Modeliranje i analiza induktivnog senzora pomaka korištenjem FEM alata

Dunković, Matej

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:060625

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-02

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Sveučilišni studij

MODELIRANJE I ANALIZA INDUKTIVNOG SENZORA POMAKA KORIŠTENJEM FEM ALATA

Diplomski rad

Matej Dunković

Osijek, 2019.

Rahastranica

Obrazac D1: Obrazac za imenovanje Povjerenstva za obranu diplomskog rada

Osijek, 23.09.2019.

Odboru za završne i diplomske ispite

Imenovanje Povjerenstva za obranu diplomskog rada

Ime i prezime studenta:	Matej Dunković				
Studij, smjer:	Diplom	ski sveučilišni studij Elektrotehnika			
Mat. br. studenta, godina upisa:	D-1146	s, 29.09.2019.			
OIB studenta:	444964	88080			
Mentor:	lzv. pro	Izv. prof. dr. sc. Marinko Barukčić			
Sumentor:					
Sumentor iz tvrtke:					
Predsjednik Povjerenstva:	lzv.prof	Izv.prof.dr.sc. Tomislav Barić			
Član Povjerenstva:	Toni Va	arga			
Naslov diplomskog rada:	Modelir alata	Modeliranje i analiza induktivnog senzora pomaka korištenjem FEM alata			
Znanstvena grana rada:	Elektrostrojarstvo (zn. polje elektrotehnika)				
Zadatak diplomskog rada:	U radu je potrebno prikazati postupak izrade i simulacije geometrijskog modela induktivnog senzora pomaka u FEM alatu. Dati prikaz upotrebe i izvedbe induktivnih senzora pomaka proučavanjem dostupne literature. Za primjer izvedbe senzora iz literature obaviti modeliranje 3D geometrijskog modela senzora za različite oblike izvedbe primarne zavojnice senzora. Obaviti simulacije za različite oblike senzora, simulirati promjenu induktiviteta senzora te usporediti rezultate simulacije za različite oblike izvedbe senzora. Za provođenje simulacija preporuča se koristiti ANSYS Maxwell softvere. (Tema je rezervirana za studenta Mateja Dunkovića).				
Prijedlog ocjene pismenog dijela ispita (diplomskog rada):	Izvrstar	n (5)			
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjena znanja stečenih na fakultetu: 2 bod/boda Postignuti rezultati u odnosu na složenost zadatka: 3 bod/boda Jasnoća pismenog izražavanja: 2 bod/boda Razina samostalnosti: 3 razina				
Datum prijedloga ocjene mentora:	23.09.2	2019.			
Potpis mentora za predaju konačne verz	ije rada	Potpis:			
u Studentsku službu pri završetku studija		Datum:			

IZJAVA O ORIGINALNOSTI RADA

Osijek, 28.02.2020.

Ime i prezime studenta:	Matej Dunković
Studij:	Diplomski sveučilišni studij Elektrotehnika
Mat. br. studenta, godina upisa:	D-1146, 29.09.2019.
Ephorus podudaranje [%]:	1

Ovom izjavom izjavljujem da je rad pod nazivom: Modeliranje i analiza induktivnog senzora pomaka korištenjem FEM alata

izrađen pod vodstvom mentora Izv. prof. dr. sc. Marinko Barukčić

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

SADRŽAJ

1.	UV	OD	1
1.	1	Zadatak diplomskog	1
2.	PRE	EGLED LITERATURE	2
3.	IND	DUKTIVNI SENZOR POMAKA	3
3.	1	Vrtložne struje	4
3.	2	Rezonantna frekvencija LC oscilatora	5
3.	3	Faktor kvalitete i dizajn zavojnice	6
3.4	4	Dizajn induktivne zavojnice	7
4.	MO	DELIRANJE INDUKTIVNOG SENZORA POMAKA	9
5.	SIM	IULACIJA SENZORA	16
5.	1	Određivanje frekvencije	
5.	2	Spiralna zavojnica	
5.	3	Kvadratna zavojnica	
5.4	4	Heksagonalna zavojnica	
5.	5	Oktogonalna zavojnica	
5.	6	Promjena razmaka između trake zavojnice za sve četiri geometrije	
6.	OBI	RADA I USPOREDBA REZULTATA SIMULACIJA	
7.	ZAI	KLJUČAK	
LIT	ERA	TURA	
SAŽ	ÉET.	АК	
ABS	STR	ACT	
ŽIV	OTC	OPIS	41
PRI	LOZ	и	

1. UVOD

Plošni induktivni senzori pomaka velikim dijelom se koriste pri beskontaktnoj detekciji i oni se široko koriste u industrijskim procesima gdje igraju veliku ulogu u radu strojeva i opreme jer mogu raditi u zahtjevnim uvjetima. Prednosti ovih senzora su male dimenzije, niska cijena, izdržljivost i mogućnost beskontaktne detekcije. Induktivni senzor pomaka radi na principu vrtložnih struja, gdje zavojnica senzora stvara magnetsko polje koje uzrokuje vrtložne struje u mjerenom predmetu, vrtložne struje stvaraju sekundarno magnetsko polje koje dovodi do smanjenja induktiviteta zavojnice senzora. U ovom radu prvo je prikazan kratak teorijski uvod u induktivne senzore, nakon toga opisan je postupak modeliranja četiri promatrane geometrije senzora, a to su: spirala, kvadrat, heksagon i oktagon. Nakon modeliranja slijede simulacije svakog pojedinog senzora te se u prilogu može pronaći više materijala u vezi simulacije, to jest, detaljno je prikazan pomak detektiranog predmeta iznad senzora. Na kraju je dana usporedba rezultata simulacije te je prikazano koja je najbolja geometrija u smislu osjetljivosti detekcije senzora pri pomaku detektiranog predmeta iznad senzora.

1.1 Zadatak diplomskog

U radu je potrebno prikazati postupak izrade i simulacije geometrijskog modela induktivnog senzora pomaka u FEM alatu. Dati prikaz upotrebe i izvedbe induktivnih senzora pomaka proučavanjem dostupne literature. Za primjer izvedbe senzora iz literature obaviti modeliranje 3D geometrijskog modela senzora za različite oblike izvedbe primarne zavojnice senzora. Obaviti simulacije za različite oblike senzora, simulirati promjenu induktiviteta senzora te usporediti rezultate simulacije za različite oblike izvedbe senzora. Za provođenje simulacija preporuča se koristiti ANSYS Maxwell softver.

