a set, the inf represents the
infimum of a set, while d(p, q) represents the Euclidean distance
between two points.

We proposed the Hausdorff distance between the centerlines as an
appropriate metric for the validation of the proposed method, because
it indicates the absolute distance between the two centerlines. As this
metric is very sensitive to outliers, achieving low Hausdorff distance
between the two centerlines indicates that the distance between the
centerlines is small along the whole centerline.

The proposed method achieves an average Hausdorff distance of
3.3944 voxels (2.0376mm). The calculated Hausdorff distances for all
datasets are presented in the Table 4.2. The table shows two metrics:
the distance in voxels and the distance in millimeters. The reason being
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that different input DICOM images have different spacing depending
on the patients anatomy, the settings used while imaging and the
imaging device. Some of the results are shown in the Figure 4.14.

The achieved results represent an acceptable distance to the ground
truth centerline from a clinical standpoint. The occlusion is still a
relatively novel procedure mostly performed by specialized medical
centers. According to the current guidelines, the margins within which
the clinicians interpret the measurement when sizing the device are
considerable. The procedure requires significant expertise, as well as
subjectivity, when interpreting the measurements.

For example, an average LAA length is measured at 48± 12.1mm
[179]. Interestingly, measurements of the LAA orifice diameters in
CCTA images differ almost 5mm depending on the modality (26.5± 5.8
and 21.7± 5.7mm measured in 2D oblique and 3D view). In terms of
selecting the device of the appropriate size for the occlusion, the manu-
facturer guidelines recommend upsizing of the device (w.r.t. maximal
ostial diameter) by 2− 6mm for ACP/Amulet device and 5-35% for
the WATCHMAN device [158]. Additionally, measurements between
different modalities also significantly differ. Mean maximal depth mea-
surement (LAA length) for CCTA differed from the TEE-obtained and
fluoroscopy-obtained measurements by 3.1± 5.8mm and 6.5± 7.8mm,
respectively [158]. Maximal diameter measurements of the orifice in
CCTA images were consistently 1− 2mm larger compared to TEE, and
2− 4mm larger compared to fluoroscopy [158]. After the procedure,
peri-device leak of < 5mm does not require anti-coagulation therapy
(meaning that it is not consider a significant enough risk for thrombus
formation) [69]. Finally, Spencer et al. [162] showed that mean LAA

dimensions can increase by ∼ 2mm depending on the patients state of
hydration.

All things considered, we believe that an average distance of ∼ 2mm
demonstrated by our method is well within the margins of error the
clinicians performing the procedure are used to.

4.7 discussion

In this chapter we explain in more detail the effects of the user de-
termined input parameters on the results of the presented centerline
detection method. The method finds a path from the selected seed
point to the center of the left atrium and extracts the centerline. The
centerline will be used as input in the LAA segmentation and the LAA

orifice localization methods presented in the next two chapters. As
previously mentioned, the method requires only two parameters: a
threshold value and a single seed point inside the LAA. Both types of
input are intuitive to the trained medical users.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Example centerline detection results.

4.7.1 Threshold value selection

The threshold for centerline detection is selected in a manner com-
mon for medical software: by visual selection where the effect of a
particular value is directly displayed to the user. The thresholding step
effectively performs a pre-segmentation, creating a binary mask, and
all following steps are performed by analyzing the mask image. Both
the centerline detection method and the methods for segmentation and
orifice localization use the heart anatomy masked in the thresholding
step. However, the proposed method is designed to be robust to the
selected threshold.
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Table 4.2: Hausdorff distance per dataset between the ground truth centerline
and our detected centerline.

Dataset Hausdorff distance Hausdorff distance

[voxels] [mm]

1 2.6982 1.4784 mm

2 4.5253 2.6278 mm

3 4.0821 2.6658 mm

4 3.1481 1.6816 mm

5 4.1648 2.3498 mm

6 5.9860 3.6761 mm

7 2.9396 1.6175 mm

8 2.4173 1.3752 mm

9 4.1313 2.3116 mm

10 2.5649 1.3641 mm

11 2.5724 1.5120 mm

12 2.6778 2.4533 mm

13 3.5771 1.8862 mm

14 3.1923 1.6979 mm

15 2.5117 1.3937 mm

16 3.7950 2.2668 mm

17 2.7213 2.2813 mm

Avg: 3.3944 2.0376 mm

The maximum radius tracking method is very robust to over-
segmentation (Figure 4.2b). The method works best when there is
a clear delineation in the mask image between the left atrium and
both the left ventricle and the aorta. Still, the method will perform
adequately even if the image is oversegmented. The method tracks the
largest radii in the image and for anatomical reasons the radii near the
LV and near the aorta will be smaller then in the center of the LA. Even
if the masked image leaks between the LA and the aorta, the tracked
path will not leave the LA beacuse the radii inside the leak is always a
lot smaller than the radii in the center of the LA. Also, the grayscale
intensity of the mitral valve compared to the contrasted blood will
create a narrowing between the LA and the LV, resulting in a decreased
radii values. Thus, the maximum radius path will not leave the left
atrium.
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The maximum radius tracking method is less robust to selection of
a too high threshold value. The problem with too high threshold is
the manifestation of holes in the mask image (as evident in the Figure
4.2d in the left atrium). The holes mainfest in both the LAA and the
left atrium. The location of holes has the biggest effect on the method
results. If holes were located near the LAA orifice, the radii of voxels
near the holes would be a lot smaller than it should be according to
patient’s anatomy. In which case the tracking could have problems
following the largest radii, exiting the LAA and finding the center
of the left atrium. However, if the threshold is set so high that the
masked LAA contains holes, there probably won’t be any leaks. Thus,
the tracking will stay inside the LAA until the number of iterations
runs out.

All things considered, it is very unlikely for the trained user to select
the threshold value so incorrectly that the method fails to detect the
centerline.

4.7.2 Seed points

The selection of seed points is performed with a click in a desired
location in 2D slices. The process is similar to placing a segmentation
bubble in ITK-SNAP. The seed point should be placed deep in the
LAA, near the tip. The location of the seed point will not disrupt the
maximum radius tracking method. The maximum radius path will
always find its way out of the LAA and in to the LA. However, the
length of the LAA covered by the detected centerline does depend on
the seed point location. The detected path will not extend throughout
the whole LAA, unless the seed point is placed near the tip of the LAA.

It is possible that the LAA has a widening near the tip, due to its
very irregular anatomical shape. If the starting seed point is placed
near that widening, the tracking could go in the wrong direction –
towards the tip instead of towards the LA. The tracking will add all
the largest radii in that widening to T. However, at some point the
largest radius voxel in the search set P will be the voxel which will
continue the tracking towards the LA. Theoretically, the only way the
algorithm could fail to reach the LA is if the widening near the tip also
has a significant leak. It that case the tracking could go through the
leak and enter some other anatomical structure, potentially one of the
pulmonary veins. Radii in pulmonary veins are often larger than in
the LAA and the algorithm would not return to the LAA . It should be
noted that this case never occurred with our datasets. If the leak near
the tip is large enough for the tracking algorithm to pass through the
leak, the threshold value is probably very incorrectly set.
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4.7.3 Implementation details

The centerline smoothing algorithm we explained in Section 4.5.3
is defined for 2D images. However, in our case the real data values
are three-dimensional, so the curve fitting implementation we use is
generalized to N-dimensional spaces. Our implementation is using
the curve fitting methods from the scipy.interpolate package from
Scientific Python (SciPy) package [79]. The main advantage of this
smoothing method is that it does not require any user interaction.
All the parameters can be appropriately predetermined. The weights
wr for all data values are the same because our input data is already
an ordered one-voxel wide centerline. The smoothness of the curve
is more important than the fitting error (δ), so the parameter S is
relatively large. The SciPy documentation recommends value for S
in the range between [m−

√
2 ∗m, m +

√
2 ∗m], thus for our datasets

we are using the lowest value in that range: S = m −
√

2 ∗m. We
previously specified that we are using the cubic splines, thus the
parameter k = 3. The final configured parameter is the initial number
of knots g which is set to 5. The method will increase the number of
knots if necessary.

