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“It was a large, loose, pluralistic affair without any clear unifying
principle. It encompassed superhuman beings and forces, witches and
wise men and a mass of low-grade magical and superstitious practices.
The whole was less than the sum of its parts - for it was not a cosmos
to be contemplated or worshipped but a treasury of separate and specific
resources to be used or applied in concrete situations.”

James Obelkevich
- This puts it extremely well.
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Abstract

The term cardiovascular disease (CVD) refers to numerous dysfunctions
of the heart and circulatory system. Cardiovascular disease accounts
for nearly one-third (33%) of all deaths in the modern world, which is
the highest proportion of all diseases. Early diagnosis and appropriate
treatment can significantly reduce mortality and improve quality of life.
The diagnosis of heart disease is based on the complete cardiovascular
picture, including anatomy and physiology. The diagnostic process
usually consists of two main parts. The first part refers to obtaining
images of the heart using imaging devices. Numerous invasive and
noninvasive imaging techniques have been developed to characterize
the anatomy and functionality of the heart. The second part of the
diagnostic process is the quantification and interpretation of the images
using advanced image processing methods. Developing efficient medical
image processing and analysis methods is a complex task, mainly
because it involves processing large amounts of high-dimensional data.
Advances in the development of image processing, computer vision, and
artificial intelligence, as well as the widespread availability of powerful
graphical processing units (GPUs), have made this challenging task
manageable.

Medical image segmentation plays an important role in the as-
sessment, diagnosis, and prognosis of various cardiovascular diseases.
Extensive research and clinical applications have shown that computed
tomography (CT) and magnetic resonance imaging (MRI) play an
important role in the noninvasive assessment of cardiovascular disease.
They help quantify disease, measure the volume of structures, and
analyze organ morphology. Therefore, segmentation of whole heart is
an important step for a variety of clinical applications. For example, it
is used for modeling and analyzing the anatomy and function of the
heart and for localizing pathologies. The creation of a patient-specific
3D heart model holds excellent potential for improving surgical plan-
ning for patients with congenital heart defects. It requires delineation
of all cardiac structures, including heart chambers, epicardial surface,
entire blood pool, and great vessels. Segmentation of the left and right
ventricles plays a critical role in quantitative analysis of global and
regional information, i.e., indicators of cardiac function, such as end-
diastolic volume (EDV), end-systolic volume (ESV), ejection fraction
(EF), wall thickness, and mass. For example, ventricular hypertrophy
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is caused by abnormal enlargement of the myocardium surrounding
the left or right ventricle. Therefore, segmentation of the whole heart
and heart chambers from volumetric medical images plays an essential
role in cardiac assessment. In addition, radiologists often need to
delineate the aorta to obtain its morphology, which is essential for the
detection and diagnosis of aortic aneurysms. Manual segmentation
of cardiac structures is a time-consuming process that depends on
observer variability. Therefore, the development of accurate and robust
automatic segmentation algorithms is critical for clinical practice.

Deep learning has emerged as a state-of-the-art method for vari-
ous image processing tasks such as recognition, segmentation, and
classification. Deep learning methods are based on deep artificial
neural networks. The most common type of deep neural network is
convolutional neural networks (CNNs). Fully convolutional neural
networks (FCNs) are a special type of CNNs that do not have a fully
connected layer and are trained and applied to the entire image so that
no patch selection is required. Several variants of FCNs have been pro-
posed to transfer features from the encoder to the decoder to increase
segmentation accuracy. The most widely used FCNs for biomedical
image segmentation are the U-net architecture and its corresponding
three-dimensional counterpart, the 3D U-net architecture. The ability
of U-Net architecture to capture low-level features makes them very
useful in scenarios with a small amount of training data. Although it
has strong representational power, long-range relationships are weak
due to the inherent localization of convolutional operations, so more
advanced mechanisms and building blocks are required. Techniques
and building blocks such as residual connections and deep supervision
enable the construction of deeper architectures that provide more ab-
stract learning results and higher accuracy for medical segmentation
tasks. The increment in the number of layers provides larger parameter
space enabling learning of more abstract features. Therefore, deeper
architectures could provide more abstract learning that results in bet-
ter performance and higher accuracy in medical segmentation tasks.
Nevertheless, when the depth of CNN increases, information about the
gradient passes through many layers, and it can vanish or accumulate
large errors by the time it reaches the end of the network. This leads
to common obstacles of training deep neural network architectures
such as appearance of vanishing gradients, accuracy degradation, and
extensive parameter growth, which results in computationally intensive
models.

In this Thesis, we propose a set of deep learning methods for auto-
matic heart and heart chambers segmentation. We focus on improving
deep learning segmentation methods for the whole heart, both ven-
tricles, myocardium, and abdominal aortic aneurysm. Several unique
challenges and issues arise in developing deep learning methods for
medical image segmentation and analysis. For example, the high im-
age dimensionality leads to trained models with a high number of
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parameters, and the lack of expert annotation makes the models more
susceptible to overfitting. Therefore, we aim to alleviate these chal-
lenges by proposing new and robust CNNs that reduce the number of
parameters so that they can be trained with smaller training sets and
are less prone to overfitting.

One of the most important scientific contributions of this work is
the novel connectivity structure of residual units, which we call the
feature merge residual unit (FM-Pre-ResNet). The FM-Pre-ResNet
unit attaches two convolution layers at the top and at the bottom of the
pre-activation residual block. The top layer balances the parameters of
the two branches, while the bottom layer reduces the channel dimension.
The proposed connectivity allows the construction of notably deeper
models while maintaining the same or smaller number of parameters
than the pre-activation residual units.

Following that, the second scientific contribution is a novel three-
dimensional (3D) encoder-decoder architecture that successfully inte-
grates FM-Pre-ResNet units and is additionally guided with variational
autoencoders (VAE) for the task of whole heart segmentation from
CT and MRI images. The architecture includes three stages. First,
in an encoding stage, FM-Pre-ResNet units learn a low-dimensional
representation of the input. Second, in the VAE stage, an input image
is reduced to a low-dimensional latent space and reconstructs itself to
provide a strong regularization of all model weights. This ensures that
all model weights are strongly regularized while avoiding overfitting
the training data. Third, the decoding stage creates the final whole
heart segmentation. We evaluate our method on the 40 test subjects of
the MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS)
Challenge. Our method achieves an average Dice score (DSC), Jaccard
index (JI), surface distance (SD), and Hausdorff distance (HD) for
WHS of 90.39%, 82.24%, 1.1093, and 15.3621 on CT images and 89.50%,
80.44%, 1.8599, 25.6558 on MRI images, respectively. The proposed
approach obtains highly comparable DSC to the state-of-the-art for
whole heart segmentation tasks on CT images while outperforming the
current state-of-the-art on the MRI images.

The third scientific contribution is a new automatic method for
left ventricle (LV), right ventricle (RV), and myocardium (Myo) seg-
mentation and quantification from cine-MRI images. We introduce
a new architecture that incorporates SERes blocks into 3D U-net ar-
chitecture (3D SERes-U-Net). The SERes blocks incorporate squeeze-
and-excitation operations into residual learning. The adaptive feature
recalibration ability of squeeze-and-excitation operations boosts the
network’s representational power while feature reuse utilizes effec-
tive feature learning, which improves segmentation performance. We
evaluate the proposed method on the MICCAI Automated Cardiac
Diagnosis Challenge (ACDC) testing dataset. Our method obtains an
average DSC for LV, RV, and Myo at end-diastole of 95%, 90%, 83%,
respectively. Similarly, we obtain an average DSC for LV, RV, and
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Myo at end-systole of 86%, 83%, 85%, respectively. Additionally, we
calculate significant clinical metrics, i.e., indicators of hearts’ function,
including volume of the left ventricle at end-diastole (LVEDV), the
volume of the left ventricle at end-systole (LVESV), left ventricles’ ejec-
tion fraction (LVEF), the volume of the right ventricle at end-diastole
(RVEDV), volume of the right ventricle at end-systole (RVESV), right
ventricles’ ejection fraction (RVEF), myocardium volume at end-systole
(MyoLVES), and myocardium mass at end-diastole (MyoMED). The
Bland-Altman analysis shows a high correlation coefficient of R=0.99
for LVEDV and LVESV, while R=0.95 for LVEF. Correlations of
RVEDV, EVESV and RVEF are R=0.97, R=0.93, R=0.69, respec-
tively. Finally, R=0.96 for MyoLVES and R=0.95 for MyoMED further
show our proposed methods’ strength of accuracy and precision.

Finally, the fourth scientific contribution includes a new automatic
approach for robust and reproducible abdominal aortic aneurysm
(AAA) segmentation. The 3D U-Net network is adapted by introducing
residual units in the contracting pathway and a deep supervision
mechanism in the expanding pathway. We conduct an ablation study
to demonstrate the effect of the addition of residual units and deep
supervision for this particular clinical application. To increase the
robustness of the results, networks are trained, validated, and evaluated
on 19 pre-operative CTA volumes from different patients using a 4-fold
cross-validation approach. Our pipeline achieves a Dice score of 91.03%
for AAA segmentation.

The work conducted during this Thesis resulted in 5 journal pub-
lications (of which 3 as the first author), 10 papers are published
at international conferences (of which 5 as the first author), and 1
publication in book chapters (as co-author).
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Samenvatting

Hart en vaatziekten (HVZ) verwijst naar talrijke functionele afwi-
jkingen van het hart en de bloedsomloop. Hart en vaatziekten zijn
verantwoordelijk voor bijna een derde (33%) van alle sterfgevallen in
de moderne wereld, het hoogste percentage van alle ziekten. Vroege
diagnose en passende behandeling kunnen de mortaliteit aanzienlijk
verminderen en de kwaliteit van het leven verbeteren. De diagnose
van hartziekten is gebaseerd op het volledige cardiovasculaire beeld, in-
clusief anatomie en fysiologie. Het diagnostisch proces bestaat meestal
uit twee hoofdonderdelen. Het eerste deel verwijst naar het verkrijgen
van beelden van de hartstructuur met behulp van beeldvormingsappa-
ratuur. Er zijn talloze invasieve en niet-invasieve beeldvormingstech-
nieken ontwikkeld om de anatomie en functionaliteit van het hart te
karakteriseren. Het tweede deel van het diagnostisch proces is het kwan-
tificeren en interpreteren van de beelden met behulp van geavanceerde
beeldverwerkingsmethoden. Het ontwikkelen van efficiënte medische
beeldverwerkings- en analysemethoden is een complexe taak, vooral
omdat het gaat om het verwerken van grote hoeveelheden hoogdimen-
sionale gegevens. Vooruitgang in de ontwikkeling van beeldverwerking,
computervisie en kunstmatige intelligentie, evenals de wijdverbreide
beschikbaarheid van krachtige grafische verwerkingseenheden (GPU’s),
hebben deze uitdagende taak haalbaar gemaakt.

Medische beeldsegmentatie speelt een belangrijke rol bij de beo-
ordeling, diagnose en prognose van verschillende hart- en vaatziekten.
Uitgebreid onderzoek en klinische toepassingen hebben aangetoond
dat computertomografie (CT) en magnetische resonantiebeeldvorming
(MRI) een belangrijke rol spelen bij de niet-invasieve beoordeling van
hart- en vaatziekten. Ze helpen bij het kwantificeren van ziekten, het
meten van het volume van structuren en het analyseren van de morfolo-
gie van organen. Segmentatie van afbeeldingen van het volledige hart is
dus een belangrijke stap voor een breed scala aan klinische toepassingen.
Het wordt bijvoorbeeld gebruikt voor het modelleren en analyseren van
hartanatomie en functie- en pathologielokalisatie. De creatie van een
patiëntspecifiek 3D-hartmodel heeft uitstekende mogelijkheden voor
het verbeteren van de chirurgische planning voor patiënten met aange-
boren hartafwijkingen. Het vereist afbakening van alle hartstructuren,
inclusief hartkamers, het epicardiaal oppervlak, de volledige bloedplas
en de grote bloedvaten. Segmentatie van de linker en rechterventrikels
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speelt een cruciale rol bij de kwantitatieve analyse van de globale en
regionale informatie, d.w.z. indicatoren van de hartfunctie, zoals eind-
diastolisch volume (EDV), eindsystolisch volume (ESV), ejectiefractie
(EF), wanddikte en massa. Ventriculaire hypertrofie wordt bijvoor-
beeld veroorzaakt door een abnormale vergroting van de hartspier
rond de linker- of rechterventrikel. Segmentatie van het hele hart
en de hartkamers van volumetrische medische beelden speelt dus een
essentiële rol bij cardiale beoordeling. Bovendien moeten radiologen de
aorta afbakenen om zijn morfologie te verkrijgen, wat essentieel is voor
het detecteren en diagnosticeren van aorta-aneurysma’s. Handmatige
segmentatie van hartstructuren is een tijdrovend proces, vatbaar voor
variabiliteit van waarnemers. De ontwikkeling van nauwkeurige en
robuuste automatische segmentatie-algoritmen is daarom cruciaal voor
de klinische praktijk.

Deep learning is naar voren gekomen als een state-of-the-art methode
voor verschillende beeldverwerkingstaken zoals herkenning, segmentatie
en classificatie. Deep learning-modellen zijn gebaseerd op diepe kun-
stmatige neurale netwerken. Het meest voorkomende type van diepe
neurale netwerken zijn de convolutionele neurale netwerken (CNN’s).
Volledig convolutionele neurale netwerken (FCN’s) zijn een speciaal
type CNN’s die geen volledig verbonden laag hebben en worden getraind
en toegepast op het hele beeld, zodat er geen patch-selectie vereist
is. Er zijn verschillende varianten van FCN’s voorgesteld om functies
van de encoder naar de decoder over te dragen om de nauwkeurigheid
van de segmentatie te vergroten. De meest gebruikte FCN’s voor
biomedische beeldsegmentatie zijn het U-net en de bijbehorende dried-
imensionale tegenhanger, het 3D U-net. Het vermogen van U-net
om functies op laag niveau vast te leggen, maakt ze erg handig in
scenario’s met een kleine hoeveelheid trainingsgegevens. Hoewel het
een sterke representatiekracht heeft, zijn langetermijnrelaties zwak
vanwege de inherente lokalisatie van convolutionele operaties, dus zijn
meer geavanceerde mechanismen en bouwstenen vereist. Technieken
en bouwstenen zoals restverbindingen en deep supervision maken de
constructie van diepere architecturen mogelijk die meer abstracte leerre-
sultaten en een hogere nauwkeurigheid voor medische segmentatietaken
opleveren. De toename in het aantal lagen zorgt voor een grotere pa-
rameterruimte waardoor het mogelijk wordt om meer abstracte functies
te leren. Daarom kunnen diepere netwerk architecturen abstracter
leren, wat resulteert in betere prestaties en hogere nauwkeurigheid bij
medische segmentatietaken. Niettemin, wanneer de diepte van CNN
toeneemt, gaat informatie over de gradiënt door vele lagen, en het kan
verdwijnen of grote fouten ophopen tegen dat het het einde van het
netwerk bereikt. Dit leunt op veelvoorkomende obstakels bij het trainen
van diepere neurale netwerkarchitecturen, zoals het verschijnen van
vanishing gradients, verslechtering van de nauwkeurigheid en extensieve
groei van parameters, wat leidt tot rekenintensieve modellen.

