Izrada razvojne pločice za ispitivanje poluvodičkih sklopnih komponenata

Pejić, Vlatka

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:559969

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-18

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Sveučilišni studij

IZRADA RAZVOJNE PLOČICE ZA ISPITIVANJE POLUVODIČKIH SKLOPNIH KOMPONENATA

Završni rad

Vlatka Pejić

Osijek, 2020.

Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom sveučilišnom studiju

Osijek, 15.09.2020.

Odboru za završne i diplomske ispite

	k	Prijedlog ocjene završnog rada na preddiplomskom sveučilišnom studiju			
Ime i prezime studenta:	Vlatka	Pejić			
Studij, smjer:	Preddiplomski sveučilišni studij Elektrotehnika i informacijska tehnologija				
Mat. br. studenta, godina upisa:	4162b	, 17.09.2019.			
OIB studenta:	54334705751				
Mentor:	Prof. d	r. sc. Denis Pelin			
Sumentor:	Andrej	Brandis			
Sumentor iz tvrtke:					
Naslov završnog rada:	Izrada razvojne pločice za ispitivanje poluvodičkih sklopnih komponenata				
Znanstvena grana rada:	Elektrostrojarstvo (zn. polje elektrotehnika)				
_					
Predložena ocjena završnog rada:	Izvrsta	n (5)			
Predložena ocjena završnog rada: Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Izvrsta Primje Postigi bod/bo Jasnoć Razina	n (5) na znanja stečenih na fakultetu: 3 bod/boda nuti rezultati u odnosu na složenost zadatka: 2 oda na pismenog izražavanja: 3 bod/boda samostalnosti: 3 razina			
Predložena ocjena završnog rada: Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova: Datum prijedloga ocjene mentora:	Izvrsta Primje Postigi bod/bo Jasnoć Razina 15.09.	n (5) na znanja stečenih na fakultetu: 3 bod/boda nuti rezultati u odnosu na složenost zadatka: 2 oda a pismenog izražavanja: 3 bod/boda samostalnosti: 3 razina 2020.			
Predložena ocjena završnog rada: Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova: Datum prijedloga ocjene mentora: Datum potvrde ocjene Odbora:	Izvrsta Primje Postigi bod/bo Jasnoć Razina 15.09.2	n (5) na znanja stečenih na fakultetu: 3 bod/boda nuti rezultati u odnosu na složenost zadatka: 2 oda a pismenog izražavanja: 3 bod/boda samostalnosti: 3 razina 2020.			
Predložena ocjena završnog rada: Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova: Datum prijedloga ocjene mentora: Datum potvrde ocjene Odbora:	Izvrsta Primje Postigi bod/bo Jasnoć Razina 15.09.1	n (5) na znanja stečenih na fakultetu: 3 bod/boda nuti rezultati u odnosu na složenost zadatka: 2 oda a pismenog izražavanja: 3 bod/boda samostalnosti: 3 razina 2020.			
Predložena ocjena završnog rada: Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova: Datum prijedloga ocjene mentora: Datum potvrde ocjene Odbora: Potpis mentora za predaju konačne vorzijo rada u Studoptsku službu pri	Izvrsta Primje Postigi bod/bo Jasnoć Razina 15.09.1	n (5) na znanja stečenih na fakultetu: 3 bod/boda nuti rezultati u odnosu na složenost zadatka: 2 oda a pismenog izražavanja: 3 bod/boda samostalnosti: 3 razina 2020.			

IZJAVA O ORIGINALNOSTI RADA

Osijek, 22.09.2020.

Ime i prezime studenta:	Vlatka Pejić
Studij:	Preddiplomski sveučilišni studij Elektrotehnika i informacijska tehnologija
Mat. br. studenta, godina upisa:	4162b, 17.09.2019.
Turnitin podudaranje [%]:	4

Ovom izjavom izjavljujem da je rad pod nazivom: Izrada razvojne pločice za ispitivanje poluvodičkih sklopnih komponenata

izrađen pod vodstvom mentora Prof. dr. sc. Denis Pelin

i sumentora Andrej Brandis

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

Sadržaj

1.	UVO	DD.		1
]	l.1.	Zad	atak završnog rada	1
2.	PRE	EGL	ED PODRUČJA TEME	2
3.	POS	STO.	JEĆA PLOČICA	3
4.	IZR	AD	A I TESTIRANJE RAZVOJNE PLOČICE	4
2	4.1.	Izra	da razvojne pločice	5
2	4.2.	Tes	tiranje razvojne pločice	8
	4.2.1	1.	Snimanje karakteristike uklapanja MOSFET-a i IGBT-a	9
	4.2.2	2.	Određivanje gubitaka tranzistora u stanju vođenja1	3
	4.2.3	3.	Snimanje upravljačkog i izlaznog napona tranzistora virtualnim osciloskopom 1	5
5.	ZAK	KLЛ	UČAK	5
Lľ	ΓERA'	TUI	RA2	6
SA	ŽETA	٩K		7
AE	BSTRA	АСТ		7
ŽΓ	VOTO	PIS		8
PR	ILOZ	I		9

1. UVOD

U svrhu ovog završnog rada izrađena je razvojna pločica za testiranje tranzistora koji rade u sklopnom načinu rada prema već postojećoj tiskanoj pločici za ispitivanje karakteristika pretvaračkih komponenata tvrtke Lucas-Nuelle.

Na pločici su vršena testiranja pet tranzistora. Tranzistor je vrsta pretvaračke komponente, odnosno poluvodičke sklopne komponente. Njegova glavna karakteristika je pretvorba snage na frekvenciji. U ovom radu izvršena su mjerenja s tri tranzistora s efektom polja i izoliranim geitom (u daljnjem tekstu MOSFET, eng. Metal-Oxide-Semiconductor Field-Effect Tranzistor) i dva bipolarna tranzistora s izoliranim geitom (u daljnjem tekstu IGBT, eng. Insulated Gate Bipolar Tranzistor). Mjerenja su raspoređena u tri pokusa: snimanje karakteristike MOSFET-a i IGBT-a, određivanje gubitaka u stanju vođenja kod tranzistora te snimanje upravljačkog i izlaznog napona tranzistora pomoću virtualne opreme, odnosno osciloskopa, unutar didaktičko-multimedijalne opreme Lucas-Nuelle.