4.8 conclusion

In this chapter we proposed a novel method for the left atrial ap-
pendage centerline extraction. The method requires two inputs from
a trained user: threshold and a seed point inside the LAA. Proposed
method finds a path in the thresholded (mask) image between the
seed point and the center of the LA and extracts the centerline. The
centerline will be used as an input in the segmentation and orifice
detection methods explained in the next two chapters. The proposed
detection method is validated on 17 ground truth centerlines extracted
from CCTA images manually segmented by a medical expert. The vali-
dation performed by calculating the Hausdorff distance to the ground
truth centerlines showed an excellent performance of the method, with
a consistently small error, which was in most of the cases bellow 2mm
– such error is well within the margins of error proposed by current
procedural guidelines for the procedure. Hence, we cen conclude that
the proposed method shows potential for clinical use in the planning
of the LAA occlusion procedure.
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In this chapter we will propose a novel method for semi-automatic
left atrial appendage (LAA) segmentation. Left atrial appendage seg-
mentation is an important step during the LAA closure procedure
planing. Accurate measurements are required for planning the proce-
dure. Accurate segmentation can aid physicians in determining the
measurements, the feasibility of the closure procedure, as well as de-
termining the correct type and size of the occlusion device for each
patient. Additional benefit of the accurate segmentation is the ability
to choose the correct device size and type using a 3D printed model
of the LAA [84, 136]. Physicians can test devices of different sizes to
determine the best fit. Computer methods for left atrial appendage
segmentation are still relatively underdeveloped. To the best of our
knowledge there are only few published methods dealing with LAA

segmentation. Related methods are described in the section 5.1, while
the detailed overview of available methods is provided in section 3.5.2,
along with their advantages and disadvantages. All described meth-
ods are machine learning based. The main challenge with the machine
learning based methods (such as the methods described above) is the
reproducibility of the results without access to the training datasets.

The main advantage of our method, compared to other state-of-
the-art methods, is the invariance to the type and dimensions of the
input image used for segmentation. The segmentation is performed
by extracting the LAA from a binary image, created from the user
selected threshold value. Thus, the method can work with binary
images created from any type of 3D image (e.g., binary images created
with active contours, or images from MRI). The only requirement
is that the input binary image contains the LAA and at least a part
of the left atrium. The main contribution proposed in this chapter
is a novel left atrial appendage segmentation method based on the
LAA centerline path. The main input to the method is the detected
centerline proposed in the previous chapter. The results indicate good
potential for surgical planning. The work described in this chapter
appeared in the proceedings of in the international conference [99],
and a journal paper in Science Citation Index [100].
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5.1 introduction

Medical image segmentation methods represent one the most impor-
tant applications in the area of medical image processing. Their goal
is to partition the image into regions and extract relevant medical
information. When applied to the left atrial appendage analysis, the
goal of image segmentation methods is to provide physicians with
relevant information about the shape and the anatomy of the LAA. In
this section, we provide an overview of different approaches to LAA

segmentation available in the literature. To the best of our knowledge,
only a small number of LAA segmentation methods exist. However, in
the last few years, there was a noticeable increase in the number of
the proposed methods.

A common segmentation approach, often used in whole heart seg-
mentation [48, 200, 203], is based on adapting an existing model (ASM)
to segment a new image. Despite the popularity of model-based ap-
proach in whole heart segmentation (WHS), model-based segmentation
of the LAA is complicated due to the considerable variability in the
shape, size and orientation of the LAA in the heart. Grasland-Mongrain
et al. [58, 59] proposed an LAA segmentation method based on shape-
constrained deformable models. The method is an upgrade to an
already existing framework [47] capable of localizing and segmenting
the whole heart. Using the segmentation result from the framework,
the method grows the mesh of the LAA-LA interface and inflates it into
the LAA .

Two similar approaches have been proposed by Zheng et al. [197,
201] and to the best of our knowledge, these are the only two fully
automatic approaches available. Both methods use multi-part models,
where individual models are fitted using marginal space learning [198]
and later merged into a consolidated mesh. However, one approach
[197] fits six individual models (atrial chamber, the appendage, and
four pulmonary veins) to image and refines the segmentation using
graph-cuts, while the other approach [201] fits only two individual
models (atrial chamber and the appendage), but segments the PVs

and refines the segmentation using region-growing based on adaptive
thresholds.

An approach based on per-slice 2D segmentation has been proposed
by Wang et al. [177]. Within a selected ROI the method generates a
number of segmentation proposals for every 2D slice, ranks the pro-
posals using a trained random forest regressor and fuses the best
proposals into a 3D volume. Jin et al. [73] proposed a method which
follows the same general idea, except it creates the 2D per-slice seg-
mentations using a fully convolutional network and merges them
into a 3D volume using 3D conditional random fields [32]. The same
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group proposed two additional methods based on the Wang et al. [177]
segmentation approach. The first method [74] creates a model of the
LAA neck from the segmentation result. The second method performs
the LAA segmentation in an input 4D CCTA image and builds a 3D
model of every time instance in the image in order to diagnose atrial
fibrillation.

The limitation of all of the approaches presented so far is that they
require large fully labeled datasets for training. Finally, Morais et
al. [126] proposed a centerline based LAA segmentation approach
which works in 3D TEE images. The approach initializes a model from
a manually created centerline, grows the model using fast contour
growing and determines the segmentation from refined model.

In this chapter we develop a novel semi-automatic method for the
segmentation of the LAA which is capable of obtaining an accurate
LAA segmentation from an input image of any size and modality
and does not require training phase. The method requires only two
input parameters: threshold value and a point inside the left atrial
appendage. The proposed method works directly in 3D space of
CCTA contrasted images. After the segmentation, we allow the user
to select the location of the LAA orifice. The user selects the orifice
as a delineation plane between the appendage and the LA. Finally,
we perform an additional segmentation refinement step based on the
selected delineation plane.

The proposed method consists of the following steps depicted in
the Figure 5.1:

1. Thresholding – Produces a binary mask image using the pro-
vided threshold value. The LAA will be extracted from the binary
mask image in subsequent steps.

2. Radius image generation – Radius images are calculated by
applying to the distance transform to the binary image as was
explained in Section 4.3 .

3. Centerline detection – Detects the centerline from the seed point
to the center of the left atrium, which will be used to initialize
the segmentation. The centerline detection method was detailed
in Chapter 4.

4. Initial segmentation. This step reconstructs an approximate LAA

volume from the detected centerline by adding to the initial
segmentation image the largest maximum inscribed sphere of
every point in the centerline.

5. Fine segmentation. An original decreasing radii segmentation
algorithm is employed here to grow the initial segmentation
towards the border regions of the LAA and LA anatomy. At this
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Figure 5.1: Proposed semi-automatic LAA segmentation method flow dia-
gram.

point the segmentation contains both the LAA and a part of left
atrium.

6. Delineation – This final step is performed after an additional
input from the user in order to determine the LAA orifice. The
user selects the delineation plane on the visualized segmentation.
We extract the LAA and perform the segmentation refinement
by adding the LAA components adjacent to the segmentation,
which the decreasing radii segmentation step failed to segment.

The overall method allows the user to accurately segment the LAA

with minimal interaction and select the location of the LAA orifice di-
rectly on the visualized segmentation. In the final step, the user selects
the delineation plane by selecting three 3D points on the segmentation
result from the previous step. Selected points form a plane dividing
the appendage from the left atrium. The LA is discarded from the
segmentation and only the LAA is refined.

5.2 threshold selection

In this section we explain in more detail how the threshold selection
affects the segmentation results. We also explain what are leaks in
the thresholded image and their effect on the segmentation results. It
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(a) Example leak (b) Leak effects on segmentation

Figure 5.2: Example of leaks in mask image due to thresholding. (a) Example
of leak in one slice (LAA – red, pulmonary vein – black) (b) The
effect of leaks on interactive segmentation using Geodesic active
contours in ITK-SNAP software. Dashed ellipses show locations
where the segmentation leaked.

should be noted that the thresholding step affects both the centerline
detection results and the later segmentation results. The effect of the
selected threshold on the centerline detection step is explained in
Section 4.2. This section will focus on how the thresholding affects the
segmentation step of the method. The purpose of the thresholding
step is to create a binary mask which contains the LAA. It should be
noted that at this point the appendage is still not delineated from
the rest of the heart. The thresholding determines which part of the
appendage will be segmented – the rest of the method extracts only
the appendage from the binary mask.

