Programsko rješenje za sigurnosnu zonu s kontrolom sigurnosnih vrata i uređaja unutar zone

Šubarić, Igor

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:842052

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-10

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET

Sveučilišni studij

PROGRAMSKO RJEŠENJE ZA SIGURNOSNU ZONU S KONTROLOM SIGURNOSNIH VRATA I UREĐAJA UNUTAR ZONE

Diplomski rad

Igor Šubarić

Osijek, 2019.

Obrazac D1: Obrazac za imenovanje Povjerenstva za obranu diplomskog rada

Osijek, 09.12.2019.

Odboru za završne i diplomske ispite

Imenovanje Povjerenstva za obranu diplomskog rada

Ime i prezime studenta:	Igor Šubarić		
Studij, smjer:	Diplomski sveučilišni studij Elektrotehnika		
Mat. br. studenta, godina upisa:	D-1132, 27.09.2019.		
OIB studenta:	59915200308		
Mentor:	Prof.dr.	sc. Dražen Slišković	
Sumentor:			
Sumentor iz tvrtke:	Marko Š	Španović	
Predsjednik Povjerenstva:	Doc.dr.	sc. Damir Filko	
Član Povjerenstva:	Doc.dr.	sc. Emmanuel-Karlo Nyarko	
Naslov diplomskog rada:	Programsko rješenje za sigurnosnu zonu s kontrolom sigurnosnih vrata i uređaja unutar zone		
Znanstvena grana rada:	Automatika (zn. polje temeljne tehničke znanosti)		
Zadatak diplomskog rada:	(sumentor: Marko Španović, Danieli-Systec d.o.o.)		
Prijedlog ocjene pismenog dijela ispita (diplomskog rada):	Izvrstan (5)		
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjena znanja stečenih na fakultetu: 3 bod/boda Postignuti rezultati u odnosu na složenost zadatka: 3 bod/boda Jasnoća pismenog izražavanja: 2 bod/boda Razina samostalnosti: 2 razina		
Datum prijedloga ocjene mentora:	09.12.2019.		
Potpis mentora za predaju konačne verzije	e rada u	Potpis:	
Studentsku službu pri završetku studija:		Datum:	

IZJAVA O ORIGINALNOSTI RADA

Osijek, 06.01.2020.

Ime i prezime studenta:	Igor Šubarić
Studij:	Diplomski sveučilišni studij Elektrotehnika
Mat. br. studenta, godina upisa:	D-1132, 27.09.2019.
Ephorus podudaranje [%]:	5

Ovom izjavom izjavljujem da je rad pod nazivom: Programsko rješenje za sigurnosnu zonu s kontrolom sigurnosnih vrata i uređaja unutar zone

izrađen pod vodstvom mentora Prof.dr.sc. Dražen Slišković

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

Sadržaj

1. UVOD	1
1.1. Zadatak diplomskog rada	1
2. SIEMENSOV SIGURNOSNI DISTRIBUIRANI SUSTAV	2
2.1. Slojevi zaštite	2
2.1.1. Sigurnosni ulazni modul	3
2.1.2. Sigurnosna komunikacijska mreža	3
2.1.3. Sigurnosni PLC	3
2.1.4. Sigurnosni izlazni modul	4
2.2. Prednosti Sigurnosnog PLC sustava	4
2.3. Siemensov sigurnosni distribuirani sustav u SIMATIC Manageru Step 7	4
2.3.1. Karakteristike	6
2.3.2. Hardverske i softverske komponente	6
2.3.3. Komunikacija	8
2.3.4. Programiranje	9
3. OPIS POSTROJENJA KOJE SE OSIGURAVA	12
3.1. Oprema potrebna za realiziranje sigurnosnog distribuiranog sustava	12
3.1.1. Centralna procesorska jedinica 414F – 3 PN/DP	13
3.1.2. Napajanje PS 407 10 A	14
3.1.3. Simatic ET 200SP modul	15
3.1.4. Signalni semafor 8WD42	16
3.1.5. Svjetlosna barijera C4000 Palletizer standard	18
3.1.6. Tipka za zaustavljanje u nuždi / gljiva	19
3.1.7. Sigurnosna brava	20
3.1.8. Moduli digitalnih ulaza i izlaza	21
4. IZRADA SIGURNOSNOG PROGRAMA I PROVJERA RJEŠENJA	22
4.1. Dodavanje hardverske konfiguracije postrojenja	22
4.1.1. Konfiguracija PLC-a	22
4.1.2. Konfiguracija ET200SP modula	24
4.2. Ulazni i izlazni signali	27
4.3. Sigurnosni program	

4.3.1. Dijagram toka funkcionalnosti sigurnosnog programa	29
4.3.2. F-I/O podatkovni blokovi	31
4.3.3. Izrada sigurnosnog programa postrojenja	
4.3.4. Kreiranje sigurnosne grupe i aktivacija sigurnosnog programa	
4.4. Vizualizacija	41
4.4.1. Statusi postrojenja	43
4.4.2. Alarmi postrojenja	48
4.5. Provjera funkcionalnosti izrađenog sigurnosnog programa	52
5. ZAKLJUČAK	54
LITERATURA	55
SAŽETAK	57
ABSTRACT	58
ŽIVOTOPIS	59
PRILOG 1	60
PRILOG 2	61
PRILOG 3	62
PRILOG 4	63
PRILOG 5	64
PRILOG 6	65
PRILOG 7	66

1. UVOD

U današnje vrijeme u automatizacijskim procesima osim uobičajenih zaštitnih sustava javlja se potreba za dodatnim zaštitnim sustavom koji je pouzdaniji, učinkovitiji i sigurniji u odnosu na uobičajene zaštitne sustave. S ciljem da se što više minimizira opasnost po ljude i okoliš te da se smanji vrijeme zastoja automatskog procesa kada se pojavi greška na procesu.

Jedan od načina zaštite automatizacijskih postrojenja koji zahtijevaju veliki stupanj sigurnosti je Siemensov sigurnosni sustav (engl. *Fail-safe system*). Sigurnosni sustavi se koriste za zaštitu ljudi i okoliša koji se nalaze u blizini strojeva koji su dio postrojenja, gdje se sigurno stanje može postići isključivanjem izlaza sigurnosnog sustava. Kako bi se mogao implementirati Siemensov sigurnosni sustav u neko postrojenje također je potreban i programski alat s kojim se programira rad ovog sigurnosnog sustava. Jedan od programa, a koji je i korišten pri izradi ovog diplomskog rada, je Siemensov programski alat SIMATIC Manager Step 7. Kako bi se mogao programirati Siemensov sigurnosni sustav osim programskog alata SIMATIC Manager Step 7, zahtjeva se i dodatna instalacija Siemens distributed safety paketa u SIMATIC Manager Step 7 u kojem se nalaze blokovi pomoću kojih se programira sigurnosni sustav.

U ovom radu je opisan Siemensov sigurnosni distribuirani sustav (engl. *Siemens distributed safety system*). U drugom poglavlju je detaljno opisan Siemensov sigurnosni distribuirani sustav, njegova svojstva i postrojenja gdje je moguća implementacija ovog sigurnosnog sustava. U trećem poglavlju je opisano postrojenje na koje je implementiran sigurnosni distribuirani sustav kao i opis dijelova postrojenja. Kroz četvrto poglavlje je detaljno opisana izrada programa u alatu SIMATIC Manager Step 7 kao i provjera ispravnosti programa na postrojenju. Peto poglavlje predstavlja zaključak i osvrt na cjelokupni diplomski rad.

1.1. Zadatak diplomskog rada

Treba izraditi program za kontrolu pristupa sigurnosnoj zoni. Program se treba sastojati od dijela koji kontrolira pristup sigurnosnoj zoni, dijela koji uređaje unutar zone postavlja u stanje sigurno za pristup (imobilizacija) i otključavanja sigurnosnih vrata, te nakon zatvaranja sigurnosnih vrata vraća uređaje unutar zone u stanje spremno za rad. Diplomski zadatak uključuje razvoj softvera u alatu Step7 te vizualizaciju u alatu WinCC.

2. SIEMENSOV SIGURNOSNI DISTRIBUIRANI SUSTAV

Siemensov sigurnosni distribuirani sustav (engl. *Siemens distributed safety system*) koristi Sigurnosni PLC za upravljanje procesima koji isključenjem procesa može odmah postići sigurnosno stanje. Što znači da Siemensov sigurnosni distribuirani sustav provjerava procese pri kojem trenutno isključenje procesa ne ugrožava okoliš i ljude [1].

Sigurnosni PLC kombinira funkcionalnost upravljačkog sustava sa sigurnosnim sustavom na jednoj upravljačkoj platformi, čime se omogućuje znatno smanjenje troškova održavanja postrojenja. Prednost kombiniranja je mogućnost korištenja jednog programskog jezika za logiku upravljačkih i sigurnosnih krugova. Sigurnosni distribuirani sustavi koji koriste Sigurnosne PLCove daju višestruke slojeve zaštite koje rade zajedno kako bi osigurale siguran sustav upravljanja. Inženjeri iz Siemensa stvaranjem koncepta integracije višestrukih slojeva zaštite standardnog PLC-a pod nazivom "Slojevi zaštite", koji su nekada bili dostupni samo u sigurnosnim relejnim sustavima postigli su razinu zaštite potrebnu da se dobije SIL 3 klasa sigurnosti. Slojevi se sastoje od standardnih dijelova PLC-a, od kojih svaki sloj radi zasebno, ali i zajedno s ostalim slojevima, kako bi se osigurala zaštita da se greške uoče i otklone prije nego što prouzroče štetu. Sigurnosni PLC-i sada koriste pouzdano upravljanje i slojeve zaštite kako bi zadovoljili visoke razine pouzdanosti koje zahtijevaju trenutni standardi sigurnosti [6].

2.1. Slojevi zaštite

Slojevi zaštite u Siemensovom sigurnosnom PLC sustavu sastoje se od četiri dijela : sigurnosnog ulaznog modula, sigurnosne komunikacijske mreže, Sigurnosnog PLC-a i sigurnosnog izlaznog modula (Slika 2.1.) [6].

Slika 2.1. Integracija višestrukih slojeva zaštite [6].

2.1.1. Sigurnosni ulazni modul

Prvi sloj zaštite nalazi se u sigurnosnom ulaznom modulu koji je preuzeo zadatak kontrole pouzdanog nadzora i zaštite. Ovi moduli se prebacuju na siguran način rada nakon otkrivanja kvara neovisno o Sigurnosnom PLC-u i ne oslanjaju se na Sigurnosni PLC ili mrežu za lokalno rukovanje pogreškama. Sigurnosni ulazni moduli obavljaju funkcije koje su prethodno odrađivane samo u sigurnosnim relejnim sustavima. Svaki sigurnosni ulazni modul obavlja nekoliko zadataka koji osiguravaju ispravan nadzor sigurnih ulaza [6]:

- Testiranje signalnog vodiča ulazni modul ima ugrađeno samotestiranje, na način da generira impulsne signale koji se koriste za osiguranje valjanog praćenja spojenih ulaznih uređaja,
- Inteligentni moduli pružaju lokalne zaštitne radnje zaustavljanje i resetiranje,
- Analiza odstupanja i vremensko ograničenje, kako bi se osigurale reakcije na pogrešne ulazne vrijednosti.

2.1.2. Sigurnosna komunikacijska mreža

Sigurnosna komunikacijska mreža (engl. *PROFISafe*) osigurava pouzdanost kako bi se osiguralo da podaci koji se prenose između slojeva dolaze ispravno do odgovarajućeg sloja i ispravno se interpretiraju. Glavne značajke sigurnosne komunikacijske mreže su otkrivanje i otklanjanje pogrešaka [6].

2.1.3. Sigurnosni PLC

Središnji sloj zaštite je Sigurnosni PLC koji stvara redundantnu provjeru digitalnih ulaza i sigurnosnih naredbi za digitalne izlaze. Kako bi se osigurala iznimna razina pouzdanosti, Sigurnosni PLC je dizajniran za otkrivanje pojedinačnih pogrešaka u izvršavanju programa i hardvera dok se izvršava logika programa. Da bi se to postiglo, u sigurnosnom programu, Sigurnosni PLC provodi automatske sigurnosne provjere i veze u dodatnim redundantnim sigurnosnim blokovima za prepoznavanje pogrešaka. Ovi blokovi stvaraju vremenski ograničenu logiku koja kontinuirano prati softverske i hardverske pogreške. Kada dođe do smetnji, održavaju sigurnosni sustav u sigurnosnom stanju ili ga prebacuju u sigurnosno stanje, dovodeći Sigurnosni PLC do sigurnog zaustavljanja ili šaljući signale za isključivanje drugim slojevima, prije nego pogreške u programu utječu na osiguravani stroj u postrojenju [6].

2.1.4. Sigurnosni izlazni modul

Krajnji sloj zaštite je izlazni modul koji periodički prati svoje redundantne funkcije kako bi osigurao da će biti u stanju ukloniti napajanje kada je zadana naredba za isključivanje. Kao i kod sigurnosnog ulaznog modula, ovaj modul pruža lokalnu zaštitu u slučaju bilo kakve unutarnje pogreške modula ili greške u ožičenju. Sigurnosni izlazni modul će napojiti svoje izlaze samo ako su svi ostali slojevi izvršili svoju funkciju bez greške i poslali naredbu za napajanjem izlaza sigurnosnog izlaznog modula [6].