In dit proefschrift stellen we een reeks diepgaande leermethoden
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voor voor automatische hart- en hartkamerssegmentatie. We richten
ons op het verbeteren van deep learning-segmentatiemethoden voor
segmentatie van het volledige hart, bi-ventrikels en de myocardiumseg-
mentatie en kwantificering, evenals segmentatie van aneurysma’s van
de abdominale aorta. Bij het ontwerpen van diepgaande leermethoden
voor medische beeldanalyse doen zich enkele unieke uitdagingen en
problemen voor. Een hoge beelddimensionaliteit resulteert bijvoorbeeld
in getrainde modellen met een groot aantal parameters, en het gebrek
aan deskundige annotaties maakt modellen vatbaarder voor overfitting.
Daarom willen we deze uitdagingen verlichten door nieuwe en robu-
uste netwerken voor te stellen die het aantal parameters verminderen,
waardoor deze getraind kunnen worden met kleinere trainingssets en
deze minder vatbaar zijn voor overfitting.

Een van de belangrijkste wetenschappelijke bijdragen van dit werk
is de nieuwe connectiviteitsstructuur van residuele eenheden, waarnaar
we verwijzen als een feature merge residual unit (FM-Pre-ResNet). De
FM-Pre-ResNet-eenheid bevestigt twee convolutielagen aan de boven-
en onderkant van het pre-activatie residueel blok . De bovenste laag
balanceert de parameters van de twee takken, terwijl de onderste laag
de dimensies van het kanaal verkleint. De voorgestelde connectiviteit
maakt de constructie van met name diepe modellen mogelijk met
behoud van hetzelfde of een kleiner aantal parameters als bij de pre-
activatie residuele eenheden.

Daarna tweede wetenschappelijke bijdrage is een nieuwe driedi-
mensionale (3D) encoder-decoder-architectuur die met succes FM-
Pre-ResNet-eenheden integreert en die bovendien wordt begeleid met
variabele autoencoders (VAE) voor de taak van segmentatie van het
volledige hart van CT en MRI afbeeldingen. De architectuur omvat
drie fasen. Ten eerste leren FM-Pre-ResNet-eenheden in een coderings-
fase een laagdimensionale weergave van de invoer. Ten tweede wordt
in de VAE-fase een invoerbeeld gereduceerd tot een laagdimensionale
latente ruimte en reconstrueert het zichzelf wat leidt tot een sterke
regularisatie van de gewichten van het model. Dit zorgt ervoor dat alle
modelgewichten sterk worden geregulariseerd, terwijl overfitting van de
trainingsgegevens wordt vermeden. Ten derde creëert de decoderings-
fase de uiteindelijke segmentatie van het volledige hart. We evalueren
onze methode op de 40 proefpersonen van de MICCAI Multi-Modality
Whole Heart Segmentation (MM-WHS) Challenge. Onze methode
behaalt een gemiddelde Dice-score (DSC), Jaccard-index (JI), opper-
vlakteafstand (SD) en Hausdorff-afstand (HD) voor WHS van respec-
tievelijk 90,39%, 82,24%, 1,1093 en 15,3621 op CT-beelden en 89,50%,
80,44%, 1,8599, 25,6558 MRI-beelden. De resulterende netwerkarchi-
tectuur bereikte state-of-the-art resultaten met hoge nauwkeurigheid
zonder te vertrouwen op trial-and-error architectuurontwerpmethod-
ologieën of nauwgezette monitoring van hyperparameterveranderingen.
De voorgestelde aanpak verkrijgt zeer vergelijkbare Dice-scores met
de state-of-the-art voor segmentatietaken van het volledige hart op
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CT-beelden, terwijl het beter presteert dan de huidige state-of-the-art
op de MRI-beelden.

De derde wetenschappelijke bijdrage is een nieuwe automatische
methode voor segmentatie van de linkerventrikel (LV), de rechter-
ventrikel (RV) en het myocard (Myo) van MRI-beelden. We intro-
duceren een nieuwe architectuur die SERes-blokken opneemt in de
3D U-net-architectuur (3D SERes-UNet). De SERes-blokken nemen
squeeze-and-excitation operaties op in residueel leren. Het adaptieve
herkalibreringsvermogen van squeeze-and-excitation bewerkingen ver-
hoogt de representatiekracht van het netwerk, terwijl het hergebruik
van functies gebruikmaakt van effectief leren van de functies, wat de
segmentatieprestaties verbetert. We evalueren de voorgestelde meth-
ode op de MICCAI Automated Cardiac Diagnosis Challenge (ACDC)
testdataset. Onze pijplijn behaalt een gemiddelde DSC voor LV, RV
en Myo bij einddiastole van respectievelijk 95%, 90%, 83%. Evenzo
verkrijgen we een gemiddelde DSC voor LV, RV en Myo bij eindsys-
tole van respectievelijk 86%, 83%, 85%. Daarnaast berekenen we
significante klinische meetwaarden, dat wil zeggen indicatoren van de
hartfunctie, inclusief het volume van de linker hartkamer bij de einddi-
astole (LVEDV), het volume van de linker hartkamer bij de eindsystole
(LVESV), de ejectiefractie van de linker hartkamer (LVEF), het volume
van de rechter ventrikel aan de eind-diastole (RVEDV), het volume van
de rechter ventrikel aan de eind-systole (RVESV), de ejectiefractie van
de rechter ventrikel (RVEF), het myocardvolume aan de eind-systole
(MyoLVES), en myocardmassa bij einddiastole (MyoMED). De Bland-
Altman en analyse tonen een hoge correlatiecoëfficiënt van R=0,99 voor
LVEDV en LVESV, met R=0,95 voor LVEF. Correlaties van RVEDV,
EVESV en RVEF zijn respectievelijk R=0,97, R=0,93, R=0,69. Ten
slotte tonen R = 0,96 voor MyoLVES en R = 0,95 voor MyoMED
verder de nauwkeurigheid en precisie van onze voorgestelde pijplijn.

Ten slotte omvat de vierde wetenschappelijke bijdrage een nieuwe au-
tomatische benadering voor robuuste en reproduceerbare segmentatie
van abdominaal aorta-aneurysma (AAA). Het 3D U-Net segmenta-
tienetwerk is aangepast door het introduceren van resteenheden in
het contracterende pad en een diepgaand supervisiemechanisme in het
uitbreidende pad. We voeren een ablatie-onderzoek uit om het effect
van de toevoeging van resteenheden en diepgaande supervisie voor
deze specifieke klinische toepassing aan te tonen. Om de robuustheid
van de resultaten te vergroten, worden netwerken getraind, gevalideerd
en geëvalueerd op 19 pre-operatieve CTA-volumes van verschillende
patiënten met behulp van een 4-voudige cross-validation benadering.
Onze pijplijn behaalt een Dice-score van 91,03% voor preoperatieve
aneurysmasegmentatie.

Het werk tijdens dit proefschrift resulteerde in 5 journaalpublicaties
(waarvan 3 als eerste auteur), 10 papers gepubliceerd op internationale
conferenties (waarvan 5 als eerste auteur), en 1 publicatie in boekhoofd-
stukken (als co-auteur).
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Sažetak

Izraz kardiovaskularne bolesti (KVB) odnosi se na brojne funkcionalne
abnormalnosti srca i krvožilnog sustava. KVB uzrokuju gotovo jednu
trećinu (33%) smrtnosti u suvremenom svijetu, što predstavlja najveći
udio u odnosu na sve druge bolesti. Rana dijagnoza i odgovarajuće
liječenje kardiovaskularnih bolesti mogu značajno smanjiti smrtnost i
poboljšati kvalitetu pacijentova života. Postavljanje dijagnoze temelji
se na cjelokupnoj slici kardiovaskularnog sustava, uključujući anatomiju
i fiziologiju srca. Dijagnostički proces obično se sastoji od dva glavna
dijela. Prvi dio odnosi se na prikuplanje slika srca pomoću medicin-
skih uređaja. Razvijene su brojne invazivne i neinvazivne tehnike
medicinskog snimanja koje omogućuju uvid u anatomiju i funkcional-
nost srca. Drugi dio dijagnostičkog procesa je kvantifikacija i inter-
pretacija prethodno dobivenih slika pomoću naprednih metoda obrade
slike. Razvoj učinkovitih metoda za obradu medicinskih slika je složen
zadatak, s obzirom da podrazumijeva obradu ogromne količine vi-
sokodimenzionalnih podataka. Napredak u razvoju algoritama obrade
slike, računalnog vida i umjetne inteligencije, kao i dostupnost grafičkih
procesorskih jedinica (GPU-a), značajno su olakšale i ubrzale razvoj
takvih metoda.

Segmentacija medicinskih slika ima važnu ulogu u procjeni, dijagnozi
te postavljanju prognoze različitih kardiovaskularnih bolesti. Opsežna
istraživanja i kliničke primjene pokazale su da računalna tomografija
(CT) i magnetska rezonanca (MRI), kao osnovne tehnike prikupljanja
medicinskih slika, imaju izrazito važnu ulogu u procjeni kardiovasku-
larnih bolesti. Njima je omogućeno kvantificiranje bolesti, mjerenje
volumena kao i analizira morfologije različitih organa. Prema tome, seg-
mentaciju srca i srčanih struktura predstavlja osnovu za širok spektar
kliničkih primjena. Primjerice, često se koristi se za modeliranje i anal-
izu anatomije i funkcionalnosti kao i za lokalizaciju različitih patologija.
Izrada trodimenzionalnog (3D) modela srca specifičnog za pojedinog
pacijenta predstavlja izrazit potencijal za poboljšanje kirurškog plani-
ranja za pacijente s urođenom srčanom manom. Kako bi se takvi 3D
modeli mogli izraditi, potrebno je imati segmentirane različite srčane
strukture, uključujući pojedine srčane komore, epikardijalnu površinu,
aortu kao i pojedine žile kardiovaskularnog sustava. Segmentacija lijeve
i desne klijetke ima izrazito važnu ulogu u kvantitativnoj analizi glob-
alnih i regionalnih informacija, odnosno pokazatelja rada srca, poput
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volumena na kraju dijastole (VKD), volumena na kraju sistole (VKS),
frakcije izbacivanja (FI), debljine stijenke ili mase. Primjerice, ven-
trikularna hipertrofija uzrokovana je abnormalnim povećanjem srčanog
mišića koji okružuje lijevu ili desnu klijetku. Prema tome, segmentacija
cijelog srca i srčanih komora iz volumetrijskih medicinskih slika igraju
bitnu ulogu u procjeni cjelokupnog kardiovaskularnog zdravlja. Nadalje,
radiolozi često trebaju ocrtati aortu kako bi dobili njezinu morfologiju,
što je bitno za otkrivanje i dijagnosticiranje aneurizme aorte. Ručna
segmentacija srca i srčanih struktura je vremenski veoma zahtijevan
posao, podložan subjektivnosti. Prema tome, razvoj točnih i robusnih
automatskih algoritama za segmentaciju je neophodan za primjenu u
kliničkoj praksi.

Duboko učenje predstavlja najsuvremeniju metodu za različite za-
datke obrade slike poput raspoznavanja, segmentacije i klasifikacije.
Metode dubokog učenja temelje se na umjetnim neuronskim mrežama.
Najčešće upotrebljena vrsta neuronske mreže su konvolucijske neu-
ronske mreže (CNN). FCNs predstavljaju specifičnu vrstu CNN-a
bez potpuno povezanog sloja, kojima se obrađuje cijela slika te nije
potrebno korištenje patcheva. Razvijene su različite varijante FCN-a,
od kojih su najznačajnije varijante koje koriste koder-dekoder arhitek-
ture. U biomedicinskoj obradi slika, za segmentaciju, najčešće se
koristi U-Net arhitektura neruonske mreže kao i njezina odgovara-
juća 3D verzija. U-Net arhitektura ima snažnu reprezentativnu snagu
te je u mogućnosti zabilježiti značajke niskih razina što je izrazito
važno prilikom treniranja mreže sa malom količinom podataka. Iako
U-Net ima snažnu reprezentativnu snagu, dugoročni odnosi između
značajki su slabi zbog upotrebe konvolucijskih operacija. Prema tome,
potrebno je razvijati naprednije mehanizme kao i dodatne blokove koji
će biti u mogućnosti ispraviti nedostatke U-Net arhitekture. Tehnike i
blokovi poput veza za preskakivanje ili dubokog nadzora, omogućuju
izgradnju dubljih arhitektura neuronskih mreža koje pružaju apstrak-
tnije rezultate učenja te postižu veću točnost prilikom segmentacije
medicinskih slika. S obzirom da povećanje broja slojeva osigurava
veći prostor parametara koji omogućuje učenje apstraktnijih značajki,
dublje arhitekture neuronskih mreža pružaju apstraktnije učenje koje
rezultira boljim performanse i većom točnost u zadacima medicinske
segmentacije. Unatoč tome, kako se dubina mreže povećava, infor-
macije o gradijentu prolaze kroz mnogo slojeva te mogu nestati ili
nakupiti velike pogreške do trenutka kada gradijet dosegne kraj mreže.
To dovodi do uobičajenih prepreka treninga dubokih arhitektura neu-
ronskih mreža kao što su problem nestajajućih gradijenta, ekstenzivnog
rasta parametara, kao i smanjenja točnosti, što dovodi do računalno
zahtjevnih modela.