The user selects the threshold value for the dataset with a simple
slider by visual inspection of 2D slices. Since our proposed method ex-
tracts the LAA from the binary image, the volume of the LAA extracted
during the subsequent segmentation steps depends on the selected
threshold value. A simple guideline for selecting the threshold value
is: the chosen threshold value should be the largest value where the
whole LAA is still in the foreground of the mask image. Any part of
the LAA not in the foreground of the mask image after thresholding
will not be a part of the final segmentation. Still, the proposed method
is robust to the threshold selection and unless the selected threshold
value is very inaccurate, the selected threshold value will not disrupt
the functioning of the segmentation method. Threshold value mostly
determines the extent of the LAA anatomy that will be segmented. The
rest of this section describes the effects of the selected threshold value
on the segmentation results.

There is a significant difference in intensity values in CCTA images
between the areas of the heart that do and do not contain contrasted
blood. However, because of vast differences in shape, size and loca-
tion of the LAA in the heart it is possible that after thresholding the
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(a) Original slice (b) Threshold too low – oversegmented.

(c) Threshold correct. (d) Threshold too high – underseg-
mented.

Figure 5.3: The effects of different threshold values on oversegmentation and
undersegmentation. Blue star represents the seed point inside the
LAA

LAA appears connected to other anatomical structures, most often to
one of pulmonary veins. Occurrence of such connection in the mask
image is called a leak and illustrated in Figure 5.2a. The example of a
segmentation problem due to leaks is shown in 5.2b. Still, threshold
based segmentation methods are often used because they are visually
very intuitive to users and there is only one parameter they need to
configure – the threshold value. There is an inherent trade-off when
using thresholding based segmentation. If the threshold value is too
high, leaks can be avoided but the resulting segmentation will be
undersegmented compared to the real LAA anatomy. If the threshold
is too low, oversegmentation occurs and leaks become a significant
problem for segmentation algorithms. Additionally, heart moves while
imaging and the borders in the image get blurred, which increases the
oversegmentation or undersegmentation problem. Figure 5.3 shows
the effects of thresholding on a single slice. High level of noise present
in CCTA images can also result in holes in thresholded image if the



5.3 decreasing radii segmentation 121

(a) Grayscale (b) Threshold
173

(c) Threshold
274

(d) Threshold
410

(e) Threshold
535

Figure 5.4: The effects of different threshold values on segmentation of the
blurry border regions in the LAA.

threshold value is too high. Figure 5.4d shows the problem with holes
in binary image formed inside the contrasted region due to noise.

Our proposed method is designed to be robust to leaks in the
mask image. The method will accurately extract the LAA even with
leaks present in the image. Thus, the user should always select the
threshold value in such a way that the anatomy they wish to segment
is in the foreground of the mask image. Figure 5.4 shows the effects
of the threshold values on the anatomy which will be included in
the segmented image. For each threshold in the figure the proposed
method will correctly extract the LAA from the mask image. Thus,
the selected threshold value depends on the extent of the anatomy
the user wants to include in the final segmentation. The user does
not have to try to avoid the leaks in the mask image by setting the
threshold value higher than necessary. The rest of the steps in the
method will ensure that the LAA is extracted from the binary mask
without leaking to other areas.

The same mask image is used for all steps in the segmentation
method, meaning that all steps in the method use the same threshold
value. We have to balance between the effects of the selected threshold
on the centerline detection and on the segmentation. However, the
centerline detection method is very robust to the selected threshold
value, as explained in the Section 4.2. Thus, we will always choose
the threshold value which will result in a better segmentation, while
counting on the centerline detection methods robustness to accurately
detect the centerline.

5.3 decreasing radii segmentation

In this section we present a novel, leak resistant segmentation method
which works by improving an initial segmentation toward the border
regions with decreasing radii. The method extensively uses the radius
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Figure 5.5: Initial segmentation (green) created from maximum radius path
(orange). White color represents the real boundaries of the LAA .
This image was reported in our own work: Leventić et al. [99].

image (see Section 4.3), because the whole method is based on adding
to the segmentation the spheres of a certain criteria. First, we create
an initial segmentation which contains regions with the largest radii
in an anatomical structure. Next, the method iteratively grows the
initial segmentation towards border regions of the anatomy where the
radii of voxels is decreasing. The only requirement for the method
is the initial segmentation image to initialize the region growing.
Finally, we stop the iterative growing when all the border regions of
the anatomy have been segmented. The initial segmentation image
should contain the voxels with largest radius in the area we want to
segment. Thus, the method does not have to be used exclusively for
LAA segmentation. For example, atrium segmentation shown in white
in Figure 5.9 (created for the visualization purposes) is segmented
using the method proposed in this section.

5.3.1 Initial segmentation

Initial segmentation is used as a starting segmentation for the De-
creasing radii segmentation method. The goal with creating the initial
segmentation is to segment a large part of the LAA while making sure
that none of the leaks have been segmented. The initial segmenta-
tion is created using either the maximum radius path or the detected
centerline as the input, both of which are explained in detail in the
previous chapter. Both the maximum radius path and the centerline
are represented as a set of voxels, containing voxels in the center of
the LAA all along its length. Thus, both sets of voxels are a valid input
to the method. Let T denote a set of all voxels of the chosen input. We
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Figure 5.6: Iterations of the decreasing radii segmentation. Color code 1

represents initial segmentation. This image was reported in our
own work: Leventić et al. [99].

create the initial segmentation by adding to the initial segmentation
set I the maximum inscribed sphere for every voxel in T

I =
⋃

v∈T

S(v). (5-1)

where S(v) is defined in (4-2). Figure 5.5 shows the initial segmentation
in green color. The maximum radius path, used for creating the initial
segmentation, is shown in orange color. The real LAA shape is shown
in white.

5.3.2 Segmentation algorithm

In this subsection we propose a novel method for leak resistant seg-
mentation based on the initial LAA segmentation. The method will
iteratively grow the initial segmentation towards the edges of the
LAA. Growing is performed by adding spheres where the radii inside
spheres decreases. The radii of the voxels in the LAA will gradually
decrease as the segmentation approaches the edges of the anatomy.
We do not grow the segmentation towards the regions of the anatomy
where the radii are increasing, as those areas are usually regions inside
the leaks or regions where the segmentation is entering another, larger
anatomical structure (in this case the left atrium). For successful seg-
mentation the initial segmentation has to contain LAA regions with the
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(a) Sphere added to segmentation (b) Sphere not added to segmentation

Figure 5.7: Decreasing radii segmentation: conditions for adding the sphere.
(a) Voxels in the spherical neighborhood of the current voxel will
be added to the segmentation because all of them have the radius
value lower than the radius value of the current voxel. (a) None
of the voxels in the spherical neighborhood of the current voxel
will be added to the segmentation because some of them have
the radius value higher than the radius value of the current voxel.
This image was reported in our own work: Leventić et al. [100]

largest radii values. Figure 5.6 shows the iterations in the segmentation
process of one of our datasets. Each iteration is shown in a different
color, with the initial segmentation being the iteration 1. For easier
visualization the segmentation in the figure is limited to 5 additional
iterations. The initial segmentation used for this example is shown in
Figure 5.5 in green color.