2. PREGLED LITERATURE

Autor Rahbar u [1] predstavio je postupak izrade i testiranja dva induktivna senzora, oba senzora su namijenjena za ugradnju u prilagodljive nosive sustave. U prvoj metodi sustav radi na principu vrtložnih struja u kojemu pokret vodljivog predmeta mijenja induktivnost zavojnice, a u drugoj metodi kontakt između predmeta i vodljive membrane ostvaruje se dodirom. Provedena je i simulacija danih senzora pomoću FEM alata.

Istraživanje dizajna plošnog senzora predstavila je grupa autora u [3]. Senzor koji je obrađen ovim radom daje značajna poboljšanja u odnosu na uobičajene senzore, a neke od poboljšanja su jednostavniji proces izrade, niža cijena i veća mehanička čvrstoća. Radom je obrađena izrada, razvoj i rad novih plošnih senzora.

Rješenje predloženo radom autora u [4] izvedeno je u automatskim mjenjačima u vodećim njemačkim automobilima. Pomoću FEM alata napravljen je plošni induktivni senzor koji za detekciju koristi tanku bakrenu ploču u obliku romba ili kvadrata koja se pomiče iznad reda plošnih zavojnica koje su isprintane na PCB pločici.

Radom grupe autora u [7] obrađen je utjecaj različitih geometrija plošnih senzora kao induktivnih senzora pomaka. Promatrane su četiri topologije (kvadratna, spiralna, meander, mrežasta) sa različitim razmakom između traka zavojnica pomoću FEM alata.

3. INDUKTIVNI SENZOR POMAKA

Induktivni senzor je tip senzora koji koristi magnetsku induktivnost kao princip rada. Ovi senzori se pretežno koriste u industriji za praćenje položaja, udaljenosti i kretanja objekta i oni obično spadaju u kategoriju senzora blizine. Induktivni senzor pomaka radi na principu vrtložnih struja, gdje zavojnica senzora stvara magnetsko polje koje inducira vrtložne struje u detektiranom predmetu. Kada je senzor u blizini vodljivog predmeta, elektromagnetsko polje zavojnice senzora stvara vrtložne struje u vodljivom materijalu. Vrtložne struje stvaraju sekundarno magnetsko polje koje se protivi onome polju zavojnice. Budući da je induktivitet zavojnice izravno razmjeran njezinom magnetskom polju to dovodi do manjeg izmjerenog induktiviteta [1]. Sustav se može modelirati pomoću kruga danog na slici 3.1.

Slika 3.1. Model električnog kruga zavojnice senzora sa vrtložnim strujama [1]

Na slici R0 i L0 predstavljaju zavojnicu senzora, L_1 predstavlja sekundarno magnetsko polje, a teret Z predstavlja kompleksne gubitke u vodljivom tijelu koji su uzrokovani Jouleovim gubitcima. Kada se vodljivo tijelo približi zavojnici senzora, magnetsko polje zavojnice jače djeluje na vodljivo tijelo što za posljedicu ima jače vrtložne struje u vodljivom tijelu, a jače vrtložne struje znače slabije magnetsko polje zavojnice što dovodi do smanjenja induktiviteta L_0 [1].

Pomak detektiranog predmeta mijenja magnetsko polje, mijenja se induktivitet zavojnice i to rezultira jednostavnom prijenosnom funkcijom pomoću koje se svojstva zavojnice mogu precizno izračunati. Detekcija površinskih i pod-površinskih pukotina još je jedna česta primjena senzora vrtložnih struja. Kod takve detekcije mikro pukotine u ciljanoj strukturi ometaju nastale vrtložne struje mijenjajući magnetsko polje. Iako se ovi tipovi induktivnih senzora najčešće koriste u industriji oni imaju velikog potencijala i u drugim područjima, kao na primjer nosivi uređaji [1].

3.1 Vrtložne struje

Tvorba vrtložnih struja bazira se na principima elektromagnetske indukcije. Prema Maxwell-Ampereovom zakonu, kada izmjenična struja prolazi kroz petlju od žice ona stvara vremenski promjenjivo magnetsko polje. Kada se zavojnica uzbuđena sa izmjeničnom strujom postavi u blizinu vodljivog materijala, vremenski promjenjivo magnetsko polje djeluje, u smislu elektromotornih sila, na elektrone vodljivog materijala i inducira napon. Kao rezultat ovog induciranog napona pojavljuje se Lorentzova sila koja je okomita na kretanje atoma i stoga mijenja pravac u lijevo ili desno ovisno o smjeru polja. U isto vrijeme otpor vodiča prigušuje vrtložne struje i ispravlja njihov put. Ove kružne struje stvorene u tijelu vodiča nazivaju se vrtložne struje [1].

Slika 3.2. Vrtložne struje [2]

Smjer vrtložnih struja određuje Lenzov zakon. Budući da postoji promjenjivo magnetsko polje, zbog induciranog napona, doći će do induciranih struja čije se magnetsko polje protivi promjeni magnetskog toka. Na primjer, ako se magnetsko polje zavojnice smanjuje, inducirano sekundarno polje će biti istog smjera kao i primarno polje kako bi se suprotstavilo promjeni. U drugu ruku, ako se magnetsko polje pojačava, sekundarno magnetsko polje biti će suprotnog smjera kako bi se protivilo promjeni polja. Dakle, može se reći da su generirane vrtložne struje i zavojnica senzora analogni dvjema međusobno povezanima induktivitetima u kojima su vrtložne struje modelirane sa sekundarnom zavojnicom čiji je smjer struje suprotan smjeru struje zavojnice senzora [1].

Tvorba vrtložnih struja može imati nepoželjne posljedice kao što je na primjer gubitak snage zbog Jouleovog zakona i tvorbe topline. Jouleovo zagrijavanje nepoželjno je u većini primjena zbog toga što smanjuje efikasnost i stvara zagrijavanje vodljivih materijala u sustavu [1].

3.2 Rezonantna frekvencija LC oscilatora

Rezonantna frekvencija idealnog LC oscilatora dana je slijedećom jednadžbom

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{3-1}$$

No zavojnice imaju unutarnji otpor koji, ovisno o veličini zavojnice, može utjecati na frekvenciju osciliranja u krugu. Slika pokazuje model koji u obzir uzima i unutarnji otpor zavojnice koji se koristi za izračunavanje rezonantne frekvencije sustava [1].