U ovoj doktorskoj disertaciji, predložen je niz metoda dubokog učenja
za automatsku segmentaciju srca i srčanih komora. Fokus disertacije je
na poboljšanju metoda dubokog učenja za segmentaciju cijeloga srca,
lijeve i desne klijetke i miokarda kao i aneurizme abdominalne aorte. S
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obzirom na karakteristične probleme koji se javljanju prilikom dizajni-
ranja metoda dubokog učenja za segmentaciju medicinskih slika, poput
problema visoke dimenzionalnosti slika koje rezultiraju treniranim
modelima s velikim brojem parametara kao i nedostatkom anotiranih
podataka za treniranje, cilj ove disertacije je ublažiti navedene iza-
zove predlaganjem novih i robusnih arhitektura neuronskih mreža koje
smanjuju broj korištenih parametara, ali zadržavaju izrazito visoku
točnost krajnjih rezultata segmentacije.

Prvi i najvažniji znanstveni doprinos predstavlja nova struktura
povezivanja rezidualnih jedinica, koju nazivamo rezidualna jedinica za
spajanje značajki (FM-Pre-ResNet). FM-Pre-ResNet struktura povezi-
vanja rezidualnih jedinica dodaje konvolucijski sloj na vrh i na dno
već postojećih prethodno aktivirajućih rezidualnih jedinica. Pri tome,
gornji sloj uravnotežuje parametre dviju grana rezidualne jedinice, dok
donji sloj smanjuje dimenzije kanala. Na ovaj način predložena struk-
tura povezivanja rezidualnih jedinica omogućuje kreiranje značajno
dubljih modela uz održavanje iste ili čak manje količine parametara u
odnosu na originale rezidualne jedinice.

Nakon toga, u drugom znanstvenom doprinosu, predložena je nova
3D arhitektura neuronske mreže bazirana na koder-dekoder arhitek-
turi koja uspješno integrira FM-Pre-ResNet jedinice s varijacijskim
autokoderima (VAE) za segmentaciju srca i srčanih komora iz CT i
MRI slika. Metoda se sastoji od tri osnovna dijela. U prvom dijelu,
prethodno predložene FM-Pre-ResNet jedinice koriste se za učenje
nisko-dimenzionalnog prikaza ulaza u fazi kodiranja. U drugom dijelu,
VAE rekonstruira ulaznu sliku iz nisko-dimenzionalnog latentnog pros-
tora, osiguravajući da su sve težine modela snažno regulirane, kako bi
se izbjegnula neželjena pojava pretreniranja. VAE dio koristi se samo
tijekom treniranja mreže. Konačno, u trećoj fazi dekodiranja ponovno
su integrirane FM-Pre-ResNet jedinice pomoću kojih se stvaraju kon-
ačne segmentacije srca. Predložena nova arhitektura evaluirana je na
testnom skupu podataka koji se sastoji od 40 različitih pacijenata dos-
tupnih kroz MICCAI Multi-Modality Whole Segmentation Challenge
(MM-WHS) izazov. Naša metoda ostvarila je prosječni DSC, JI, SD i
HD za cijelo srce od 90,39%, 82,24%, 1.1093 i 15,3621 na CT snimkama,
odnosno 89,50%, 80,44%, 1,8599, 25,6558 na MRI snimkama. Pred-
loženi pristup ostvario je približno slične rezultate kao i najsuvremenije
metode za segmentaciju cijelog srca na CT slikama dok su rezultati na
MRI slikama bolji od rezultata prethodno objavljenih najsuvremenijih
metoda.

Treći znanstveni doprinos, predstavlja novu automatsku metodu
za segmentaciju miokarda (MiO), lijeve (LK) i desne klijetke (DK)
iz cineMRI slika. Predstavljena je nova arhitekturu koja integrira
SERes blokove u 3D U-net arhitekturu (3D SERes-U-Net). SERes
blokovi upotrebljavaju operacije stiskanja i uzbude u rezidualne jedinice.
Sposobnost ponovne kalibracije značajki operacija stiskanja i uzbude
povećava reprezentativnu snagu mreže, dok ponovna upotreba značajki
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koristi učinkovito učenje o značajkama, što poboljšava performanse
segmentacije. Predloženu metodu evaluirali smo na testnom skupu
podataka MICCAI Automated Cardiac Diagnosis Challenge (ACDC).
Naša predložena metoda za segmentaciju pomoću 3D SERes-U-Net
ostvarila je prosječni DSC za LK, DK i MiO na kraju dijastole od
95%, 90%, 83%. Slično, prosječni DSC za LK, DK i MiO na kraju
sistole je 86%, 83%, 85%. Dodatno, izračunati su volumeni LK, DK i
MiO na temelju kojih su dalje računate značajne kliničke metrike te
su uspoređeni rezultati s referentnim rezultatima. Navedeno uključuje
kliničke metrike, odnosno pokazatelje funkcionalnosti srca, uključujući
volumen lijeve klijetke na kraju dijastole (VLKKD), volumen lijeve
klijetke na kraju sistole (VLKKS), frakciju izbacivanja lijeve klijetke
(FILK), volumen desne klijetke na kraju dijastole (VDKKD), volumen
desne klijetke na krajnjoj sistoli (VDKKS), frakciju izbacivanja desne
klijetke (FIDK), volumen miokarda na krajnjoj sistoli (VMiOKS) kao
i masu miokarda na kraju dijastole (MiOKD). Bland-Altman analiza
pokazuje visoki koeficijent korelacije od R = 0,99 za VLKKD i VLKKD,
dok je R = 0,95 za FILK. Korelacije VDKKD, VDKKS i FIDK su R
= 0,97, R = 0,93, R = 0,69. Konačno, R = 0,96 za VMiOKS i R =
0,95 za MiOKD dodatno pokazuju snagu točnosti i preciznosti naše
predložene metode.

Konačno, četvrti znanstveni doprinos predstavlja novi automatski
pristup za segmentaciju aneurizme abdominalne aorte (AAA). 3D U-
Net arhitektura modificirana je uvođenjem rezidualnih jedinica u koder
dijelu kao i mehanizmom dubokog nadzora u dekoder dijelu. Kako bi
se povećala točnost rezultata, mreža je trenirana i validirana na 19
preoperativnih AAA CTA volumena različitih pacijenata primjenom
4-ostrukog pristupa unakrsne provjere valjanosti. Naša metoda postiže
DSC rezultat od 91,03% za segmentaciju aneurizme abdominalne aorte.

Tijekom rada na ovoj doktorskoj disertaciji, objavljeno je 5 radova
u časopisima (od čega 3 kao prvi autor), 10 radova objavljeno je na
međunarodnim konferencijama (od čega 5 kao prvi autor) te 1 rad kao
dio knjige (ko-autor).
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Introduction

Cardiovascular diseases (CVDs) cause significant health complications.
They are responsible for more than 17.9 million deaths per year, making
them the leading cause of death worldwide [32]. Automatic diagnosis
and treatment of cardiovascular diseases have improved thanks to ad-
vances in cardiovascular imaging technologies, mathematical algorithms
for medical image processing and widely available graphics processing
units (GPUs). Traditional semi-automatic segmentation algorithms
are limited in their ability to capture image information, especially
for low-quality images. With the rise of artificial intelligence, deep
learning in image processing has attracted tremendous attention. Its
high efficiency in automatic feature extraction and learning ability
makes it very accurate for image segmentation. However, using deep
learning for medical image analysis has its challenges and limitations.
First, the high dimensionality of medical images requires a vast num-
ber of parameters in convolutional neural networks (CNNs), which
leads to a substantial computational resource requirement that is not
affordable with current hardware technology. The second challenge is
to develop an algorithm to find the optimal CNN architecture. Third,
optimizers need to be studied as the engine of deep learning methods
and optimized for medical image segmentation. Therefore, the high
complexity of deep learning models requires continuous improvements,
such as reducing the number of network parameters and the training
time of the model.

This chapter provides a general introduction to the Thesis. The
outline of the chapter is as follows. Section 1.1 provides the motivation
for this research. Section 1.2 summarizes the main objectives to be
achieved by this Thesis. Section 1.3 summarizes the major contributions
of the Thesis. Section 1.4 lists the publications produced during the
work on this Thesis. Finally, section 1.5 gives an overview of the
structure of the Thesis.
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1.1 Motivation
High-resolution three-dimensional (3D) images achieved by recent
advances in medical imaging technology have enabled the creation of
accurate patient-specific models of individual heart structures and the
calculation of related quantitative measurements. This has led to the
development of a wide range of new applications for computer-aided
diagnosis, intervention and follow-up of cardiovascular disease.

Image-based analysis of heart and heart structures provides valuable
information for planning and navigation during surgical procedures.
Segmentation is a crucial pre-processing step in medical image analysis,
as it enables the acquisition of relevant quantitative data for medical
interpretation. In this processing stage, the pixels of an image are
divided into groups corresponding to the objects on the image. It has
enabled the non-invasive acquisition of important information about
the anatomy of the target structures. For example, segmentation of
the whole heart is critical for pathology localization, anatomy and
functional analysis [83]. The construction of patient-specific 3D heart
models and surgical implants is of great benefit for preoperative plan-
ning of patients with atherosclerosis, congenital heart disease (CHD),
cardiomyopathy, or even for the study of various cardiac infections
during postoperative treatment [77, 167].

More specifically, by fusing the 3D surface of the heart created
from anatomical and real-time images, geometric information about
the whole heart can be used to guide interventional procedures. In
addition, clear delineations of the myocardium (Myo), left ventricle
(LV) and right ventricle (RV) are required for quantitative assessment
and calculation of clinical indicators such as volume measurements
at end-systole and end-diastole, ejection fraction, thickening measure-
ments and chamber mass. Most of the markers described above are
required for determination of cardiac contractile function [80, 52]. Ex-
traction of these features is required for detection and prevention of
myocardial infarction and for diagnosis of ischemic heart disease (IHD)
[137] and hypertrophic cardiomyopathy (HCM) [31, 138]. For instance,
a decrease in the ejection fraction impairs the LVs’ ability to pump.
Patients with dilated cardiomyopathy have an ejection fraction less
than 40%, a left ventricular volume greater than 100 mL/m2 and a
diastolic wall thickness less than 12mm. Certain patients with dilated
LV also have a dilated RV or a large LV mass due to dilated LV.
Ventricular hypertrophy may develop in chronic lung disease, congen-
ital heart defect with a left-to-right shunt (patent ductus arteriosus
or ventricular septal defect), hypoxia at high altitude, or idiopathic
pulmonary hypertension.

In recent years, a plethora of methods and procedures dealing with
cardiovascular segmentation and analysis have emerged and are be-
coming increasingly complex [54, 25, 102]. To enable faster research
in this area, it is necessary to identify the components or building
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blocks of the various methods, their influence, their relationship and
the impact and sensitivity of their parameters to develop robust and
efficient methods suitable for use in a clinical setting.

1.2 Objectives
The objective of this thesis is related to the development of new, robust
and accurate methods for cardiac image segmentation and analysis.
This thesis focuses on improving deep learning-based methods for
whole heart segmentation, bi-ventricle, myocardium segmentation and
quantification as well as abdominal aortic aneurysm segmentation. The
main objectives can be summarized as follows:

• Develop a novel and optimized connectivity structure of residual
units that will significantly reduce number of network parameters.

• Develop a novel method for the automated segmentation of the
whole heart and heart chambers from 3D CT and 3D MRI images.

• Develop a novel method for the automated segmentation and
quantification of the LV, RV and Myo from cine-MRI images (2D
+ time).

• Develop a novel method for the automated segmentation of
abdominal aortic aneurysms in 3D CTA images.

• Contribute to the field of cardiovascular image segmentation
and analysis by providing insight into existing methods through
critical review.

• Contribute to the field of cardiovascular image segmentation by
providing new, robust and highly accurate deep-learning based
methods.

1.3 Contributions
In this thesis, we introduce one theoretical improvement of deep learn-
ing mechanisms by introducing a novel connectivity structure. We
introduce three novel deep learning-based methods for cardiovascular
image segmentation that increase training performance, efficiency and
final segmentation accuracy. The proposed methods include:

• A novel connectivity structure of residual units named feature
merge pre-activation residual units (FM-Pre-ResNets) that allow
the creation of distinctly deeper models without an increase in the
number of network parameters compared to the pre-activation
residual units. FM-Pre-ResNets adds the two additional convo-
lutional layers at the top and the bottom of the pre-activation
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residual block. The top convolution layer balances the parameters
of the two branches, while the bottom layer reduces the channel
dimension. In this way, it is possible to construct a deeper model
with similar or fewer parameters than the original pre-activation
residual unit.

• A 3D encoder-decoder architecture based on FM-Pre-ResNets
and variational autoencoder (VAE) is proposed for the task of
the whole heart segmentation from CT and MR images. FM-Pre-
ResNet units are used to learn a low-dimensional representation
of the input during the encoding stage. Following that, the
variational autoencoder (VAE) reconstructs the input image from
the low-dimensional latent space, ensuring that the model weights
are strongly regularized while avoiding over-fitting the training
data. The decoding stage generates the final segmentation of the
whole heart and heart chambers.

• Modified 3D U-Net architecture that incorporates SERes blocks
into 3D U-Net architecture (3D SERes-U-Net) for the task of
LV, RV and Myo segmentation. The SERes blocks incorporate
channel-wise squeeze and excitation operations into residual learn-
ing. An adaptive feature re-calibration ability of squeeze and
excitation operations boosts the network’s representational power,
while feature reuse utilizes effective learning of the features, which
improves segmentation performance. Additionally, based on ob-
tained segmentations, LV, RV and Myo volumes are calculated.
Significant indicators of hearts’ function, including volume of
the left ventricle at end-diastole (LVEDV), the volume of the
left ventricle at end-systole (LVESV), left ventricles’ ejection
fraction (LVEF), the volume of the right ventricle at end-diastole
(RVEDV), volume of the right ventricle at end-systole (RVESV),
right ventricles’ ejection fraction (RVEF), myocardium volume
at end-systole (MyoVES) and myocardium mass at end-diastole
(MyoMED) are calculated and compared to referent values.

• Modified 3D U-Net architecture with the addition of residual
units in the contracting pathway and deep supervision in ex-
panding pathway for the task of an abdominal aortic aneurysm
segmentation (AAA). The addition of residual units in the con-
tracting pathway preserves information. It significantly increases
network performance, while the addition of deep supervision in
expanding pathway injects gradient signals deep into the network.