Decreasing radii segmentation runs iteratively for all voxels at the
edge of segmentation while at least one sphere in an iteration has
been added to the segmentation. Algorithm stops after the iteration
in which no voxels have been added to the segmentation. The algo-
rithm iteratively tests all the voxels at the edge (boundary) of the
current segmentation. For each boundary voxel the algorithm tries to
determine whether the spherical neighborhood of the voxel should
be added to the segmentation. Next, the algorithm adds a spherical
neighborhood of the voxel to the segmentation if the radii of all voxels
in the unsegmented part of that neighborhood are less than or equal
to the radius of currently observed voxel (the radius of the voxel at
the center of the sphere). Formal explanation of the method follows.
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Figure 5.8: Segmentation leaks are characterized as regions in which the
values of maximum radii increase. Because of this, the decreasing
radii segmentation method will prevent the leak regions from
being added to the segmentation. This image was reported in our
own work: Leventić et al. [100]

Let Hi denote a set of all segmented voxels in an iteration i. Let
N26(v) be the 26-neighborhood of voxel v – a set of 26 voxels – all the
nearest (first) neighbors of v horizontally, vertically and diagonally in
3D.

In first iteration the method starts with the set of segmented voxels
containing only voxels from the initial segmentation: H1 = I. For an
iteration i the voxels on the edge (boundary) of the set of segmented
voxels Hi are defined as:

Ei =
{

v ∈ Hi
∣∣∣ ∃q ∈ N26(v), q /∈ Hi

}
. (5-2)

Let us denote the set of unsegmented voxels centered at voxel v within
the maximum inscribed sphere S(v) with:

Ui(v) =
{

q
∣∣∣ q ∈ S(v), v ∈ Hi, q /∈ Hi

}
, (5-3)

For every edge voxel v ∈ Ei we add to segmentation Hi all unseg-
mented voxels inside its spherical neighborhood Ui(v) if the radii of
all those voxels in Ui(v) are smaller or equal to the maximum radius
value of the given voxel r(v):

Ai (v) =

{
Ui(v) ; ∀q ∈ Ui(v) : r(q) ≤ r(v)

∅ ; otherwise
(5-4)

Ai =
⋃

v∈Ei

Ai (v) . (5-5)

Voxels Ai are added to the segmentation for the next iteration:

Hi+1 = Hi ∪ Ai. (5-6)
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Figure 5.9: The result of running the decreasing radii segmentation method:
Segmented LAA (red), left atrium (white).

The algorithm stops when no new voxels were added to segmentation
in an iteration, i.e. when Hi+1 = Hi.

Figure 5.7 illustrates the conditions for adding a sphere to the
segmentation. An example where the spherical neighborhood will
be added to the segmentation is shown in Figure 5.7a. The voxel at
the center of the neighborhood has a radius value of 7. All voxels in
the unsegmented part of the neighborhood have radii smaller than 7.
Thus, the condition given in (5-4) will be fulfilled and the voxels in the
unsegmented part of the sphere will be added to the segmentation.
Figure 5.7b illustrates an example where the spherical neighborhood
will not be added to the segmentation. We can see from the figure
that the radii of voxels in the lower part of the neighborhood (red
values) are larger than the radius of the voxel at the center of the
neighborhood. Thus, the condition in (5-4) is not fulfilled and in this
example no voxels will be added to the segmentation.

An important property of the proposed method is its resistance to
leaks. The leaks are characterised by one narrow section which con-
nects two wide anatomical structures. An illustration of the method’s
robustness to leaks is given in the Figure 5.8. The figure shows a
spherical neighborhood of a voxel inside a leak. Some of the unseg-
mented voxels in the neighborhood (red) are larger than the radius
of the sphere. These voxels belong the the anatomical structure the
segmentation is leaking into. The spherical neighborhood of this voxel
will not be added to the segmentation because the radii of red voxels
is larger than the radius of the voxel at the center of the neighborhood.
The segmentation will not leak through to the other anatomical struc-
ture whenever the radii of voxels inside the leak are smaller than the
radius of that other anatomical structure.



5.4 delineation and refinement 127

In order to be able to easily distinguish between different inter-
mediary result images in the segmentation process, we call the seg-
mentation image created from maximum radius path in section 5.3.1
the initial segmentation image. The segmentation result created in this
section using decreasing radii method is called the fine segmentation
image, while the final segmentation image explained in following sec-
tion is called final segmentation image. Figure 5.9 shows the result of
running the decreasing radii segmentation method (the fine segmenta-
tion image). The resulting segmentation is shown in red. Left atrium
shown in the figure in white is added for visualization purposes
(left atrium segmentation is not a part of the proposed method). The
segmented LAA in the figure is not correctly delineated from the left
atrium. We can see a large sphere of the segmentation protruding to
the left atrium. However, at this point the region belonging to the LAA

is properly segmented and we have to delineate and further refine
the segmentation. We allow the user to select the delineation plane
and refine the segmentation according to the selected plane. The plane
selection and segmentation refinement is explained in the next section.

5.4 delineation and refinement

This section explains how we create the final segmentation. First we
visualize the resulting fine segmentation image and present it to the
user. User determines the delineation plane between the LAA and the
left atrium by selecting three points on the visualized segmentation.
At this point we are sure that most of the LAA has been properly
segmented. Visualized segmentation also contains a part of the left
atrium. Visualized segmentation provides enough information about
the LAA anatomy to the user to be able to properly select the delin-
eation plane. The user selects three points representing the plane from
the user interface (UI) of the application. The user can freely interact
with the segmentation in order to find the optimal delineation plane.
Figure 5.10a shows the delineation plane selected by the user. Plane is
determined by three points represented in the figure with small red,
green, and blue spheres (red point is not visible from this angle). We
perform one final refinement step after the user confirms the chosen
delineation plane. Refinement is performed through the following
steps:

1. Remove from the fine segmentation image all voxels in the
delineation plane.

2. Discard the part of the segmentation belonging to the left atrium
by extracting from the segmentation only the connected com-
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(a) Delineation plane selected. Plane is determined by selecting three
points on the segmentation (red, blue and green)

(b) Final segmentation after delineation and refinement

Figure 5.10: Selection of the delineation plane between the LAA and the LA

and the final segmentation result according to the selected plane.

ponent containing first seed point (the seed point placed in the
LAA ). We call this image the extracted segmentation image.

3. Find all the connected components in the mask image while set-
ting the LAA from the extracted segmentation image to a distinct
label. The largest component in the image (containing the whole
heart except for the extracted part) will have a different label.
However, depending on the dataset, it is possible that connected
components labeling will create additional components which
were disconnected from the rest of the heart by the extracted
LAA.

4. Add to the final segmentation image all the components con-
nected to the extracted LAA with the volume and the bounding
box smaller than the extracted segmentation.

The final segmentation result is shown in the Figure 5.10b. Most of
the time the components that got disconnected from the rest of the
heart will be parts of the LAA that the decreasing radii segmentation
algorithm failed to segment. The components are probably a part of
the LAA if the components are connected to the extracted segmentation
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Figure 5.11: Adding of additional components after delineation. Extracted
segmentation shown in red, added components shown in other
colors. This image was reported in our own work: Leventić et al.
[100]

and not connected to the rest of the heart. However, depending on
the selected threshold and the patients anatomy, it is possible for the
segmentation to disconnect a part of the vein. When that happens
the component containing part of the vein not connected to the rest
of the heart will be connected to the extracted segmentation. Such
components are not a part of the LAA and should not be added to
the final segmentation. We check that the volume and the bounding
box size of the component are both smaller than that of the extracted
segmentation. Checking the volume will prevent adding the compo-
nent containing the rest of the heart to the segmentation. Checking
the bounding box will prevent adding the disconnected part of the
veins, which are often long and narrow. Their volume will be smaller
than the extracted segmentation, but their bounding box size probably
will not be. It should be noted that in our experiments the breaking
up of veins only happens when the selected threshold value is not
optimal. Figure 5.11 shows the components added in the refinement
step (different dataset than previous figures).