1.1. Zadatak završnog rada

Zadatak ovog završnog rada je izrada razvojne pločice za ispitivanje tranzistora te analiza njezina rada. Pomoću didaktičko-multimedijalne opreme UniTrain, potrebno je snimiti karakteristike i odrediti gubitke za tri pokusa. Rezultate dobivene ispitivanjem različitih karakteristika više vrsta MOSFET-a i IGBT-a potrebno je usporediti.

2. PREGLED PODRUČJA TEME

Na mrežnoj stranici [1] stoji kako njemačka tvrta Lucas-Nuelle, čija je multimedijalna oprema korištena u svim pokusima u ovom radu, razvija i proizvodi sustave koji se koriste u elektrotehnici, elektronici, automatici, itd..

John G. Kassakian u svojoj knjizi [2] govori o tranzistorima kao potpuno upravljivim poluvodičkim komponentama. Pojašnjava vođenje struje kod MOSFET-a i bipolarnog tranzistora isključivo u jednom smjeru. Kada nisu u stanju vođenja, opterećene su s jednim polaritetom napona.

N. Mohan u svojoj knjizi [3] opisuje sličnost IGBT-a koji je nastao kombinacijom MOSFET-a i bipolarnog tranzistora. Konkretno, pojašnjava kako IGBT, poput MOSFET-a, ima visoku ulaznu impedanciju koja zahtijeva malu količinu energije kako bi uređaj bio pokrenut.

D. Kezić u svom radu [4] pojašnjava kako se rad tranzistora može shvatiti preko hidrauličke analogije. Odnosno, tok vode je reguliran pomoću zaklopke s oprugom koja je neprestano vraća u zatvoreno stanje. No kako bi zaklopka bila otvorena, potrebno je dovesti napon na ulaz, a kada se onemogući prolazak upravljačke struje, odnosno napona na ulaz, prestaje teći struja.

J. Tadić u svom radu [5] sagledava rad IGBT-a u naponskoj frekvencijskoj regulaciji, naglašava njihovu mogućnost isključivanja i uključivanja nekoliko tisuća puta u jednoj sekundi.

N. Kristić u radu [6] provodi pokuse mjerenja karakteristika poluvodičkih sklopnim komponenata te u svom radu dolazi do zaključka, uspoređujući jedan MOSFET i jedan IGBT, kako MOSFET ima oko 40 puta manje gubitke od IGBT-a.

3. POSTOJEĆA PLOČICA

Razvojna pločica SO4201-7H dio je asortimana didaktičko multimedijalne opreme UniTrain tvrtke Lucas Nuelle. Pločica je prikazana na slici 3.1.

Slika 3.1. Razvojna pločica tvrtke Lucas Nuelle

Sadrži četiri pretvaračke komponente (MOSFET, IGBT, trijak i tiristor), potenciometar, tri otpornika i žarulju. Potenciometar služi za podešavanje napona koji određuje jačinu svjetlosti koju žarulja emitira. S obzirom da su na pločici tri otpornika različitih iznosa, moguće je raditi mjerenja s 22 Ω , 47 Ω ili 100 Ω . Konektori su postavljeni kako bi se komponente mogle pospajati. Pločica je predviđena za rad na laboratorijskoj vježbi iz kolegija Osnove energetske elektronike. Za rad s ovom pločicom potrebno je posjedovati sučelje CO4203-2A s napajanjem, CO4203-2A eksperimentator koji povezuje sučelje i tiskanu pločicu, pribor za spajanje, računalni program *Starter* tvrtke Lucas Nuelle te samu pločicu, kako je navedeno u [8].

4. IZRADA I TESTIRANJE RAZVOJNE PLOČICE

Ideja o izradi razvojne pločice proizašla je iz potrebe za dodatnim radnim mjestom na laboratorijskim vježbama iz kolegija Osnove energetske elektronike. U laboratorijskoj vježbi, za koju je pločica predviđena, cilj je upoznati studente s karateristikama MOSFET-a i IGBT-a u sklopnom načinu rada.

MOSFET i IGBT su tranzistori, odnosno poluvodička sklopne komponente s tri priključnice. MOSFET je tranzistor s efektom polja i izoliranim upravljačkim priključkom te je naponski upravljani tranzistor s tri osnovne priključnice: upravljačka priključnica (eng. Gate), odvod (eng. Drain) i dovod (eng. Source). Simbol i tipička *u-i* karakteristika MOSFET-a prikazani su na slici 4.1. preuzetoj iz [7] na kojoj je prikazan uvjet za stanje blokiranja, $u_{GS} \leq U_T$, napon praga veći ili jednak upravljačkom naponu.

Slika 4.1. Simbol i tipična u-i karakteristika MOSFET-a

Drugi tranzistor koji je obrađen u ovom radu je bipolarni tranzistor s izoliranim upravljačkim priključkom, odnosno IGBT. IGBT je nastao kao kombinacija najboljih svojstava MOSFET-a i bipolarnih tranzistora. Prema [7], IGBT ima tri priključka od kojih su dva, kolektor (eng. Collector) i emiter (eng. Emiter) energetski priključci dok je treći priključak, upravljački priključak (eng. Gate). Simbol IGBT-a i njegova tipična *u-i* karakteristika prikazani su na slici 4.2. preuzetoj iz [7] te je prikazan i uvjet za stanje blokiranja: $u_{GE} \leq U_T$, gdje u_{GE} predstavlja upravljački napon, a U_T napon praga. U_{RB} predstavlja maksimalnu naponsku opteretivost u zapornom smjeru. IGBT je, kao i MOSFET, naponski upravljan što im omogućava kontroliranje vremena vođenja pomoću napona dovedenog na upravljački priključak. U odnosu na MOSFET, IGBT dopušta veće strujno i naponsko opterećenje što rezultira prijenosom veće snage.

Slika 4.2. Simbol i tipična u-i karakteristika IGBT-a

4.1. Izrada razvojne pločice

Koristeći program ExpressPCB nacrtana je shema pločice prikazana na slici 4.3.

Slika 4.3. Shema prednje strane pločice

Nakon odabira rasporeda na razvojnoj pločici, potrebno je nabaviti komponente koje odgovaraju pločici. U tablici 4.1. nalazi se popis komponenata pločice sa specifikacijama. Prema podatkovnoj tablici (eng. data-sheet) poznate su vrste kućišta komponenata te je, prema njima, u daljnjem postupku napravljen raspored rupa za priključnice komponenata (eng. layout). Na slikama 4.4. a) i b) prikazane su prednja i stražnja strana pločice.