Slika 3.3. RLC krug s paralelnim kapacitetom [1]

Ulazna impedancija ovog kruga je dana slijedećom jednadžbom

$$Z = \frac{\frac{1}{j\omega C} (R + j\omega L)}{\frac{1}{j\omega C} + R + j\omega L}$$
(3-2)

Jednadžba nakon što se riješi ima imaginarni i realni dio

$$Z = \frac{R}{(1 - \omega^2 LCR)^2 + \omega^2 C^2 R^2} + j \frac{\omega L - \omega^3 L^2 C - \omega CR^2}{(1 - \omega^2 LCR)^2 - \omega^2 C^2 R^2}$$
(3-3)

Kako bismo našli rezonantnu frekvenciju kruga potrebno je imaginarni dio jednadžbe izjednačiti sa nulom i riješiti po ω .

$$\frac{\omega L - \omega^3 L^2 C - \omega C R^2}{(1 - \omega^2 L C R)^2 - \omega^2 C^2 R^2} = 0$$
(3-4)

Te na kraju rezonantna frekvencija je

$$\omega = \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2}$$
(3-5)

Iz gore prikazane jednadžbe se vidi da rezonantna frekvencija, u slučaju kada postoji otpor u seriji sa induktivitetom, nije jednaka rezonantnoj frekvenciji jednostavnog LC kruga no ako je otpor u seriji sa induktivitetom jako mali tada se može aproksimirati kao rezonantna frekvencija jednostavnog LC kruga [1].

3.3 Faktor kvalitete i dizajn zavojnice

Zavojnice nisu idealne i imaju unutarnji otpor što uzrokuje gubitak energije te uz to tvorba vrtložnih struja u vodljivom materijalu također doprinosi gubitku energije pretvorbom električne struje u toplinu. Faktor kvalitete je bitan jer olakšava poboljšanje dizajna na takav način da su gubitci u sustavu smanjeni [1]. Faktor kvalitete, Q, opisuje koliko je oscilator prigušen i definiran je kao

$$Q = \frac{\omega L}{R} \tag{3-6}$$

gdje je ω rezonantna frekvencija, *R* je otpor u seriji s induktivitetom, a ωL je induktivna reaktancija [1]. Faktor kvalitete uspoređuje energiju pohranjenu, u ovom slučaju, u induktivitetu sa potrošenom energijom predstavljenom sa otporom *R*. Veći faktor kvalitete znači manje gubitke energije u LC oscilatornom krugu i ponašanje induktiviteta bliže idealnom. Faktor kvalitete se može povećati povećanjem induktiviteta kada se poveća broj zavoja u zavojnici [1,3].

Faktor kvalitete još i ovisi o frekvenciji ω , plošne zavojnice imaju manju induktivnost od zavojnica sa željeznom jezgrom i manji otpor, te je zbog toga potrebno povećati frekvenciju kako

bi se povećao faktor kvalitete zbog toga što veći faktor kvalitete osigurava veće područje djelovanja zavojnice [3].

Povećanjem ω promjenom parametara oscilatora, (to jest, promjenom iznosa kapaciteta, zbog toga što faktor kvalitete ne ovisi o kapacitetu), bi trebalo doći do promjene faktora kvalitete što je i poželjno do neke mjere jer veći faktor kvalitete znači i manje gubitke. Kod dizajniranja, početno magnetsko polje, kada vodljivo tijelo miruje, mora biti dovoljno veliko da može dosegnuti vodljivo tijelo. Ako magnetsko polje nije dovoljno veliko ono ne može detektirati vodljivo tijelo zbog toga što se ne stvaraju vrtložne struje i induktivitet ostaje isti, tek nakon što vodljivo tijelo uđe u magnetsko polje zavojnice moguće je prepoznati pomak vodljivog tijela [1].

3.4 Dizajn induktivne zavojnice

Upotreba feromagnetske jezgre u elektromagnetskoj zavojnici može značajno povećati stvoreno magnetsko polje. Feromagnetska jezgra je magnetizirana pomoću magnetskog polja zavojnice, što uzrokuje da se magnetske domene poravnaju jedna sa drugom te stvore polje koje se nadodaje na polje elektromagnetske zavojnice te se ukupno magnetsko polje višestruko povećava [1,5]. Promatrani tip senzora može se promatrati kao slabo povezani primarni i sekundarni namoti modela transformatora. Plošna zavojnica slična je primarnoj zavojnici transformatora, a bakrena traka koja se giba iznad zavojnice slična je kratko spojenom sekundarnom namotu transformatora [4]. Umjesto feromagnetske jezgre promatrana zavojnica ima zračni prostor između namota, te se zove zračna zavojnica. Zbog svojeg manjeg magnetskog polja, zavojnice sa zračnom jezgrom imaju relativno manju osjetljivost na prisutnost vodljivog materijala ako ih usporedimo sa zavojnice sa zračnom jezgrom i to su spiralna, kvadratna, heksagonalna i oktogonalna zavojnica. Sve četiri zavojnice imaju istu širinu i visinu namota i jednaki broj namota. Na slijedećim slikama su prikazane polazne geometrije.

Slika 3.4. Spiralna geometrija

Slika 3.5. Kvadratna geometrija

Slika 3.6. Heksagonalna geometrija

Slika 3.7. Oktogonalna geometrija

4. MODELIRANJE INDUKTIVNOG SENZORA POMAKA

Izrada geometrije će započeti modeliranjem spiralne zavojnice. Zavojnica ima 12 namota, širina trake zavojnice je 0,5mm, dok je visina trake zavojnice 0,03mm, a razmak između traka zavojnice je 0,5mm [7]. Nakon otvaranja programskog alata *Ansys Maxwell* potrebno je za početak iz padajućeg izbornika *Project* odabrati *Insert Maxwell 3D Design*

Slika 4.1. Odabir početnog alata

Nakon odabira početnog alata za izradu geometrije potrebno je odrediti mjernu jedinicu i tip rješenja simulacije. Mjerna jedinica se određuje odabirom *Units* iz padajućeg izbornika *Modeler* i odabiru se milimetri kao zadana mjerna jedinica. a rješenje simulacije se određuje odabirom *Solution type* iz padajućeg izbornika *Maxwell 3D*, a kao tip simulacije potrebno je odabrati *eddy current* jer se promatra utjecaj vrtložnih struja.