5.5 results

The segmentation results were evaluated on 17 CCTA images, against
manually segmented ground truth segmentations by two medical
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.12: Examples of LAA segmentation results. This image was reported
in our own work: Leventić et al. [100]
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Table 5.1: Validation dataset (17 patients)

N %

Patient age

Under 35 3 17.65%

35 - 44 2 11.76%

45 - 54 2 11.76%

55 - 64 6 35.29%

65 and older 4 24.53%

Patient gender

Male 6 35.29%

Female 11 64.71%

Figure 5.13: Plot of dice coefficients overlap. This image was reported in our
own work: Leventić et al. [100]

experts: a cardiovascular surgeon and a radiologist. All images were
acquired using a Siemens Somatom 64-slice scanner for the purpose
of Coronary CT Angiography. All patients have given their informed
consent for the inclusion in the study. The patient data is presented
in Table 5.1. Ground truth segmentations were created using the ITK-
SNAP software [194]. Doctors selected the appropriate threshold and
used the Geodesic active contours method [27] implemented in ITK-
SNAP to segment the LAA. Finally, doctors manually corrected the
segmentation using the paintbrush tool. During the ground truth
creation twelve out of 17 datasets had extensive leaks due to the
selected threshold and required extensive corrections. Creation of
ground truth segmentations required on average 10 minutes per doctor
per dataset, with the shortest dataset creation lasting around 5 minutes
and the longest 17 minutes.
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Table 5.2: Dice coefficients overlap (n=17). Table shows dice overlap between
segmentations of the two consulted medical experts (E1, E2) and
the overlap of segmentation results with our method between each
of the experts’ segmentations.

Dataset dice(E1, E2) dice(E1, our) dice(E2, our)

D1 88.50% 94.58% 90.51%

D2 98.94% 93.24% 92.43%

D3 82.16% 87.28% 89.32%

D4 96.37% 97.11% 96.29%

D5 94.78% 92.87% 94.29%

D6 99.35% 96.07% 96.03%

D7 84.77% 86.73% 91.03%

D8 93.74% 96.25% 94.72%

D9 87.65% 94.61% 85.91%

D10 90.71% 94.90% 91.66%

D11 92.85% 94.56% 94.60%

D12 92.94% 93.15% 87.42%

D13 91.76% 76.78% 81.41%

D14 97.09% 93.41% 91.96%

D15 95.85% 96.07% 94.15%

D16 90.30% 91.02% 92.98%

D17 97.40% 94.25% 92.94%

Avg: 92.66% 92.52% 91.63%

5.5.1 Evaluation

Figure 5.12 shows the resulting segmentations from eight of our
datasets. We performed the evaluation of the method by calculat-
ing the dice coefficient overlap between our segmentation results and
each of the two ground truth segmentations. For every voxel v ∈ Z3

let G be the set of all voxels in the ground truth segmentation, and
let R be the set of all voxels in our resulting segmentation. The dice
coefficient is calculated according to the following formula:

dice(G, R) =
2 ∗ |G ∩ R|
|G|+ |R| (5-7)

The proposed method achieved an average dice coefficient overlap of
92.52% and 91.63% against the ground truth segmentations by first and
second expert, respectively. Dice coefficient overlap between the two
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Figure 5.14: Method runtime per step. Thresholding and initial segmentation
steps are ommited because they are finished in under a second.

(a) Our segmentation (b) Expert 1 (c) Expert 2

Figure 5.15: Effects of threshold selection on the resulting segmentation

ground truth segmentations is only marginally better at 92.66%. Our
method demonstrated segmentation accuracy very close to human
experts. Dice coefficients overlap is shown in Table 5.2, as well as
Figure 5.13.

The runtime of our method depends on the image size and the
patient anatomy. The method runtime for our datasets was, in most
cases, between 3 and 4 minutes. The runtime depends both on the
image size and on the patient’s anatomy. Figure 5.14 shows the runtime
per dataset for each step of the segmentation methods.

5.6 discussion

In this section we propose an interpretation of the results and explain
in more detail the requirements for the input parameters and the
effects of the various inputs on the segmentation results. We also
discuss the robustness of the method to the types of input images.
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First, we would like to point out an interesting fact about the results
visible in Table 5.2. The overlap of the two human experts’ segmenta-
tions is highest between themselves in only seven cases. In six cases
the first expert agrees more with our result than with the second
expert. Similarly, in four cases the second expert agrees more with our
result than with the first expert. Thus, in ten out of seventeen cases
one of the experts agrees more with our result, than with the other
expert. However, even more interesting is the fact that in seven out of
those ten cases both experts agree more with our result, then between
themselves.

One possible reason for this could be tied to the process of creating
the ground truth segmentations. Both experts used the Snakes method
in ITK-SNAP to create initial segmentations. Even though they manu-
ally refined the segmentations and fixed the leaks using the paintbrush
tool, a significant part of the anatomy included in the ground truths
depended on the initial thresholds that experts chose for the snakes.
Since our algorithm is also threshold-based, on probable reason for
this overlap is that our chosen threshold was sometimes closer to the
threshold of one and sometimes of the other expert.

5.6.1 Input requirements

The user has to provide two inputs to our method: a seed point and a
threshold value. Afterwards, user can select the desired delineation
plane as the location of the LAA orifice. Both method inputs, as well
as the selection of the plane, are intuitive to the trained medical users.

For the threshold selection, we follow an approach that is gener-
ally recommended for medical software: the user selects the desired
threshold value for the dataset with a simple slider, while visually
observing the effects a particular threshold value has on the image.
The guidelines for the threshold selection were presented in section
5.2. High threshold value will undersegment the border regions and
LAA trabeculations. Low threshold value will result in leaks in the
thresholded image. Our method is specifically designed to be robust
to leaks i.e. oversegmentation.

We can also conclude that our method correctly extracts the LAA

anatomy from the mask image regardless of the chosen threshold
value. From the anatomical perspective, our method will correctly
segment the LAA even with suboptimal threshold selected. The re-
sulting segmentation will contain most of the LAA and its shape will
still be accurately segmented. Figure 5.15 shows the effects of the
selected threshold on the result. In this case our chosen threshold was
higher than both thresholds selected by the experts, as evident in the
presence of trabeculations in our segmentation manifesting as holes.
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Our method extracted the correct LAA anatomy despite the presence
of holes by from trabeculations.

Both centerline detection and decreasing radii steps in the method
are very robust to oversegmentation. Still, when the selected thresh-
old value is too low the leaks will create complications for the final
segmentation refinement step. When a part of the LAA close to the tip
of the LAA leaks to some other anatomical structure the refinement
step will probably fail to add it to the segmentation. The reason is
that refinement step adds small components neighboring the already
segmented LAA. If a part of LAA not segmented by decreasing radii
segmentation leaks, it will probably be connected to the component
containing the rest of the heart. Thus, the volume of that component
will be larger than the LAA volume and the refinement step will fail to
add that component to the segmentation.

5.6.2 Input images

The proposed method is robust to the type and size of the input
images. The method does not have predefined constraints on the type
of input images. Due to the first step in the method being thresholding,
all other steps in the method are designed to extract the LAA from the
binary mask created by thresholding step. As long as the region in the
image containing the appendage has intensity values different enough
for the masking to be possible, the created binary mask image will
be usable by the method. The binary mask image can be created, for
example, as an output from some other algorithm (active contours,
level sets, clustering, etc.), or using some other type of image (e.g.
MRI).

Additionally, the performance of the proposed method does not
depend on the dimensions of the input image. We do not require
the image to be of any particular resolution. Thus, it is possible to
perform the segmentation only on a selected ROI from the original
image. The ROI has to contain the LAA and large part of the left
atrium for the method to function properly. The reason being that the
tracking step moves towards the voxels with the larger radii. Limiting
the performance to ROI could potentially improve the computational
efficiency of the method.

5.7 conclusion

In this chapter we presented a novel method for left atrial appendage
segmentation, which requires requires minimal user interaction. The
proposed method finds a path, in the thresholded (mask) image, from
the seed point to the center of LA and extracts the LAA. Afterwards,
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the user selects the delineation plane between left atrium and the
appendage and we run an additional refinement step according to
the selected delineation plane. Finally, the refined segmentation is
presented to the user. The proposed segmentation method is validated
on 17 CCTA images manually and independently segmented by two
medical experts.