Naziv komponente	Oznaka	Proizvođač	Karakteristike
Podnožja		MULTICOMP	6 contacts, DIP socket, 2.54mm
Hladnjaci		AAVID/BOYD	TO-200, 6.4A°C/W
Potenciometar		AMOHENOL	Vertical Adj, 10kOhm, 1 Turns
Keramički otpornik		VISHAY	22Ohm, 5W, axial leaded
Keramički otpornik		VISHAY	470hm, 5W, axial leaded
Keramički otpornik		VISHAY	1000hm, 5W, axial leaded
Metal oxid otpornik			500Ohm
Metal oxid otpornik			1kOhm
Metal oxid otpornik			10kOhm
LED dioda			
Konektor		HARTING	DIN 41612, a+c, 64 contacts
Muški banana		HIRSCHMANN	6A, 60VDC, tin plated contacts
Pločica za tiskanje		CIF	100*160mm, epoxy

Tablica 4.1. Komponente za pločicu

Slika 4.4. a) Prednja strana pločice

Slika 4.4. b) Stražnja strana pločice

Nakon izrade predloška pločice, na redu je otiskivanje. Otiskivanje je rađeno ručno pomoću glačala koje je podešeno na nisku temperaturu kako se papir ne bi uništio. Potom slijedi jetkanje, odnosno proces uklanjanja svih nepotrebnih dijelova bakra s pločice. Jetkanje se radi pomoću kiseline koja nadgriza bakar, u ovom slučaju, kiselina je bila feriklorid (FeCl₃). Kada je pločica čista, slijedi bušenje rupa za nožice elemenata. Rupe malog promjera (0,8mm) bušene su strojno s obzirom na osjetljivost svrdla, dok su one veće (1mm i 1,3mm) bušene ručno. Kako bi elementi bili dobro pričvršeni na pločicu potrebno ih je zalemiti. Lemljenje je proces spajanja dvaju metalnih dijelova pri visokoj temperaturi. Rad s lemilicom zahtijeva preciznost kako ne bi došlo do spajanja lema, odnosno kratkog spoja. Na slici 4.5. a) i b) prikazane su Lucas Nuelle pločica i nova razvojna pločica za ispitivanje tranzistora.

Slika 4.5. Prikaz pločica s poluvodičkim sklopnim komponentama: a) Lucas-Nuelle pločica, b) razvojna pločica

4.2. Testiranje razvojne pločice

Mjerenje je izvršeno u Laboratoriju za energetsku elektroniku uz didaktičku-multimedijalnu opremu UniTrain tvrtke Lucas Nuelle, odnosno sva tri pokusa obavljena su s CO4203-2B eksperimentatorom i CO4203-2A sučeljem spomenute tvrtke. Za obavljanje mjerenja upotrebljen je i programski paket *Starter* tvrtke Lucas Nuelle koji omogućava korištenje virtualnih instrumenata poput virtualnih ampermetra, voltmetra i osciloskopa.

U svim pokusima ispitano je po pet tranzistora, odnosno tri MOSFET-a i dva IGBT-a. U tablici 4.2. prikazani su svi korišteni tranzistori, njihovi proizvođači i specifikacije.

Tranzistor	Proizvođač	Model
MOSFET	VISHAY	IRF720
MOSFET	VISHAY	IRF820
MOSFET	VISHAY	IRF840A
IGBT	FAIRCHILD	FGP5N60LS
IGBT	INFINEON	IRG4PC30FDPBF

Tablica 4.2. Tranzistori korišteni u pokusima, njihovi proizvođači i modeli

4.2.1. Snimanje karakteristike uklapanja MOSFET-a i IGBT-a

Prema shematskom prikazu načina spajanja prikazanom na slici 4.6. preuzetoj iz [7], ekperimentalna pločica je povezana s UniTrain sučeljem. Nadalje, u programskom paketu *Starter* podešeni su parametri: istosmjerni izvor napajanja iznosi 12 V, domet virtualnog voltmetra pomoću kojeg je mjeren upravljački napon na kanalu A iznosi 20 V te je domet virtualnog ampermetra, kojim je mjerena struja trošila na kanalu B, 455 mA. Virtualni ampermetar mjeri struju preko pada napona na otporniku stoga ga je potrebno spojiti s otpornikom iznosa 22 Ω koji se nalazi na eksperimentalnoj pločici.

Slika 4.6. Shema načina spajanja pokusa za snimanje uklapanja tranzistora

Za unaprijed definirane iznose upravljačkog napona potrebno je odrediti struju trošila te pri kojem iznosu napona pojedini tranzistor uklapa. Upravljački napon je podešen pomoću potenciometra. Na slici 4.7. prikazano je radno mjesto sa svim potrebnim spojevima.

Slika 4.7. Radno mjesto pri ispitivanjima tranzistora

U prvom pokusu u kojem je cilj dobiti karakteristiku uklapanja MOSFET-a i IGBT-a, dodatni zadatak je odrediti i struju pri pojedinim iznosima upravljačkog napona te zabilježiti pri kojem iznosu napona tranzistori uklapaju, odnosno odrediti napon praga U_T . Određivanje napona praga je važno jer je ključan uvjet za prelazak MOSFET-a i IGBT-a iz stanja blokiranja u stanje vođenja da upravljački napon U_{GS} bude veći od napona praga U_T stoga je napon praga prikazan u svakoj podatkovnoj tablici tranzistora. Podatkovne tablice tranzistora daju podatak u kojem rasponu napona će tranzistor uklopiti. Tako je tipični napon praga MOSFET-a između 3 i 6 V dok kod IGBT-a on iznosi između 5 i 7 V. Mjerenja se, prema tome, vrše za različite iznose upravljačkog napona u promatranom rasponu.