2.2. Prednosti Sigurnosnog PLC sustava

Imajući u vidu da se za sigurnosne funkcije brine operacijski sustav na Sigurnosnom PLC-u, programer vrlo jednostavno može napisati sigurnosni program u relejnoj logici (engl. Ladder Logic), te se mogu iskoristiti prednosti koje nudi Sigurnosni PLC sustav. Neke od prednosti Sigurnosnog PLC sustava su [6]:

- Rukovanje standardnim i sigurnosnim funkcijama omogućuje brzo rješavanje problema u sigurnosnom sustavu, čime se značajno smanjuju zastoji,
- Zahvaljujući integraciji operativnih informacija i podataka o lokaciji iz svih sigurnosno povezanih ulaza / izlaza, operater može brzo locirati probleme,
- Fleksibilna topologija pruža mogućnost postavljanja sigurnosnih ulaza i izlaza gdje god je to potrebno duž PROFIBUS/PROFINET mreže.

2.3. Siemensov sigurnosni distribuirani sustav u SIMATIC Manageru Step 7

Siemensovi sigurnosni distribuirani sustavi (engl. *Siemens distributed safety systems*) se uglavnom koriste za zaštitu strojeva i ljudi koji se nalaze u neposrednoj blizini strojeva (oprema za rad s alatom i obradu strojevima) i u industriji za upravljanje procesima (provedba zaštitnih funkcija za zaštitnu instrumentaciju i kontrolnu opremu i za plamenike), gdje se sigurno stanje može postići isključivanjem izlaza sigurnosnog sustava. Primjeri integracije sigurnosnog distribuiranog sustava u automatizaciji postrojenja prikazane su prema slici 2.2. na kojoj su vidljivi primjeri tri sigurnosna sustava kojima upravljaju tri različite procesorske jedinice preko Profibus ili Profinet komunikacije. U Siemensovom programskom alatu SIMATIC Manager Step 7 postoji više vrsta programskih jezika u kojima se može programirati, a to su [1,7]:

- LAD-Dijagrami relejne logike (engl. Ladder Logic),
- FBD-Funkcijski blokovski dijagram (engl. Function Block Diagram),

- STL-Lista naredbi (engl. Statement List),
- SCL-Strukturirani upravljački jezik (engl. Stuctured Control Language),
- GRAPH-Sekvencijalno upravljanje (engl. Sequence Control),

s tim da se Siemensov sigurnosni distribuirani sustav može programirati samo u dva programska jezika, LAD ili FBD [1,2].

Slika 2.2. Primjer integracije Siemensovog sigurnosnog distribuiranog sustava [1].

2.3.1. Karakteristike

Siemensov sigurnosni distribuirani sustav integrira se u automatizacijske sustave S7-300 i S7-400, ovisno o vrsti postrojenja koje se štiti. Omogućava izvođenje standardnih upravljačkih i zaštitnih funkcija na istom sustavu (standardni sustavi s mogućnošću zaštite od kvarova, čime se eliminira potreba za dodatnim sigurnosnim rješenjima), te se prilagođava raznim zahtjevima pomoću širokog spektra sigurnosnih ulaza i izlaza (engl. *Fail-safe I/O*). Detaljnije karakteristike sustava su dane u tablici 2.1. [1].

Dostupne klase sigurnosti	SIL3/Cat.4/PLe		
Dostupnost sustava otpornog na kvarove	Ne		
Povezivanje sigurnosnih ulaza i izlaza (I/O)	 Centralno Distribuirano putem PROFIBAS DP Distribuirano putem PROFINET IO 		
Minimalno vrijeme odziva (ovisno o	50 ms		
konfiguraciji)			
Uobičajeno vrijeme odziva	100 - 200 ms		
Izrada programa	LAD ili FBD programski jezik u Simatic S7		
	• Master - master		
	• Master - I - slave		
	• $I - slave - I - slave$		
Komunikacija	• $I - slave - slave$		
	• Industrial ethernet (industrijski internet)		
	• WLAN		
Najčešća područja primjene	Zaštita radnika i strojeva u postrojenju		
	Upravljanje plamenicima		

Tablica 2.1. Karakteristike	Siemensovog	sigurnosnog	distribuiranog	sustava [1]
	Siemensorog	signinosnog	usinoununog	susiava [1].

2.3.2. Hardverske i softverske komponente

Da bi se moglo uspješno instalirati i upravljati Siemensovim sigurnosnim distribuiranim sustavom moraju se zadovoljiti hardverske i softverske komponente (Slika 2.3.) koje su potrebne da bi sam sustav bio funkcionalan, a to su [1]:

- CPU-kompatibilan sa sigurnosnim programom,
- Siemensov distribuirani sigurnosni programski paket,
- Profibus DP ili Profinet IO,

• Moduli sa sigurnosnim ulazima i izlazima.

Slika 2.3. Hardverske i softverske komponente potrebne za konfiguraciju i rad sustava [1].

Hardver

Popis hardverskih komponenata kompatibilnih sa Siemensovim sigurnosnim distribuiranim sustavom za S7-300 i S7-400 automatizacijske sustave dani su u tablici 2.2. [1, 2].

Tablica 2.2. Mogućnost integracije za S7-300 i S7-400 sustave [1, 2, 8].

Centralna procesorska jedinica - CPU	Sigurnosni moduli (F - I/O)
• IM 151-7 F-CPU	• ET 200S
• IM 151-8F PN/DP CPU	• ET 200pro
• CPU 315F-2 DP	• ET 200eco
• CPU 315F-2 PN/DP	• ET 200M
• CPU 317F-2 DP	• S7-300 F-SMs
• CPU 317F-2 PN/DP	• ET 200SP
• CPU 319F-3 PN/DP	
• CPU 414F-3 PN/DP	
• CPU 416F-2	
• CPU 416F-3 PN/DP	

Softver

Siemensov distribuirani sigurnosni programski paket se sastoji od alata za konfiguraciju, programiranje i biblioteke sa sigurnosnim blokovima koji su potrebni za programiranje Siemensovog sigurnosnog distribuiranog sustava. Uz Siemensov sigurnosni distribuirani paket potreban je Siemensov programski alat SIMATIC Manager Step 7 na računalu za programiranje i konfiguraciju PLC-a [1].

2.3.3. Komunikacija

Komunikacija u Siemensovom sigurnosnom distribuiranom sustavu se ostvaruje pomoću Profibus DP ili Profinet IO komunikacijskog protokola. Izabrana komunikacija koja je korištena pri izradi sigurnosnog programa na postrojenju je ostvarena pomoću Profinet IO komunikacijskog protokola (vidljivo u poglavlju 4) [1].

Profibus DP komunikacijski protokol

PROFIBUS DP komunikacijski protokol je projektiran kako bi zadovoljio potrebe brze komunikacije između distribuiranih sustava u automatiziranim postrojenjima. PROFIBUS DP zasniva se na RS-485 standardu koji definira korištenje oklopljenog, upletenog, dvožilnog kabela (Slika 2.4.). Brzine prijenosa se kreću od 9.6Kbit/s do 12Mbit/s, pri čemu se ta brzina odnosi na sve uređaje koji su priključeni na komunikacijsku sabirnicu. Povezivanje uređaja na profibus se ostvaruje pomoću 9-pinskog sub-D konektora [4].

Slika 2.4. Izgled profibus DP kabela [3].

Profinet IO komunikacija

Profinet IO komunikacija se koristi u industrijskoj automatizaciji za integraciju distribuiranih jedinica na Ethernet mrežu. Podrazumijeva komunikaciju u stvarnom vremenu te podržava sljedeće topologije: zvijezdu, stablo, prsten i liniju (Slika 2.5.). U Profinet IO komunikaciji koriste se tri tipa uređaja [5]:

- IO kontroleri-upravljanje IO uređajima,
- IO uređaj za nadzor-služi za puštanje u pogon ili podešavanje parametara IO uređaja,
- IO uređaj-periferni uređaj koji dorađuje signale i prenosi ih IO kontroleru ili IO uređaju za nadzor.

Profinet IO koristi cikličku i acikličku komunikaciju. Cikličku komunikaciju koristi za razmjenu procesnih podataka između IO kontrolera i IO uređaja, a acikličku koristi za konfiguraciju i parametriranje IO uređaja te za razmjenu dijagnostičkih podataka [5].

Slika 2.5. Topologije Profinet IO komunikacije [5].

2.3.4. Programiranje

Sigurnosni program sastoji se od sigurnosnih blokova koji se odabiru iz F-biblioteke ili kreiraju pomoću F-FBD ili F-LAD programskih jezika i sigurnosnih blokova koji se automatski dodaju pri sastavljanju sigurnosnog programa. Mjere kontrole pogrešaka automatski se dodaju u sigurnosni program koji se kreira, a izvode se i dodatni sigurnosni testovi [2].

Struktura programa

Struktura Siemensovog sigurnosnog distribuiranog programa (Slika 2.6.) se sastoji od jedne ili dvije sigurnosne skupine (engl. *F-runtime groups*), a to su [2]:

- F-blokovi koje kreira korisnik u LAD ili FBD programskom jeziku ili su dodani iz biblioteke sa sigurnosnim blokovima (Distributed Safety F-library (V1)),
- F-blokovi koji su automatski dodani.

Slika 2.6. Programska struktura sigurnosnog distribuiranog sustava [2].

Sigurnosna grupa

Kako bi se olakšalo upravljanje, sigurnosni program sastoji se od jedne ili dvije sigurnosne grupe (engl. *F-runtime groups*). Grupa uključuje logičku konstrukciju nekoliko povezanih F-blokova koji se formiraju interno pomoću F-sustava. Sigurnosna grupa se sastoji od [2]:

- Jednog F-CALL bloka,
- Jednog F-PB programskog bloka,
- Dodatnog F-FB ili F-FC-a koji se programira pomoću F-FBD ili F-LAD-a, prema potrebi,
- Jedan ili više F-DB-a, prema potrebi,
- F-I/O DB-a,
- F blokova iz biblioteke sa sigurnosnim blokovima (Distributed Safety F-library (V1)),
- F blokova koje kreira korisnik,
- Sustavnih blokova F-SB,
- Automatski generiranih F blokova.

3. OPIS POSTROJENJA KOJE SE OSIGURAVA

Za implementaciju sigurnosnog programa korišten je simulator postrojenja (vidljivo u PRILOGU 1). Simulator je umanjena verzija stvarnog postrojenja, koji se sastoji od opreme za samu realizaciju sigurnosnog programa. Zbog malih dimenzija simulatora postrojenja oprema je međusobno zbijena, te daje pogrešnu percepciju kako stvarno postrojenje izgleda, te zbog toga na slici 3.1. prikazan je primjer razmještaja opreme u stvarnom postrojenju.

Slika 3.1. Primjer stvarnog razmještaja sigurnosne opreme u postrojenju [25].

3.1. Oprema potrebna za realiziranje sigurnosnog distribuiranog sustava

Kako bi se mogao implementirati Siemensov sigurnosni distribuirani sustav korištena je sljedeća oprema: centralna procesorska jedinica 414F – 3 PN/DP (Slika 3.2.), napajanje PS 407 10 A (Slika 3.3.), I/O modul SIMATIC ET 200SP (Slika 3.4.), signalni semafor 8WD42 (Slika 3.5.), svjetlosna barijera C4000 Palletizer standard (Slika 3.6.), tipke za zaustavljanje u nuždi (gljiva) (Slika 3.8.), sigurnosna brava (Slika 3.9.), te moduli digitalnih ulaza i izlaza (Slika 3.10.) [9, 10, 11, 12, 14, 16, 18, 19, 20].

3.1.1. Centralna procesorska jedinica 414F – 3 PN/DP

SIMATIC S7-400, CPU414F-3 PN / DP (Slika 3.2.) je središnja procesorska jedinica s radnom memorijom 4 MB (2 MB program, 2 MB podaci) i tri sučelja (detaljnije karakteristike dane su u tablici 3.1.). Središnja procesorska jedinica provodi automatske sigurnosne provjere i veze u dodatnim redundantnim sigurnosnim blokovima za prepoznavanje pogrešaka. Prilikom smetnji koje se mogu dogoditi, dovođe Sigurnosni PLC do sigurnog zaustavljanja, odnosno isključuju postrojenje [9]:

- Sučelje MPI /PROFIBUS DP 12 Mbit / s, (X1),
- Sučelje Ethernet / PROFINET, (X5),
- Sučelje PROFIBUS DP sa IF 964-DP, (IF1).

Slika 3.2. Središnja procesorska jedinica sigurnosnog PLC-a [9].

Oznaka proizvoda		CPU 414F-3 PN/DP			
Serijski broj		6ES7414 – 3FM	07 – 0AB0		
Verzija			7.0.2		
Potreban programski alat		STEP 7 V5.5 ili viša verzija sa HSP 262			
Napajanje		24 V istosmjerno	preko napajanja sustava		
Ulazna struja	Iz sabirnice	Iz sabirnice 24 V DC		300 mA; 150 mA po DP sučelju	
	Iz sučelja 5	V DC	90 mA; svako D	90 mA; svako DP sučelje	
Gubici	Prosječni	Prosječni		6.5 W	
	Maksimalni		8 W		
Tip memorije)		RAM		
		MPI/PROFIBUS DP	PROFINET	PROFIBUS DP sa IF	
				964-DP	
	Broj utora	1	2	1	
Sučelie	Naziv utora	RS 485 / PROFIBUS	Ethernet RJ45	RS 485 / PROFIBUS	
Suceije		+ MPI			
	Broj mogućih	MPI: 32,	64	16	
	priključaka	DP: 16			

Tablica 3.1. *Karakteristike središnje procesorske jedinice CPU 414F-3 PN / DP* [9].