Segmentation results show high overlap with ground truth seg-
mentations performed by medical experts. Our segmentation method
achieves only marginally lower overlap to ground truth than the over-
lap of two ground truths between themselves. Moreover, numerical
results show that the average overlap area between our segmentation
results and any of the two expert delineations is very similar to their
mutual overlap. The two (ground truth) segmentations yielded an
average dice overlap of 92.66% on the seventeen tested images. The
overlap between our result and the expert segmentations was only 1%
smaller when compared to one expert and only 0.14% smaller when
compared to the other expert. Furthermore, in ten out of seventeen
cases our result agreed better with some of the experts then they
among themselves. This indicates a good potential of the proposed
method for clinical use in the planning of the LAA occlusion procedure.



6
L A A O R I F I C E L O C A L I Z AT I O N

In Chapter 4 and Chapter 5 we presented novel methods for the
LAA centerline detection and the LAA segmentation. However, the
methods presented in those chapters require the user to determine
the orifice location manually. Orifice localization is an important step
in the surgical planning of the LAA closure procedure. It is important
to obtain accurate measurements of the orifice, since the occluder
devices are placed inside the orifice to effectively separate bloodflow
between the LAA and the rest of the heart. As explained in Chapter
2 the occluder devices are available on the market in a number of
predefined sizes. The correct occluder device to be used for the closure
procedure has to be selected according to each patient’s heart anatomy.
The goal of the method presented in this chapter is to determine
the orifice location automatically using the segmentation result from
Chapter 5 and the centerline from Chapter 4. Automatic localization
and measurement of the orifice aids the medical doctors in selecting
the device of the appropriate size for the planning of the procedure.
In this chapter we propose a novel method for the localization of
the LAA orifice for the purpose of the occluder placement. The main
contribution is a novel method which performs the localization of the
LAA orifice using the segmentation image and the LAA centerline. After
the localization, we calculate important parameters for the planning
of the closure procedure. We calculate and present to the user the
shape, diameters and circumference of the orifice. The validation of the
determined orifice location is performed against the orifice locations
determined manually by a medical expert. The work presented in this
chapter is published in a journal paper [100].

6.1 introduction

The purpose of the proposed method is to localize the LAA orifice as a
plane delineating the LAA from the left atrium and propose the location
for the occluder placement. The orifice is defined as the narrowest
part in the LAA neck, following the definition proposed by [175]. We
calculate the delineation plane by analyzing the cross-sectional areas
along the centerline. The criteria for the delineation is the last point
on the centerline where the cross-sectional area decreases, after which
the areas along the centerline start to significantly increase.
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We know from the cardiovascular anatomy that the volume of the LA

is significantly larger than the volume of LAA [33], while the interior of
the LA is of a relatively spherical shape. Therefore, the cross-sectional
area inside the LA will be larger than the cross-sectional area inside
the appendage. Moreover, the magnitudes of the cross-sectional areas
along the centerline will significantly differ depending on which part
of the centerline the area is calculated.. Areas along the part of the
centerline located inside the LAA will vary unpredictably due to the
irregular shape of the appendage. However, once the centerline leaves
the appendage and enters the left atrium, the calculated areas along
the centerline will start to significantly increase. Our method tries to
determine the point on the centerline where the areas have increased
enough that the centerline is now inside the left atrium. When the
algorithm determines that the centerline has entered the LA , we search
backwards from that point towards the seed point and choose the
first narrowing of the anatomy as the LAA orifice. For this analysis we
propose a novel method called Weighted rising slopes algorithm. The
LAA orifice detected in this way follows the definition of the orifice
proposed in [175]. The proposed method consists of two steps:

• Calculation of minimal areas along the centerline – i.e., the
minimal cross-sectional area in each point on the centerline; and

• Search for the smallest area among the calculated areas that
occurs right before the left atrium.

6.2 calculation of areas along centerline

In this section we explain how we calculate the cross-sectional areas
along the centerline in order to be able to determine the narrowing in
the LAA anatomy and thus the location of the orifice. The input for this
method is the detected LAA centerline as explained in the previous
chapter. The centerline C is a curve in 3D space which consists of N
positions p ∈ R3.

Let p(i) denote a position on the LAA centerline C with index
i ∈ {1, ..., N}. For each position p(i) we calculate the curve tangent in
that position, represented by vector n(i):

n(i) = p(i + 1)− p(i− 1). (6-1)

The vector n(i) represents the centerline direction vector in a particular
position. We calculate the cross-sectional areas along the centerline
where the centerline direction at each centerline position is the normal
of the cross-sectional plane. A cross-sectional plane ψ(i) at index i
is a plane defined by the position p(i) along the centerline and the
directional vector n(i) as the plane’s normal. Let us denote the area of
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Figure 6.1: Planes at position p(i). Green plane ψ(i) is a plane orthogonal to
the centerline direction vector n(i) where the cross-sectional area
a(i) is not minimal. Red plane is a plane in that point where the
cross-sectional area is minimal.

the cross-sectional plane ψ(i) at position p(i) with a(ψ(i)). The area
of the cross-sectional plane ψ(i) will be the area of the region defined
by the intersection of the discrete positions of the plane ψ(i) and the
segmentation set H:

a(ψ(i)) = |D(ψ(i)) ∩ H|, (6-2)

where D(ψ(i)) denotes the set of discretized positions of plane ψ(i).
Next, we should be able to determine the narrowing of the LAA

neck and localize the orifice by analysing the calculated cross-sectional
areas along the centerline. However, often the cross-sectional plane
orthogonal to the centerline direction (defined by a normal n(i)) does
not actually represent a cross-section of the LAA. An example is il-
lustrated in Figure 6.1, where the plane orthogonal to the centerline
direction (green plane) does not create a cross-section through the
appendage, but the left atrium as well. The centerline cannot always
properly represent the variations in shape of LAA edges. Still, our
analysis is based on the areas of the appendage cross-sections along
the centerline. To surpass this problem, at each position along the
centerline we search for the minimal cross-sectional area by testing a
number of planes with different normals. For each centerline position
we select the plane where the area of the cross-section with that plane
is minimal. The example is shown as a red plane in Figure 6.1. It is
evident in the figure that the cross-section defined by the red plane,
as opposed to the green plane, is a minimal area cross-section of the
LAA, even though it is not exactly orthogonal to the direction of the
centerline.
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Algorithm 6.2 Calculation of new plane normals

1: for α ∈ {0.5, 1, 1.5, 2, ..., 40} do
2: n(i, α) = rotate n(i) by α around p(i)
3: for β ∈ {0, 2, 4, ..., 358} do
4: n(i, α, β) = rotate n(i, α) by β around n(i)
5: Ψ(i) ←ψ(i, α, β)

6: end for
7: end for

Figure 6.2: Angles of directional vectors rotation.

We find the planes with minimal areas by modifying the normals for
the planes up to 40 degrees and rotating them in full circle. Particularly,
we calculate a number of directional vectors by modifying and rotating
the n(i) according to the Algorithm 6.2. Each new directional vector
n(i, α, β) represents a normal of a plane ψ(i, α, β) to be tested for
the minimal cross-sectional area. Figure 6.2 illustrates the creation of
new normals. The centerline is represented with red color, while the
blue line represents the directional normal n(i). Angles α and β are
shown in green and blue, respectively. Every new normal n(i, α, β) is
created by rotating the vector n(i) (blue line) by α around p(i) and
then rotating by β around n(i). Let Ψ(i) denote the set of all planes
ψ(i, α, β) created using the algorithm 6.2. Using (6-2), we calculate
areas for all planes in Ψ(i) and denote the set of all calculated areas
as:

A(i) = {a(ψ)|ψ ∈ Ψ(i)} . (6-3)
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(a) α = 5◦, ∆β = 6◦ (b) α = 10◦, ∆β = 6◦

(c) α = 15◦, ∆β = 6◦ (d) α = 30◦, ∆β = 6◦

(e) α = 20◦, ∆β = 12◦

Figure 6.3: Creation of planes with different angles. (a-d) Normal n(i) and
its corresponding plane ψ(i) are shown in blue, while black lines
show created new normals n(i, α, β). (e) Normal n(i) in blue,
planes ψ(i, α, β) and normals n(i, α, β) in different colors.