	$u_{GS}\left[V ight]$	3	3,2	3,4	3,6	3,8	4	4,2	4,4	4,6	4,8	5	5,2	6
MOSFET IRF720	<i>i</i> _D [<i>mA</i>]	0	1	4	8	30	49	118	175	272	371	385	389	392
MOSFET IRF820	<i>i</i> _D [<i>mA</i>]	0	0	1	6	11	33	58	167	260	356	363	365	380
MOSFET IRF840A	<i>i</i> _D [<i>mA</i>]	1	3	10	25	70	138	227	352	393	399	403	404	406
	u_{GE} [V]	5	5,2	5,4	5,6	5,8	6	6,2	6,4	6,6	6,8	7	7,2	8
IGBT FGP5N60LS	<i>i_C</i> [<i>mA</i>]	384	384	384	385	385	385	385	385	385	385	385	385	385
IGBT IRG4PC30FDPBF	i _C [mA]	15	46	121	377	380	382	382	382	383	383	383	383	383

Tablica 4.3. Rezultati mjerenja uklapanja tranzistora

IGBT FGP-tipa izuzet je iz razmatranja u ovom pokusu jer, u području uklapanja IGBT-a IRGtipa, FGP je cijelo vrijeme u stanju vođenja. Rezultati mjerenja prikazani su u tablici 4.3.. Iz dobivenih podataka izračunata je promjena struje po naponu pri sklapanju MOSFET-a prema formuli (4-1) i IGBT-a prema formuli (4-2). Rezultat je dobiven kao količnik razlike izlazne struje u točki A i B, gdje točka A predstavlja nižu, a točka B višu vrijednost i razlike upravljačkog napona u točki A i B.

$$\frac{i_D(B) - i_D(A)}{u_{GS}(B) - u_{GS}(A)} \tag{4-1}$$

MOSFET IRF720
$$\frac{i_D(B) - i_D(A)}{u_{GS}(B) - u_{GS}(A)} = \frac{272 - 1}{4,6-3,2} = 193,57 \text{ mA/V}$$

MOSFET IRF820 $\frac{i_D(B) - i_D(A)}{u_{GS}(B) - u_{GS}(A)} = \frac{260 - 1}{4,6 - 3,4} = 215,83 \text{ mA/V}$

MOSFET IRF840A
$$\frac{i_D(B) - i_D(A)}{u_{GS}(B) - u_{GS}(A)} = \frac{227 - 1}{4,2 - 3} = 188,33 \text{ mA/V}$$

$$\frac{i_{C}(B) - i_{C}(A)}{u_{GE}(B) - u_{GE}(A)}$$
IGBT IRG4PC30F0PBF
$$\frac{i_{C}(B) - i_{C}(A)}{u_{GE}(B) - u_{GE}(A)} = \frac{377 - 15}{5,6 - 5} = 603,33 \text{ mA/V}$$
(4-2)

Slika 4.8. Dijagram ovisnosti izlazne struje MOSFET-a o upravljačkom naponu $i_D = f(u_{GS})$

Slika 4.9. Dijagram ovisnosti izlazne struje IGBT IRG-tipa o upravljačkom naponu $i_C = f(u_{GE})$

Tablica 4.4. Napon praga određen pokusom u usporedbi s onim iz podatkovne tablice

Tranzistori	MOSFET IRF720	MOSFET IRF820	MOSFET IRF840A	IGBT IRG4PC30F0PBF
Napon praga određen pokusom	4 V	4,4 V	4 V	5,4 V
Napon praga iz podatkovne tablice	2-4 V	2-4 V	2 - 4 V	3-6 V

U podatkovnoj tablici IGBT FGP-tipa naveden je tipični napon praga 3,9 V, dok je minimalni napon praga 2,7 V, a maksimalni 4,5 V. Zbog njegovog ranijeg uklapanja, izračunata je promjena struje za IGBT IRG-tipa i sve MOSFET-e.

Iz dobivenih rezultata mjerenja promjene struje po naponu vidljiva je tri puta veća promjena struje po naponu kod IGBT-a IRG-tipa nego što je to slučaj kod MOSFET-a. Na slici 4.8. prikazan je dijagram ovisnosti izlazne struje o upravljačkom naponu $i_D = f(u_{GS})$ kod MOSFET-a te su naznačene vrijednosti struje pri kojoj tranzistor uklapa. Na slici 4.9. prikazan je dijagram ovisnosti izlazne struje IGBT-a IRG4PC30F0PBF o upravljačkom naponu $i_C = f(u_{GE})$ jer se na jednom grafu ne mogu precizno prikazati karakteristike uklapanja oba IGBTa s obzirom da IGBT FGP-tipa uklapa prije negoli dosegne vrijednost od 5 V. U tablici 4.4. prikazani su naponi praga dobiveni pokusom, kao i oni naponi praga iz podatkovnih tablica. Vidljivo je kako svi tranzistori uklapaju u okviru predviđenog napona praga, osim u slučaju MOSFET-a IRF820 kod kojeg odstupanje iznosi 0,4V. IGBT IRG-tipa uklapa na vrijednosti 5,4 V što odgovara karakterističnom naponu praga za IGBT, dok je IGBT FGP-tipa izuzet iz ovog mjerenja zbog ranijeg uklapanja.

4.2.2. Određivanje gubitaka tranzistora u stanju vođenja

U ovom pokusu cilj je odrediti gubitke tranzistora u stanju vođenja. Kako bi gubici tranzistora mogli biti određeni, potrebno je izmjeriti izlazni napon i izlaznu struju. Spajanje eksperimentalne pločice sa sučeljem i eksperimentatorom radi se na isti način kao i u prošlom pokusu, odnosno prema slici 4.6., no uz određene promjene. Promjene u odnosu na prvi pokus su spajanje na priključnicu sučelja A+ MOSFET priključnici D (eng. Drain) umjesto G (eng. Gate) dok je IGBT potrebno spojiti na C (eng. Collector) umjesto G (eng. Gate). Kompletan spoj i radno mjesto pokusa prikazan je na slici 4.10.

Potrebno je podesiti određene parametre, napon na 12 V, domet virtualnog voltmetra za MOSFET je 100 mV dok je za IGBT 2 V. Posljednji parametar koji je potrebno podesiti je domet virtaulnog ampermetra koji mjeri struju trošila na 455 mA. Kao i u prošlom pokusu, struja trošila se mjeri preko pada napona na otporniku iznosa 22 Ω .