3.1.2. Napajanje PS 407 10 A

Za napajanje postrojenja korišteno je napajanje PS 407 10A tvrtke Siemens (Slika 3.3.). Samo napajanje je relativno malih dimenzija i ima širok naponski i frekvencijski opseg. Detaljnije karakteristike napajanja dane su u tablici 3.2. [10].

Slika 3.3. Napajanje PS 407 10 A [10].

Tablica 3.2. Karakteristike napajanja PS 407 10A [10].		
Ulazni napon	120-230 V DC (88 V min 300 V maks.),	
	120-230 V AC (85 V min 264 V maks.)	
Ulazna struja	1 A (ulazni napon 120 V DC),	
	0.5 A (ulazni napon 230 V DC),	
	0.9 A (ulazni napon 120 V AC),	
	0.5 A (ulazni napon 230 V AC)	
Izlazni napon	5 V DC,	
	24 V DC	
Izlazna struja	10 A (izlazni napon 5 V DC),	
	1 A (izlazni napon 24 V DC)	
Radna frekvencija	50 – 60 Hz (47 Hz min. – 63 Hz maks.)	
Ulazna snaga	95 W	
Prosječni gubici	20 W	
Radna temperatura	0 – 60 °C	

3.1.3. Simatic ET 200SP modul

I/O modul ET 200SP (Slika 3.4.) je skalabilan i fleksibilan distribuirani sustav za povezivanje ulaznih i izlaznih procesnih signala s kontrolerom više upravljačke razine preko

fieldbus protokola. SIMATIC ET 200SP s procesorskom jedinicom omogućuje inteligentnu pred obradu signala kako bi olakšao rad kontrolera više upravljačke razine. Pogodan je za implementaciju u automatizirane sustave u kojima se koriste sigurnosni procesori, odnosno u sigurnosne sustave. SIMATIC ET 200SP sastoji se od [11, 12]:

- Centralne procesorske jedinice,
- Do 64 ulazna/izlazna modula,
- Server modula.

Slika 3.4. Simatic ET 200SP [13].

3.1.4. Signalni semafor 8WD42

Signalni semafor 8WD42 (Slika 3.5.) koristi se u automatizacijskim procesima za praćenje složenih operacija ili kao vizualni ili kao zvučni uređaj za upozoravanje u izvanrednim situacijama, npr. za prikaz pojedinih dijelova faze montaže. Signalni semafor 8WD42 može se izravno spojiti na sustav sabirnice aktuator-senzor sučelja preko adapterskog elementa koji se može integrirati u stup. Rezultat toga je smanjenje ožičenja. Na signalni semafor 8WD42 se mogu postaviti do četiri signalna elementa pomoću adapterskog elementa. Prednosti signalnog semafora 8WD42 su [14]:

- Izbor različitih svjetlosnih i akustičnih elemenata s različitim funkcijama: kontinuirano svjetlo, treptajuće svjetlo i zujalo,
- Raznolikost boja: crvena, žuta, zelena, bijela ili plava,
- Optimizirano osvjetljenje kroz poboljšanu tehnologiju prizme,
- Zvučni elementi mogu se podešavati u tonu i glasnoći,
- Vrlo otporan na udarce i vibracije,
- Jednostavno spajanje i održavanje,
- Sposobnost komunikacije putem povezivanja na aktuator-senzor sučelje.

Detaljnije karakteristike signalnog semafora dane su z tablici 3.3..

Slika 3.5. Signalni semafor [15].

Područje primjene	Strojevi, instalacije i automatizirani procesi
Nazivni napon	24 – 230 V AC/DC
Promjer	50 mm
Broj optičkih modula	Do 4 modula
Boje optičkih modula	Crvena, zelena, žuta, bijela i plava
Vrste optičkih modula	Žarulje sa žarnom niti i LED žarulje
Stupanj zaštite	IP54
Zvučni modul (zujalica)	kontinuiranog ili pulsirajućeg zvuka 85 dB

Tablica 3.3. Karakteristike signalnog semafora 8WD42 [16].

3.1.5. Svjetlosna barijera C4000 Palletizer standard

Svjetlosna barijera C4000 palletizer standard (Slika 3.6.) je elektro-osjetljiva zaštitna oprema koja ima područje primjene za zaštitu opasnog područja i zaštitu pristupa. Na samom postrojenju imati će ulogu zaštitnog uređaja koji isključuje postrojenje i postavlja ga u sigurno stanje sve dok se osoba nalazi u opasanom području tj. u području koje pokrivaju laserske zrake svjetlosne barijere [18].

Slika 3.6. Svjetlosna barijera C4000 Palletizer standard [17].

Svjetlosna barijera sastoji se od pošiljatelja i prijemnika (Slika 3.7.). Između njih je zaštitno polje, definirano kao duljina zaštitnog polja i širina zaštitnog polja. Visina konstrukcije određuje duljinu zaštitnog polja sustava. Širina zaštitnog polja je izvedena iz dimenzije putanje svjetla između pošiljatelja i primatelja, koja ne smije prelaziti maksimalnu nazivnu širinu zaštitnog polja (detaljnije karakteristike dane su u tablici 3.4.). Pošiljatelj i primatelj se automatski sinkroniziraju optički, a električna veza između njih nije potrebna. Svi optički, elektronički dijelovi i sklopovi su smješteni u tankom i krutom kućištu. Svjetlosna barijera će ispravno raditi kao zaštitni uređaj samo ako su ispunjeni sljedeći uvjeti [18]:

• Upravljanje strojem mora biti električno,

- Mora biti moguće postići sigurno stanje na stroju u bilo kojem trenutku,
- Odašiljač i prijamnik moraju biti postavljeni tako da su predmeti koji ulaze u područje opasnosti sigurno identificirani,
- Gumb za ponovno pokretanje mora biti postavljen izvan opasnog područja tako da ga ne može dotaknuti osoba koja radi unutar opasnog područja,
- Prilikom pokretanja gumba za resetiranje, rukovatelj mora imati potpuno vizualno upravljanje opasnim područjem.

Slika 3.7. Pošiljatelj i prijamnik svjetlosne barijere [18].

Duljina zaštitnog polja	0.75 – 1.8 m
Širina zaštitnog polja	0.5 – 19 m
Razina sigurnosti	SIL3 (IEC 61508), SILCL3 (IEC 62061)
Stupanj zaštite	IP65
Nazivni napon napajanja	19.2 – 28.8 V DC
Sinkronizacija	Optička
Temperatura rada	-25 do +70 °C
Valna duljina pošiljatelja	950 nm
Vrijeme odziva primatelja	\leq 94 ms

Tablica 3.4. Karakteristike svjetlosne barijere [18].

3.1.6. Tipka za zaustavljanje u nuždi / gljiva

Tipka za zaustavljanje u nuždi (tzv. gljiva) (Slika 3.8.) koristi se za sigurnosno prekidanje strujnih krugova, odnosno za prekid napajanja uređaja koje se nalaze u postrojenju. Gljiva je malih dimenzija, vrlo visokog stupnja zaštite IP 69 te je izrađena od plastike [19].

Slika 3.8. Tipka za zaustavljanje u nuždi [20].

3.1.7. Sigurnosna brava

Sigurnosna brava (Slika 3.9.) je prekidač sa solenoidom i RFID tehnologijom (engl. *Radio-frequency identification technology*) koja je projektirana za kontrolu vrata, odnosno za zaštitu ljudi u postrojenju koje se osigurava. Brava je relativno malih dimenzija i izrađena je od metala. Detaljnije karakteristike sigurnosne brave dane su u tablici 3.5. [21].

Slika 3.9. Sigurnosna brava.

Napon napajanja	24 V DC, SELV
Struja	 Min. 40 mA Sa uključenim solenoidom 0.4 A Sa uključenim solenoidom i svim izlazima 1.2 A
Razina sigurnosti	SIL 3
Temperatura rada	-20 do + 50 °C
Vrijeme paljenja	2 s
Zaštita od kratkog spoja	DA
Prekostrujna zaštita	DA
Mehanička izdržljivost	1 milijun ponavljanja

Tablica 3.5. Karakteristike sigurnosne brave [21].

3.1.8. Moduli digitalnih ulaza i izlaza

Moduli koji su korišteni na postrojenju su: četiri modula digitalnih ulaza (DI 8x24VDC), dva modula digitalnih izlaza (DQ 8x24VDC/0.5A) i jedan modul digitalnih izlaza (DQ 4x24VDC/2A) (Slika 3.10.) [22, 23, 24].

Slika 3.10. Moduli digitalnih ulaza i izlaza [22, 23, 24].

4. IZRADA SIGURNOSNOG PROGRAMA I PROVJERA RJEŠENJA

U ovom poglavlju detaljno je opisan postupak dodavanja hardverske konfiguracije postrojenja, izrada sigurnosnog programa u SIMATIC Manageru Step 7 te njegova provjera na postrojenju, također napravljena je vizualizacija u WinCC programskom alatu.

4.1. Dodavanje hardverske konfiguracije postrojenja

Kako bi se mogla uspostaviti veza između računala i PLC-a te uređaja koji su spojeni na PLC, potrebno je dodati hardversku konfiguraciju postrojenja. Hardverska konfiguracija postrojenja se dodaje otvaranjem izbornika HW Config koji se nalazi u programskom alatu SIMATIC Manager Step 7. Cjelokupna konfiguracija postrojenja koja je potrebna za provjeru rada postrojenja sastoji se od PLC-a, Profinet IO komunikacije i ET200SP modula s ulaznim i izlaznim digitalnim karticama (Slika 4.1.).

(0) UR2		
1	PS 407 10A	
3	DPU 414F-3 PN/DP	
IF1		
X1	MPI/DP	
X5	PN-IO	Ethernet(1): PROFINE FIO system (100)
X5 P1 R	Port 1	
X5 P2 R	Port2	
5		
6		
7		(1) IM155
8		
9		

Slika 4.1. Hardverska konfiguracija postrojenja.

4.1.1. Konfiguracija PLC-a

Konfiguracija PLC-a (Slika 4.2.) sastoji se od postolja UR2, napajanja PS 407 10A i CPU-a 414F-3 PN/DP (karakteristike komponenta opisane su u poglavlju 3). Kako bi se mogao implementirati sigurnosni program na PLC i ostvariti pravilan rad sigurnosnog programa potrebno je konfigurirati CPU samog PLC-a (HW Config > desni klik na CPU 414F-3 PN/DP > Object Properties > Protections) tako što se označi Read/write-protection te upiše lozinka za CPU-u PLC-a i postavi kvačica da CPU sadrži sigurnosni program (engl. *CPU contains safety program*), (Slika 4.3.). Nakon postavke CPU-a dodaje se komunikacija, koja je potrebna da bi se

PLC mogao povezati sa ET200SP modulom, na kojoj se nalaze ulazne i izlazne digitalne kartice (HW Config > desni klik na PN-IO > Insert PROFINET IO System > New > OK), (Slika 4.4.). Nakon ovih postupaka konfiguracija PLC-a i komunikacije je uspješno postavljena.

(0) UR2		
1	PS 407 10A	-
3	CPU 414F-3 PN/DP	
IF1		
X1	MPI/DP	=
X5	PN-IO	-
X5 P1 R	Port 1	
X5 P2 R	Port2	
5		
6		
7		_
<u>Q</u>		T.

Slika 4.2. Konfiguracija Sigurnosnog PLC-a.

Properties - CPU 414F-3 PN/DP - (R0/S3)
General Startup Synchronous Cycle Interrupts Cycle/Clock Memory Retentive Memory Memory Interrupts Time-of-Day Interrupts Cyclic Interrupts Diagnostics/Clock Protection F Parameters Web
Protection level [•] 1: Access protection for F CPU or keyswitch setting [•] Can be bypassed with password [•] 2: Write-protection [•] 3: Read/write-protection Password: [•] ******* Reenter password: [•] Increased password security CPU contains safety program
OK Cancel Help

Slika 4.3. Postavke CPU-a Sigurnosnog PLC-a.

Properties - Ethernet interface PN-IO (R0/S3.5)	×
General Parameters	
IP address: 192.168.100.91 Subnet mask: 255.255.255.0	Gateway C Do not use router C Use router Address:
not networked Ethernet(1)	New Properties Delete
ОК	Cancel Help

Slika 4.4. Postavke PROFINET IO komunikacije.

4.1.2. Konfiguracija ET200SP modula

Nakon postavljanja konfiguracije PLC-a i komunikacije preostalo je još konfigurirati ET200SP modul (Slika 4.5.). Konfiguracija ET200SP modula sastoji se od jedne standardne ulazne, dvije standardne izlazne, tri safety ulazne i jedne safety izlazne digitalne kartice (Slika 4.6.). Nakon što se modul postavi na PROFINET IO komunikaciju postavlja se IP adresa ET200SP modula (Slika 4.7.).

Slika 4.5. ET200SP modul.