In this thesis, cardiac images have been chosen as a target organ for
analysis; however, the proposed methods can be applied to any other
organs and image modalities.
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• Marija Habijan, Hrvoje Leventić, Irena Galić, Danilo Babin.
Whole heart segmentation from CT images using 3D U-Net
architecture. Proceedings of 2019 international conference on
systems, signals and image processing, pages 121-126, IEEE,
2019.

• Marija Habijan, Hrvoje Leventić, Irena Galić, Danilo Babin. Es-
timation of the left ventricle volume using semantic segmentation.
2019 61st International Symposium ELMAR, pages 39-44. IEEE,
2019.
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Additionally, the research work during this Thesis that contributions
to other peoples’ work (as a co-author) resulted in the two journals in
the Science Citation Index Expanded (SCIE) and five proceedings of
international conferences and is listed below:

• Marin Benčević, Irena Galić, Marija Habijan, and Danilo Babin.
Training on Polar Image Transformations Improves Biomedical
Image Segmentation. IEEE Access vol. 9, pages 133365-133375,
2021.

• Krešimir Romić, Irena Galić, Hrvoje Leventić, Marija Habijan.
Pedestrian Crosswalk Detection Using a Column and Row Struc-
ture Analysis in Assistance Systems for the Visually Impaired.
Acta Polytechnica Hungarica, pages 25-45, vol 18(7), 2021.

• Marin Benčević, Marija Habijan, Irena Galić. Epicardial Adipose
Tissue Segmentation from CT Images with A Semi-3D Neural
Network. Epicardial Adipose Tissue Segmentation from CT
Images with A Semi-3D Neural Network. 2021 International
Symposium ELMAR, pages 87-90, IEEE, 2021.

• Danilo Babin, Daniel Devos, Ljiljana Platiša, Ljubomir Jovanov,
Marija Habijan, MHrvoje Leventić, Wilfried Philips. Segmenta-
tion of Phase-Contrast MR Images for Aortic Pulse Wave Velocity
Measurements. International Conference on Advanced Concepts
for Intelligent Vision Systems New Zealand, pages 77-86, Springer
International Publishing, 2020.

• Marin Benčević, Hrvoje Leventić, Danilo Babin, Marija Habijan,
Irena Galić. A survey of Left Atrial Appendage Segmentation
and Analysis in 3D and 4D medical images. 2021 International
Conference on Systems, Signals and Image Processing (IWSSIP)
Bratislava: Springer, 2021.

• Krešimir Vdovjak, Hrvoje Leventić, Marija Habijan, Irena Galić.
Adaptive Thresholding for Single Click Left Atrial Appendage
Segmentation. 2019 International Symposium ELMAR, Zadar,
pages 35-38, 2019.

• Kresimir Romic, Irena Galic, Hrvoje Leventic, Marija Habijan.
SVM based column-level approach for crosswalk detection in
low-resolution images. 2020 International Symposium ELMAR,
Zadar, pages 133-137, IEEE, 2020.

To summarize, the work conducted during this Thesis resulted in
5 journal publications (of which 3 as the first author), 10 papers are
published at international conferences (of which 5 as the first author)
and 1 publication in book chapters (as co-author).
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1.5 Organization of the Thesis
This Thesis introduces one theoretical improvement of deep learning
mechanisms by introducing a novel connectivity structure of residual
units. Further, we introduce a series of deep-learning methods for
heart and heart chambers segmentation. We focus on improving
deep learning segmentation methods for whole heart segmentation,
bi-ventricle and myocardium segmentation, as well as abdominal aortic
aneurysm segmentation. This section presents an overview of the
content of the chapters of the thesis.

chapter 2: medical background.
In this chapter, we introduce the medical background concerning the
cardiovascular system and heart anatomy. We give an overview of the
cardiovascular anatomy with a focus on the LV, RV and Myo anatomy
and function. We describe aorta anatomy and four types of aortic
aneurysms. Several medical imaging modalities are routinely used for
specific cardiovascular structure assessment - computer tomography
(CT) and magnetic resonance (MRI). We explain their advantages
and disadvantages in the context of specific cardiovascular structure
assessments.

chapter 3: related research
This chapter briefly reviews the most relevant deep learning mechanisms
and prior research in cardiovascular image segmentation. In the first
part of the chapter, we give an overview of the deep learning CNN
network building blocks and commonly used architecture - 3D U-Net
architecture. We further overview significant residual network variants
and autoencoders relevant to our research to further highlight the
main focus of the thesis. In the second part of the chapter, we give
an overview of the state-of-the-art deep-learning-based approaches for
cardiovascular segmentation. First, we present an overview of the
whole heart segmentation methods from CT and MRI images. Second,
we provide an overview of the LV, RV and Myo segmentation and
quantification methods from Cine-MRI images. Third, we give an
overview of segmentation methods for abdominal aortic aneurysm
segmentation from CT images. The approaches for the segmentation
and analysis of the whole heart, bi-ventricles and aorta have been
intensively researched both with traditional segmentation methods and
artificial intelligence. Nevertheless, the need for increasing accuracy,
robustness and optimality in performance remains a challenge that
needs to be addressed, motivating the development of the methods
proposed in this thesis.

chapter 4: Whole heart and Heart Chambers
Segmentation
This chapter describes our new method for segmenting the whole
heart and its chambers. The suggested approach for segmenting the
whole heart employs a novel three-dimensional (3D) encoder-decoder
architecture that successfully includes a novel connectivity structure for
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a residual unit - FM-Pre-ResNet - and variational autoencoder (VAE).
FM-Pre-ResNet enables the construction of robust models without
increasing the number of parameters in comparison to pre-activation
residual units. By incorporating two convolutional layers at the top
and bottom of the pre-activation residual block, the parameters of the
two branches are balanced. In comparison, the bottom layer reduces
the dimension of the channel. This allows for the construction of a
more detailed models with a similar or smaller number of parameters
to the initial pre-activation residual unit. As indicated previously, the
general architecture is encoder-decoder based. The method consist of
three main steps. In first step, FM-Pre-ResNet units are used to learn
a low-dimensional representation of the input during the encoding
stage. Following that, the variational autoencoder (VAE) reconstructs
the input image from the low-dimensional latent space, ensuring that
the model weights are strongly regularized while also avoiding over-
fitting on the training data. The decoding stage generates the final
segmentation of the whole heart. The validation of the extraction
method is performed by measuring the Dice score (DSC), Jaccard index
(JI), surface distance (SD) and Hausdorff distance (HD) between our
segmentation results and ground truth segmentations by radiologists.

chapter 5: Bi-Ventricles and Myocardium Segmentation
and Quantification
This chapter presents our method for the LV, RV and Myo segmentation
and quantification. The proposed method relies on modifying 3D U-Net
architecture and incorporates SERes blocks into 3D U-net architecture
(3D SERes-U-Net). The SERes blocks incorporate channel-wise squeeze
and excitation operations into residual learning. An adaptive feature
re-calibration ability of squeeze and excitation operations boosts the
network’s representational power, while feature reuse utilizes effective
learning of the features, which improves segmentation performance.
The validation of the segmentation method is performed by measuring
DSC and HD between our segmentation results and ground truth
segmentations by radiologists.

chapter 6: Abdominal aortic aneurysm segmentation
In this chapter, we introduce our method for the task of abdominal
aortic aneurysm segmentation. The proposed method is based on
3D U-Net architecture and incorporates residual learning and deep
supervision in encoder and decoder paths, respectively. The addition
of residual units in the contracting pathway preserves information. It
significantly increases network performance, while the addition of deep
supervision in expanding pathway inject gradient signals deep into the
network. The validation of is performed by measuring DSC, JI, SD
and HD distance between our segmentation results and ground truth
segmentations by radiologists.

chapter 7: conclusions
The final chapter states the global conclusions of the thesis and points
to some directions for further research continuing on this work.
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Medical Background

This chapter introduces the medical background of the cardiovascular
system, the heart, and heart structures. We give a brief overview of
their anatomy and functional indices. The description of LV and RV
functional indices includes their definitions, calculation methods, corre-
sponding normal ranges and exemplary applications for the diagnosis
of CVDs. CVDs affect the structures of the cardiovascular system and
significantly disrupt its proper function. We focus primarily on an
overview of CVDs relevant to our research: cardiomyopathy, congenital
heart disease, ventricular hypertrophy and aortic aneurysm. Medical
imaging techniques can produce detailed images that depict human
anatomy in vivo. The images produced reveal structural and functional
information about organs and tissues. Therefore, cardiac imaging plays
an essential role in informing the nature of pathological conditions.
Invasive and noninvasive imaging modalities such as echocardiography,
computed tomography (CT), magnetic resonance imaging (MRI) and
single photon emission computed tomography (SPECT) have been
developed to assess the anatomy and functionality of the cardiovascular
system.

The outline of the chapter is structured in the following manner.
Section 2.1 introduces the medical background of the cardiovascular
system, heart and heart structures. In Section 2.2 we briefly describe
CVDs relevant to our research. Section 2.3 gives a brief overview and
characteristics of CT, MRI and Cine-MRI imaging modalities. The
representation of different heart structures on each imaging modality
is discussed as well.
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2.1 Cardiovascular System
The cardiovascular system is a collection of organs that regulate blood
circulation throughout the body. The heart, vessels, arteries, capillaries,
veins and blood comprise the cardiovascular system. The main function
of the circulatory system is to provide a continuous supply of oxygen
and nutrients such as amino acids and glucose to every cell in the
human body. The vascular system makes this circulation possible [4].
The circulatory system consists of two closed circuits: the pulmonary
circuit and the systemic circuit. The pulmonary circulation carries
deoxygenated blood to the lungs, where it picks up oxygen, and then
returns to the heart via the pulmonary veins [121]. The systemic
circulation transports oxygenated blood from the heart to the tissues
and cells and back again. All cells of the body are supplied with blood
and oxygen in this manner. In addition to distributing oxygen, the
cardiovascular system also collects and distributes carbon dioxide and
other waste products of metabolism to the lungs, liver and kidneys,
where they are removed from the body. An illustration of this process
is shown in Figure 2.1.

2.1.1 Heart Anatomy and Physiology
The human heart is a muscular organ with four chambers. The two
upper chambers (atria) are separated by an atrial septum (septum
interatriale), which resembles a wall. A similar structure, called the
interventricular septum, separates the two lower chambers (ventricles).
Valves connect the atria and ventricles, allowing blood to flow in one
direction and preventing backflow. The usual procedure of blood flow is
as follows [130]. Through two major veins, the superior vena cava and
inferior vena cava, deoxygenated blood from all of the body’s tissues
reaches a relaxed right atrium. The right atrium contracts and blood
flows into the relaxed right ventricle via the tricuspid valve. The right
ventricle then contracts and blood is forced into the pulmonary artery,
which delivers it to the lungs for oxygenation via the pulmonary valve.
The left atrium receives blood that has been oxygenated by the lungs
and is returning to the heart. The four pulmonary veins supply this
blood to the relaxed left atrium. The left atrium contracts and blood
flows into the relaxed left ventricle via the mitral valve. When the left
ventricle contracts, blood is forced into the aorta, the body’s biggest
artery, via the aortic valve. The aorta is responsible for transporting
blood to all regions of the body. An illustration of blood flow through
the heart is shown in Figure 2.2.

The heart is a muscular pump made up of cardiac muscle fibers.
The heart is placed in the mediastinum in the chest cavity’s center;
however, it is not perfectly centered; more of the heart is on the left
side than on the right. The heart’s interior is divided into four hollow
chambers – two atria and two ventricles – that are frequently referred
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Figure 2.1: An illustration of the circulatory system. The pulmonary
circulation picks up oxygen from the lungs and the systemic circulation
delivers oxygen to the body. Image source: Quizlet Plus [132]

to as the left and right hearts. The left atrium (LA) and left ventricle
(LV) are the chambers of the left heart, whereas the right atrium (RA)
and right ventricle (RV) are the chambers of the right heart [4]. An
illustration of the heart anatomy is shown in Figure 2.3(a).

The pericardium surrounds the entire heart, a thin sac that protects
it and prevents it from becoming overly enlarged. The pericardial space
or pericardial cavity is the space between the heart and the pericardium.
It contains the interstitial fluid that serves as a lubricant. When the
cardiac muscle contracts, blood is expelled from the heart and pumped
through the arteries into the body. The heart muscle, also called the
myocardium, is the force generator that causes the heart to contract.
The myocardium is located within the walls of the heart chambers.
Two layers surround the myocardium: the endocardium on the inside
of the chambers and the epicardium on the outside. Figure 2.3(b)
illustrates the composition of the heart wall. Strands and clusters
of specialized cardiac muscle are found throughout the heart. They
comprise only a few myofibrils. These areas initiate and distribute
impulses throughout the heart. They form the cardiac conduction
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Figure 2.2: The path of blood flow through the chambers of the left
and right side of the heart. Image source: Lumen Learning [95]

system, which is responsible for coordinating the cardiac cycle.

Figure 2.3: Heart anatomy. (a) Diagram of the human heart. Image
source: Wikimedia [131]. (b) Illustration of the heart wall. Image
source: Medical gallery of Blausen Medical[16]
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Cardiac Cycle

The sinoatrial node (SA node) is a small collection of specialized
tissue located under the right atrium. It is located near the entrance
of the superior vena cava and has fibers connected to those of the
atrial syncytium. The cells of the SA node can reach the threshold of
stimulation independently, triggering impulses through the heart and
driving contraction of the cardiac muscle fibers. A cardiac impulse
travels from the SA node to the atrial syncytium, where it causes the
atria to contract virtually simultaneously. The impulse travels via the
junctional fibers of the excitation conduction system to a collection
of specialized tissue called the atrioventricular node (AV node). Av
node is located under the endocardium in the inferior atrial septum
(septum interatriale). The AV node is the only natural conduit between
the atrial and ventricular synapses. Due to the small diameter of the
junctional fibers, impulses are slightly delayed. This gives the atria
more time to contract and release blood into the ventricles before the
ventricles contract. For an illustration of the excitation conduction
system of the heart, see Figure 2.4. The cardiac cycle is defined as
the alternate contraction and relaxation of the atria and ventricles to
pump blood throughout the body. Each cardiac cycle consists of a
diastolic phase (also called diastole) and a systolic phase (also called
systole) [126, 63].