Slika 4.10. Radno mjesto za pokus sa svim potrebnim prespajanjima

Nakon provedenih mjerenja izlazne struje i napona, iz dobivenih podataka izračunati su gubici te su u tablici 4.5. upisane dobivene vrijednosti za pojedine tranzistore. Gubici su izračunati prema sljedećim formulama za MOSFET i IGBT:

$$p_{MOSFET} = u_{DS} \cdot i_D \tag{4-3}$$

$$p_{IGBT} = u_{CE} \cdot i_C \tag{4-4}$$

U formuli (4-3) p_{MOSFET} predstavlja trenutnu snagu gubitaka MOSFET-a, čiji iznos se dobiva umnoškom izlaznog napona u_{DS} te izlazne struje i_D . U formuli (4-4) p_{IGBT} predstavlja trenutnu snagu gubitaka IGBT-a koja je dobivena kao umnožak izlaznog napona u_{CE} i izlazne struje i_C .

Tablica 4.5. Rezultati mjerenja za pokus određivanja gubitaka u stanju vođenja

MOSF	FET	MOSFET		MOSFET		IGBT		IGBT	
IRF7	20	IRF8	20	IRF840		FGP5N60LS		IRG4PC30FDPBF	
<i>u_{DS}</i> [V]	7,5	<i>u</i> _{DS} [V]	8,8	<i>u</i> _{DS} [V]	6,5	$u_{CE}[V]$	0,89	<i>u_{CE}</i> [V]	1,66
<i>i</i> _D [mA]	169	<i>i</i> _D [mA]	124	<i>i</i> _D [mA]	205	<i>i</i> _C [<i>mA</i>]	382	<i>i_C</i> [mA]	351
<i>p_{MOSFET}</i>	1,268	р _{моsfet}	1,091	<i>p_{MOSFET}</i>	1,333	p_{IGBT}	0,340	p_{IGBT}	0,583
[W]		[W]		[W]		[W]		[W]	

Iz tablice 4.5. vidljivo je kako IGBT, posebno IGBT FGP-tipa, ima značajno manje gubitke od MOSFET-a – gotovo četiri puta manje. IGBT ima manji izlazni napon od MOSFET-a. Ukoliko se u obzir uzme podatkovna tablica, rezultati su očekivani. Počevši od izlaznog napona, preko maksimalne disipacije snage do napona praga.

4.2.3. Snimanje upravljačkog i izlaznog napona tranzistora virtualnim osciloskopom

U trećem pokusu cilj je snimiti valne oblike upravljačkog i izlaznog napona svih tranzistora virtualnim osciloskopom. Slika 4.11. preuzeta je iz [8] i prikazuje shemu spoja za ovaj pokus.

Slika 4.11. Shema spoja kartice u eksperimentatoru sa sučeljem, a) za MOSFET, b) za IGBT

U programskom paketu *Starter* potrebno je podesiti određene parametre: istosmjerni napon izvora na 12 V te su na slici 4.12. preuzetoj iz [8] prikazani podešeni parametri za generator impulsa. Pomoću generatora impulsa mijenja se frekvencija.

Slika 4.12. Prikaz podešenih parametara za generator impulsa

Slika 4.13. Upravljački (plavo) i izlazni (crveni) napon IRF820 za f=10 Hz

Prvo mjerenje započinje s frekvencijom od 10 Hz. Vremenska baza iznosi 50 ms po podioku skale. Na slici 4.13. prikazan je upravljački i izlazni napon za MOSFET IRF820 te se na njoj može uočiti periodični način rada MOSFET-a. Izlazni napon doseže maksimalnu vrijednost kada upravljački padne na minimalnu, što je karakteristično za rad MOSFET-a. Jednak valni oblik dobiven je i za druga dva MOSFET-a - IRF720 i IRF840.

Slika 4.14. Upravljački (plavo) i izlazni (crveno) napon FGP-tipa IGBT-a za f=10 Hz

Kao i kod MOSFET-a, na mjerenju IGBT-a vremenska baza postavljena je na 50 ms po podioku skale te izlazni napon doseže maksimalnu vrijednost kada upravljački napon padne na minimum. No, suprotno MOSFET-u, kod IGBT-a su uočene male oscilacije pri frekvenciji od 10 Hz. Rezultat mjerenja za IGBT FGP5N60LS je prikazan na slici 4.14. Oscilacije su primijećene na valnom obliku upravljačkog napona. Sličan valni oblik dobiven je i za IGBT IRG-tipa.

Slika 4.15. Upravljački (plavo) i izlazni (crveni) napon IRF820 za f=1 kHz

Slika 4.16. Upravljački (plavo) i izlazni (crveni) napon IGBT IRG-tipa za f=1 kHz

Na idućem mjerenju, frekvencija je povećana pomoću impulsog generatora na 1 kHz te je vremenska baza postavljena na 500 µs po podioku skale. Mjerenje započinje s testiranjem MOSFET-a. Na slici 4.15. prikazan je valni oblik dobiven za MOSFET IRF820. U ovom slučaju, primjetne su sitne oscilacije na upravljačkom i izlaznom naponu. Jednak valni oblik dobiven je i u testiranjima MOSFET-a IRF720 i IRF840. Mjerenje se nastavlja s testiranjem IGBT IRG-tipa. Valni oblik dobiven mjerenjem prikazan je na slici 4.16. te se podudara s dobivenim valnim oblikom za IGBT FGP. Oscilacije koje IGBT ima na valnom obliku slične su oscilacijama dobivenim na MOSFET-u pri istoj frekvenciji.

Slika 4.17. Upravljački (plavo) i izlazni (crveni) napon IRF820 za f=10 kHz.

Slika 4.18. Upravljački (plavo) i izlazni (crveni) napon IGBT IRG-tipa za f=10 kHz

Slika 4.19. Upravljački (plavo) i izlazni (crveni) napon FGP-tipa IGBT-a za f=10 kHz

Ponovno mjerenje započinje testiranjem MOSFET-a IRF820 pri povećanoj frekvenciji od 10 kHz te je vrijeme postavljeno na 10 µs. Rezultati mjerenja osciloskopom prikazani su na slici 4.17., a slični valni oblici dobiveni su za druga dva MOSFET-a. Na prikazu osciloskopa vidljivo je da izlazni napon pri prelasku tranzistora iz stanja nevođenja u stanje vođenja ne doseže maksimalno vrijednost trenutno nego se postupno povećava te se zadržava na maksimumu. Isti slučaj je i s upravljačkim naponom koji također pri prelasku iz stanja vođenja u stanje nevođenja ima oscilacije u trajanju kraćem od jednog podioka skale, odnosno kraće od 10 µs. Mjerenje je nastavljeno s IGBT IRG-tipa čiji je rezultat prikazan na slici 4.18. Kod njega su primijećene veće početne oscilacije na upravljačkom naponu, otprilike 3 V po podioku, pri prelasku u stanje nevođenja te valovitost izlaznog napona u stanju nevođenja. Kod mjerenja karakteristike IGBT FGP-tipa, prikazane na slici 4.19., ne postoje početne oscilacije upravljačkog napona pri prelasku u stanje nevođenja te su oscilacije na izlaznom naponu u stanju nevođenja zanemarive.