	(1) IM155-6XPNXSTV4.1						
Slot	🚺 Module	Order number	Address	Q Address	Diagnostic Address	Comment	Access
0	🚡 IM155-6XPNXSTV4.1	6ES7 155-6AU01-0BN0			8184*		Full
X7	I FNHO				8183*		Full
X1 P1 R	🛽 Port 1 RJ45	6ES7193-6AR00-0AA0			8186*		Full
X1 P2 R	🛿 Port 2 RJ45	6ES7193-6AR00-0AA0			8185*		Full
1	DI8 x 24VDC ST V0.0	6ES7131-6BF01-0BA0	0.00.7				Full
2	DQ8 x 24VDC/0.5A ST V0.0	6ES7132-6BF01-0BA0		0.00.7			Full
3	DQ8 x 24VDC/0.5A ST V0.0	6ES7132-6BF01-0BA0		1.01.7			Full
4	F-DI 8x24VDC HF	6ES7136-6BA00-0CA0	30003005	30003003			Full
5	F-DI 8x24VDC HF	6ES7136-6BA00-0CA0	30063011	30063009			Full
6	F-DI 8x24VDC HF	6ES7136-6BA00-0CA0	30123017	30123015			Full
7	F-DQ 4x24VDC/2A PM HF	6ES7136-6DB00-0CA0	30183022	30183022			Full
8	Server module V1.1	6ES7 193-6PA00-0AA0			8182*		Full
9							

Slika 4.6. Konfiguracija ET200SP modula.

Properties - Ethernet interface IM155-6PN-ST-V4.1	X
General Parameters	
IP address: 192.168.100.140 Subnet mask: 255.255.255.0	Gateway C Do not use router Address:
Subnet:	
Ethernet(1)	New
	Properties
	Delete
ОК	Cancel Help

Slika 4.7. Postavke IP adrese komunikacije.

Nakon postavljanja ET200SP modula preostaje još postaviti ulazne i izlazne digitalne kartice koje se nalaze na modulu. Bitna napomena je da se mora poštovati stvarni fizički redoslijed kartica i u samoj konfiguraciji jer u suprotnom PLC će slati obavijest o grešci. Nakon što se pravilno postavi redoslijed ulaznih i izlaznih digitalnih kartica postavlja se adresa svake kartice (HW Config > desni klik na željenu karticu > Object Properties > Addresses), (Slika 4.8.,

4.9.). Adrese kartica se nalaze u električnoj shemi postrojenja (vidljivo u PRILOGU 3, 4, 5, 6, 7).

Properties - DI8 x 24VDC ST V0.0 - (R-/S1)	83	Properties - F-DI 8	8x24VDC HF - (R-/S4	1)		
General Addresses Identification Parameters		General Address	ses Identification P	arameters		
Inputs Start 0 .0 Process Image: End: 0 .7 OB1 PI		Start End:	3000	Process image: OB1 PI	Hardware intern. OB	pttriggers:
☐ Value Status		Outputs Start End:	3000	Process image: OB1 PI 💽		
OK Cancel	Help	ОК			Cancel	Help

Slika 4.8. Sučelje standardne kartice.

Slika 4.9. Sučelje safety kartice.

Help

Nakon postavljanja adresa kartica izvršavaju se dodatne postavke safety kartica, a to su (Slika 4.10.):

- Postavke F-parametara (engl. *F- parameters*),
- Postavke kartica (engl. *Module parameters*), •
- Postavke potencijalne grupe (engl. Potential group). •

	Value
Parameters	
F parameters	2000: CDU 414E 2 DNI/DD
E Target Address	2000. CPO 414P-3 PN/DP
E Monitoring time (ms)	150
Module parameters	150
Behavior after channel faults	Passivate the channel
+ Sensor supply	
Inputs	
⊡ 🔄 Potential group	
BaseUnit with voltage supply	Allow new potential group (light BaseUnit)

Slika 4.10. Izgled sučelja postavki safety kartice.

U posljednjem koraku izvršava se identificiranje i dodjeljivanje F-adresa safety kartica (HW Config > Online > Desni klik na prvu safety karticu > Name F addresses). Nakon što se prozor otvorio po uputama (crveni pravokutnik, Slika 4.11.) provodi se identificiranje i dodjeljivanje F-adresa safety kartica. Nakon identificiranja posljednje safety kartice hardverski dio postavki je završen te se može pisati programski dio potreban za rad postrojenja.

🙀 Assign F target address							×			
	Assign F target address by: Identify LED flashing Identify by serial number 1. First, select the F module to be identified. Then, click the "Identification" button. 2. Check the reaction of the F module in the table 3. After successful identification, click the "Assign F target address" button									
	Assi	F target ad	Slot	Order no.	Status	Identification				
			1	6ES7 131-6BF01-0BA0						
			2	6ES7 132-6BF01-0BA0						
			3	6ES7 132-6BF01-0BA0						
		65534	4	6ES7136-6BA00-0CA0	assigned					
		65533	5	6ES7 136-6BA00-0CA0	assigned					
		65532	6	6ES7136-6BA00-0CA0	assigned					
		65531	7	6ES7136-6DB00-0CA0	assigned					
	Informa	ation Online Sta	tus:				_			
	Devic IM155-I Serial	e: 6XPNXSTV4.1 number:		☐ Assign F ta ☐ Identify all a	rget address for all acce accessible F modules b	ssible ET200SP y the serial numbers				
Identification	Up	date		Assign F target ad	dress	Cancel	Close			

Slika 4.11. Identifikacija i imenovanje safety kartica.

4.2. Ulazni i izlazni signali

Pri izradi postrojenja korištene su ulazne i izlazne digitalne kartice. Kako bi se olakšao rad s navedenim ulaznim i izlaznim signalima koristi se tablica simbola (engl. *Symbol table*) u kojoj se dodjeljuju imena ulaznim i izlaznim digitalnim signalima. Tablica simbola sadrži sljedeća polja koja se mogu popuniti a, to su:

- Simboličko ime (engl. Symbol),
- Adresa (engl. Address),
- Tip podatka (engl. *Data type*),
- Komentar (engl. *Comment*).

Princip označavanja ulaznih i izlaznih signala je potpuno identičan jedina razlika se pojavljuje u adresiranju signala. Adrese ulaznih signala se označavaju s "I" (npr. 10.0) gdje slovo "I" označava ulazni signal (engl. *Input*), prvi broj označava byte adresu, dok drugi broj označava bit u byte adresi. Izlazni signali se označavaju s "Q" (npr. Q0.0) gdje slovo "Q" označava izlazni signal (engl. *Output*), a brojevi imaju isto značenje kao i brojevi kod ulazni signala. Na slici 4.12. može se vidjeti primjer unošenja ulaznih signala u tablicu simbola.

	Simboličko ime	Adresa	Tip podat	Tip podatka Komentar				
49	GATE_CLS_MONITOR	I 0.0	BOOL	Gate close monitor				
50	GATE_ULC_REQ	I 0.1	BOOL	Gate unlock request				
51	GATE_RES_REQ_I	I 0.2	BOOL	Gate reset request input				
52	AREA_ADJ_FDBK	I 0.3	BOOL	Area adjust feedback				
53	GATE_LCK_MONITOR	I 0.4	BOOL	Gate lock monitor				
54	MAIN	I 3000.0	BOOL	Maintanance				
55	PRD	I 3000.1	BOOL	Production				
56	IMM	I 3000.2	BOOL	Immobilization				
57	EN_SAF_DOOR	I 3000.3	BOOL	Safety area enable				
58	EMG	I 3006.0	BOOL	Emergency				
59	SLC_ALM	I 3006.1	BOOL	Safety light curtain alarm				
60	GATE_CLS	I 3006.2	BOOL	Gate close				
61	SLC_RES	I 3012.6	BOOL	Safety light curtain reset				
62	EMG_RES	I 3012.7	BOOL	Emergency reset				

Slika 4.12. Tablica simbola.

4.3. Sigurnosni program

Sigurnosni program postrojenja napravljen je u programskom alatu SIMATIC Manager Step 7 (Slika 4.13.). Osim osnovnih uputa kako kreirati sigurnosni program prikazan je dijagram toka funkcionalnosti programa, kao i neki dijelovi programskog koda koji su korišteni za izradu sigurnosnog programa postrojenja.

SIMATIC Manager - [SAFETY_PLC	C:\Program File:	s\Siemens\SIMATIC.NC	M\s7proj\SAFETY_P]											- 0 ×
B File Edit Insert PLC View (Options Window	Help												- 8 ×
	9. A. 1- 22 III	No Filter >	 · · · · · · · · · · · · · · · · · · ·	Sem K	2									
R A SAFETY PLC	Object name	Symbolic name	Created in langu. Si	e in the work	Type	Version (Header)	Name (Header)	Unlinked	Author	Non Retain	Standard block	Last interface ch.	DB write-protect	Lastmodified A
SIMATIC 400(1)	System data	_	-	_	SDB	-	-	_	_	_	_	_	_	10/29/2019 09:2
E CPU 414F-3 PN/DP	G 0B1	CYCL EXC	LAD	150	Organization Blo	0.1		_		_	_	02/15/1996 04:51	_	10/18/2019 09:5
E- Im S7 Program(3)	0835	CYC INT5	LAD	56	Organization Blo	0.1		_		_	_	02/15/1996 04:51	_	09/24/2019 12:5
- Sources	CB80	CYCL FLT	LAD	38	Organization Blo	1.0	OB EB Ti	_	ScolzG	_	_	02/15/1996 04:51	_	08/17/2015 08:4
En Blocks	(B) 0B82	NO FLT1	LAD	150	Organization Blo	1.0	OB IO F1	_	Benassi	_	_	01/20/2003 02:35	_	10/11/2010 04:5
	CB83	NO FLT2	LAD	38	Organization Blo	1.0	0B I0 F2	_	ScolzG	_	_	02/15/1996 04:51	_	08/17/2015 08:4
	(D) 0884	CPU FLT	LAD	38	Organization Blo	0.1	00202.0	_		_	_	02/15/1996 04:51	_	01/31/2002 12:0
	0B85	OBNI FLT	LAD	38	Organization Blo	1.0	OB EBB P	_	ScolzG	_	_	02/15/1996 04:51	_	08/17/2015 08:4
	OB86	BACK FLT	LAD	52	Organization Blo	0.1	00_0.00	_		_	_	03/13/2015 10:13	_	09/30/2019 11:0
	G 0B87	COMM FLT	LAD	38	Organization Blo	1.0	OB ER CO	_	ScolzG	_	_	02/15/1996 04:51	_	08/17/2015 08:4
	OB100	COMPLETE BESTA	LAD	238	Organization Blo	1.0	OB WARM	_	ScolzG	-	-	03/12/1999 11:48	-	10/13/2019 07:2
	G 0B102	COLD RESTART	LAD	238	Organization Blo	0.1				_	_	06/23/1998 07:02	_	03/02/2019 08:5
	OB121	PROG ERR	LAD	38	Organization Blo.	0.1		-		-	-	03/05/1998 02:31	-	11/08/2017 12:4
	G 0B122	MOD ERR	LAD	38	Organization Blo	0.1		-		_	_	03/05/1998 02:31	-	11/08/2017 12:4 =
	FB20	TIM FB OB RTC	LAD	10040	Function Block	0.1		-	DA Lib	-	-	11/22/2013 04:03	-	10/02/2019 01:0
	5 FB185	F TON	F-STL	310	Function Block	1.1	F_TON	-	DSAFE	_	_	03/05/2004 03:47	-	07/02/2009 02:5
	FB186	FTOF	F-STL	294	Function Block	1.1	F TOF	_	DSAFE	_	-	03/05/2004 03:47	-	07/02/2009 02:5
	G FB215	F_ESTOP1	F-FBD	330	Function Block	1.0	F_ESTOP1	_	DSAFE	_	_	04/08/2004 04:54	-	07/02/2009 02:5
	FB216	F FDBACK	F-FBD	332	Function Block	1.0	F FDBACK	_	DSAFE.	-	-	04/08/2004 04:54	-	07/02/2009 02:5
	G FB510	SEL MANAG FB	F-LAD	1210	Function Block	2.1	SAF SEL	_		-	-	03/12/2015 12:37	-	10/12/2016 02:5
	G FB512	GATE MANAG FB	F-LAD	832	Function Block	1.2	SAF GATE	-		-	-	10/11/2015 11:35	-	04/07/2017 10:1
	G FB516	SAF AREA MAIN M	F-LAD	1294	Function Block	1.1	SAF MAIN	_		_	_	11/10/2017 09:44	-	11/10/2017 09:4
	FB4000	F IO CGP	F-STL	15744	Function Block	1.2	F IO CGP	_	DSAFE	-	-	07/08/2005 01:46	-	07/02/2009 02:5
	G FB4001	F CTBL 1	F-STL	9334	Function Block	1.6	F CTRL 1	_	DSAFE	_	_	06/23/2009 01:02	-	07/02/2009 02:5
	FB4002	F CTBL 2	F-STL	5552	Function Block	1.5	F CTBL 2	_	DSAFE	-	-	11/18/2006 04:46	-	07/02/2009 02:5
	FB4003	F DIAG N	F-STL	984	Function Block	1.0	F DIAG N		DSAFE	_	-	06/02/2005 02:06	-	07/02/2009 03:0
	584004	FITON	F-STL	1120	Function Block	1.1	FITON	-	DSAFE	_	-	03/31/2004 09:01	-	07/02/2009 02:5
	5 FB4005	FITOF	F-STL	1092	Function Block	1.1	FITOF		DSAFE	_	-	03/31/2004 09:01	-	07/02/2009 02:5
	FB4006		F-STL	356	Function Block	5.4	F30fa6	_	FALG03	_	-	10/29/2019 11:58	-	10/29/2019 11:5
	FB4007		F-STL	288	Function Block	5.4	F30fa7	-	FALG83	-	-	10/29/2019 11:58	-	10/29/2019 11:5
	FB4008		F-STL	610	Function Block	5.4	F30fa8	_	FALG03	_	-	10/29/2019 11:58	-	10/29/2019 11:5
	5 FB4009		F-STL	1908	Function Block	5.4	F30fa9	-	FALG03	-	_	10/29/2019 11:58	-	10/29/2019 11:5
	G FB4010		F-STL	5024	Function Block	5.4	F30faa	_	FALG03	_	-	10/29/2019 11:58	-	10/29/2019 11:5
	584011		F-STL	644	Function Block	5.4	F30fab	-	FALG03	-	-	10/29/2019 11:58	-	10/29/2019 11:5
	FB4012		F-STL	2078	Function Block	5.4	F30fac	-	FALG03	-	-	10/29/2019 11:58	-	10/29/2019 11:5
	FB4013		F-STL	532	Function Block	5.4	F30fad	-	FALG03	-	-	10/29/2019 11:58	-	10/29/2019 11:5
	FB4014		F-STL	3110	Function Block	5.4	F30fae	-	FALG03	-	-	10/29/2019 11:58	-	10/29/2019 11:5
	55 FB4015		F-STL	152	Function Block	5.4	F30faf	-	FALG03	-	-	10/29/2019 11:58	-	10/29/2019 11:5
	FC1	F_AREA_MAIN_FC	F-LAD	1560	Function	0.1		-		-	-	07/25/2019 09:16	-	10/24/2019 01:4
	G FC2	F_AREA_GATE_FC	F-LAD	476	Function	0.1		-		-	-	10/03/2019 11:03	-	10/29/2019 11:5
	FC3	F_AREA_CARDS_REI	F-LAD	102	Function	0.1		-		-	-	08/27/2019 01:20	-	09/30/2019 02:0
	G FC4	S_AREA_SEMAPHO	LAD	174	Function	0.1				-	-	09/20/2019 10:47	-	10/09/2019 03:4
	50 FC6	DT_DATE	STL	448	Function	1.2	DT_DATE	_	SIMATIC	-	Yes	02/15/1996 04:49	-	02/15/1996 04:4
	G FC7	F_AREA_EMG_FC	F-LAD	184	Function	0.1		-		-	-	10/09/2015 10:01	-	10/10/2019 02:3
	💭 FC8	DT_TOD	STL	242	Function	1.2	DT_TOD	_	SIMATIC	-	Yes	02/15/1996 04:49	-	02/15/1996 04:4
	G FC9	S_AREA_MAIN	LAD	1370	Function	0.1		-		-	-	10/08/2019 06:33	-	18/29/2019 11:2
	FC10	S_AREA_GATE	LAD	470	Function	0.1		-		-	-	10/03/2019 01:29	-	10/23/2019 04:4
	G FC11	S_SAF_MAIN_FC	LAD	94	Function	0.1		-		-	-	10/08/2019 06:19	-	10/18/2019 09:5
	FC80	SYC_FC_PERM7	LAD	280	Function	0.2		-	DA_Lib	-	-	09/16/2008 10:05	-	10/05/2010 11:2
	G FC81	SYC_FC_PERM15	LAD	442	Function	0.2		-	DA_Lib	-	-	09/16/2008 10:38	-	09/18/2008 10:1
	G FC83	SYS_FC_PERM7_E	LAD	594	Function	0.1		-	Olivotto	-	-	08/06/2010 05:26	-	05/24/2011 12:1
	FC84	SYS_FC_PERM15_E	LAD	716	Function	0.1		-	Olivotto	-	-	08/06/2010 05:02	-	05/24/2011 12:1
	FC1000	F-CALL OB35	F-CALL	710	Function	5.4	F303e8	-	FALG03	-	-	08/01/2019 09:34	-	10/29/2019 11:5
					111									+