Figure 2.4: Diagram of the heart conduction system. Image source:
Wikimedia [131]



14 Chapter 2. Medical Background

During the diastolic phase, the heart chambers relax and are filled
with blood from the veins or atria. In systole, the ventricles contract
and blood is pumped to the periphery through the arteries. Both the
atria and the ventricles alternate between the phases of systole and
diastole. In other words, the ventricles are in systole when the atria
are in diastole and vice versa.

Atrial diastole is the first event of the cardiac cycle. It occurs a
few milliseconds before the electrical signal from the SA node reaches
the atria. The atria act as conduits and primers for blood flow to the
ipsilateral ventricle and for pumping residual blood to the ventricles.
During atrial diastole, blood enters the right atrium via the superior
and inferior vena cava, coronary sinus and the left atrium via the
pulmonary veins. The atrioventricular valves are closed in the early
stages of this phase and blood pools in the atria. When the pressure
in the atrium is greater than the pressure in the ventricle on the same
side, the pressure difference causes the atrioventricular valves to open,
allowing blood to flow into the ventricle [126, 63].

The SA node triggers an action potential that propagates throughout
the atrial myocardium during atrial systole. The electrical depolariza-
tion causes the atria to contract simultaneously, pushing the remaining
blood from the upper chambers into the lower chambers of the heart.
Contraction of the atria results in an additional increase in pressure in
the atria. Both the atrioventricular and semilunar valves are closed
during the early stages of ventricular diastole. The blood volume in the
ventricle remains constant during this phase, whereas intraventricular
pressure drops precipitously. This phenomenon is called isovolumetric
relaxation. The ventricular pressure eventually falls below the atrial
pressure, whereupon the atrioventricular valves open. This leads to
rapid filling of the ventricles with blood, often referred to as rapid
ventricular filling. It is responsible for most of the blood in the ventricle
before contraction. A small amount of blood flows directly into the
ventricles from the venae cavae. The remaining blood in the atria is
forced into the ventricle towards the end of the ventricular diastole.
End-diastolic volume or preload refers to the total volume of blood
that is in the ventricle at the end of diastole.

Ventricular systole refers to the period during which the ventricles
contract. The AV node receives the electrical impulse shortly after the
atria depolarize. At the AV node, there is a short delay that allows
the atria to fully contract before the ventricles depolarize. The action
potential is conducted through the AV node and then through the left
and right bundle branches. The electrical impulses are transmitted from
these fibers through the respective ventricles and cause the ventricles
to contract. When the ventricle begins to contract, the pressure in the
ventricle exceeds the pressure in the corresponding atrium, causing
the atrioventricular valves to close. At the same time, the pressure is
insufficient to open the semilunar valves. As a result, the ventricles
contract isovolumetrically - the end-diastolic volume does not change.
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When the pressure inside the ventricle exceeds the pressure outside the
ventricle, the semilunar valves open and blood can leave the ventricle.
This is the ejection phase of the cardiac cycle. End-systolic volume
refers to the amount of blood remaining in the ventricle at the end
of systole. The ventricles re-enter isovolumetrically relaxed while the
atria continue to fill. The cycle begins again and continues indefinitely
as long as the individual is alive. For an illustration of the whole
cardiac cycle process, see Figure 2.5.

Figure 2.5: Cardiac cycle. Image source: Wikimedia [131]

2.1.2 Anatomy and Physiology of Ventricles
The left ventricle is critical for maintaining pulsatile blood flow in the
despite of relatively high pressures in the systemic circulation. It is a
ventricle that is muscular and receives oxygenated blood from the left
atrium. The walls of the left ventricle are three times as thick as those
of the right ventricle. The base of the left ventricle originates at the
left atrioventricular valve and extends toward the apex of the heart.
Subsequently, the ventricular canal curves towards the aortic valve,
where blood is expelled into the aorta and the systemic circulation
[128]. The inner surface of the left ventricle is often inconspicuous. In
the right ventricle, the lumen is oval and trabeculated toward the apex.
On the left side of the heart, the valves are more tightly interconnected
than on the right side. The mitral, aortic and tricuspid valves are
connected by the fibroelastic cardiac skeleton (formed by the left and



16 Chapter 2. Medical Background

right fibrous trigones). The mitral valve is separated from the aortic
valve by a fibroelastic subaortic curtain that descends from the left
and right posterior arches of the aortic valve. In addition, the left
ventricle has anterior and posterior papillary muscles associated with
the chordae tendineae. The papillary muscles of the left ventricle are
significantly larger than those of the right ventricle. The free edge
of each mitral leaflet receives multiple chordae tendineae from both
papillary muscles. This is most likely because these papillary muscles
must withstand increased pressure in order to keep the mitral valve
closed during ventricular systole. The anatomy of the left ventricle
is depicted in Figure 2.6. The interventricular septum is a crucial
structure that divides the two ventricles. It is separated anatomically
into two sections: a dense, muscular section and a relatively thin,
membranous section—the interventricular septum’s muscular portion
of the majority of the left and right ventricles.

The membranous part of the interventricular septum, located poste-
riorly and superiorly in the left ventricle, separates the right ventricles
from the subaortic region. The right ventricle is the smallest of the
two lower chambers of the heart, measuring less than one-third the
thickness of its counterpart. Despite its smaller size, the right ventricle
pumps the same amount of blood as the left ventricle [166]. However, it
has to exert less effort because the pulmonary circulation has much less
resistance than the systemic circulation. The right ventricle is located
in front of the left atrium and in front of the right atrium. It begins at
the opening of the tricuspid valve orifice (right atrioventricular valve)
and continues inferolaterally to the apex of the heart’s apex [36, 9].
The chamber’s natural contour of the chamber then curves upward
into the conus arteriosus (also called the infundibulum) and ends at
the pulmonary valve orifice (right semilunar valve). It is somewhat
difficult to determine the geometric shape of the right ventricle.

Figure 2.6: Left ventricle anatomy. Image source: KenHub [85]
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When viewed from the side, the structure appears triangular. How-
ever, when viewed transversely, it appears crescent-shaped because
the free wall (the part that is not connected to the apex or septum)
curves inward. The atrioventricular septa separate the atria from the
ventricles. This is a fibrous elastic structure that prevents inadvertent
blood flow from the atrium to the ventricles and inadvertent electrical
conduction from the atrial myocardium to the ventricles. Without
this arrangement, blood and electrical activity would flow backward
through the myocardium. For an illustration of the anatomy of the
right atrium and ventricles, see Figure 2.7.

Clinical Indices

The analysis of cardiac function begins with the computation of a set
of indices for different heart structures. Due to the fact that the LV
and RV have significantly different volumes during distinct phases of
the cardiac cycle, structural and functional indices are calculated at
both phases of the cardiac cycle: at the end of diastole and at the
end of systole [159]. The volumetric variations between the left and
right ventricles during relaxation and contraction are shown in Figure
2.8. Apart from volume calculations, other frequently used approaches
include the single area-length method, the bi-plane area-length method,
Simpson’s method and direct measurement. Nonetheless, we limited
ourselves to volumetric calculations in this Thesis. Indices of ventricular
morphology and function fall into two categories: global and regional.
Global indices include ventricular volume, stroke volume, ejection
fraction (EF), cardiac output (CO) and myocardial mass. Regional
or local indices include myocardial wall thickness (WT) and wall
thickening (WTK). Strain analysis can be either global or local [82].

Left ventricular end-diastolic and end-systolic volumes (LVEDV
and LVESV, respectively) are measures of the amount of blood in the
chamber enclosed by myocardial tissue when the myocardium is relaxed
(LVEDV) or contracted (LVESV). The amount of blood ejected from
the heart after each contraction is called the left ventricular stroke
volume (LVSV), which is the difference between LVEDV and LVESV.
Left ventricular ejection fraction refers to the amount of blood ejected
from the heart (LVEF). It subtracts the LVSV from the LVEDV.
The change in myocardial wall thickness during systole is called left
ventricular wall thickening (LVWT)[82, 171].

Left ventricular strain (LVS) is a measure of the degree of ventricular
deformation and the rate of deformation is the left ventricular strain
rate (LVSR). The amount of systemic blood flowing through the heart
each minute is called cardiac output (CO). It is calculated by multi-
plying the LVSV by the heart rate (HR), which reflects the frequency
of heartbeats (beats per minute). Left ventricular mass (LVM) is a
measure of myocardial tissue. The volume of the myocardium is ob-
tained by subtracting the endocardial volume from the volume within
the epicardial border. Then calculate the mass as the product of the
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Figure 2.7: Right atrium and right ventricle anatomy. Image source:
KenHub [85]

Figure 2.8: An illustration of ventricles at contraction and relaxation.
Image source: Wikimedia [28]

cardiac volume and the muscle density. The mean distance between
the endocardial and epicardial contours can be used to determine left
ventricular wall thickness (LVWT) or myocardial thickness. Most right
ventricular (RV) indices, such as right ventricular end-diastolic and
end-systolic volumes (RVEDV and RVESV), right ventricular stroke
volume (RVSV), right ventricular ejection fraction (RVEF) and right
ventricular cardiac output (RVCO), are defined similarly to the corre-
sponding values for the left ventricle (LV) [82]. For a summary of the
LV and RV function indices, their calculation methods, normal ranges
and common clinical applications, see Table 2.1.
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Table 2.1: Summary of LV and RV functional indices. Table shows
calculation methods, normal ranges and common clinical diagnostic
applications for each functional index. Values for normal ranges taken
from Kang et al.[82].

Indices Calculation methods Normal range Applications
LVEDV Single area-length method F : 128 ± 21mL Dilated

Bi-plane area-length method M : 156 ± 21mL cardiomyopathy
Simpson’s method
Direct measurement

LVESV Single area-length method F : 42 ± 9.5mL Dilated
Bi-plane area-length method M : 53 ± 11mL cardiomyopathy
Simpson’s method
Direct measurement

LVM (LV Vepi − LV Vendo) × 1.05 F : 108 ± 18g Hypertension
M : 146 ± 20g Hypertrophic

cardiomyopathy
LVSV LVEDV - LVESV F : 86 ± 14mL Aortic stenosis

M : 104 ± 14mL Aortic
M : 104 ± 14mL insufficiency

EF LV EDV −LV ESV
LV EDV × 100% F : 67 ± 4.6% Heart failure

M : 67 ± 4.5% Hypertrophic
cardiomyopathy

LVCO LV SV × HR 4˘8L/mina Hypertension
Congestive heart
failure

RVEDV Simpson’s method F : 148 ± 35mL Arrhythmogenic
right

M : 190 ± 33mL ventricular
cardiomyopathy
Congenital heart
disease

RVESV Simpson’s method F : 56 ± 18mL Arrhythmogenic
right

M : 78 ± 20mL ventricular
cardiomyopathy

RVSV RVEDV - RVESV F : 90 ± 19mL Pulmonary
M : 113 ± 19mL arterial

hypertension

RVEF RV SV
RV EDV × 100% F : 63 ± 5.0% Pulmonary

arterial
M : 59 ± 6.0% hypertension

Congenital heart
disease

RVCO RV SV ± HR 5.25L/minb Ventricle failure
with
cardiomyopathy
Pulmonary
hypertension

WT Radial method F : 6.4 ± 0.9mm Myocardial
Centreline method M : 7.8 ± 1.1mm infarction

WTK (W Ted−W Tes)
W Ted

× 100% Average ES WT
Average ED WT
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2.1.3 Aorta Anatomy
The aorta is the largest artery in the body, responsible for supplying
nutrient-rich blood to the systemic circulation. It is classified according
to its course and location in relation to the other organs and the body.
The thoracic aorta begins at the heart, at the level of the aortic valves.
It becomes the abdominal aorta at the diaphragm, just proximal to
the celiac artery origin.

The thoracic aorta is further divided into the ascending aorta, the
aortic arch and the descending aorta, as shown in Figure 2.9. The
ascending aorta arches posteriorly and to the left and passes through the
left pulmonary root to form the aortic arch. The aortic arch continues
to curve backward and downward to form the descending aorta. The
descending aorta is further divided into the thoracic and abdominal
aortas. The thoracic aorta is a segment of the descending aorta located
in the posterior mediastinal cavity. Numerous branches arise from
the thoracic aorta [33]. The pericardial, bronchial, esophageal and
mediastinal branches are all visceral branches. Coronary arteries are
tiny vessels that travel to the posterior surface of the pericardium.

Figure 2.9: Segments of the aorta, including: thoracic aortaa ascending
aorta, aortic arch, descending aorta, abdominal aorta (suprarenal ab-
dominal aorta, infrarenal abdominal aorta). Image source: Wikimedia
[40]
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Moreover, the left bronchial arteries, of which there are usually two,
arise from the thoracic aorta [92]. These arteries supply blood to
the bronchial airways, the pulmonary area and the esophagus. The
esophageal arteries arise in the anterior aorta and run downward to
the esophagus, where they anastomose with a number of other arteries.
The mediastinal branches of the thoracic aorta continue to supply the
lymph glands and areolar tissue in the posterior mediastinum. The
intercostal, subcostal and superior phrenic branches are all parietal
branches. There are nine pairs of intercostal arteries arising from
the posterior segment of the aorta. These arteries divide further to
form the intercostal artery, the lateral cutaneal artery, the mammary
artery and the spinal artery, to name a few. The superior phrenic
artery also arises from the thoracic aorta and eventually forms an
anastomosis with the pericardiophrenic and musculophrenic arteries.
The lowest branching arteries of the thoracic aorta are the subcostal
arteries, which eventually branch into a posterior branch. Five primary
branches arise from the abdominal aorta: the celiac artery, the superior
mesenteric artery, the left and right renal arteries and the inferior
mesenteric artery. The celiac trunk supplies primarily the organs of the
foregut, while the superior mesenteric artery and inferior mesenteric
artery supply the organs of the midgut and hindgut, respectively [153].
The abdominal aorta terminates at its branch into the common iliac
arteries, which then supply the pelvis and lower limbs with arterial
blood.

2.2 Cardiovascular Diseases
CVDs claim more lives each year than any other cause: with an es-
timated 17.9 million deaths in 2019, CVDs account for 31% of all
deaths worldwide [32]. The term CVDs refers to a group of diseases
of the heart and blood vessels. These include coronary artery dis-
ease, rheumatic heart disease, congenital heart disease, stroke, aortic
aneurysm and dissection, peripheral arterial disease, deep vein throm-
bosis (DVT) and pulmonary embolism. We describe the following
CVDs and cardiovascular disorders relevant to our research:

• Cardiomyopathy - a heart muscle disease that hardens blood
pumping to the rest of the body.