Slika 4.20. Upravljački (plavo) i izlazni (crveni) napon IRF820 za f=100 kHz.

Slika 4.21. Upravljački (plavo) i izlazni (crveni) napon IRG-tipa IGBT-a za f=100 kHz.

Slika 4.22. Upravljački (plavo) i izlazni (crveni) napon IGBT FGP-tipa za f=100 kHz.

Iduće mjerenje započinje s frekvencijom od 100 kHz i vremenskom bazom u trajanju od 5 μs po podioku skale. Prvi na redu je MOSFET IRF820 čija je karakteristika prikazana na slici 4.20. gdje je vidljivo kako izlazni napon zahtijeva postupni prelazak do maksimuma u stanju vođenja negoli na manjim frekvencijama dok je upravljački napon pri prelasku u oba stanja karakteriziran oscilacijama veličine polovice podioka, odnosno otprilike 2,5 V. Druga dva MOSFET-a upotrebljena u pokusu dali su slične rezultate.

Kod IGBT IRG-tipa, čiji rezultati su prikazani na slici 4.21., oscilacije na upravljačkom naponu znatno su veće nego do sada. Traju duže, skoro pola podioka po skali, te su im iznosi veći. Izlazni napon dostiže svoju maksimalnu vrijednost tek pri kraju trajanja stanja vođenja. Na slici 4.22. prikazan je valni oblik za IGBT FGP-tipa. Izlazni napon ima gotovo logaritamski rast u stanju vođenja dok su oscilacije kod upravljačkog napona nešto manje nego kod IGBT IRG-tipa.

Slika 4.23. Upravljački (plavo) i izlazni (crveni) napon IRF820 za f=100kHz i vremenskoj bazi od 1µs

Slika 4.24. Upravljački (plavo) i izlazni (crveno) napon IGBT IRG-tipa za f=100kHz i vremenskoj bazi od 1µs

Slika 4.25. Upravljački (plavo) i izlazni (crveno) napon FGP-tipa IGBT-a za f=100kHz i vremenskoj bazi od 1µs

Na slici 4.23. prikazano je posljednje mjerenje MOSFET IRF820 pri frekvenciji od 100 kHz, no s podešenjem vremenske baze na 1 µs. Pri podešenju vremenske baze na kraće vrijeme bolje se uočavaju oscilacije. Kod upravljačkog napona, pri prelasku u oba stanja, pojavljuju se oscilacije, a izlaznom naponu potrebno je duže vrijeme kako bi postigao maksimalnu vrijednost. Druga dva MOSFET-a ponovno imaju slično dinamičko ponašanje. Na slici 4.24. prikazano je mjerenje za IGBT IRG-tipa na kojem je uočeno duže trajanje stabilizacije nego kod MOSFET-a, dok je izlaznom naponu potrebno duže vrijeme nego MOSFET-u da postigne maksimalnu vrijednost. Kod IGBT FGP-tipa, prikazanog na slici 4.25., do stabilizacije upravljačkog napona dolazi u kraćem vremenu.

Iz svih prethodnih pokusa da se zaključiti da su valni oblici izlaznog napona bitno različiti pri porastu frekvencije u kilo-hercnom području. Odnosno, što je frekvencija veća, do izražaja dolaze tzv. parazitska svojstva MOSFET-a i IGBT-a. Parazitska svojstva podrazumijevaju parazitski induktivitet i parazitski kapacitet tranzistora. Zbog navedenih svojstava dolazi do oscilacija u valnim oblicima, a takve oscilacije su tipične pri analizi slobodnog odziva RLC kruga, tzv. pseudoperiodični odziv [9].

5. ZAKLJUČAK

U završnom radu izrađena je razvojna pločica za ispitivanje karakteristika tranzistora pri sklopnom načinu rada. Ispitane su karakteristike pet tranzistora: tri MOSFET-a i dva IGBT-a različitih oznaka. IGBT znatno brže sklapa nego što je to slučaj kod MOSFET-a. Najveću brzinu promjene struje po upravljačkom naponu ima IGBT IRG-tipa i ona iznosi 603,33 mA/V. To je za tri puta više nego što je prikazano za ostale MOSFET-e gdje je pokazano da brzina promjene struje iznosi između 188,33 i 215,83 mA/V.

U pokusu određivanja gubitaka MOSFET-a i IGBT-a pokazano je da MOSFET, za istu strujnu klasu, ima otprilike tri puta veće gubitke. Gubici MOSFET-a iznose između 1,091 i 1,333 W dok su gubici IGBT-a između 0,340 i 0,583 W.

U trećem pokusu snimanja valnih oblika upravljačkog i izlaznog napona zaključeno je kako valni oblici oba napona kod svih tranzistora korištenih u pokusu pri niskim frekvencijama imaju pravilan pravokutni oblik te se postepeno, povećavanjem frekvencije, pojavljuju sve veće oscilacije koje produljuju stabilizaciju napona, kako na samom tranzistoru, tako i na trošilu koje je, u pravilu, serijski povezano s tranzistorom. Razlog oscilacijama u valnom obliku pripisuje se parazitskom kapacitetu i induktivitetu tranzistora koji do izražaja dolaze u kilo-hercnom području.

Izradom razvojne pločice za ispitivanje karakteristika tranzistora otvoreno je novo radno mjesto na laboratorijskim vježbama te su provjerena teorijska znanja. Problemi s kojima se izvršitelj susreo tijekom izrade pločice pomogli su mu u shvaćanju principa rada poluvodičkih sklopnih komponenata.

LITERATURA

[1] <u>www.lucas-nuelle.de</u> (pristup ostvaren 11.09.2020.)

[2] J. G. Kassakian, Martin F. Schlecht, George C. Verghese, Osnove energetske elektronike: Topologije i funkcije pretvarača, dio 1, Graphis, Zagreb, 2000.

[3] N. Mohan, Power Electronics, A first course, John Wiley & Sons, Inc., USA, 1989.