Slika 4.13. Izgled sučelja SIMATIC Managera Step 7.

4.3.1. Dijagram toka funkcionalnosti sigurnosnog programa

Kako bi se olakšalo praćenje toka i realizacije sigurnosnog programa na slici 4.14. prikazan je dijagram toka kako se izvodi algoritam sigurnosnog programa. Dijagram toka se sastoji od simbola povezanih strelicama koji definiraju smjer realizacije sigurnosnog programa. Također na dijagramu se nalaze i stanja u kojima se nalaze vrata, semafor i relej (kontaktor) tijekom stanja u kojima se može nalaziti sigurnosno postrojenje.

Slika 4.14. Dijagram toka funkcionalnosti sigurnosnog programa.
4.3.2. F-I/O podatkovni blokovi

Kako se prethodno postavila hardverska konfiguracija za svaku dodanu safety karticu automatski se stvara po jedan F-I/O podatkovni blok (F-I/O DB). U ovom primjeru postoje četiri safety kartice, tako da se kreiraju četiri F-I/O podatkovna bloka DB 4001 do DB 4004 (Slika 4.15.). Također, osim podatkovnih blokova safety kartica, stvara se i jedan zajednički podatkovni blok. U ovom slučaju je to DB 4000 pod nazivom F_GLOBDB koji sadrži sve podatke i osnovne informacije sigurnosnog programa. Također, u isto vrijeme automatski se kreiraju simbolička imena safety kartica u tablici simbola (Slika 4.16.). F-I/O podatkovni blokovi u sigurnosnom programu se koriste za reintegraciju safety kartica koja je potrebna ako se pojavi greška u komunikaciji ili greška na kartici.

5	DB4000	F_GLOBDB	F-DB
5	DB4001	F03000_F_DI_8x24VDC_HF	F-DB
57	DB4002	F03006_F_DI_8x24VDC_HF	F-DB
5	DB4003	F03012_F_DI_8x24VDC_HF	F-DB
57	DB4004	F03018_F_DQ_4x24VDC_2A_P	F-DB

Slika 4.15. F-I/O podatkovni blokovi.

14	F_GLOBDB	DB 4000	DB 4000 F_: F_Global_Data Block
15	F03000_F_DI_8x24VDC_HF	DB 4001	FB 4000
16	F03006_F_DI_8x24VDC_HF	DB 4002	FB 4000
17	F03012_F_DI_8x24VDC_HF	DB 4003	FB 4000
18	F03018 F DQ 4x24VDC 2A P	DB 4004	FB 4000

Slika 4.16. F-I/O podatkovni blokovi u tablici simbola.

4.3.3. Izrada sigurnosnog programa postrojenja

Programski dio počinje dodavanjem F-blokova (F-FC blokovi) u kojima se piše logika potrebna za rad sigurnosnog programa postrojenja (Slika 4.17.). Kako se logika za sigurnosni program može pisati samo u programskim jezicima FBD i LAD za programiranje postrojenja, izabran je programski jezik LAD radi lakšeg razumijevanja programa postrojenja. F-blokovi potrebni za programiranje sigurnosnog programa navedeni su poglavlju (2.3.4. Programiranje).

Properties - Function		×
General - Part 1 General - F	Part 2 Calls Attributes	
Name:	FC5	
Symbolic Name:		
Symbol Comment		
Created in Language:	F-LAD	
Project path:	F-LAD	
of project:	F-CALLnens\SIMATIC.NCM\s7proj\SAFETY_P	
	Code Interface	
Date created:	11/17/2019 06:48:20 PM	
Last modified:	11/17/2019 06:48:20 PM 11/17/2019 06:48:20 PM	
Comment		A
		Ŧ
ОК	Cancel Hel	p

Slika 4.17. Primjer kreiranja F-FC bloka.

Nakon kreiranja F-FC bloka i njegovog otvaranja pojavljuje se prozor u kojem se kreira lozinka za sigurnosni program (Slika 4.18.). Upisivanjem željene lozinke i njenim potvrđivanjem otvara se prozor F-FCa u kojem se može pisati logika potrebna za rad postrojenja (slika 4.19.).

Reserved for Safety Program	X
Enter password:	
C Read-only access (no password necessary)	
C For all other actions	
For this access only	
OK Cancel	Help

Slika 4.18. Kreiranje lozinke za sigurnosnog program.

K LAD/STL/FBD - [FC5 SAFETY_PLC\SIMATIC 400(1)\CPU 414F-3 PN/DP]	
⇒ File Edit Insert PLC Debug View Options Window Help	
🗋 🛱 🎥 🛃 🎒 👗 🖻 💼 🗠 🖂 🕅 🏙 🔁 🗣 🚱 ! K >! 🔲 🖺 🛱 🎬	ì l + + + -O 団 └
3	Contents Of: 'Environment\Interface'
New network	
e-en Bit logic e-c Comparator	
	FC5 : Title:
Integer function	Comment:
e-e Program control	Hetwork 1: Title:
General Status bits	
e-œ FB blocks	
Multiple instances	
🗷 🕮 Libraries	

Slika 4.19. Izgled prozora F-FCa.

Nakon otvaranja prozora F-FCa potrebno je postaviti pozadinsku boju za adrese koje nisu dio sigurnosnog programa (Options > Customize > View > Not failsafe addresses). To su memorijske adrese standardnog dijela programa ili ulazni i izlazni signali koji nisu spojeni na safety kartice. U ovom primjeru to je ulaz I0.3 (Slika 4.20.) koji je spojen na standardnu karticu. Pozadinska boja proizvoljno je postavljena u svijetlo plavu boju kako bi bila uočljiva.

Slika 4.20. Dodjeljivanje boje za adrese koje nisu dio sigurnosnog programa.

Programiranje gljive i laserske barijere

Za programiranje postrojenja potrebni su funkcijski blokovi koji se nalaze u biblioteci sa sigurnosnim blokovima (Distributed Safety F-library (V1)). Također, za programiranje postrojenja potrebna je logika koju piše sam programer. U ovom slučaju za rad postrojenja bilo je potrebno programirati lasersku barijeru, gljivu, sigurnosnu bravu i rad kontaktora. Za

programiranje gljive i laserske barijere koristi se funkcijski blok FB215 (Slika 4.21.) koji se nalazi u biblioteci sa sigurnosnim blokovima. Funkcijski blok ima ulogu da pritiskom gljive ili prekidom laserske barijere automatski zaustavi postrojenje koje se štiti i onemogući njegovo ponovno pokretanje sve dok je gljiva stisnuta ili barijera prekinuta, odnosno izlaz Q iz funkcijskog bloka jednak je "0". Izlaz Q će ostati u stanju "0" sve dok se ne pošalje pulse reset na ulaz ACK bloka, iako je gljiva otpuštena ili barijera više nije u prekidu.

Slika 4.21. Programiranje rada gljive.

Programiranje sigurnosne brave

Programski dio sigurnosne brave sastoji se od uvjeta koji se trebaju ispuniti kako bi se sigurnosna vrata mogla otvoriti i omogućiti siguran ulazak u zonu postrojenja koje se štiti. Uvjeti koji se moraju ispuniti su da: laserska barijera nije prekinuta, gljiva stisnuta, sigurnosna vrata zatvorena i zaključana te da je postrojenje imobilizirano odnosno da su svi releji koji se nalaze u toj zoni isključeni, a s tim i svi uređaji u zoni. Kada se svi uvjeti ispune sigurnosna brava omogućava otvaranje sigurnosnih vrata i ulazak u zonu postrojenja koje se štiti (Slika 4.22.)

Slika 4.22. Uvjeti za sigurnosnu bravu.

Programiranje rada kontaktora

Kontaktor na postrojenju ima ulogu izvršnog člana, odnosno uključenost ili isključenost kontaktora predstavlja uključenost ili isključenost uređaja u zoni postrojenja koje se štiti. Za programiranje kontaktora potreban je funkcijski blok FB216 (*Feedback Monitoring*) koji se nalazi u biblioteci sa sigurnosnim blokovima (Slika 4.23.). Izlaz iz bloka Q ovisi o stanju ulaza bloka ON ali i ovisi o stanju ulaza FEEDBACK, te ako feedback signal koji dolazi s releja nije u redu, onda će izlaz iz bloka biti u "0" te ako se pojavi greška u feedbacku ona se mora resetirati puls resetom na Ack ulaz bloka.

Slika 4.23. Programiranje rada kontaktora.

Programiranje reintegracije safety kartica

U slučaju ako se pojavi greška u komunikaciji ili greška na safety kartici, kartica odlazi u stanje stopa te je nemoguće daljnje izvršavanje sigurnosnog programa te je nužno izvršiti reintegraciju kartice. Nakon što se greška otkloni i izvrši reintegracija kartice, kartica je spremna za nastavak rada. U ovom primjeru na postrojenju postoje četiri safety kartice za koje je potrebno napisati program njihove reintegracije (Slika 4.24.).

Slika 4.24. Reintegracija kartica.

4.3.4. Kreiranje sigurnosne grupe i aktivacija sigurnosnog programa

U posljednjem koraku potrebno je kreirati sigurnosnu grupu i aktivirati sigurnosni program kako bi postrojenje u potpunosti bilo funkcionalno. Kreiranje sigurnosne grupe započinje se otvaranjem prozora za uređivanje sigurnosnog programa (SIMATIC Manager > Options > Edit safety program), što se može vidjeti na slici 4.25..