• Congenital heart disease - malformations of heart structures
existing at birth may be caused by genetic factors or by adverse
exposures during gestation.

• Aortic aneurysm and dissection - dilatation and rupture of the
aorta.

• Ventricular hypertrophy - a condition defined by an abnormal
enlargement of the cardiac muscle surrounding the left or right
ventricle.
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2.2.1 Cardiomyopathy
Cardiomyopathy is a heart muscle disease in which the heart mus-
cle is physically or functionally damaged, making it difficult for the
heart to pump blood throughout the body. Cardiomyopathy is divided
into the following subtypes: dilated cardiomyopathy (DCM), hyper-
trophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM),
arrhythmogenic right ventricular dysplasia (ARVCD) and unclassified
cardiomyopathy [17, 109, 157].

DCM is the most common form of myocardial disease and accounts
for approximately 60% of all cardiomyopathies [17, 72]. In DCM, the
left ventricle becomes dilated (enlarged). In addition, decreased LVEF
leads to impaired pump function - the LV is unable to properly move
blood out of the heart, as shown in Figure 2.10. Patients with dilated
cardiomyopathy have an ejection fraction less than 40%, a left ventric-
ular volume greater than 100 mL/m2 and a diastolic wall thickness
less than 12 mm [141, 107]. Certain patients with dilated LV also have
a dilated RV or a large LV mass as a result of dilated LV [157]. This
condition may be seen in the presence of other known CVDs. However,
to be classified as DCM, the extent of myocardial dysfunction can-
not be explained solely by abnormal loading conditions (hypertension
or valvular disease) or ischemic heart disease [146, 119]. Numerous
cardiac and systemic conditions can lead to systolic dysfunction and
LV dilatation, but the etiology is often unknown [112]. This has led
to the term idiopathic dilated cardiomyopathy (IDC) [58]. Similar
to hyperdynamic LV systolic function as evidenced by a high LVEF
in HCM, hyperdynamic LV systolic function is abnormal myocardial
thickening that makes the heart work harder, as shown in Figure 2.10.

Figure 2.10: An illustration of a healthy heart and heart affected by
different cardiomyopathy types. Image source: Healthand [61]
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In contrast, patients with HCM are defined as having normal cardiac
function (ejection fraction greater than 55%) but diastolic myocardial
segments thicker than 15 mm. According to Girolami et al. [50] patients
in this category may have an abnormal cardiac mass index greater
than 110 g/m2. HCM is thus defined by asymmetric or symmetric
hypertrophy of LV associated with an increase in LV mass. Asymmetric
hypertrophy is demonstrated by comparing the thickness of the septum
with the thickness of the LV free wall and by the presence of a septal-
to-free wall thickness ratio greater than 1.3. The most common form
of HCM is asymmetric hypertrophy of the interventricular septum [6].

RCM is defined by decreased diastolic volume in one or both ventri-
cles and impaired ventricular filling, but with normal or near-normal
systolic function [120, 7]. RCM causes the heart muscle to stiffen and
become less flexible, preventing it from expanding and filling with
blood between heartbeats (Figure 2.10). Because of the increased
diastolic pressure, restrictive filling occurs, resulting in passive venous
congestion. Cardiac output can be increased by increasing heart rate,
but this becomes ineffective because filling time is shortened. RCM
may occur for no apparent reason (idiopathic) or as a result of another
disease affecting the heart, such as amyloidosis [169].

ARVCD is a relatively rare form of cardiomyopathy in which the
muscle in the lower right chamber of the heart (RV) is replaced by
scar tissue, resulting in arrhythmias [157]. It is often caused by genetic
mutations and is characterized by fibrosis and fatty infiltration of the
RV myocardium and ventricular tachycardia/fibrillation [157].

2.2.2 Congenital Heart Disease
Congenital heart disease (CHD) is a condition in which the structure
and function of the heart are abnormal due to abnormal development
of the heart before birth [114]. According to Khoshnood [87], it is a
leading cause of birth defects and the second leading cause of infant
mortality. Pathophysiologically, it is defined by the presence of a shunt
between arterial and venous blood, cyanosis and postnatal circulatory
changes. A shunt is a connection between two heart chambers or
vessels through which blood can flow from one to the other. There
is a left-to-right shunt, a right-to-left shunt, or a bidirectional shunt.
The direction is entirely determined by the pressure gradient across
the shunt as it affects the state of pulmonary blood flow, which can be
normal, increased or decreased. Increased blood flow to the lungs due
to left-to-right shunts leads to LV volume overload and the possibility
of dilatation followed by heart failure. If left untreated, this eventually
leads to pressure overload in the pulmonary artery. This pressure
irreversibly alters the arterial wall and increases pulmonary vascular
resistance (PVR). When the PVR is greater than the systemic vascular
resistance, the shunt becomes bidirectional or predominantly right-to-
left. In a right-to-left shunt, venous blood with low oxygen saturation
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mixes with arterial blood with high oxygen saturation, resulting in
cyanosis. CHDs are often classified as follows: (1) CHDs with a shunt
between the systemic and pulmonary circulation, (2) left heart CHDs,
(3) right heart CHDs, (4) CHDs with an abnormal origin of the great
arteries and (5) miscellanea [43, 139].

An atrial septal defect (ASD) is a common defect involving a shunt
between the systemic and pulmonary circulation. It is characterized by
an unexpected connection between the atrial chambers. Another type
is the ventricular septal defect (VSD), which is defined by an abnormal
connection between the two chambers of the heart. Atrioventricular
septal defect refers to a group of malformations characterized by ab-
normal development of the atrioventricular junction (AVSD) [43]. The
patent ductus arteriosus (PDA) is a vascular structure located near the
origin of the left pulmonary artery that connects the descending aorta
to the roof of the pulmonary arterial trunk [113]. Finally, the aortopul-
monary window (APW) is a major defect between the ascending aorta
and the main pulmonary artery [53].

Aortic stenosis (AS) accounts for 3-6% of all patients with left heart
CHD. The stenosis may be valvular (70% ), subvalvular (23% ), or
supravalvular (7%). The bicuspid aortic valve with a fused commissure
and an eccentric orifice results in a valvular AS. Subvalvular stenosis
may result from a discrete membranous diaphragm most commonly
associated with other CHDs such as VSD, PDA, or coarctation. An
hourglass-shaped aorta characterizes supravalvular AS [43]. In addi-
tion, coarctation of the aorta (CoA) occurs when the aorta narrows
circumferentially, whereas aortic arch hypoplasia (AAH) occurs when
the aorta is blocked at a specific location. An interrupted aortic arch
(IAA) has a distinct shape and its anatomical spectrum ranges from
a severe form of CoA to the absence of an arch segment. Congenital
mitral valve stenosis, in which one or more components of the valve
apparatus are defective and cor triatriatum sinister (CTS), in which
the left atrium is divided into two chambers by a fibrous membrane,
are extremely rare CHD conditions [11].

The most common type of right heart CHD is pulmonary valve
stenosis (PVS), classified into two distinct subtypes. The first type
of tricuspid valve is characterized by thin leaflets, cusp fusion and
underdeveloped or absent commissures, resulting in a dome-shaped
valve with a narrow orifice. In the absence of cusp fusion, the second
type is defined by thickened and irregular leaflets with a variable
hypoplastic annulus. Another common CHD is the tetralogy of Fallot
(TOF), which is characterized by four anatomic abnormalities of the
heart: a large malaligned ventricular septum, an anterior shift of the
aorta over the ventricular septum, obstruction of the right ventricular
outflow tract (RVOT) and right ventricular hypertrophy. Additionally,
CHD with an abnormal origin of the great arteries includes great
artery transposition (TGA). An atypical ventriculoatrial connection
defines TGA. The aorta originates from the RV and is anterior to
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and to the right of the PA, whereas the PA originates from the LV.
Additionally, the group of CHDs known as double outlet right ventricle
must be mentioned (DORV). DORV outflow tracts originate entirely
or primarily from the RV and may physiologically behave similarly
to a VSD, TGA, TOF, or single ventricle [43]. Figure 2.11 shows an
illustration of different CHD types described above.

Apart from the CHDs mentioned previously, the miscellanea category
encompasses a variety of conditions. For instance, the common arterial
trunk (CAT) is defined by a single great artery that originates at the
base of the heart and supplies systemic, coronary and pulmonary blood
flow, as well as by VSD. Pulmonary atresia (PuA) is a congenital
heart defect in which the valve regulating blood flow from the heart
to the lungs does not form properly [133]. Anomalous pulmonary
venous (APV) is a condition in which one or more pulmonary veins
return to the right atrium rather than the left. A persistent left
superior vena cava causes the double superior vena cava (DSVC) as
a result of the anterior cardinal vein not regressing embryologically.
The left pulmonary artery originates from the right pulmonary artery
and encircles the right mainstem bronchus and distal trachea before
entering the left lung in a pulmonary artery sling (PAS) [43].

Figure 2.11: Different types of congenital heart disease. Image pur-
chased on Canva Pro platform.

2.2.3 Ventricular Hypertrophy
Ventricular hypertrophy is a serious condition characterized by ab-
normal enlargement of the heart muscle surrounding the left or right
ventricle. Ventricular hypertrophy is divided into two types: left ven-
tricular hypertrophy (LVH) and right ventricular hypertrophy (RVH).
LVH is a condition in which the mass of the left ventricle increases,
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either due to increased wall thickness or increased cavity size, or both
[13]. The wall of the left ventricle thickens in response to pressure
overload, while the chamber dilates in response to volume overload
[174]. RVH is defined as either concentric or eccentric enlargement of
the right ventricle as a result of increased workload and subsequent
hypertrophy of the cardiac muscle cells that make up the right ventricle
[15]. If left untreated, the disease progresses from an adaptive state
(compensatory hypertrophy) to a maladaptive state (progressive loss of
contractility), eventually leading to right heart failure. RVH is caused
by a chronic overload of the right ventricle, which is most commonly
caused by the pulmonary hypertension.

2.2.4 Aortic Aneurysm
An aneurysm is defined as a focal and persistent dilatation of an
artery more than 50% larger than its expected normal diameter [30].
The exact definitions of aneurysms vary depending on their anatomic
location, with pathology varied and unique to that location, including
the limb, splanchnic and cerebrocervical arteries. Extracranial arterial
aneurysms can occur at any site in the aorta, but are most commonly
found in the infrarenal segment and account for approximately 30% of
aortic aneurysms[155].

The aortic wall consists of three layers: the intima, the media and
the adventitia. The intima is composed of endothelial cells. The medial
wall of the artery consists of smooth muscle cells surrounded by elastin,
collagen and proteoglycans. It is responsible for the structural and
elastic properties of the artery. The adventitia is composed mainly of
collagen. Aneurisms result from degradation of the major structural
proteins of the aorta (elastin and collagen), usually as a result of
degeneration of the medial layer, leading to dilatation of the vessel
lumen and loss of structural integrity. Although an imbalance between
collagen formation and degradation is thought to be responsible for
rupture of the aortic wall, many of the underlying physiopathological
mechanisms underlying aneurysm formation and rupture remain un-
known. If left untreated, the aortic wall continues to deteriorate and
eventually becomes unable to withstand the forces of luminal blood
pressure, leading to progressive dilatation and rupture [90, 184]. The
risk of aortic rupture increases with increasing aortic diameter and this
catastrophic event is associated with a 50-80% mortality rate [35, 155].
Aortic aneurysms can develop in both the thoracic and abdominal
aorta, as shown in Figure 2.12. AAAs are further subdivided into
suprarenal or paravisceral aneurysms when they involve the visceral
arteries [81], pararenal aneurysms when they involve the origins of the
renal arteries and infrarenal aneurysms when they begin lower than
the renal arteries, as shown in Figure 2.13.

AAAs are typically asymptomatic and aneurysms are frequently
discovered during another examination. Due to the clarity of the
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Figure 2.12: An illustration of normal aorta, thoracic aortic aneurysm
and abdominal aortic aneurysm. Image purchased on Canva Pro
platform.

Figure 2.13: Different types of an abdominal aortic aneurysms. Image
purchased on Canva Pro platform.

images of the aorta and the ability to detect the size and shape of an
aneurysm, the CTA scan is the gold standard imaging modality used
in AAA management. Once detected, the subsequent management
of an abdominal aortic aneurysm is determined by the aneurysm’s
size or diameter and the risk of aneurysm rupture versus the risk of
operative mortality. There are widespread agreement that the risk
of rupture is negligible for very small (3-3.9 cm) aneurysms. As a
result, these aneurysms do not require surgical intervention and are
monitored [110]. In general, the size threshold for intervention is 5.5
cm for men and 5 cm for women, or a 12-month growth rate of at least
10 mm in both sexes [155]. Patients who are symptomatic or have
experienced a rupture are seen immediately. There are two possible
types of interventions: open repair and endovascular aneurysm repair
(EVAR) [8].
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AAAs Treatment

Traditionally, repair of an aortic aneurysm is performed through open
surgery. This involves cutting out the AAA and implanting a prosthesis
or stent-graft. The stent-graft is a metal tube made of synthetic
material that replaces the AAA and restores continuity to the aorta.
To repair AAA, an abdominal incision is made and then the artery’s
blood flow is stopped with clamps above and below the aneurysm [29].
The aneurysm is then opened and the stent graft is sewn in. The
prosthesis is covered by the same wall of the aneurysm sac. Although
the open repair requires a longer recovery period, the patient is unlikely
to need further surgery, no follow-up is required and the patient’s long-
term life expectancy is high. It is also a technique that can be adapted
to complicated anatomies. However, it is a major procedure that
often results in significant perioperative morbidity and mortality due
to hemodynamic instability, patient comorbidities, surgical exposure
and aortic clamping with associated lower body ischemic injury. A
minimally invasive procedure called endovascular aneurysm repair is
an alternative to open surgery (EVAR) [140]. In the EVAR procedure,
an endograft is inserted and fixed in place using a catheter inserted
through the femoral arteries. An endograft is a self-expanding type
of metallic vascular stent that is encased in tissue to form a closed
tube. The proximal and distal ends of the endografts are equipped
with hooks for attachment to the inner wall of the blood vessel. The
EVAR procedure isolates the damaged aneurysm wall from the blood
circulation, which flows through the body of the endograft and the
isolated walls, forming an intraluminal thrombus that shrinks if the
procedure is successful. Accurate aortic and aneurysm sizing and
preoperative planning are critical to successful initial and long-term
outcomes after EVAR, for which CTA is the imaging modality of
choice.