[4] D. Kezić, Energetska elektronika, <u>https://vdocuments.mx/danko-kezic-energetska-</u> elektronika-skripta-565dd1f1e7177.html (pristup ostvaren 11.09.2020.)

[5] Završni rad, J. Tadić, Naponsko frekvencijska regulacija i primjene, Osijek, 2017.

[6] Završni rad. N. Kristić, Mjerenje karakteristika poluvodičkih sklopnih komponenata, Osijek, 2018.

[7] I. Flegar, Elektronički energetski pretvarači, Kigen, Zagreb, 2010.

[8] D. Pelin, A. Brandis, Karakteristike MOSFET-a i IGBT-a pri sklopnom načinu rada, u postupku izdavanja

[9] I. Flegar, Teorija mreža, Sveučilište u Osijeku, Osijek, 2001.

SAŽETAK

U završnom radu izrađena je razvojna pločica za ispitivanje karakteristika tranzistora. Opisane su karakteristike MOSFET-a i IGBT-a te izrada same pločice. Također su obavljena i mjerenja u laboratoriju kako bi se snimile karakteristike uklapanja raznih vrsta tranzistora, izmjerila snaga gubitaka te snimili valni oblici upravljačkog i izlaznog napona pet tranzistora. Iznesene su usporedbe i zaključci na temelju obavljenih mjerenja.

Ključne riječi: IGBT, Lucas Nuelle, MOSFET, napon, razvojna pločica, struja, tranzistor

TITLE: Design of a development board for testing semiconductor switching components

ABSTRACT

In this work it is developed design board for examination characteristics of transistors. Characteristics of MOSFETs and IGBTs are described and it is described making of development board. Measurements are done in laboratory - recording the characteristics of many transistors, measuring the power dissipation and recording waveforms of control and output voltage of five transistors. Comparision and conclusions are obtained based on measurements.

Key words: current, development board, IGBT, Lucas Nuelle, MOSFET, voltage, transistor

ŽIVOTOPIS

Vlatka Pejić rođena je 09.04.1997. u Vinkovcima, odrasla je u Županji. Osnovnu školu Mate Lovraka pohađala je u Županji te ju je završila s odličnim uspjehom. Potom upisuje Prirodoslovno-matematičku gimnaziju u Županji. Nakon završetka srednje škole, 2016. godine upisuje Fakultet elektrotehnike, računarstva i informacijskih tehnologija, preddiplomski studij smjer elektrotehnika. Na drugoj godini studija opredijeljuje se za smjer elektroenergetika. Vrlo dobro se služi engleskim jezikom. Služi se računalom te je informatički pismena.

PRILOZI

- Prilog 1. Prva stranica podatkovne tablice tranzistora MOSFET IRF720
- Prilog 2. Prva stranica podatkovne tablice tranzistora MOSFET IRF820
- Prilog 3. Prva stranica podatkovne tablice tranzistora MOSFET IRF840A
- Prilog 4. Prva stranica podatkovne tablice tranzistora IGBT FGP5N60LS
- Prilog 5. Prva stranica podatkovne tablice tranzistora IGBT IRG4PC30FDA3F

Vishay Siliconix

www.vishay.com

PRODUCT SUMMARY				
V _{DS} (V)	400 V			
R _{DS(on)} (Ω)	V _{GS} = 10 V	1.8		
Qg (Max.) (nC)	20			
Q _{gs} (nC)	3.3			
Q _{gd} (nC)	11			
Configuration	Single			

FEATURES

Power MOSFET

- · Dynamic dV/dt rating Repetitive avalanche rated
- · Fast switching
- · Ease of paralleling
- · Simple drive requirements
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the Information/tables in this datasheet for details.

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION							
Package		TO-220AB					
Land (Dh) from		IRF720PbF	Æ				
SIHF720-E			-E3				
CaDh		IRF720					
airb		SIHF720					
ABSOLUTE MAXIMUM RATINGS (TC:	= 25 °C, unle	ss otherwis	e noted)				
PARAMETER			SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V _{DS}	400	V			
Gate-Source Voltage		24	Vgs	± 20	V		
		T _C = 25 °C	lъ	3.3			
Continuous Drain Current	VGS at 10 V	Tc=100°C		2.1	A		
Pulsed Drain Current ^a			IDM	13	1		
Linear Derating Factor			8	0.40	W/°C		
Single Pulse Avalanche Energy ^b			EAS	190	mJ		
Repetitive Avalanche Current ^a			IAR	3.3	A		
Repetitive Avalanche Energy ^a			EAR	5.0	mJ		
Maximum Power Dissipation	T _C = 3	25 °C	Pp	50	W		
Peak Diode Recovery dV/dt °			dV/dt 4.0		V/ns		
Operating Junction and Storage Temperature Range	TJ, Tetg	-55 to +150					
Soldering Recommendations (Peak Temperature) d for 10 s			-	300	7 °		
			10	lbf∙in			
Mounting Lorque	0-32 OF M	IS SCREW		1.1	N×m		

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 50$ V, starting $T_J = 25$ °C, L = 30 mH, $R_g = 25 \Omega$, $I_{AS} = 3.3$ A (see fig. 12). c. $I_{SD} \leq 3.3$ A, dI/dt ≤ 65 A/µs, $V_{DD} \leq V_{DS}$, $T_J \leq 150$ °C. d. 1.6 mm from case.

S14-2355-Rev. C, 08-Dec-14

1 For technical questions, contact: hvm@vishay.com Document Number: 91043

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishey.com/doc?91000</u>

IRF820, SiHF820

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	500			
R _{DS(on)} (Ω)	V _{GS} = 10 V	3.0		
Qg (Max.) (nC)	24			
Q _{gs} (nC)	3.3	3.3		
Q _{gd} (nC)	13			
Configuration	Single			

FEATURES

- · Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION			
Package	TO-220AB		
Land (Db) from	IRF820PbF		
Leau (FD)-Ilee	SiHF820-E3		
SnPb	IRF820		
	SiHF820		