📆 Safety Program - SAFETY_PLC\SIMA	TIC 400(1)\CPU 4	14F-3 PN/DP\S7 Progra	m(3)			×
Offline Online					1 =	
Rack: 0 SI	ot: 3					Current mode:
Collective signature of all E-blocks with E-a	attributes for the blo	ck container:	24800224			unknown
			2,0000224			
Collective signature of the safety program:			2A8C0224			
Current compilation: 10/	/29/2019 11:58:50 A	M				Safety mode
T (1)						
i ne satety program is consistent.					L	
F-blocks:						
F-runtime/F-block	Symb. name	Function in safety program	Signature	Know-how pr	A	Compare
Safety program						
E- → F-runtime group FC1000					=	1.1
		5.50	D ODD		-	Permission
	F_AREA_MAIN_FU		D8BD			
	F AREA CARDS	F.FC	9030			1
		F-FC	31CA			F-Runtime groups
- FC7	F AREA EMG FC	F-FC	BE25			
- FC1000	F-CALL 0B35	F-CALL	907E	V		
-6- FC1100	F MAIN FC 0B35	F-program block	1D8E			Compile 🚽
- FB185	F TON	F application block	6B7E	V		·
- FB186	FTOF	F application block	14B4	V		
- FB215	F_ESTOP1	F application block	2E11			Download
- FB216	F_FDBACK	F application block	F521	✓		
- <mark>F2</mark> - FB510	SEL_MANAG_FB	F-FB	9338			
- <mark>F2</mark> - FB512	GATE_MANAG_FB	F-FB	FA51			
- <mark>62</mark> - FB516	SAF_AREA_MAIN	F-FB	21BF			Logbook
	F_IO_CGP	F-system block	EDA2	✓		
- FB4001	F_CTRL_1	F-system block	504C	✓		1
	F_CTRL_2	F-system block	40BA		-	Print
Close						Help

Slika 4.25. Prozor za uređivanje sigurnosnog programa.

Nakon što se prozor za uređivanje sigurnosnog programa otvorio potrebno je definirati sigurnosnu grupu (F-Runtime groups > New). U prozoru za definiranje sigurnosne grupe (Slika 4.26.) definira se F-CALL blok i F-programski blok. Uloga F-CALL bloka u sigurnosnom programu je ta da služi za pozivanje sigurnosnog programa u standardni korisnički program, dok F-programski blok sadrži svu programsku logiku sigurnosnog programa koju je kreirao programer. U primjeru ma slici 4.27. definirana je sigurnosna grupa FC1000 u kojoj se nalazi programski blok FC1100.

📆 Define New F-Runtime Group			×
F-CALL block:		FC1000	•
F-program block:		FC1100	•
I-DB for F-program block:			
Max. cycle time of the F-runtime in ms:		200	
DB for F-runtime group communicatior	n:		•
OK	Cancel	Help	

Slika 4.26. Definiranje sigurnosne grupe.

Edit F-Runtime Groups	×
F-runtime group/parameter	Value
Safety program	
E-1 F-runtime group FC1000	FC1100 - 200ms - 0B35
F-CALL block	a FC1000
Symbolic name F-CALL block	F-CALL_OB35
F-program block	🖥 FC1100 🖃
Symbolic name F-program block	F_MAIN_FC_0B35
I-DB for F-program block	
Symbolic name I-DB for F-program block	
Max. cycle time of the F-runtime in ms	200
Call F-runtime in	0B35
The call time of the F-runtime group in ms	100ms
Data block for F-runtime groups communication	··· 🔽
Symbolic name DB for F-runtime groups communication	
New Delete	
ОК	Cancel Help

Slika 4.27. Sigurnosna grupa.

Da bi se aktivirao sigurnosni program, program se mora pozvati u standardnom korisničkom programu. U ovom primjeru sigurnosni program se poziva pomoću F-CALL bloka FC1000 u organizacijskom bloku OB35 standardnog korisničkog programa (Slika 4.28.).

Slika 4.28. Pozivanje F-CALL bloka.

U završnom koraku otvara se prozor za uređivanje sigurnosnog programa te odabirom opcije (*Download*) sigurnosni program prenosi na Sigurnosni PLC te se u gornjem desnom kutu prozora za uređivanje sigurnosnog programa (Slika 4.29., zeleni pravokutnik) pojavljuje obavijest da je sigurnosni program aktiviran. S tim je završen posao programiranja postrojenja te se može početi s testiranjem.

📆 Safety Program - SAFETY_PLC\SIMA	TIC 400(1)\CPU 4	14F-3 PN/DP\S7 Progra	m(3)			×
Offline Online						
Back: 0 Slo	ot: 3					Current mode:
						A ctil upto d
Collective signature of all F-blocks with F-a	ttributes for the blo	ck container:	2A8C0224			Activated
Collective signature of the safety program:			2A8C0224			
Current compilation: 10/	29/2019 11:58:50 A	М				Safety mode
The safety program is consistent.						
E Martin						
F-blocks:						
F-runtime/F-block	Symb. name	Function in safety program	Signature	Know-how pr		Compare
E- Safety program						
					=	
					-	Permission 🚽
	F_AREA_MAIN_FC	F-FC	D8BD			
- FL2	F_AREA_GATE_FC	F-FC	ED42			
	F_AREA_CARDS	F-FC	9C3D			F-Runtime groups
	F_AREA_EMG_FC	FFU	BE25			
	F-CALL_UB35	F-CALL	907E			
- FC1100	F_MAIN_FC_UB35	F-program block	1D8E			Osmulla
	F_TUN	F application block	687E			Complie 🚽
	F_TUP	F application block	1484			
	F_ESTUP1	F application block	2E11			
	F_FUBALK	F application block	F521	✓		Download 🚽
	SEL_MANAG_FB	F-FB	9338			
- FB512	GATE_MANAG_FB	F-FB	FASI			
	SAF_AREA_MAIN	F-FB	ZIBF			Logbook
	F_IU_LGP	F-system block	EDA2			EUGDUOK
- FB4001		F-system block	5040			
- FB4002	F_UIRL_2	F-system block	40BA			
- FB4003	F_DIAG_N	F-system block	99LA		-	Print
Close						Help

Slika 4.29. Aktivacija sigurnosnog programa.

4.4. Vizualizacija

Kako je navedeno i u zadatku diplomskog rada, vizualizacija postrojenja je napravljena u programskom alatu WinCC. Programski alat WinCC omogućava da se na jednostavan način vizualizira automatizirani sustav. Osim za vizualizaciju (statusi, alarmi) može se koristiti kao korisničko sučelje HMI (engl. *Human-Machine Interface*). Vizualizacija postrojenja je napravljena u grafičkom dizajneru (Slika 4.30.) koji je dio WinCC programskog alata. Vizualizacija postrojenja sadrži:

- Statuse sigurnosnog područja;
 - Kružnica ispunjena zelenom bojom status uključen,
 - Kružnica ispunjena bijelom bojom status isključen,
- Alarme sigurnosnog područja;
 - Kružnica ispunjena crvenom bojom alarm uključen,
 - Kružnica ispunjena bijelom bojom alarm isključen,
- Komande,
- Signalni semafor,
- Prikaz sigurnosnog područja,
- Prikaz sigurnosnih vrata.

Opis naziva statusa, alarma, kao i opis stanja rada semafora dani su u tablicama 4.1., 4.2., 4.3..

Graphics Designer - area.pdl			- 6 💌
File Edit View Arrange Tools Window 3Q-Colors DA-Tools Hel	lp		
🗋 🗃 🚰 📕 🕨 🖧 🖾 🍋 💌 🖂 📰 🚰 🔛 🛀	🕅 🐔 💦 🖳 🖳 💆 1009	• Arial • • • • • • • • • • •	
Grde14 🔹 💁 🕾 💆 💆 🖉 🖽 🚍 🟠	王国亚国本中国王		
area.pdl ×			▼ Standard ▼ # ×
			▲ Selection
Entry Safety Area			E Standard Objects
		Safety Area	Polygon
Area Status PRODUCTION			Polyline Filipse
			- Circle
			Ellipse Segment
Commando DESET UNIONUT			-C Ellipse Arc
Commands Reset	REARM		
		ACCES ENABLED	Rounded Rectangle
			-A static rext
Area Statuses	Area Alarms		Smart Objects
			- Picture Window
Gate Cis Imm in Progress	Emergency		- Control
	\smile		- 📖 I/O Field 🗮
Gate Cis Lok Rearm in Progress	Barrier Interrupt		Bar Graphic Object
Gate Unlock Cmd Relay Feedback	Sel Not In Prod		Combo Box
			- Second Elist Box - Faceplate instance
Gate Acces EN () Relay OFF ()	Sel Pos Error		.NET Control
	Ŭ		
Selector Pos 1 Barrier OK	Feedback Error	Safety Gate	- Group Display
			SVG Object
			Windows Objects
Selector Pos 2 Emergency OK			- 5= Check Box
		Sumilar	- Coption Group
Selector Pos 3 () Horn ()			Slider Object
			- Polygon tube
< [m		Stand Contr 🔤 Styles 🚀 Proces
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 📦	0 - Layer0		

Slika 4.30. Prozor grafičkog dizajnera.

Gate Cls	Vrata zatvorena
Gate Cls Lck	Vrata zatvorena i zaključana
Gate Unlock Cmd	Tipkalo za otključavanje pritisnuto
Gate Acces EN	Dopušten pristup sigurnosnom području
Selector Pos 1	Selektor u poziciji 1 - proizvodnja
Selector Pos 2	Selektor u poziciji 2 - imobilizacija
Selector Pos 3	Selektor u poziciji 3 - održavanje
Imm In Progress	Imobilizacija u tijeku
Rearm In Progress	Povratak u proizvodnju u tijeku
Relay Feedback	Povratna veza Kontaktora
Relay OFF	Kontaktor isključen
Barrier OK	Svjetlosna barijera nije prekinuta
Emergency OK	Gljiva nije stisnuta
Horn	Sirena

 Tablica 4.1. Opis naziva statusa.

Tablica 4.2. Opis naziva alarma.

Emergency	Tipka za zaustavljanje u nuždi/gljiva stisnuta
Barrier Interrupt	Barijera prekinuta
Cal Nat In Duad	California and the second attended to the second state
Sel Not in Prod	Selektor nije u poziciji 1 - proizvodnja
Sal Das Error	Pogražka pozicija galaktora
Sel POS EITOI	rogreska pozicije selektora
Feedback Error	Pogračka povratna vaza kontaktora
recuback Entor	i ogreska povratne veze kontaktora

 Tablica 4.3. Opis stanja rada semafora.

ŽARULJA/SIRENA	STANJE	OPIS
Crvena žarulja uključena	Proizvodnja	Područje je u stanju proizvodnje,
		pristup odbijen
		Područje je u stanju imobilizacije,
Zelena žarulja uključena	Imobilizacija	pristup odobren svi strojevi su
		isključeni

Crvena žarulja uključena	Imobilizacija u tijeku	Prijelaz iz proizvodnje u imobilizaciju
Zelena žarulja uklj./isklj.		
Crvena žarulja uključena	Povratak u	
Žuta žarulja uklj./isklj.	proizvodnju u tijeku	Prijelaz iz imobilizacije u proizvodnju
Sirena uklj./isklj.		
Žuta žarulja uključena	Održavanje	Područje je imobilizirano i spremno za
		stanje održavanja
Žuta žarulja uključena	Održavanje s	Područje je u stanju održavanja, Hold
Sirena uklj./isklj.	pritisnutim Hold To	To Run tipkalo pritisnuto, uređaji
	Run tipkalom	spremni za pokretanje

4.4.1. Statusi postrojenja

Na slici 4.31. prikazano je početno stanje rada postrojenja, a to je proizvodnja (engl. *Production*). Kada je postrojenje u statusu proizvodnje ulazak u sigurnosno područje nije dozvoljen, odnosno sigurnosni program onemogućava otvaranje sigurnosnih vrata i ulazak u postrojenje. To je vidljivo iz statusa koji su prikazani na slici 4.31., gdje su vrata zatvorena i zaključana, selektor je u poziciji 1 i na semaforu je uključena crvena žarulja, odnosno pristup sigurnosnom području je odbijen.

Slika 4.31. Status proizvodnje.

Na slici 4.32. prikazuje se prelazak iz statusa proizvodnje u status imobilizacije, odnosno postupak isključivanja kontaktora. Dok je postrojenje u statusu imobilizacije u tijeku, kontaktor je još uvijek uključen i zona je u proizvodnji. Klikom na komandu IMMOBILIZATION i prebacivanjem selektora u poziciju 2, na semaforu se uključuju crvena i zelena žarulja (crvena konstantno uključena, a zelena uključuje/isključuje frekvencijom 2Hz) u vremenu 6 sekundi, koje označava vrijeme potrebno da bi postrojenje iz statusa proizvodnje prešlo u status imobilizacije.

Slika 4.32. Imobilizacija u tijeku.

Nakon isteka 6 sekundi postrojenje iz imobilizacije u tijeku prelazi u stanje imobilizacije (Slika 4.33.). Na semaforu se isključuje crvena žarulja, a zelena ostaje konstantno uključena, selektor je u poziciji 2, kontaktor je isključen te je odobren ulazak u sigurnosno područje kroz sigurnosna vrata.

	Entry Safety Area		Safaty Araa
Area Status	IMMOBILIZATION		
Commands	RE SE T	TION REARM	ACCES DENIED AREA RESTART ACCES ENABLED
Area	Statuses	Area Alarms	
Gate CIs	Imm In Progress	Emergency	
Gate CIs Lck	Rearm in Progress	Barrier Interrupt	
Gate Unlock Cmd	Relay Feedback	Sel Not in Prod	
Gate Acces EN	Relay OFF	Sel Pos Error	
Selector Pos 1	Barrier OK	Feedback Error	Safety Gate
Selector Pos 2	Emergency OK		i – J
Selector Pos 3	Horn		

Slika 4.33. Status imobilizacije.