Set Model Units	\times	Solution Type: Project1 - Maxwell3DDesign1
Select units: mm Rescale to new units OK Cancel		Magnetic: Magnetostatic Eddy Current Transient Electric: Electrostatic DC Conduction Include Insulator Field Electric Transient DK

Slika 4.2. Postavljanje mjernih jedinica i tipa simulacije

Za modeliranje spiralne zavojnice odabire se $Draw \rightarrow User Defined Primitive \rightarrow SegmentedHelix$ $\rightarrow RectHelix$ kao što je i prikazano slikom.

Slika 4.3. Crtanje spiralne geometrije

Nakon odabira RectHelix otvara se izbornik u kojemu se definira željena zavojnica.

	Name	Value	Unit	Evaluated Value	Description	
Loc	ation	syslib				
Vers	sion	1.0				
Rec	ctHeight	0.03	mm	0.03mm	Cross-section rectangle height in z direction	
Rec	ctWidth	0.5	mm	0.5mm	Cross-secton rectangle width in r direction	
Star	rtHelixRadius	1	mm	1mm	Start radius from rectangle center to helix center	
Rad	diusChange	1.01	mm	1.01mm	Radius change per tum	
Pitc	:h	0	mm	0mm	Helix pitch	
Turr	ns	12		12	Number of turns	
Seg	mentsPerT	36		36	Number of segments per turn, 0 for true surface	
Righ	htHanded	1		1	Helix direction, non-zero for right handed	
<					>	

Slika 4.4. Definiranje spiralne geometrije

RectHeight definira visinu trake zavojnice, RectWidth definira širinu trake zavojnice, StartHelixRadius definira početni polumjer zavojnice, RadiusChange definira promjenu polumjera po zavoju zavojnice, *Pitch* definira razmak između namota u visinu, to jest, ako se postavi 0 mm zavojnica će biti plošna, to jest, planarna, *Turns* definira broj zavoja u zavojnici, *SegmentsPerTurn* definira na koliko segmenata će *Ansys* podijeliti zavojnicu i na kraju *RightHanded* definira smjer namotaja zavojnice (1 znači u desno, a 0 u lijevo). Na slijedećoj slici je prikazana definirana geometrija.

Slika 4.5. Dobivena spiralna geometrija

Slijedeći korak je napraviti izvode za početak i kraj zavojnice kako bi bilo moguće zadati uzbudu. Pomoću *Draw box* nacrtani su izvodi zavojnice te su svi elementi na kraju ujedinjeni pomoću opcije *Unite*.

Slika 4.6. Spiralna geometrija sa izvodima

Izvodi zavojnice su rađeni zbog toga što *Ansys* za *Eddy Current* ne dozvoljava zadavanje uzbude ako ona ne graniči sa prostorom koji se promatra, to jest, početak i kraj zavojnice moraju graničiti

sa *Region*. Odabirom *Create region* pojavljuje se izbornik u kojemu je potrebno definirati veličinu promatranog prostora u x,y i z osi. Kako su zadani izvodi u smjeru +y i -y osi njih je potrebno staviti na 0% da bi promatrani prostor graničio sa izvodima zavojnice.

Slika 4.7. Izgled Region-a

Prije definiranja uzbude potrebno je definirati materijal zavojnice jer po zadanome *Ansys* za svaki objekt smatra da je vakuum. Za zadavanje materijala zavojnice potrebno je odabrati zavojnicu te desnim klikom miša izabrati *Assign Material* iz padajućeg izbornika ili se može odabrati *Properties* u kojemu osim materijala još je moguće promijeniti naziv, boju ili transparentnost objekta. Nakon što je definiran bakar kao materijal potrebno je definirati uzbudu za početak i kraj zavojnice, a to se radi tako što se desnim klikom miša odabire *Select Faces* umjesto *Select Object,* te je nakon toga potrebno odabrati početak i kraj zavojnice te im dodijeliti uzbudu.

6	Next Behind All Object Faces Faces On Plane Go to History	В	Current Density	
	Measure	>	Current Density Terminal	
	View	>	Current	
	Edit	>	Coil Terminal Permanent Magnet Field	
	Group Create 3D Component	>	Conduction Paths > External Circuit >	
3	Assign Material		Add Winding	
	Assign Boundary	>	Set Eddy Effects	
	Assign Excitation	>	Set Core Loss	0.9 (mm)

Slika 4.8. Dodjeljivanje uzbude

Odabirom struje kao uzbude otvara se izbornik u kojemu je moguće mijenjati jakost struje, smjer struje i fazni kut. Jakost struje je određena pomoću gustoće struje koja iznosi $4 A/mm^2$ te ako se izračuna površina presjeka trake zavojnice i pomnoži sa gustoćom struje dobije se 60 mA.

Slika 4.9. Smjer definirane uzbude

To je kraj što se tiče modeliranja same zavojnice, jedino je potrebno još modelirati predmet koji se detektira. Dimenzije detektiranog predmeta su 25 mm x 25 mm, a debljina je 0,1 mm. Odabrani materijal je bakar i predmet se nalazi 0,5 mm iznad zavojnice. Na slici 4.10. je prikazana kompletna zavojnica sa bakrenom trakom koja služi kao predmet detekcije [6].

Slika 4.10. Kompletna spiralna geometrija sa bakrenom trakom

Modeliranje kvadratne, heksagonalne i oktogonalne zavojnice je identično modeliranju spiralne zavojnice, a jedina razlika je u tome što se mijenja *SegmentsPerTurn* kod definiranja geometrije zavojnice i on iznosi 4 za kvadratnu, 6 za heksagonalnu i 8 za oktogonalnu zavojnicu. U nastavku su prikazane kompletne geometrije kvadratne, heksagonalne i oktogonalne zavojnice.

Slika 4.11. Kompletna kvadratna geometrija sa bakrenom trakom

Slika 4.12. Kompletna heksagonalna geometrija sa bakrenom trakom

Slika 4.13. Kompletna oktogonalna geometrija sa bakrenom trakom

5. SIMULACIJA SENZORA

Prije pokretanja simulacija potrebno je podesiti parametre simulacije koji se nalaze u izborniku *Project Manager* i ovako podešeni parametri su identični za sve četiri geometrije. Uzbuda je već zadana tako da je slijedeće na redu pod *Parameters* potrebno odabrati *Assign* \rightarrow *Matrix* te je potrebno označiti izvor zavojnice kako bi *Ansys* mogao računati induktivitet. Desnim klikom miša i odabirom *Assign Excitation* \rightarrow *Set Eddy Effects* otvara se izbornik u kojemu je potrebno odabrati *Eddy Effect* u bakrenoj traci jer se promatra utjecaj vrtložnih struja u bakrenoj traci.