EVAR has proven advantages over open surgery in terms of reduced
preoperative morbidity and mortality and shorter procedure and recov-
ery time. In addition, it allows intervention of high-risk patients who
cannot be treated by open surgery. However, the postoperative 2-year
survival rates are almost identical for both procedures [105]. While
open repair removes the aneurysm wall and replaces it with a stent
graft, EVAR excludes the aneurysm from the circulation but does not
remove it. In the long term, this can lead to EVAR-specific compli-
cations called endoleaks. Endoleaks occur when blood continues to
flow within the excluded aneurysm sac or thrombus after endovascular
aneurysm repair. If left untreated, the aneurysm may re-expand due to
the pressure, increasing the risk of rupture and requiring reintervention
in some cases. Thus, some endoleaks may occur as a result of poor
EVAR planning or endograft defects. These problems could be solved
by a better understanding of the different endograft models and their
modes of operation, as well as by more accurate preoperative sizing of
the endografts.
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2.3 Cardiac Imaging Modalities
Cardiovascular imaging is a critical component of the diagnosis and
prognosis of CVDs. The most commonly used devices for performing
imaging are ultrasound (US), magnetic resonance (MR), computed
tomography (CT), positron emission tomography (PET), single-photon
emission computed tomography (SPECT). They all have a great ca-
pacity to capture detailed information about the anatomy and soft
tissues of the body. This significantly improves our understanding of
the healthy and pathological anatomy of various organs. In this Thesis,
we focus on images examined by CT and MRI. Although both: CT and
MRI contain detailed information about the anatomy and soft tissues
of the body, the details vary according to the acquisition techniques
used.

2.3.1 Computed Tomography
CT is a type of imaging that uses X-rays to collect structural and
functional data about the human body. Reconstruction of the CT image
is based on an X-ray absorption profile. X-rays are electromagnetic
waves used in diagnosis due to the property that all substances and
tissues absorb X-rays differently. CT scans use tiny X-rays aimed at
a patient and rapidly rotated around the body to produce a digital
signal. A computer connected to the X-ray machine processes this
signal to produce a sequence of cross-sectional images of the patient’s
body [150].

As shown in Figure 2.14, a patient lies in a tunnel equipped with
a scanner. The scanner or rotating gantry (ring) consists of an X-ray
emitter at 180 degrees across the receiver. The patients’ bed slowly
moves through the tunnel and stops, after which the scanner circles
the patient and X-rays are beamed and received at many points along
the tunnel. Each time the bed moves, the scanner circles again. In
this way, while the patient remains in one position, large amounts of
data can be acquired quickly and correctly.

The image data are provided as grey levels depending on the amount
of ionizing radiation absorbed or attenuated. The linear attenuation
coefficient expresses the amount of radiation lost through an absorbing
material of a given thickness [57, 149]. This value grows in proportion
to the atomic number and density of the material. This difference
in linear attenuation coefficients between tissues produces contrast in
X-ray images. Tissues with low attenuation (e.g., air) appear dark
because they absorb very little radiation, so most of the radiation is
transmitted to the detector. Tissues with a high attenuation coefficient
(e.g., bone) appear light on the image because most of the radiation is
absorbed and only a small portion is transmitted. When interpreted,
the left side of the image corresponds to the patient’s right anatomy
and vice versa. CT images can be viewed individually or in a volume
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Figure 2.14: A diagrammatic representation of computed tomography
(CT). The absorption of numerous x-ray projections from various angles
is used to rebuild a CT image slice. The spinning gantry and patient
table both move in unison to acquire CT slices. By repeating the
image acquisition method, a sequence of CT images is obtained. Image
source: Clara Tam [164]

or three-dimensional (3D) format. When viewing a CT volume, the
individual volume elements are referred to as voxels rather than pixels
(image elements) in a two-dimensional image slice [164].

CT can provide detailed anatomical information about ventricles,
vessels, coronary arteries and coronary calcium score thanks to re-
cent rapid developments in CT technology. Cardiovascular CT imag-
ing consists of two procedures: (1) coronary calcium scoring using
noncontrast CT and (2) noninvasive coronary artery imaging using
contrast-enhanced CT. Non-contrast CT imaging generally uses the
density inherent in the tissue. This makes it easy to separate different
densities with different attenuation values, such as air, calcium, fat
and soft tissue. Noncontrast CT imaging is a low-radiation approach
to identify the presence of coronary artery calcification within a single
breath [38]. In contrast, contrast-enhanced CT imaging of the coronary
arteries, valves, effusions, pericardium or pacemaker leads is performed
using contrast media, such as a bolus or continuous infusion of a high
concentration of iodine-containing contrast agent [148, 116]. Coronary
CT angiography (CTA) can image both the arterial lumen and wall,
allowing noninvasive assessment of the presence and size of noncalcified
coronary plaques [39]. AAAs are often asymptomatic and aneurysms
are frequently detected by another examination. Because the CTA
scan provides detailed images of the aorta and is able to detect the
size and shape of an aneurysm, it is the gold standard in AAA care.
It is used as a screening test when ultrasound images are inadequate,
as a diagnostic test when rupture is suspected and as part of the
preoperative workup for AAA repair [64, 162]. Although CT offers a
wealth of benefits, it is still quite expensive. Nonetheless, CT is the
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gold standard for diagnosing a variety of diseases.

Figure 2.15: Example of non-constrast cardiac CT image, contrast CT
cardiac image and CT image with cropped AAA.

2.3.2 Magnetic Resonance Imaging
Cardiac MRI is a noninvasive imaging technique that, unlike CT, does
not require ionizing radiation. MRI images are formed when radiofre-
quency energy (RF) is exchanged between the patient’s body and the
imaging device. This is possible due to the inherent magnetic proper-
ties of the human body, more specifically hydrogen atoms (protons),
which are particularly abundant in tissues. A proton has an inherent
spin angular momentum that rotates about its axis at a constant speed.
When a strong external static magnetic field is applied, the rotational
axes of the protons align with the applied field. Since protons have
angular momentum, they will rotate perpendicular to the applied field.
The precession rate of the proton, shown in Figure 2.16, is directly
proportional to the intensity of the magnetic field, as shown by the
Larmor frequency equation (resonance frequency):

ωo = γ ·Bo

2 · π
(2.1)

where ωo is the Larmor frequency in megahertz, Bo is the magnetic
field in tesla and γ is the nuclear gyromagnetic ratio in radians per
second per tesla [164].

The technician administers an RF pulse during the imaging procedure
to perturb the protons and bring them into 90 or 180 degree alignment
with the static magnetic field. When the precession rate or frequency
of the protons matches the frequency of the applied RF pulse, the
protons begin to resonate and absorb some of the energy of the RF
pulse, placing them in an excited state. At the same time, the protons
are in the excited state and their electromagnetic energy increases.
When the radiofrequency pulse is interrupted or turned off, the protons
realign with the magnetic field, releasing additional electromagnetic
energy. This is called relaxation. The RF radiation is then picked up
by a receiver in the MRI scanner to create the magnetic resonance
images. Because different tissues in the body contain different amounts
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Figure 2.16: Precession of protons in a static magnetic field. Image
source: Clara Tam [164]

of water, MRI uses the electromagnetic fields from the nuclei (protons)
to determine the density and shape of the tissues in the body. One
can automatically distinguish between different tissues in the body
based on how quickly the protons release their extra energy after the
applied RF pulse is turned off. The relaxation rate (or time) is the
most important factor contributing to the contrast between different
tissue types in an image. In addition, the strength of the RF signal is
critical to the quality of the image.

In MRI, relaxation times are divided into T1 (longitudinal relaxation
time) and T2 (transverse relaxation time). T1 is the time constant
used to calculate the time it takes for the spinning protons to realign
with the external magnetic field. That is, the time required for the
longitudinal signal to recover 63% of its magnetization value. T2 is the
time constant at which excited protons lose phase coherence with each
other [14, 93]. This is the time required for the transverse magnetization
to drop to 37% of its original value [24]. Image sequences are obtained
by changing the RF pulses delivered to the same image slice during T1
and T2 relaxation pulse sequences. The time to echo (TE) is the time
interval between the emission of an RF pulse and the reception of the
signals emitted by the patient’s body, called echoes. The repetition
time (TR) indicates the interval between successive pulse trains applied
to the same image section. Time to echo (TE) is the time interval
between the administration of an RF pulse and the reception of echoes
emitted by the patient’s body. T1-weighted and T2-weighted images
are generated using MRI sequences that exploit intrinsic T1 and T2
relaxation features. T1-weighted sequences have short TR and TE
times, whereas T2-weighted sequences have longer TR and TE times.
T1 images show proton density in the fatty tissues of the body, such
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as the bone marrow of the vertebral bodies. Because cerebrospinal
fluid does not contain fat, it appears black on T1-weighted images.
T2 images, on the other hand, show the proton density of tissues
containing fat and water. Therefore, cerebrospinal fluid appears bright
on T2-weighted scans.

Cardiovascular MRI allows precise assessment of cardiac structure
and function (e.g., cine imaging) and diseased tissue such as scarring.
Because images can be acquired in any orientation, they can be ac-
quired in specific anatomical planes. Because of these features, experts
have developed a variety of techniques that provide varying amounts
of information. Cine-CMR, flow-CMR, tagged-CMR, late gadolinium
enhancement (LGE) and perfusion-CMR are the most commonly used
[129]. Cine-CMR aims to achieve excellent spatial and temporal res-
olution while maintaining high contrast between tissues. Typically,
a single sample has 20-30 consecutive images, each corresponding to
20-30 time periods during the cardiac cycle. Each image contains
between ten and fifteen sections from base to apex. Images are usually
acquired along two axes: the long axis and the short axis, as shown
in Figure2.17. The long axis (LAX) runs throughout LV from base to
apex. The cuts of the short axis (SAX) are perpendicular to the cuts
of the long axis (LAX). Cine-CMR is usually used to calculate global
functional indices such as stroke volume and ejection fraction because
the image sequence loop accurately captures the dynamic process of
an entire cardiac cycle during a respiratory pause. On the other hand,
cine MRI has the following disadvantages: it is not real-time, it is
expensive and it has lower resolution than CT.

2.4 Conclusion
In this chapter, we have given an overview of the cardiovascular sys-
tem, the heart and the cardiac structures. We gave a brief overview of
their anatomy and functional indices. The description of the LV and
RV functional indices included their definitions, calculation methods,
corresponding normal ranges and exemplary applications for the di-
agnosis of CVD. We briefly described CVDs relevant to our research
and provided a brief overview of the characteristics of CT, MRI, and
Cine-MRI imaging modalities. In particular, we have attempted to
introduce the medical concepts necessary to understand the need for
the segmentation methods presented in this work. The main chal-
lenge in cardiac imaging is the constant motion of the heart due to
its contraction and respiration. Therefore, images must be acquired
quickly and synchronously with the heart rhythm to avoid motion blur.
Although both CT and MRI provide valuable information about the
anatomy and soft tissues of the body, the details differ depending on
the imaging technique used.

A variety of imaging techniques combined with some form of visual-
ization provide valuable information about the anatomy and function of
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Figure 2.17: Top row left: Steady-state free precession MRI (SSFP).
Top row right: Late gadolinium enhancement magnetic resonance
imaging (LGE-MRI). Bottom row, from left to the right: cine MRI
4-chamber view, 2-chamber view, 3-chamber view.

the heart. Nevertheless, this process is often manual or semi-automated
and requires a lot of physicians’ time. In order to provide a complete
assessment of the heart, more sophisticated algorithms are required
that allow automatic extraction and analysis of cardiac structures.
This is made possible by image segmentation algorithms. The devel-
opment of image processing algorithms is challenging because images
acquired with different imaging devices differ significantly. Thus, it
is important to summarize and highlight some challenges in cardiac
structure segmentation that arise from the differences between imaging
devices.

Segmentation of the whole heart and ventricles in CT and MRI
images is challenging because:

• The cardiac organ with its numerous chambers and large vessels
is geometrically complex.

• The geometry of the heart varies considerably between people
and between different heart states within the same subject. Seg-
mentation using a previous model created from a training set
of data from healthy subjects worked well for healthy subjects.
However, when separating complex data, the same segmentation
algorithm gave significantly worse results.
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• Due to the intensity distributions of certain anatomical sub-
structures, such as texture patterns, some boundaries between
anatomical substructures are visually ambiguous.

• Due to the complicated motion and blood flow within the heart,
imaging data often contains significant motion artifacts, intensity
inhomogeneity and noise. This contributes to the boundary
delineation not being smooth and unsatisfactory.

Furthermore, segmentation of the LV, MR and Myo in cine MRI
images is challenging due:

• Insufficient contrast between the myocardium and surrounding
tissues (high contrast between blood and myocardium).

• Due to blood flow, there are brightness differences in the cavities
of the left and right ventricles.

• Due to limited CMR resolution along the longitudinal axis, there
are inhomogeneous partial volume effects.

• There is inherent noise due to motion artifacts and cardiac dy-
namics.

• Variability in shape and intensity of cardiac structures in different
patients and diseases.

Segmentation of AAA in CTA images is challenging due:

• Similarity between the intensity values of the aneurysm thrombus
and those of some adjacent tissues, leading to segmentation leaks
due to the blurred boundaries of the thrombus.

• In some cases, the thrombotic surface is locally obscured due to
its noncontrast nature.

• The geometric structure of the aneurysm is non-uniform, mak-
ing it impossible to approximate the thrombus with a simple
geometric model.

Knowledge of the above characteristics provides guidance in the
development of image processing methods for segmenting the heart
from different imaging modalities.
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Related Research

Advances in information technology are having a significant impact
on healthcare, particularly through the incorporation of artificial in-
telligence. Machine learning is a subset of artificial intelligence that
consists of algorithms and statistical models that are used to perform
a task without explicit instructions. They create mathematical models
from a set of data that includes inputs and provides the desired output.
Machine learning is divided into two main categories: unsupervised
learning and supervised learning. Unsupervised machine learning algo-
rithms learn the desired output from the data without using predefined
labels. They learn the inherent structure of the data by discovering
certain patterns through repeated experiences, such as grouping data
points or clustering. Unsupervised learning uses cluster analysis tech-
niques to form these groups with common attributes. Autoencoders
[10], deep belief networks [68], k-means and generative adversarial
networks [51] are examples of unsupervised learning algorithms. Su-
pervised machine learning methods transform the input data of an
algorithm into corresponding outputs by identifying the correlation
between input and output based on statistical or data-driven rules
learned from the data. In unsupervised learning, the goal is to derive
relationships and patterns without prior knowledge, i.e., the dataset
does not contain information about the output labels. In contrast,
supervised learning methods learn the underlying patterns and repre-
sentations from the data to identify their valuable properties and latent
spaces. In other words, supervised learning is based on the presence of
previously labelled ground truths that are used for model training.