Nakon što je postignuto stanje imobilizacije pritiskom tipkala (koje se nalazi na sigurnosnoj bravi za otključavanje brave) isključuje se status da su vrata zaključana. Sigurnosna vrata se sada mogu otvoriti te je dozvoljen ulazak u sigurnosno područje (Slika 4.34.). Otvaranjem vrata isključuje se status da su vrata zatvorena te zaposlenik nesmetano i sigurno može ući u sigurnosno područje (Slika 4.35.).

	Entry Safety Area		
Area Status	IMMOBILIZATION		Sarety Area
Commands	RESET	ILIZATION REARM	ACCES DENIED AREA RESTART ACCES ENABLED
A	irea Statuses	Area Alarms	
Gate CIs	Imm In Progress	Emergency	
Gate CIs Lck	Rearm in Progress (Barrier Interrupt	
Gate Unlock Cmd	Relay Feedback	Sel Not In Prod	
Gate Acces EN	Relay OFF (Sel Pos Error	
Selector Pos 1	Barrier OK (Feedback Error	Safety Gate
Selector Pos 2	Emergency OK (
Selector Pos 3	Horn		

Slika 4.34. Imobilizacija - sigurnosna vrata zatvorena.

Entry Safety Area						
Area Status		IMMOBILIZATION				
Commands		RE SE T IMMOBILIZA	TION		ACCES DENIED AREA RESTART ACCES ENABLED	
	Area S	itatuses	Area Alarms			
Gate CIs	\bigcirc	Imm In Progress	Emergency			
Gate CIs Lck	\bigcirc	Rearm in Progress	Barrier Interrupt			
Gate Unlock Cm		Relay Feedback	Sel Not In Prod			
Gate Acces EN	\bigcirc	Relay OFF	Sel Pos Error			
Selector Pos 1	\bigcirc	Barrier OK	Feedback Error			Safety Gate
Selector Pos 2	\bigcirc	Emergency OK				
Selector Pos 3		Horn				

Slika 4.35. Imobilizacija - sigurnosna vrata otvorena.

Prebacivanjem selektora u poziciju 3 postrojenje prelazi u stanje održavanja (Slika 4.36.), žuta žarulja na semaforu je konstantno uključena. Stanje održavanja (engl. *maintanance*) je jedinstveno stanje imobilizacije pri kojem se može uključiti dozvoljene dijelove postrojenja pri smanjenim brzinama kako bi se bolje uočilo ponašanje uređaja (strojeva) u sigurnosnom području.

		Entry Safety Area				0-6-4 4	
Area Status		MAINTENANCE				Sarety Area	
Commands		RESET	ZATION		ACCES DENIED AREA RESTART ACCES ENABLED		
	Area Statu	ises	Area Alarms	;			
Gate CIs	im	ım in Progress	Emergency	\bigcirc			
Gate CIs Lck	Re	earm in Progress	Barrier Interrupt	\bigcirc			
Gate Unlock Cm	d 📃 Re	elay Feedback	Sel Not In Prod	\bigcirc			
Gate Acces EN	Re	elay OFF	Sel Pos Error	\bigcirc			
Selector Pos 1	Ba	arrier OK	Feedback Error	\bigcirc		Safety Gate	
Selector Pos 2	Er	mergency OK)			ŏ	
Selector Pos 3	н	lorn					

Slika 4.36. Jedinstveno stanje imobilizacije-Održavanje.

Uključivanje pojedinih dijelova postrojenja se postiže sa tzv. Hold To Run tipkalom. Pritiskom na tipkalo dozvoljeni dijelovi postrojenja su uključeni sve dok je tipkalo stisnuto, otpuštanjem tipkala dozvoljeni dijelovi postrojenja se isključuju. U ovom primjeru na postrojenju pritiskom tipkala uključuje se žuta žarulja i sirena na semaforu (žarulja konstantno uključena, a sirena se uključuje/isključuje frekvencijom 2 Hz), što predstavlja uključenost dozvoljenih dijelova postrojenja. Otpuštanjem tipkala sirena se isključuje, a žuta žarulja ostaje konstantno uključena, odnosno dozvoljeni dijelovi postrojenja su isključeni (Slika 4.37.).

	Entry Safety Area		Pofety Area
Area Status	MAINTENANCE		
Commands	RE SE T	IZATION	ACCES DENIED AREA RESTART ACCES ENABLED
	Area Statuses	Area Alarms	
Gate CIs (Imm In Progress	Emergency	
Gate CIs Lck	Rearm In Progress	Barrier Interrupt	
Gate Unlock Cmd (Relay Feedback	Sel Not in Prod	
Gate Acces EN	Relay OFF	Sel Pos Error	
Selector Pos 1	Barrier OK	Feedback Error	Safety Gate
Selector Pos 2	Emergency OK		
Selector Pos 3	Horn		

Slika 4.37. Održavanje – omogućavanje sigurnosnog područja.

Povratak u stanje proizvodnje iz stanja imobilizacije postiže se pritiskom komande REARM te prebacivanjem selektora u poziciju 1. Nakon ovih radnji uključuju se crvena i žuta žarulja (crvena konstantno uključena, a žuta žarulja se uključuje/isključuje frekvencijom 2 Hz), također se uključuje/isključuje i sirena frekvencijom žute žarulje u trajanju od 10 sekundi. Ovo stanje na semaforu predstavlja povratak u proizvodnju u tijeku (Slika 4.38.). Nakon 10 sekundi isključuju se žuta žarulja i sirena na semaforu dok crvena žarulja ostaje konstantno uključena, što govori da se postrojenje vratilo u proizvodnju, odnosno u početno stanje.

	Entry Safety Area		Defety Area
Area Status	PRODUCTION		
Commands	RE SE T	TION	ACCES DENIED AREA RESTART ACCES ENABLED
Area	Statuses	Area Alarms	
Gate CIs	Imm in Progress	Emergency	
Gate CIs Lck	Rearm in Progress	Barrier Interrupt	
Gate Unlock Cmd	Relay Feedback	Sel Not in Prod	
Gate Acces EN	Relay OFF	Sel Pos Error	
Selector Pos 1	Barrier OK	Feedback Error	Safety Gate
Selector Pos 2	Emergency OK		
Selector Pos 3	Horn		

Slika 4.38. Povratak u proizvodnju u tijeku.

4.4.2. Alarmi postrojenja

Osim statusa, u vizualizaciji su napravljeni alarmi koji se javljaju prilikom situacija koje ne pripadaju u uobičajeni način upravljanja postrojenjem. Na slici 4.39. prikazan je alarm kada je stisnuta tipka za zaustavljanje u nuždi (gljiva).

	Entry Safety Area		Safaty Area
Area Status	PRODUCTION		
Commands	RESET		ACCES DENIED AREA RESTART ACCES ENABLED
Are	a Statuses	Area Alarms	
Gate CIs	Imm In Progress	Emergency	
Gate CIs Lck	Rearm In Progress	Barrier Interrupt	
Gate Unlock Cmd	Relay Feedback	Sel Not in Prod	
Gate Acces EN	Relay OFF	Sel Pos Error	
Selector Pos 1	Barrier OK	Feedback Error	Safety Gate
Selector Pos 2	Emergency OK		
Selector Pos 3	Horn		

Slika 4.39. Stisnuta tipka za zaustavljanje u nuždi.

Alarm prekida laserske barijere (Slika 4.40.) javlja se prilikom detekcije objekta ili osobe koja se nalazi u području koje zahvaća laserska barijera. Nakon detektiranja laserska barijera isključuje uređaje u području koje se osigurava. U ovom primjeru na postrojenju isključuje kontaktor koji se ne može uključiti sve dok se objekt ili osoba ne skloni iz područja detekcije i izvrši reset laserske barijere.

		Entry Safety Area				Sofoty Area	
Area Status		PRODUCTION					
Commands		RE SE T	ATION		ACCES DENIED AREA RESTART ACCES ENABLED		
	Area S	itatuses	Area Alarms				
Gate CIs	\bigcirc	Imm In Progress	Emergency)			
Gate CIs Lck	\bigcirc	Rearm in Progress	Barrier Interrupt				
Gate Unlock Cm		Relay Feedback	Sel Not in Prod)			
Gate Acces EN	\bigcirc	Relay OFF	Sel Pos Error)			
Selector Pos 1	\bigcirc	Barrier OK	Feedback Error)		Safety Gate	
Selector Pos 2	\bigcirc	EmergencyOK				<u> </u>	
Selector Pos 3		Horn					

Slika 4.40. Prekid laserske barijere.

Alarm selektor nije u poziciji proizvodnje javlja se pri početnom pokretanju postrojenja. Kako je prethodno navedeno, početno stanje postrojenja je stanje proizvodnje u tom slučaju selektor mora biti u poziciji 1 (pozicija proizvodnje). Na slikama 4.41. i 4.42. vidljivo je da je selektor u poziciji 2 odnosno 3 i zbog toga se javlja alarm koji je aktivan sve dok selektor nije u poziciji 1.

		Entry Safety Area		Sefety Area
Area Status		PRODUCTION		Sarety Area
Commands		RESET	ATION REARM	ACCES DENIED AREA RESTART ACCES ENABLED
	Area S	tatuses	Area Alarms	
Gate CIs	\bigcirc	Imm In Progress	Emergency	
Gate CIs Lck	\bigcirc	Rearm In Progress	Barrier Interrupt	
Gate Unlock Cm		Relay Feedback) Sel Not In Prod	
Gate Acces EN	\bigcirc	Relay OFF	Sel Pos Error	
Selector Pos 1	\bigcirc	Barrier OK	Feedback Error	Safety Gate
Selector Pos 2	\bigcirc	EmergencyOK		
Selector Pos 3		Horn)	

Slika 4.41. Selektor nije u poziciji proizvodnje, pozicija 2.

Entry Safety Area							Cofety Area	
Area Status	Area Status PRODUCTION						Sarety Area	
Commands RESET IMMOBILIZATION REARM					ACCES DENIE AREA RESTAR ACCES ENABL	ED		
	atuses	Area Alarms						
Gate CIs	\bigcirc	Imm In Progress	Emergency (\bigcirc				
Gate CIs Lck	\bigcirc	Rearm In Progress	Barrier Interrupt (
Gate Unlock Cm	d 🔵	Relay Feedback	Sel Not in Prod					
Gate Acces EN	\bigcirc	Relay OFF	Sel Pos Error (
Selector Pos 1	\bigcirc	Barrier OK	Feedback Error (Safety Gate	
Selector Pos 2		Emergency OK					Ö	
Selector Pos 3	\bigcirc	Horn						

Slika 4.42. Selektor nije u poziciji proizvodnje, pozicija 3.

Alarm pogreške pozicije selektora je stanje kada selektor nije niti u jednoj od mogućih 3 pozicija u kojima može biti (Proizvodnja, Imobilizacija i Održavanje) odnosno selektor je neispravan (Slika 4.43.).

	Entry Safety Area		Sofoty Aroa
Area Status	PRODUCTION		Salety Alea
Commands	RESET	TION	ACCES DENIED AREA RESTART ACCES ENABLED
	Area Statuses	Area Alarms	
Gate CIs	Imm In Progress	Emergency	
Gate CIs Lck	Rearm In Progress	Barrier Interrupt	
Gate Unlock Cmd	Relay Feedback	Sel Not in Prod	
Gate Acces EN	Relay OFF	Sel Pos Error	
Selector Pos 1	Barrier OK	Feedback Error	Safety Gate
Selector Pos 2	Emergency OK		
Selector Pos 3	Horn		

Slika 4.43. Pogreška pozicije selektora.

Alarm pogreške povratne veze se javlja kada je relej neispravan ili kada je vodič kojim je relej (kontaktor) povezan na digitalni ulaz kontrolera u prekidu. U slučaju na slici 4.44. isceniran je prekid vodiča povratne veze, nakon čega se uključio alarm.

		Entry Safety Area	I I			Safaty Araa			
Area Status PRODUCTION						Salety Area			
Commands RESET IMMOBILIZATION REARM						ACCES DENIED AREA RESTART ACCES ENABLED			
Area Statuses				Area Alarms					
Gate CIs		m In Progress	\bigcirc	Emergency	\bigcirc				
Gate CIs Lck	Rea	arm in Progress	\bigcirc	Barrier Interrupt	\bigcirc				
Gate Unlock Cm	d Re	elay Feedback	\bigcirc	Sel Not In Prod	\bigcirc				
Gate Acces EN	Re	elay OFF		Sel Pos Error	\bigcirc				
Selector Pos 1	Ba	arrier OK		Feedback Error		Safety Gate			
Selector Pos 2	En	mergency OK				l l l l l l l l l l l l l l l l l l l			
Selector Pos 3	н	orn							

Slika 4.44. Pogreška povratne veze.

4.5. Provjera funkcionalnosti izrađenog sigurnosnog programa

Provjera funkcionalnosti sigurnosnog programa izvršena je na simulatoru postrojenja, te pomoću vizualizacije napravljene u programskom alatu WinCC. Sama provjera ispravnosti izvršava se pomoću uključenosti žarulja signalnog semafora, koji se nalazi na simulatoru postrojenja i uz paralelnu provjeru uključenosti statusa i alarma u vizualizaciji koja se nalazi na računalu.