Object	Eddy Effect	Displacement Curren	t
Zavojnica_spirala			
Bakrena_traka	✓		
Region			

Slika 5.1. Definiranje vrtložnih struja u bakrenoj traci

Slijedeće na redu je određivanje postavki simulacije, odabirom *Analysis*→*Add Solution Setup* otvara se izbornik kao na slici 5.2. Pogreška proračuna je postavljena na 2% i maksimalan broj proračuna je postavljen na 15 kako bi Ansys mogao uspješno postići pogrešku proračuna manju od 2%. Frekvencija je postavljena na 60 kHz i ubrzo će biti objašnjeno zašto je odabrana ta frekvencija.

Solve Setup	×	Solve Setup X
General Convergence Expression Cache Solver Frequency Sweep Defaults	1	General Convergence Expression Cache Solver Frequency Sweep Defaults
Name: Setup 1 Image: Free Free Free Free Free Free Free Fr		Adaptive Frequency: 50 kHz Nonlinear Residual: 0.0001 Enable iterative Solver Relative Residual: 0.0001 Use higher order shape functions
Use Default HPC and Analysis Options		I Use pre-computed permeability data I Import mesh Setup Link Use Defaults
Uredu Odusta	ani	Uredu Odustani

Slika 5.2. Postavljanje postavki simulacije

Kako bi bilo moguće simulirati pomak detektiranog predmeta iznad zavojnice potrebno je zadati varijablu pomaka bakrene trake po x osi i po z osi. Odabirom *CreateBox* pod modelom Bakrena_traka otvara se izbornik u kojemu se nalaze koordinate bakrene trake, za zadavanje varijable pomaka po x osi upisan je *pomak_po_x_osi* na mjesto koordinate x osi, a za pomak po z osi upisan je *pomak_po_z_osi* na mjesto koordinate z osi. Nakon što se upiše ime varijable automatski se otvara izbornik u kojemu je potrebno odabrati tip mjerne jedinice varijable i početnu vrijednost.

Slika 5.3. Definiranje pomaka bakrene trake

Za kraj potrebno je pod *Optimetrics* $\rightarrow Add \rightarrow Parametric$ odrediti pomak bakrene trake po x i z osi.

Variable pomak po x osi 💌	•	pomak_po_x_osi		•	pomak_po_z_osi
	1	-42.5mm		1	0.5mm
C Single value	2	-37.5mm	C Single value	2	2.5mm
• Linear step	3	-32.5mm	C Linear step	2	4.5mm
C Linear count	4	-27.5mm	C Linear count	Ĕ.	4.5mm
C Decode count	5	-22.5mm	C Decada count	4	6.5mm
	6	-17.5mm		5	8.5mm
O Uctave count	7	-12.5mm	Uctave count	6	10.5mm
C Exponential count	8	-7.5mm	C Exponential count		
Start: -42.5	9	-2.5mm	Start: 0.5 mm 💌		
	10	2.5mm			
Stop: 17.5 mm 💌	11	7.5mm	Stop: 10.5 mm 💌		
Sher: E	12	12.5mm	Step: 2		
	13	17.5mm			

Slika 5.4. Postavljanje koraka pomaka

Pomak po x osi ima 13 koraka, a pomak po z osi ima 6 koraka. To je kraj postavljanja parametara simulacije [6].

5.1 Određivanje frekvencije

Za određivanje frekvencije korišten je *Frequency Sweep* koji se može naći pod *Analysis* \rightarrow *Add Solution Step* \rightarrow *Frequency Sweep*

bive setup		
General Convergence Expression Cache Solver Freque	ency Sweep Def	aults
Sweep Setup	Frequency 1e-005GHz 2e-005GHz 3e-005GHz 4e-005GHz 5e-005GHz 6e-005GHz 8e-005GHz 9e-005GHz 9e-005GHz 9e-005GHz 9e-005GHz 9e-005GHz 9e-005GHz 0.0001GHz	Save Fields Save Fields V V V V V V V V V V Save Fields

Slika 5.5. Frequency Sweep

Za udaljenost bakrene trake od zavojnice od 0,5mm postavljen je *Frequency Sweep* u kojemu su provedene simulacije za frekvencije od 10 kHz do 100 kHz s korakom od 10 kHz. Slijedeća slika prikazuje induktivitet zavojnice za raspon frekvencija od 10 kHz do 100 kHz.

Slika 5.6. Prikaz osjetljivosti senzora za različite frekvencije

Odabrana je frekvencija od 60kHz koja je i istaknuta zelenom bojom na slici 5.7. Frekvencija od 60kHz zadovoljava zbog toga što nakon 60kHz postotna promjena induktiviteta nema velikih promjena što je i prikazano tablicom 5.1.

Frekvencija [kHz]	Maksimalan	Minimalan	Postotna
	induktivitet [µH]	induktivitet[µH]	promjena [%]
10	1,8731	1,1393	39,18
20	1,8727	0,7586	59,49
30	1,8725	0,6339	66,15
40	1,8724	0,5808	68,98
50	1,8723	0,5536	70,43
60	1,8722	0,5379	71,27
70	1,8722	0,5279	71,80
80	1,8722	0,5212	72,16
90	1,8722	0,5165	72,41
100	1,8721	0,5131	72,59

Tablica 5.1. Promjena induktiviteta kroz različite frekvencije

5.2 Spiralna zavojnica

Na slijedećim slikama je simuliran vektorski prikaz magnetskog polja bakrene trake.

Slika 5.8. 3D vektorski prikaz magnetskog polja

Slika 5.10. Vektorski prikaz magnetskog polja u y-z ravnini

Za prikazivanje promjene induktiviteta zavojnice prolaskom bakrene trake napravljen je plot u kojemu se na y osi nalazi induktivitet zavojnice, a na x osi se nalazi pomak bakrene trake.