Finally, the minimal cross-sectional area at index i is defined as:

a(i) = min(A(i)). (6-4)

Figures 6.3(a-d) show different steps in creating the normals used in
the search for minimal areas. For each position on the centerline, we
find all normals of up to 40◦ and calculate the areas of candidate cross-
sections defined by those normals. Each subfigure in Figure 6.3 shows
normals created with a different angle α. In the figure we introduce
the parameter ∆β which represents the change of angle β between
each candidate normal. Our algorithm uses ∆β = 2, meaning that for
every α we find 180 normals in a full circle. For better visibility, we
created the figures with larger ∆β angle (smaller number of normals
in a full circle rotation). Figure 6.3e shows a few of created planes
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Figure 6.4: Plots of minimal areas and change in radius along the centerline.
The plots also indicate the desired position of the LAA orifice
(red wedge on graph and the delineation plane in the render).
Knots on centerlines in the renders are placed every 50 indices
and correspond to the ticks of the plots’ x-axis.

and their corresponding normals (the plane-normal pairs are given
in same colors). The rotation angles α and β have been determined
experimentally. The final area a(i) is the minimum area calculated
from the candidate cross-sections. The plot of minimal areas along
the centerline a(i) is illustrated in Figure 6.4. We are interested in the
rate of change of the area and radius – that is why the Figure shows
normalized values on y-axis.

6.3 weighted rising slopes

In this section we propose a novel method for LAA orifice localization.
The method analyzes the calculated areas and proposes the delination
plane between the appendage and the left atrium. As explained earlier,
according to [175] the location of the orifice is defined as the narrowest
part of the neck of the LAA. The neck of the appendage is the part
of the appendage just before the left atrium. Hence, we need to find
the local minima of the highest growth in the cross-sectional area
a(i). The highest growth in cross-sectional areas will be present inside
the left atrium, and the local minima before this highest growth will
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Figure 6.5: Plot of weighted rising slopes for Dataset 2. Local minimum
before the maximum value of w(i) indicates the position of the
LAA orifice (at index i = 148).

be the narrowing of the LAA neck. The growth also has to be the
most dominant one in its surrounding to account for growth of cross-
sectional area due to LAA shape. Our proposed weighted rising slopes
w(i) method represents the rate of change in minimal area a(i) along
the centerline C. Figure 6.5 shows the weighted rising slopes with
orange line.

The weighted rising slopes function is positive only on the intervals
where the minimal area a(i) is increasing because we want to know
the rate of increase of the area along the centerline. On intervals
where a(i) is decreasing the function w(i) is set to zero. Within the
intervals where a(i) is increasing let m(i) be the index of the closest
local minimum before the index i. We calculate w(i) in the following
way:

w(i) =
√
(m(i)− i)2 + (a(m(i))− a(i))2. (6-5)

Peaks of w(i) represent locations along the centerline C where the
areas a(i) had the largest uninterrupted growth. Most often those
locations are inside the LA. The rapid increase in area values after the
centerline enters the LA is visible in a(i) plots (Figure 6.4). We choose
the location of the maximum value of w(i) as the location inside the
left atrium. The last location where w(i) = 0 before the maximum
value of w(i) is the location of the last decrease in cross-sectional area.
That location represents the last narrowing of the anatomy before the
largest growth of the calculated cross-sectional areas (widening of the
anatomy). Hence, the location of the last w(i) = 0 before the location
of the maximum w(i) value is proposed as location of the LAA orifice.
Considering the plot of w(i) on Figure 6.5, the proposed location of
the orifice is at index i = 148. The proposed location is the last location
where w(i) = 0, before the location of max(w(i)) at index i = 182.

The weighted rising slopes formula (6-5) shows that the value of
w(i) increases with the length of uninterrupted growth in area values
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Figure 6.6: Plot of distances between the center points of the proposed LAA

orifice plane and the delineation plane determined by the medical
expert.

along the centerline. Rare cases are possible where, due to the LAA

shape, there will be a sharp rise in calculated areas inside the LAA,
resulting in peaks of w(i). Observing the Figure 6.5 we can see a local
maximum at index i = 54. The location of this local maximum is
inside the LAA. The location at i = 182 is still the global maximum
located inside the atrium and the method will still correctly propose
the orifice location. On the other hand, the values in the radius image
will always be small inside the LAA and large inside the LA. We want
to penalize the peaks occurring inside the LAA to make sure that the
largest peak will be inside the LA. Therefore, we introduce another
discrete function called radius weighted rising slopes, which we denote
as wr(i). We will penalize the values of w(i) inside the LAA by scaling
them with radius values along the centerline. In essence, the radius
value of each voxel is the radius of the maximum inscribed sphere
centered in that voxel, or a distance to the nearest background voxel
in the thresholded image. The radius values are explained in more
detail in section 4.3. Let the r(i) be the radius of the voxel from radius
image at location i. In this case the wr(i) is as follows:

wr(i) = w(i) · r(i). (6-6)

Scaling the w(i) with the radius values along the centerline ensures
that even if the calculated area inside the LAA gets very large, the
resulting weights will still be smaller inside the LAA than inside the
LA. Figure 6.7 shows 3 datasets with calculated rw(i) and proposed
orifice locations.
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Table 6.1: Distance in mm between center points of our proposed location
for LAA orifice and the desired location determined by a medical
expert.

Dataset Distance Dataset Distance

D1 0.00 mm D10 7.54 mm

D2 1.07 mm D11 0.50 mm

D3 5.84 mm D12 0.67 mm

D4 9.70 mm D13 0.57 mm

D5 0.53 mm D14 1.25 mm

D6 0.18 mm D15 0.00 mm

D7 1.62 mm D16 5.52 mm

D8 0.65 mm D17 3.07 mm

D9 4.04 mm

Average distance: 2.51 mm

Median distance: 1.07 mm

6.4 results and discussion

In this section we present the results of the proposed LAA orifice
localization method. The method is validated on 17 CCTA datasets
against the locations of the orifice determined by a medical expert.
Visualizations of the proposed and the desired delineation planes
for several datasets are presented in Figure 6.7. The average distance
between our proposed location and the desired location is 2.51mm.
Median distance in our datasets is 1.07mm. Distances between the
proposed and the desired location are presented in Figure 6.6 and
shown in Table 6.1 on page 145. The results show that in most cases the
desired orifice location is either the location proposed by our method,
or a location very close to our proposed location.

However, in some cases our method makes a larger error. Notably,
these are the datasets D4 and D10 in Table 6.1. We believe that distances
demonstrated by our method are well within the margins of error
the clinicians performing the procedure are used to. Additionally,
the manufacturer’s guidelines for positioning of the occlusion device
provide a lot of room for subjective decisions. For example, with the
WATCHMAN device, the guidelines for positioning and sizing of the
device state that the landing zone is determined in "a plane from the
left coronary artery to a point 1− 2cm distal to the limbus of the left
upper pulmonary vein" [193].
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While this type of guidelines suggests that the margin of error
for positioning is up to a centimeter, we consider the errors on D4

and D10 outside the margin of error. The case with the largest error
(D4) is shown in Figure 6.7 at the botom. The reason of the error
is because our localization algorithm is not suitable for the type of
morphology present in these two appenadages. As we are not aware
of an objective criterion for the determination of the LAA ostium, our
detection algorithm is searching for a narrowing in the neck of the
LAA – proposed by Walker et al. [175] and described in Section 6.3.
The cases like the D4 do not have such narrowing in the neck, but
deeper in the orifice. Thus, our algorithm finds the narrowing deeper
in the appendage, increasing the error.

Nevertheless, even when the method makes an error, we allow
the user to correct the desired plane along the centerline in both
directions. The calculated cross-sectional areas and dimensions along
the centerline provide the user with important information about the
orifice shape and diameters at each point of the centrline.