Kako bi se moglo provjeriti da li je sigurnosni program funkcionalan moramo znati stanja rada semafora (vidljivo u tablici 4.3.). Provjera programa započinje uključivanjem simulatora postrojenja, pri kojem se uključuje crvena žarulja na signalnom semaforu. Crvena žarulja označava početno stanje proizvodnje, odnosno ulazak u postrojenje nije dozvoljen (vrata su zaključana). Slijedeće stanje je stanje prelaska u imobilizaciju. Stanje prelaska u imobilizaciju pokreće se prebacivanje selektora u poziciju 2 i stiskom komande u vizualizaciji (IMMOBILIZATION) koje traje 6 sekundi, pri čemu je na semaforu uključena crvena žarulja, a zelena se uključuje/isključuje frekvencijom 2 Hz. Nakon 6 sekundi dolazi do isključivanja svih uređaja koji se nalaze u osiguravanom postrojenju, te kako je opisano u tablici 4.3. uključuje se zelena žarulja, koja označava da je postrojenje imobilizirano (vrata su otključana). Slijedeće stanje je jedinstveno stanje imobilizacije, a naziva se održavanje. Da bi se postiglo to stanje, selektor se prebacuje u poziciju 3, koji označava stanje održavanja, te se na signalnom semaforu uključuje žuta žarulja koja konstantno uključena. Stanje održavanja je jedinstveno stanje imobilizacije, u kojem se mogu pokrenuti dozvoljeni dijelovi postrojenja pri puno manjim brzinama, nego kada su u proizvodnji s ciljem uočavanja pogrešaka koje se mogu dogoditi u postrojenju. Pokretanje uređaja (u našem slučaju uređaj izveden pomoću kontaktora) u postrojenju postižemo stiskom Hold To Run tipkala, pri čemu se uključuje žuta žarulja na signalnom semaforu, kao i sirena koja se uključuje i isključuje frekvencijom 2 Hz. Puštanjem Hold To Run tipkala uređaj (kontaktor) se isključuje, na semaforu se žuta žarulja ostaje uključena, a sirena se isključuje. Slijedeće stanje je stanje vraćanja postrojenja iz imobilizacije u proizvodnju, što se postiže prebacivanje selektora u poziciju 1 i stiskom komande u vizualizaciji (REARM). Na semaforu se uključuje/isključuje žuta žarulja, kao i sirena frekvencijom 2 Hz, a crvena žarulja je konstantno uključena. Nakon isteka 10 sekundi žuta žarulja i sirena se isključuju, a crvena žarulja ostaje konstanto uključena što predstavlja da je simulator postrojenja u proizvodnji, odnosno uređaj (kontaktor) se uključio.

Na simulatoru postrojenja uz normalan rad iscenirana su i nedozvoljena stanja u kojem dolazi do sigurnosnog isključenja uređaja (kontaktora). Prilikom tih stanja na vizualizaciji simulatora postrojenja dolazi do uključenja alarma i sigurnosnog isključivanja kontaktora.

Nakon ispitivanja simulatora postrojenja na kojem je ispitivana funkcionalnost sigurnosnog programa pomoću stanja uključenosti žarulja signalnog semafora i vizualizacije simulatora postrojenja na računalu, utvrđeno je da je program u potpunosti ispravno napisan i funkcionalan.

5. ZAKLJUČAK

U diplomskom radu je bilo potrebno opisati Siemensov sigurnosni distribuirani sustav, prikazati njegovu primjenu na stvarnom primjeru te izraditi vizualizaciju postrojenja. Za prikaz primjene sigurnosnog sustava i provjeru izrađenog sustava zaštite izrađeno je postrojenje na kojem je implementiran program. Postrojenje se sastoji od tri zaštitna uređaja: tipka za zaustavljanje u nuždi (gljiva), laserska barijera i sigurnosna brava, koji zajedno postižu potrebnu klasu sigurnosti SIL 3. Osim zaštitnih uređaja na postrojenju se nalaze i drugi uređaji koji su potrebni za rad postrojenja, kao što je signalni semafor, selektor, tipkala, I/O modul sa ulaznim i izlaznim digitalnim karticama, kontaktor te sam PLC.

Postrojenje posjeduje tri stanja u kojima se može nalaziti, a to su proizvodnja, imobilizacija i održavanje. Proizvodnja je stanje kada su uređaji u postrojenju koje se štiti uključeni te je onemogućen ulazak u postrojenje sve dok se uređaji ne isključe. Imobilizacija je stanje kada je postignuto isključeno stanje uređaja i omogućen je ulazak u postrojenje koje se štiti. Održavanje je posebno stanje imobilizacije u kojem se pomoću Hold to run tipkala mogu pokrenuti dozvoljeni dijelovi postrojenja pri smanjenim brzinama u svrhu opažanja ponašanja postrojenja u radu kako bi se otklonile greške koje se događaju u postrojenju za vrijeme stanja proizvodnje.

Također izrađena je i vizualizacija u programskom alatu WinCC. Vizualizacija sadržava statuse, alarme i komande preko kojih se mogu vidjeti stanja u kojima je postrojenje, a preko komandi omogućeno je upravljanje postrojenje.

Posebno treba voditi računa pri dodavanju hardverske konfiguracije postrojenja, kao i o postavkama safety kartica. Pogrešno dodana hardverska konfiguracija kao i postavke safety kartica mogu uzrokovati oštećenje postrojenja te ozlijediti ljude koji se nalaze u sigurnosnom postrojenju.

Svrha ovog diplomskog rada je bila prikazati Siemensov sigurnosni distribuirani sustav na umanjenoj verziji postrojenja što je postignuto izradom simulatora postrojenja koji je uspješno implementiran i testiran.

LITERATURA

- 1. https://support.industry.siemens.com/cs/attachments/12490443/s7_safety_engineering_s ystem_manual_en-US_en-US.pdf?download=true (pristup 7. 5. 2019)
- 2. https://public.eandm.com/Public_Docs/S7_Failsafe_safety_config_and_prog.pdf (pristup 6.5.2019)
- https://www.google.com/search?q=profibus+dp+cable&source=lnms&tbm=isch&sa=X &ved=0ahUKEwjq2oTv583iAhXjl4sKHXBpAtoQ_AUIECgB&biw=1229&bih=603#i mgrc=4Yo1pOZUYAdTfM: (pristup 10.5.2019)
- 4. https://www.automatika.rs/baza-znanja/obrada-signala/profibus-dp-protokol-povezivanje-komunikacija-i-mreza.html (pristup 10.5.2019)
- 5. https://www.fer.unizg.hr/_download/repository/EMP_Profinet[5].pdf (pristup 10.5.2019)
- 6. https://www.pccweb.com/wpcontent/uploads/2015/08/Siemens_PLC_Trusting_Safety_P LCs.p df (pristup 10.5.2019)
- 7. http://www.graphis.hr/news/simatic/Simatic_perje_web.pdf (pristup 14.5.2019)
- 8. https://media.distributordatasolutions.com/seimens/2017q1/de8a09e1be60925af0982464 a418c518b370ef89.pdf (pristup 12.5.2019)
- 9. https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7414-3FM07-0AB0 (pristup 24.5.2019)
- 10. https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7407-0KA02-0AA0 (pristup 24.5.2019)
- 11. https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7155-6AU01-0BN0 (pristup 25.5.2019)
- 12. https://media.distributordatasolutions.com/seimens/2017q1/a6bc6fc3c1a0f4718f02b4146 9a645f51828afdf.pdf (pristup 25.5.2019)
- 13. https://octopart.com/6es71556aa010bn0-siemens-85334568 (pristup 25.5.2019)
- 14. http://www.filkab.com/files/category_files/file_3029_bg.pdf (pristup 30.5.2019)
- 15. https://support.industry.siemens.com/cs/document/6008679/siriussignaalkolommen?dti= 0&dl=nl&pnid=16027&lc=de-AT,pristupljeno (pristup 30.5.2019)
- 16. https://ua.all.biz/en/alarm-columns-of-sirius-8wd42-g6699280#.XPKlhogzZPY

(pristup 1.6.2019)

- 17. https://www.sick.com/us/en/opto-electronic-protective-devices/safety-lightcurtains/c4000-palletizer/c/g187263 (pristup 1.6.2019)
- 18. https://www.sick.com/media/docs/5/15/615/Operating_instructions_C4000_Palletizer_St andard_Adcanced_C4000_Fusion_en_IM0026615.PDF (pristup1.6.2019)
- https://www.electricautomationnetwork.com/en/siemens/3su1000-1hb20-0aa0-3su10001hb200aa0-siemens-em-stop-mushroom-pushbutton-22mm-round-plastic-red-40mm-p (pristup 2.6.2019)
- 20. https://www.electricautomationnetwork.com/en/siemens/3su1000-1hb20-0aa0-3su10001hb200aa0-siemens-em-stop-mushroom-pushbutton-22mm-round-plastic-red-40mm-p (pristup 3.6.2019)
- 21. https://www.pizzato.com/media/images/catalog/item/File/pdf/ZE_GCS01A17/ZE_GCS0 1A17-ENG_113-126.pdf (pristup 3.6.2019)
- 22. https://w3.siemens.com/mcms/distributed-io/en/ip20-systems/et-200sp/failsafeio/pages/default.aspx#w2gImg-/mcms/distributed-io/en/ip20-systems/et-200sp/failsafeio/PublishingImages/et200-sp-f-dq-450.jpg (pristup 3.6.2019)
- 23. https://www.automation24.co.uk/siemens-simatic-et-200sp-di-8x-24vdc-st-6es7131-6bf01-0ba0 (pristup 3.6.2019)
- 24. https://www.plc-city.com/shop/en/siemens-distributed-i-o-simatic-et-200sp/6es7136-6db00-0ca0-nfs.html (pristup 3.6.2019)
- 25. https://www.scribd.com/document/101457392/S7-Distributed-Safety-Getting-Started (pristup 7.12.2019)

SAŽETAK

U ovom diplomskom radu opisano je postrojenje na kojoj je implementiran Siemensov sigurnosni distribuirani sustav. Programski dio pisan je u Siemensovom programskom alatu SIMATIC Manager Step 7. Radom postrojenja upravlja Siemensov PLC iz serije S7-400 koji je spojen na I/O modul ET 200SP, na kojem se nalaze ulazne i izlazne standardne i safety kartice. Postrojenje sadržava tri zaštitna uređaja koji postižu klasu sigurnosti SIL 3, a to su sigurnosna brava, laserska barijera, tipka za zaustavljanje u nuždi (gljiva). Vizualizacija postrojenja je izrađena u programskom alatu WinCC koji sadržava komande, alarme i statuse. Postrojenje posjeduje tri stanja u kojima se može nalaziti, a to su proizvodnja, imobilizacija i održavanje. Stanja u kojima se nalazi postrojenje vidljivi su preko stanja uključenosti žarulja signalnog semafora.

Ključne riječi:Siemensov sigurnosni distribuirani sustav, SIMATIC Manager, ET 200SP,SIL3, safety kartice, WinCC, proizvodnja, imobilizacija, održavanje.

ABSTRACT

SAFETY AREA SOFTWARE WITH CONTROL OF SAFETY GATE/LOCK AND DEVICES INSIDE SAFETY AREA

This thesis describes a model on which a Siemens distributed safety system was implemented. The software part is written in the Siemens SIMATIC Manager Step 7. The model is operated by the Siemens PLC of the S7-400 series, which is connected to the I / O module ET 200SP which contains standard and safety card inputs and outputs. The model contains three safety devices that achieve the safety class SIL 3, security lock, light curtain, emergency stop mushroom pushbutton. The visualization was created in a WinCC software package containing commands, alarms and statuses. The model has three states in which it can accur: production, immobilization and maintenance. The states in which the model is accurred are visible via the light of signal semaphore.

Key words:Siemens Distributed Safety System, SIMATIC Manager, ET 200SP, SIL3,
Safety Cards, WinCC, production, immobilization, maintenance.

ŽIVOTOPIS

Igor Šubarić, rođen je 4. travnja 1994. godine. Osnovnu školu od prvog do četvrtog razreda pohađa u mjestu Ivanovo, a zatim od petog do osmog razreda pohađa u mjestu Viljevo, te ju završava 2009. godine. Po završetku osnovne upisuje srednju Stručnu školu u Valpovu, smjer elektrotehničar, te ju 2013. godine završava i stječe zvanje elektrotehničar s temom maturalnog rada (Sklop za ispitivanje dioda i tranzistora). Godine 2013. upisuje se na Elektrotehnički fakultet u Osijeku smjer elektroenergetika stručni studij, koji završava pod nazivom završnog rada (Mjerenje struje bez prekidanja strujnog kruga). Nakon razlikovnih obveza upisuje diplomski studij na Fakultetu elektrotehnike računarstva i informacijskih tehnologija u Osijeku, smjer industrijska elektroenergetika.

Vlastoručni potpis:

Slika P.1. predstavlja izgled simulatora postrojenja na kojem je implementiran sigurnosni program.

Slika P.1. Simulator postrojenja.

Slika P.2. predstavlja izgled komandnog panela simulatora postrojenja koji se nalazi izvan osiguravanog postrojenja

Slika P.2. Komandni panel simulatora postrojenja.

Slika P.3. predstavlja električnu shemu spajanja tipke za zaustavljanje u nuždi na safety karticu.

Slika P.3. Električna shema tipke za zaustavljanje u nuždi.

Slika P.4. predstavlja električnu shemu spajanja signalnog semafora na safety karticu.

Slika P.4. Električna shema signalnog semafora.

Slika P.5. predstavlja električnu shemu spajanja sigurnosne brave na safety karticu.

Slika P.5. Električna shema sigurnosne brave.

Slika P.6. predstavlja električnu shemu svjetlosne barijere na safety karticu.

Slika P.6. Električna shema svjetlosne barijere.

Slika P.7. predstavlja električnu shemu spajanja kontaktora na safety karticu.

Slika P.7. Električna shema kontaktora.