Kada izmjenična struja prolazi kroz planarnu zavojnicu ona stvara promjenivi magnetski tok u zračnoj jezgri zavojnice. Promjenjivo magnetsko polje prolazi kroz bakrenu traku te u njoj inducira promjenjivi napon i struju po Faraday-evom zakonu. Inducirana struja u bakrenoj traci, zvana vrtložna struja, protivi se tvorbi magnetskog toka po Lenz-ovom zakonu. Što je veća frekvencija, veći je i efekt vrtložnih struja u bakrenoj traci i to za uzvrat rezultira padom induktiviteta zavojnice

[4] . Kako je i vidljivo na slici 5.11. Induktivitet zavojnice pada sve dok bakrena traka ne dođe iznad sredine zavojnice, kada je bakrena traka na sredini zavojnice tu je i induktivitet zavojnice najmanji jer su vrtložne struje u detektiranom predmetu najveće. Daljnjim kretanjem bakrene trake od sredine zavojnice rezultira povećanjem induktiviteta zavojnice sve do maksimalne vrijednosti.

Uz pomak bakrene trake po x osi napravljena je i krivulja pomaka bakrene trake po z osi. Ovaj graf je napravljen kako bi se utvrdilo do koje udaljenosti bakrene trake od zavojnice još postoji dovoljno jako magnetsko polje za detekciju pomaka, to jest, do koje udaljenosti zavojnica može detektirati pomak predmeta. Za ostale tri geometrije samo su prikazani dobiveni grafovi i vektorski prikaz magentskih polja, a u slijedećem poglavlju su detaljnije uspoređene sve četiri geometrije.

Slika 5.12. Promjena induktiviteta pomakom po z osi

5.3 Kvadratna zavojnica

Slika 5.13. 3D vektorski prikaz magnetskog polja

Slika 5.14. Vektorski prikaz magnetskog polja u x-y ravnini

Slika 5.15. Vektorski prikaz magnetskog polja u y-z ravnini

Slika 5.16. Promjena induktiviteta pomakom po x osi

Slika 5.17. Promjena induktiviteta pomakom po z osi

5.4 Heksagonalna zavojnica

Slika 5.18. 3D vektorski prikaz magnetskog polja

Slika 5.19. Vektorski prikaz magnetskog polja u x-y ravnini

Slika 5.20. Vektorski prikaz magnetskog polja u y-z ravnini

Slika 5.21. Promjena induktiviteta pomakom po x osi

Slika 5.22. Promjena induktiviteta pomakom po z osi

5.5 Oktogonalna zavojnica

Slika 5.23. 3D vektorski prikaz magnetskog polja

Slika 5.24. Vektorski prikaz magnetskog polja u x-y ravnini

Slika 5.25. Vektorski prikaz magnetskog polja u y-z ravnini

Slika 5.26. Promjena induktiviteta pomakom po x osi

Slika 5.27. Promjena induktiviteta pomakom po z osi

5.6 Promjena razmaka između trake zavojnice za sve četiri geometrije

Za kraj promatran je još i utjecaj promjene razmaka između traka zavojnice uz isti broj zavoja i iste dimenzije trake zavojnice. Za sve četiri geometrije promatran je slučaj kada je bakrena traka iznad sredine zavojnice.

Slika 5.28. Promjena induktiviteta zavojnice u ovisnosti o promjeni razmaka između trake zavojnice

6. OBRADA I USPOREDBA REZULTATA SIMULACIJA

Numerički izračun

Za početak napravljen je numerički proračun induktiviteta za sve četiri geometrije zavojnice kako bi se mogao usporediti s analitičkim izračunom. Formula za približno određivanje induktiviteta planarne zavojnice [1]:

$$L = \frac{C_1 \mu_0 n^2 d_{avg}}{2} \left[ln \frac{C_2}{\rho} + C_3 \rho + C_4 \rho^2 \right]$$
(6-1)

gdje je *n* - broj zavoja, *C* – koeficijenti za aproksimaciju koji su dani u tablici u nastavku, μ_0 – permeabilnost vakuuma, $d_{avg} = \frac{d_{out}+d_{in}}{2}$, $\rho = \frac{d_{out}-d_{in}}{d_{out}+d_{in}}$.

Geometrija	C_1	C_2	C_3	C_4			
Spirala	1,00	2,46	0,00	0,20			
Kvadrat	1,27	2,07	0,18	0,13			
Heksagon	1,09	2,23	0,00	0,17			
Oktagon	1,07	2,29	0,00	0,19			

Tablica 6.1. Koeficijenti za aproksimaciju induktiviteta [1]
---	---	---

Parametri d_{in} i d_{out} su vanjski i unutarnji promjer zavojnice što je i prikazano na slijedećoj slici.

Slika 6.1. Određivanje unutarnjeg i vanjskog promjera [4]

Poznati su svi parametri te je moguće izračunati induktivitet zavojnice za svaku geometriju.

Spirala

$$d_{avg} = \frac{d_{out} + d_{in}}{2} = \frac{26,14 + 3}{2} = 14,57 \text{ mm}$$

$$\rho = \frac{d_{out} - d_{in}}{d_{out} + d_{in}} = \frac{26,14 - 3}{26,14 + 3} = 0,794$$

Sada kada su poznati parametri d_{avg} i ρ za spiralnu zavojnicu moguće je izračunati, to jest, približno izračunati induktivitet zavojnice

$$L = \frac{C_1 \mu_0 n^2 d_{avg}}{2} \left[ln \frac{C_2}{\rho} + C_3 \rho + C_4 \rho^2 \right]$$
$$L = \frac{1,00 \cdot 4\pi \cdot 10^{-7} \cdot 12^2 \cdot 14,57 \cdot 10^{-3}}{2} \left[ln \frac{2,46}{0,794} + 0 + 0,20 \cdot 0,794^2 \right]$$
$$L = 1,657 \cdot 10^{-6} H$$

Kvadrat

$$d_{avg} = \frac{d_{out} + d_{in}}{2} = \frac{25,16 + 2,9}{2} = 14,03 \text{ mm}$$

$$\rho = \frac{d_{out} - d_{in}}{d_{out} + d_{in}} = \frac{25,16 - 2,9}{25,16 + 2,9} = 0,7933$$

Sada kada su poznati parametri d_{avg} i ρ za kvadratnu zavojnicu moguće je izračunati, to jest, približno izračunati induktivitet zavojnice

$$L = \frac{C_1 \mu_0 n^2 d_{avg}}{2} \left[ln \frac{C_2}{\rho} + C_3 \rho + C_4 \rho^2 \right]$$
$$L = \frac{1,27 \cdot 4\pi \cdot 10^{-7} \cdot 12^2 \cdot 14,03 \cdot 10^{-3}}{2} \left[ln \frac{2,07}{0,7933} + 0,18 \cdot 0,7933 + 0,13 \cdot 0,7933^2 \right]$$
$$L = 1,908 \cdot 10^{-6} H$$