Finally, The search for the smallest cross-sectional area along the
appendage centerline is not performed along the whole centerline. At
the point where the centerline enters the atrium, the area significantly
increases and varies due to the shape of the atrium and its connected
structures (vessels). In order to avoid the unneeded analysis of the
cross-sections in the atrium (to improve speed and accuracy of the
computation), we define here criteria for choosing the centerline posi-
tion at which we stop the search for the minimal area. We observed
that the maximum radius inside the LA is always at least twice as
large as the radius anywhere inside the LAA. Therefore, we stop the
search for minimal areas when the radius along the centerline becomes
larger than half of the maximum radius in the atrium. The left side of
Figure 6.7 shows the plot of calculated areas a(i) and radius weighted
rising slopes wr(i) for the visualized segmentation.

6.5 conclusion

In this chapter we proposed a novel method for the localization of the
left atrial appendage orifice in the CCTA image. The method works
on the input from the methods proposed in the previous two chapters:
the LAA segmentation result and the detected LAA centerline. The
proposed method detects the narrowing inside the LAA neck and pro-
poses the delineation plane as the location of the orifice. The method
is validated on the 17 ground truth locations determined by a medi-
cal expert. The ground truth locations are determined as delineation
planes between the atrium and the appendage. The localization result
is evaluated as a distance between the proposed plane and the plane
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Figure 6.7: LAA orifice localization results. Rows: (1) No error; (2) Small error;
(3) Medium error; (4) Large Error.
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determined by the expert. The average distance between the ground
truth and our proposed location is 2.54 mm. The proposed method
achieves high localization accuracy indicating the potential in surgical
planning for the LAA closure procedure.
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C O N C L U S I O N S

This thesis developed novel image processing methods for the segmen-
tation and the analysis of the left atrial appendage in cardiovascular
images. The goal was to define a solid methodology and to develop
efficient and robust methods that can support the physician in the pre-
procedural planning of the left atrial appendage occlusion procedure.

Determining the correct measurements of the ostium of the ap-
pendage and determining the correct type of the morphology from
the visualized segmentation result are of crucial importance in these
clinical procedures. The main challenge was in developing reliable and
computationally efficient methods to extract accurate and clinically
relevant information about the appendage from the cardiovascular
CT images. To be acceptable for clinical practice, the approach has to
offer certain control to the medical expert, however without too many
tunable parameters, hence the type of the desired user interactions
may not be neglected.

During the literature review we have determined the anatomical
landmarks which can predict the feasibility of the occlusion procedure
for a certain patient. We had to decide which of the landmarks that
are possible to determine from the pre-procedural CT image are the
most important for the occlusion procedure planning. With the goal
of aiding the physicians in the planning of the procedure, we opted
to develop methods which can offer considerable time savings to the
physicians. Driven by this motivation, we developed three particular
methods, devoted to the problems of the centerline detection of the
left atrial appendage, the segmentation of the appendage and the the
localization of the LAA orifice. Each of the developed methods allows
the physician to easily measure and determine a set of necessary LAA

parameters – parameters which are directly needed for the planning
of the occlusion procedure.

A centerline detection method aids the physician in determining
the length of the appendage and the length of the dominant lobe. The
length of the appendage is an important parameter for choosing the
correct type of the device. Inadequate length of the appendage is an
exclusion criterion for some of the devices: for example, the length
of the appendage smaller than the width of the appendage excludes
the use of a Watchman device for the procedure. The length can be
easily measured from the centerline of the appendage. Currently, in
most pre-procedural planning software suites the physician measures
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the length of the appendage either directly in 2D slices, or from the
manually created centerline. The software often allows the physician
to manually construct the centerline by manually placing the points of
the centerline in the image, which is often subjective and error prone.

In Chapter 4 we introduced a novel left atrial appendage centerline
detection method. The method requires minimal interaction (only two
input parameters). The method detects the centerline by tracking the
voxels with largest radii of maximal inscribed spheres. The tracking
step detects the path from the seed point to the center of the left
atrium. The detected path contains blobs of voxels along the path. We
implemented the extraction step which extracts the centerline from
the detected path using the skeletonization approach and Dijkstra’s
longest shortest path algorithm. The length of the LAA is determined
from the extracted centerline. In order to prove the accuracy of our
method, we have validated the extraction method by measuring the
Hausdorff distance between the centerline created by a medical pro-
fessional and the centerline detected with out method. The validation
demonstrated a small Hausdorff distance of the detected centerline
from the ground truth centerline, indicating a small error and a large
correspondence between the two lines.

Segmentation methods are needed to facilitate determining the type
of the morphology of the appendage (shape). Presence of a certain type
of the morphology is an exclusion criterion for the occlusion procedure
with some devices. However, determining the morphology from a 2D
image is subjective and dependent on the angle of the reconstruction.
Our goal was to develop an objective method which will segment
the appendage in a timely manner with minimal interaction from the
physician.

In Chapter 5 we introduced a novel centerline based left atrial
appendage segmentation method. The proposed method uses the
result of the previous step – the detected centerline – in order to
extract the appendage from the mask image. The main technical
contribution of this chapter is the Decreasing radii segmentation, a
novel region-growing method which grows the initial segmentation
towards the border areas of the anatomy. The proposed method is
robust to the threshold selection and to the leaks which often appear
in thresholded images. We validated the method against the ground
truth segmentations created by two medical experts. The method
demonstrated high Dice overlap against both of the ground truth
segmentations, indicating a possibility of clinical use.

Localization of the orifice is meant to aid the physician in sizing
the occluder device. The term "sizing the device" actually means
choosing the device of the correct diameter size for a given patient.
The devices are available on the market in a set of predefine sizes.
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Manual measurements of the appendage ostium diameter from 2D
images are error prone and subjective.

In Chapter 6 we introduced a novel method for the localization
of the LAA orifice. Our proposed method determines the location of
the orifice by analysing the cross-sectional areas along the centerline.
The orifice is defined as a narrowing in the neck of the appendage.
Our algorithm finds the largest increase in cross-sectional areas when
the centerline enters the left atrium. The location of the last minimal
cross-sectional area before this largest increase is defined as a location
of the orifice. The results of the orifice detection are validated against
the ground truth orifice locations determined by a medical expert. The
distance between our detected locations of the orifice and the locations
determined by a medical expert are small, indicating a possible use
for orifice detection. The detected orifice is represented as a plane
in 3D space delineating the appendage from the left atrium. After
the delineation, the physician can easily measure the minimal and
maximal diameters – the parameters needed for the occluder device
sizing.

In terms of publications, the work presented in this thesis was pub-
lished in two A1 journals. Additionally, the work appeared in the
proceedings of four international conferences. Future work on this
topic will continue in two directions: towards making the segmen-
tation method automatic, and towards LAA analysis in 4D images.
Addition of the time dimension to the analysis will provide additional
information which should enable applications such as detection of the
presence of thrombus in the LAA and modelling of the blood flow in
the LAA , both of which provide important information to physicians.
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dra Pižurica. „Left Atrial Appendage Segmentation from 3D
CCTA Images for Occluder Placement Procedure.” In: Com-
puters in Biology and Medicine 104 (Jan. 2019), pp. 163–174. issn:
0010-4825. doi: 10.1016/j.compbiomed.2018.11.006 (cit. on
pp. 87, 94, 100, 103, 115, 124, 125, 129–131, 137).

[101] Zhi-Jun Liao and Jie-Yu Zhao. „Exact Optimization for a Class
of Second Order Markov Random Field via Graph Cuts.” In:

https://doi.org/10.1016/j.jacc.2017.10.092
https://doi.org/10.1016/j.jacc.2017.10.092
https://doi.org/10.1109/TIP.2008.2004611
https://doi.org/10.1109/TIP.2008.2004611
http://ieeexplore.ieee.org/abstract/document/7334535/
http://ieeexplore.ieee.org/abstract/document/7334535/
http://bib.irb.hr/prikazi-rad?\&rad=901863
http://bib.irb.hr/prikazi-rad?rad=901698
http://bib.irb.hr/prikazi-rad?rad=901698
https://doi.org/10.1016/j.compbiomed.2018.11.006


166 bibliography

2005 International Conference on Machine Learning and Cybernet-
ics. Vol. 9. Aug. 2005, 5512–5516 Vol. 9. doi: 10.1109/ICMLC.
2005.1527918 (cit. on p. 61).
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