ABSOLUTE MAXIMUM RATINGS (Tc	= 25 °C, uni	ess otherwis	e noted)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			VDS	500	- v
Gate-Source Voltage	13		V _{G8}	± 20	
Continuous Daris Current		T _C = 25 °C	- I _D	2.5	
Continuous Drain Current	AG8 SIL IO A	T _C =100 °C		1.6	•
Puised Drain Current ^a	dh.	1	DM	8.0	
Linear Derating Factor				0.40	W/°C
Single Pulse Avalanche Energy ^b			EAS	210	mJ
Repetitive Avalanche Current ^a			IAR	2.5	A
Repetitive Avalanche Energy ^a			EAR	5.0	mJ
Maximum Power Dissipation T _C = 25 °C		PD	50	W	
Peak Diode Recovery dV/dtc			dV/dt	3.5	V/ns
Operating Junction and Storage Temperature Range			T _J , T _{etg}	- 55 to + 150	•°
Soldering Recommendations (Peak Temperature) for 10 s			300 ^d		
Mounting Toyous	6.90 or l	12	10		lbf - in
Mounting Forque	0-32 OF			1.1	N · m

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. V_{DD} = 50 V, starting T_J = 25 °C, L = 60 mH, R_g = 25 Ω , I_{AB} = 2.5 A (see fig. 12). c. I_{SD} < 2.5 A, dl/dt < 50 A/µs, V_{DD} < V_{DS}, T_J ≤ 150 °C. d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91059 S11-0507-Rev. C, 21-Mar-11

www.vishay.com

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

PRODUCT SUM	MARY		
V _{DS} (V)	500)	
R _{DS(on)} (Ω)	V _{GS} = 10 V	0.85	
Qg (Max.) (nC)	38		
Q _{gs} (nC)	9.0		
Q _{gd} (nC)	18		
Configuration	Single		

N-Channel MOSFET

FEATURES

Power MOSFET

- · Low Gate Charge Qg Results In Simple Drive Requirement
- **RoHS*** Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Cose Specified
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- High Speed Power Switching

TYPICAL SMPS TOPOLOGIES

- Two Transistor Forward
- Half Bridge
- Full Bridge

ORDERING INFORMATION			
Package	TO-220AB		
Lead /Pb_free	IRF840APbF		
	SiHF840A-E3		
SaDb.	IRF840A		
SIFU	SiHF840A		

ABSOLUTE MAXIMUM RATINGS (Tc	= 25 °C, unk	ess otherwis	e noted)			
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-Source Voltage			VDS	500	- v	
Gate-Source Voltage		2	Vas	± 30		
Cantinuous Duelo Cumant	V milliv	T _C = 25 °C	l _D –	8.0		
Continuous Drain Current	VGSALIOV	T _C =100 °C		5.1	A	
Pulsed Drain Current ^a		8	DM	32		
Linear Derating Factor				1.0	W/°C	
Single Puise Avalanche Energy ^b			Eas	510	mJ	
Repetitive Avalanche Current ^a			IAR	8.0	A	
Repetitive Avalanche Energy®	0.5		EAR	13	mJ	
Maximum Power Dissipation	aximum Power Dissipation T _C = 25 °C		PD	125	W	
Peak Diode Recovery dV/dto			dV/dt	5.0	V/ns	
Operating Junction and Storage Temperature Range			TJ, T _{atg}	- 55 to + 150		
Soldering Recommendations (Peak Temperature)) for 10 s			300 ^d		
Mounting Torque	8 90 or h	10 agenu	2	10	lbf · in	
Mounting Forque	0-32 OF N	NO SCIEW	Ja ta	1.1	N·m	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 50$ V, starting $T_J = 25$ °C, L = 16 mH, $R_g = 25 \Omega$, $I_{AS} = 8.0$ A (see fig. 12). c. $I_{SD} \le 8.0$ A, dl/dt ≤ 100 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C.

d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91065 S11-0506-Rev. B, 21-Mar-11

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishey.com/doc?91000</u>

www.vishay.com

SEMICONDUCTOR.

FGP5N60LS 600V, 5A Field Stop IGBT

Features

- · High Current Capability
- Low Saturation Voltage: V_{CE(sat)} =1.7V @ I_C = 5A
- High Input Impedance
- RoHS Compliant

Applications

· HID ballast and Wall dimmer

General Description

Using novel Field Stop IGBT Technology, Fairchild's new series of Field Stop IGBTs offer the optimum performance for HID ballast where low conduction losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		600	v
V _{GES}	Gate to Emitter Voltage	X	±20	v
lc	Collector Current	@ T _C = 25°C	10	A
	Collector Current	@ T _C = 100°C	5	A
ICM (1)	Pulsed Collector Current	@ T _C = 25°C	36	Α
P_	Maximum Power Dissipation	@ T _C = 25°C	83	w
. D	Maximum Power Dissipation	@ T _C = 100°C	33	w
Tj	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
т	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes: 1: Repetitive test , Pulse width=100usec , Duty=0.2, V_{GE}=13.5V

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rejc	Thermal Resistance, Junction to Case	17	1.5	°C/W
Reja	Thermal Resistance, Junction to Ambient	-	62.5	°C/W

February 2010

International

PD - 95556

IRG4PC30FDPbF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

- Fast: Optimized for medium operating frequencies (1-5 kHz in hard switching, >20 kHz in resonant mode).
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- Industry standard TO-247AC package
- Lead-Free

Benefits

- · Generation -4 IGBT's offer highest efficiencies available
- IGBT's optimized for specific application conditions
 HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing
- less/no snubbing
 Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's

Absolute Maximum Ratings

Fast CoPack IGBT

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	31	
I _C @ T _C = 100°C	Continuous Collector Current	17	
I _{CM}	Pulsed Collector Current ①	120	A
LM	Clamped Inductive Load Current @	120	
I _F @ T _C = 100°C	Diode Continuous Forward Current	12	
I _{EM}	Diode Maximum Forward Current	120	
V _{GE}	Gate-to-Emitter Voltage ± 20		V
P _D @ T _C = 25°C	Maximum Power Dissipation	100	14/
P _D @ T _C = 100°C	Maximum Power Dissipation	42	VV
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range	C CASHEN SHOP 200000	°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	1 NO.11
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	2

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{ejc}	Junction-to-Case - IGBT	17	1.2	
Rejc	Junction-to-Case - Diode	<u> </u>	2.5	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.24	· · · · · · · · · · · · · · · · · · ·	°C/W
R _{0JA}	Junction-to-Ambient, typical socket mount	20000000 200	40	0077805004
Wt	Weight	6 (0.21)		g (oz)

www.irf.com

1 7/26/04