Heksagon

$$d_{avg} = \frac{d_{out} + d_{in}}{2} = \frac{25,57 + 3,37}{2} = 14,47 mm$$

$$\rho = \frac{d_{out} - d_{in}}{d_{out} + d_{in}} = \frac{25,57 - 3,37}{25,57 + 3,37} = 0,767$$

Sada kada su poznati parametri d_{avg} i ρ za heksagonalnu zavojnicu moguće je izračunati, to jest, približno izračunati induktivitet zavojnice

$$L = \frac{C_1 \mu_0 n^2 d_{avg}}{2} \left[ln \frac{C_2}{\rho} + C_3 \rho + C_4 \rho^2 \right]$$

$$L = \frac{1,09 \cdot 4\pi \cdot 10^{-7} \cdot 12^2 \cdot 14,47 \cdot 10^{-3}}{2} \left[ln \frac{2,23}{0,767} + 0 + 0,17 \cdot 0,767^2 \right]$$
$$L = 1,666 \cdot 10^{-6} H$$

Oktagon

$$d_{avg} = \frac{d_{out} + d_{in}}{2} = \frac{25,54 + 3,08}{2} = 14,31 \text{ mm}$$
$$\rho = \frac{d_{out} - d_{in}}{d_{out} + d_{in}} = \frac{25,54 - 3,08}{25,54 + 3,08} = 0,785$$

Sada kada su poznati parametri d_{avg} i ρ za oktogonalnu zavojnicu moguće je izračunati, to jest, približno izračunati induktivitet zavojnice

$$L = \frac{C_1 \mu_0 n^2 d_{avg}}{2} \left[ln \frac{C_2}{\rho} + C_3 \rho + C_4 \rho^2 \right]$$
$$L = \frac{1,07 \cdot 4\pi \cdot 10^{-7} \cdot 12^2 \cdot 14,31 \cdot 10^{-3}}{2} \left[ln \frac{2,29}{0,785} + 0,19 \cdot 0,785^2 \right]$$
$$L = 1,645 \cdot 10^{-6} H$$

U slijedećoj tablici je prikazana usporedba numeričkog i analitičkog izračuna

Geometrija	Numerički izračun [µH]	Analitički izračun [µH]	
Spirala	1,657	1,704	
Kvadrat	1,908	1,870	
Heksagon	1,666	1,751	
Oktagon	1,645	1,714	

Tablica 6.2. Usporedba analitičkog i numeričkog izračuna

Usporedbom numeričkog i analitičkog proračuna vidljivo je da numerički proračun daje zadovoljavajuće rezultate s obzirom da je to izračunata približna vrijednost induktiviteta.

Usporedbom smanjenja induktiviteta prelaskom bakrene trake iznad zavojnice između četiri geometrije vidljivo je da sve četiri geometriju imaju sličan postotni pad induktiviteta, iako sve četiri geometrije imaju slične postotne padove induktiviteta, kvadratna geometrija ipak ima najveći apsolutni pad induktiviteta što je i očekivano zbog toga što kvadratna zavojnica ima najveći induktivitet za prostor koji zauzima.

Geometrija	Maksimalan induktivitet [µH]	Minimalan induktivitet [µH]	Postotna
			promjena [%]
Spirala	1,704	0,464	72,77
Kvadrat	1,870	0,531	71,6
Heksagon	1,751	0,495	71,73
Oktagon	1,714	0,472	72,46

Tablica 6.3. Promjena induktiviteta prelaskom bakrene trake

Zbog nelinearne krivulje teško je odrediti osjetljivost senzora, no ako se uzme linearni dio krivulje moguće je odrediti osjetljivost. Sve četiri geometrije imaju sličnu krivulju te se za sve četiri geometrije promatra dio krivulje kao što je prikazan na slici 6.2.

Slika 6.2. Promatrani dio krivulje za određivanje približne vrijednosti

Fablica 0.4. Osjetijivost zavojince pomakom bakiene trake po x osi		
Geometrija	Osjetljivost [nH/mm]	
Spirala	75,63	
Kvadrat	78,6	
Heksagon	76,07	
Oktagon	75,05	

Tablica 6.4. Osjetljivost zavojnice pomakom bakrene trake po x osi

Za pomak bakrene trake po x osi sa nepromijenjenom udaljenosti od senzora koja iznosi 0,5mm najveću osjetljivost ima kvadratna zavojnica što je i očekivano iako razlika u osjetljivosti između sve četiri geometrije nije velika

Slijedeće se promatra promjena osjetljivosti pomakom bakrene trake po z osi. Sve četiri geometrije imaju sličnu krivulju tako da se promatra dio krivulje kao što je prikazano na slici 6.3.

Slika 6.3. Promatrani dio krivulje za određivanje približne vrijednosti

Tablea 0.5. Osjetijivost zavojinec politakom baktene trake po z osi		
Geometrija	Osjetljivost [nH/mm] – do 2,5 mm	
Spirala	336	
Kvadrat	358,3	
Heksagon	335	
Oktogon	334,8	

Tablica 6.5. Osjetljivost zavojnice pomakom bakrene trake po z osi

Spiralna, heksagonalna i oktogonalna zavojnica imaju gotovo pa slične osjetljivosti pri pomaku po z osi do 2,5mm, a kvadratna zavojnica opet ima najveću osjetljivost što je i očekivano.

Dodatno se promatra i utjecaj razmaka između trake zavojnice na osjetljivost senzora, te su u nastavku dani svi podaci sa slike 5.28. u tablici 6.6. (Napomena: sa slike 5.28. vidljivo je da je razmak na x osi veći nego onaj u tablici , a razlog tomu je taj što je to vrijednost iz *parametric sweep-a* te da bi se dobio pravi razmak između trake zavojnice potrebno je umanjiti razmak sa slike 5.28. za 0,5mm.)

Geometrija	Razmak [mm]	Induktivitet	Induktivitet zavojnice	Postotna
		zavojnice [µH]	s bakrenom trakom	promjena [%]
			iznad zavojnice[µH]	
	0,5	1,6841	0,462	72,56
Spirala	1	2,3831	0,554	76,75
	1,5	3,0622	0,670	78,12
	2	3,7091	0,796	78,54
	2,5	4,3148	0,935	78,33
Kvadrat	0,5	1,7878	0,511	71,41
	1	2,6268	0,635	75,82
	1,5	3,4326	0,776	77,39
	2	4,2047	0,932	77,83
	2,5	4,9047	1,089	77,79
	0,5	1,6641	0,473	71,58
Heksagon	1	2,4121	0,584	75,79
	1,5	3,1385	0,712	77,31
	2	3,8399	0,852	77,81
	2,5	4,4956	0,998	77,80
Oktagon	0,5	1,6274	0,452	72,23
	1	2,3431	0,556	76,27
	1,5	3,0595	0,670	78,10
	2	3,7197	0,810	78,22
	2,5	4,3541	0,950	78,18

Tablica 6.6. Promjena induktiviteta za različite razmake između trake zavojnice

Kod promjene razmaka između traka zavojnice može se primijetiti da osjetljivost zavojnice, odnosno postotna promjena induktiviteta nema velikih promjena iznad 1,5mm, a nakon 2mm čak dolazi i do malog pada osjetljivosti zavojnice.

Sve četiri spiralne geometrije imaju veliku osjetljivost i veliki induktivitet, no ipak kvadratna zavojnica se pokazala kao najbolji senzor između četiri promatrana.

7. ZAKLJUČAK

Modeliran je induktivni senzor pomaka korištenjem FEM alata te je promatrana promjena induktiviteta (spiralne, kvadratne, heksagonalne i oktogonalne zavojnice) pomakom bakrene trake. Pomakom bakrene trake iznad senzora, zbog induciranih vrtložnih struja, dolazi do smanjenja induktiviteta zavojnice te je pomoću tog pada induktiviteta moguće odrediti položaj bakrene trake. Prvo je napravljen 3D model za različite tipove izvedbe senzora te je određena jakost struje i frekvencija. Jakost struje je određena pomoću gustoće struje koja iznosi $4 A/mm^2$ te ako se izračuna površina presjeka trake zavojnice i pomnoži sa gustoćom struje dobije se 60 mA. Napravljen je i *Frequency Sweep* kako bi se pokazao utjecaj frekvencije na osjetljivost senzora, to jest, na pad induktiviteta prelaskom bakrene trake iznad zavojnice. Vidljivo je da na većim frekvencijama senzor ima veću osjetljivost no za potrebe izrade ovoga rada zadovoljavajuća je dobivena osjetljivost pri 60 kHz. Ako se usporede dobiveni rezultati od sve četiri izvedbe zavojnica vidljivo je da sve zavojnice imaju vrlo dobru osjetljivost i veliko područje djelovanja (što je bilo i očekivano za spiralne geometrije zavojnica) iako kvadratna zavojnica, kao što je bilo i očekivano, ima najveći induktivitet, a samim time i najveće područje djelovanja.

LITERATURA

- [1] A. Rahbar, *Flexible Touchpads Based on Inductive Sensors Using Conductive Composite Polymer and Flexible Metal PCB*, Simon Fraser University, Burnaby, 2015
- [2] N. Šturlan, Diplomski rad, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu,
 Zagreb, 2010. url <u>http://repozitorij.fsb.hr/1154/1/03_12_2010_Diplomski_rad_-</u>
 <u>Nikola_Sturlan.pdf</u> (22.veljače 2020.)
- [3] M. Mauro Dias Santos, A. Baratella Lugli, R. Borsato Rodrigues, J. Franscisco Justo, *Planar Inductive Sensor with Very High Stability Over Temperature Variations*, International Journal of Innovative Computing, Information and Control, Volume 11, Number 6, Brazil, 2015.
- [4] A. K. Palit, Frequency Response Modeling of Inductive Position Sensor with Finite Element Tools, Lemfoerder Electronic GmbH
- [5] Ž. Štih, B. Trkulja, Elektromagnetska polja Magnetostatika, FER, Zagreb, 2010. url: https://www.fer.unizg.hr/_download/repository/2_materijali_magnetostatika.pdf
 (22.veljače 2020.)
- [6] Ansys Electronics 18.2 Help Manual
- [7] G. Moreton, T. Meydan, P. Williams, Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement, American Institute of Physics, 2017. url: <u>https://doi.org/10.1063/1.4994127</u> (21. rujan 2019)

SAŽETAK

U ovom radu, modelirane su i simulirane četiri izvedbe induktivnih senzora pomaka korištenjem FEM alata. Promatrana je promjena induktiviteta prelaskom tanke bakrene trake iznad zavojnice te utjecaj promjene frekvencije na osjetljivost senzora. Simulacijama nije prikazana promjena geometrije na osjetljivost senzora već samo usporedba četiri senzora koji imaju isti broj zavoja, iste dimenzije trake zavojnice. Na kraju rada je dana usporedba spiralne, kvadratne, heksagonalne i oktogonalne zavojnice.

ABSTRACT

In this thesis, four different design types of inductive sensors were modeled and simulated using FEM tools. Change of inductance is observed by moving thin copper plate horizontally above the sensor and also influence of frequency change on sensor sensitivity was observed. Simulations did not cover effect of geometry change on sensor sensitivity, simulations only compared four sensor designs which have equal number of coil turns, same dimensions of coil track width and height. In the end of thesis, comparison between spiral, square, hexagonal and octagonal coils is given.

ŽIVOTOPIS

Matej Dunković rođen je 13.07.1995. u Virovitici. Odrastao je u Sladojevcima, te u Slatini završava Osnovnu školu Josipa Kozarca. Nakon završetka osnovne škole, upisuje Srednju školu Marka Marulića u Slatini te završava smjer opća gimnazija. Nakon završetka srednje škole upisuje Fakultet elektrotehnike, računarstva i informacijskih tehnologija u Osijeku i odabire preddiplomski studij elektrotehnike. Nakon završetka preddiplomskog studija upisuje diplomski studij i odabire smjer industrijska elektroenergetika. Aktivno se služi engleskim jezikom i programskim alatima: Word, Power Point, Visio, Ansys Maxwell, AutoCAD. Stručnu praksu je odradio u projektantskoj firmi Nova-Lux, gdje nakon odrađene prakse ostaje raditi preko studentskog ugovora.

U Osijeku 22.09.2019.

Matej Dunković

Potpis: _____

PRILOZI

Spiralna zavojnica

Kvadratna zavojnica

Heksagonalna zavojnica

Oktogonalna zavojnica