The outline of the chapter is structured in the following manner.
Section 3.1 gives an introduction to deep learning mechanisms and
networks. It presents an overview of the most significant deep learn-
ing CNN network architectures and mechanisms: U-Net architecture,
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ResNets variants, feature reuse mechanisms and autoencoders to high-
light novelties and the main focus of this Thesis. Section 3.2 presents
an overview of related researches. It is directed to prior methods that
deal with the whole heart segmentation from CT and MRI images,
segmentation and quantification methods for LV, RV and Myo as well
as AAA segmentation. The most commonly used evaluation metrics
for medical image evaluation are also described. Section 3.3 recaps
known challenges and limitations of the previous researches. Finally
Section 3.4 gives concluding remarks.

3.1 Deep Learning Mechanisms and
Networks

Deep learning algorithms are a subset of machine learning that uses
multiple layers of neural networks while processing data. Their ability
to map multiple levels of semantic information and their scalability
to large amounts of data quickly established them as the leading
technology for medical image analysis [54, 25]. Unlike other machine
learning methods, deep learning algorithms will continue to improve
when given more data. When the dataset is larger, the algorithm is more
sensitive to slight variations. Deep learning algorithms either learn from
present outcomes based on reference datasets or directly from the data.
Until the advent of deep learning algorithms, feature extraction was
performed manually. The challenge with manually managed features is
choosing which are most appropriate for specific applications. Testing
the many types of feature descriptors and their numerous combinations
would require a large amount of time and effort. A typical machine
learning algorithm is trained to process and extract manually specified
image attributes (e.g., texture, color, shape, edge patterns, pixel spatial
relationships, pixel intensities). On the other hand, deep learning
automates the feature extraction process, obviating the requirement
for pre-training manually constructed feature extractors. Another
distinctive property of deep learning is its hierarchical architecture for
feature learning. A deep learning algorithm emulates this behaviour
by taking a complicated and abstract task, such as differentiating a
triangle and breaking it down into numerous levels of simpler tasks,
much like the human brain does when it learns to correlate distinct
qualities to identify a specific item.

Deep learning algorithms are statistical models composed of deep
artificial neural networks. In the following few subsections, we detail
the components of a neural network and review important deep learning
techniques relevant to our work.
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3.1.1 Feed Forward Neural Network
The concept of a neural network was inspired by neuroscience, where a
single node (artificial neuron) in a neural network is representative and
mimics aspects of a biological neuron [170]. A neural network consists
of a collection of nodes interconnected in various architectures to enable
communication between them. It can be viewed as a mathematical
function that attempts to approximate the function represented by
our data. It computes the error between the predicted and expected
outputs and minimizes this error during the training process.

Let y = f(x) be the underlying function that outlines the relation
between variable y and explanatory variable x, the neural network
is a non-linear mapping f(x; θ) that approximates this value of y by
learning parameters θ. When a neuron receives an input satisfying the
specific threshold value, it gets activated and forwards the input to
the adjacent neurons. If the sum of the inputs that is collected from
multiple adjacent neurons exceeds their threshold, they are activated
too. Information flows through the network following such a schema.
Another way of describing a neuron is the perceptron. In statistical
terms, the perceptron is a linear and binary classifier. Figure 3.1 shows
a perceptron with inputs coming from the left-hand side.

Now, lets consider an input vector x of size d. The linear function of
the percepton processes the sum of the input and weights w with a bias
added to it. The intercept of the linear function is now determined. A
combination of many perceptrons produces a network that resembles
a neural network. The resulting model is usually either called a feed
forward network (FFN) or Multi-Layer Perceptron (MLP). Figure
3.2 shows a simple neural network of multiple layers with multiple
perceptrons.

Figure 3.1: An illustration of perceptron.
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Figure 3.2: An illustration of Multi-Layer perceptron.

The first layer of the neural network is called the input layer, the last
layer that contains the output is called the output layer and the layers
in between are called hidden layers. The computation is vectorised,
therefore the variable x is of the actual dimensions n × d, with n
denoting the number of observations and d the dimensionality of the
input. The forward pass can be mathematically written as:

h(x) = σ(xT · w1 + b) (3.1)

and

y(h) = σ(hT · w2 + b) (3.2)

where w1 and w2 denote the weights and b1 and b2 denote the bias
in the respective layers. The Sigmoid activation function denoted by
σ is a mapping of the output between (0, 1) in the following equation:

σ(x) = 1
1 + exp(−x) = exp(x)

exp(x) + 1 (3.3)

In the subsequent step, we define a loss function and apply backprop-
agation to update the weights. The error in the output of the neural
network is defined by the loss function. The loss function used depends
on the application, for instance, a classification, regression or as in
our case, segmentation problem. An assumption can be made that
the error is normally distributed about the prediction y. Hence, The
Maximum Likelihood Estimate (MLE) for the normal distribution can
be optimised by maximising the Mean Squared Error (MSE), where y
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denotes the true value and ŷ denotes the estimated value.

ϵ(ŷ) = 1
n

∑
i = 1n(ŷ − y)2 (3.4)

The gradient can now be computed with respect to the corresponding
weights and updated. The learning rate α decides the magnitude of
change in the weights after each iteration or epoch, i.e, one pass of the
neural network training over the training dataset. For the purpose of
application more complex optimisers along with momentum are used
for the training to converge faster to a solution. One gradient update
can be shown in the gradient of the error function with respect to its
weights, with mathematical definition as follows:

∇ϵ = ( δϵ

δwn
,

δϵ

δwn−1
, ...,

δϵ

δw1
) (3.5)

while the chain rule of partial derivatives can be used to compute
the gradient. For the w2 , gradient is

δϵ

δw2
= δϵ

δŷ

δŷ

δh

δh

δw2
(3.6)

Hence, the weight can be updated according to the following expres-
sion:

w′
2 = w2 − α⊙ δϵ

δw2
(3.7)

where ⊙ defines the element-wise product and α is the learning rate
which determines the magnitude of change of the weight update. This
training procedure is shown in Figure 3.3.

Sometimes, the updates to the structure of the neural network may
be required which changes the analytical solution for gradient updates.
The application of numerical optimisation techniques can allow for such
a change without requiring the derivation of the analytical solution
for such a gradient update. Deep neural networks are susceptible to
the vanishing gradient/exploding gradient problem [59], which is the
reason for the application of more complex types of neural networks.

3.1.2 Convolutional Neural Network
A CNN is a special type of feed forward neural network that uses
grid-like data with a spatial correlation between neighborhood data
points, like 2-D images, 3-D volumes, or time-series data. Instead of
using a weight for each pixel of the image, a CNN uses a filter over
the inputs, i.e, a sliding window with a certain stride over the pixel
intensities to create an intermediary output that is a function of the
input and the filter, this process is known as convolution. The intensity
of each pixel of the image (voxel in 3D case), is generally rescaled
and mapped to a (0, 1) range. It is noted that, zero-padding may be
performed on the input to allow for convolution involving all the input
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Figure 3.3: A neural network’s training procedure. In an iterative
process, neural networks learn by propagating information forward
and backward from a loss function. By updating the weights during
backpropagation, the network aims at minimizing the loss function.
Forward propagation returns the information from the output back to
the loss function.

pixel or voxel intensities, i.e., 0 intensity pixels are added around all the
edges and corners. Other forms of padding are also adopted depending
on the application. During each convolution step as described above,
a product of the input and filter is computed. Figure 3.4 shows an
example of 2D convolution (can be seen as a one image pixel). Here,
input shape is 1 × 4 and 4 × 1 which results in an output of shape 1 × 1.
The stride of 1, moves the sliding window of 2 × 2 to the next position
with the output being computed on the right hand-side. Increasing
the strides will result in a smaller output size. Also, it can be noted
that the output will always be smaller than the input size.

Furthermore, the convolution operation in the 2D space can be
mathematically expressed as:

yij =
[m/s]∑
a=0

[m/s]∑
b=0

x1+as,j+bsFa,b (3.8)

where x denotes the input at indices i and j, F denotes filter, m
denotes size of the filter and s is the stride. Due to convolutional
operation’s weight sharing capability, distinct sets of features inside an
image can be retrieved by sliding a kernel with the same set of weights
on the image.
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Figure 3.4: Illustrative 2D convolution. The dot product of input and
filter results in the output.

Pooling Layer

For the purpose of extracting features from images, edges are of interest.
Therefore, a difference between adjacent pixels/voxels can determine
the edge, as in the case of foreground vs background. Size reduction of
the input is also a concern for faster image processing, can be done by
a method called pooling. Pooling or down-sampling is a local operation
that use addition to acquire similar information in the neighborhood
of the receptive field and outputs the dominant response within this
local region. Mathematically, this can be expressed with:

Pij = pf (yij) (3.9)

where Pij is pooled feature-map of i−th layer for j−th input feature
map yij and pf is pooling operation. An illustrative example of max
pooling is shown in Figure 3.5.

Figure 3.5: Max pooling is being performed on the input by a window
of size 2 × 2. The cases with edges are either padded with zeros or just
ignored.
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The concept of pooling can also be described as a sliding window of
mathematical operation such as max applied in each case. Generally,
no overlap is considered between the region selected. This can result
in the edge cases being overlooked, but padding may also be used.
Settings related to pooling and filter size are both considered arbitrarily
decided and hence, considered to be a hyperparameter of the neural
network. The general structure of CNN architecture is shown in Figure
3.5.

Figure 3.6: An example of general structure of CNN architecture.

Upsampling and Transponse Convolution

For a neural network to generate images or image maps such as in the
case of semantic segmentation, it generally involves the application of
upsampling from a low resolution to a higher resolution. There are
many different methods to perform an upsampling operation such as
nearest neighbor interpolation, linear interpolation, bilinear interpola-
tion, trilinear interpolation, bicubic interpolation and various others
found in literature [49].

Lets observe what happens if we associate value 1 to 9 other values in
a matrix from Figure 3.5. It will be termed a one-to-many relationship.
This is similar to going backwards in a convolution operation as shown
in Figure 3.7.

Further, a convolution operation can be represented as a kernel
matrix that is arranged in the form of matrix multiplication to perform
convolution operations, as illustrated in Figure 3.8. This kernel can
be arranged as shown in Figure 3.9. Here, each row is defined by one
convolution operation and represents a rearranged kernel matrix with
zero padding at different places. The matrix multiplication from Figure
3.9 and the flattened column vector of the input leads to the vector of
output (4 × 1) which can be reshaped so that it is (2 × 2). To increase
the size from (2 × 2) to (4 × 1), a (16 × 4) matrix is used. However,
the 1 to 9 relationship has to be maintained. The transpose of the
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Figure 3.7: Illustration of upsampling.

Figure 3.8: Illustration of convolution kernel.

Figure 3.9: Illustration of convolution matrix (4,16).

convolution matrix in Figure 3.9 from (4 × 1) to (16 × 4), this can be
matrix multiplied with the column vector of the output to generate
the output matrix as seen in the Figure 3.7.

Activation Function

Layers of nodes are present within neural networks that learn the
mapping of input instances to outputs. In any given node, the sum of
products of the inputs and weights is found, are the summed activation
of the node. Transformation of this value using an activation function
defines the specific output of the node, also known as the activation of
the node. The selection of an appropriate activation function can sig-
nificantly accelerate the learning process. A relatively simple activation
function is a linear activation function that involves no transformation.
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A neural network consisting of only linear activation functions is simple
to train but cannot learn more complicated mapping functions which
are required for solving real life problems. The output layer of the
network uses linear activation for prediction, such as in the case of
regression problems.

The activation function for a convolved feature-map can be mathe-
matically expressed with:

Aij = af (yij) (3.10)

where yij is an output of a convolution, to which is assigned activa-
tion function af (·) which adds non-linearity and returns a transformed
output Aij for i− th layer. A non-linear activation function can learn
complex features within the data. Some examples of non-linear acti-
vation functions are: sigmoid, ReLU, PReLU and hyperbolic tangent
[163].

For effective application of backpropagation of the errors along
with stochastic gradient descent in order to train neural networks,
the activation function must behave similarly to a linear activation
function. However, only non-linear activation functions allow learning
of complex structures and relationships within the data. Sensitivity to
the activation function’s summed input is important to avoid running
out of values to output. A rectified linear activation (ReL )can be used
to solve this problem. A unit or a node that implements ReL activation
function is called ReLU or Rectified Linear Unit. Neural networks that
use rectifier functions are often called rectified networks. The adoption
of ReLU has allowed researchers to implement deep neural networks
efficiently.

Figure 3.10: An example of general structure of CNN architecture.

ReLU has its own limitations, such as the problem with large weight
updates where the summation of the input to the activation function
remains negative. A node with such a problem will have an output
value of 0 and this is also known as a dying ReLU. Small negative
values can be allowed into the function, which effectively reduces the
non-linearity of ReLU, such as Leaky ReLU (LReLU), which is a
modified ReLU function where the input is < 0. The Parametric ReLU
(PReLU) can train to learn parameters that control how leaky the
activation function will be and is mathematically defined as follows:
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loss =
{
yi yi > 0
aiyi yi ⩽ 0

where yi represents any input on the i − th channel and a is the
negative slope which is a learnable parametar. If a = 0, then f becomes
leaky ReLU, if ai is a learnable parameter then f becomes PReLU.

A CNN will be of limited use if it could only learn with one filter, i.e,
it will extract only one type of feature from the input. For instance,
an edge detection filter works where the intensity changes drastically
(for example: from black to white). Hence, multiple independently
operating filters are used for training. Therefore, the CNN consists
of an input layer, an output layer and multiply functional layers that
transform an input into output in a specific form. These functional
layers often contain alternating convolutional layers, pooling layers
and/or fully connected layers, as shown in Figure 3.10. Nevertheless,
for efficient, end-to-end pixel-wise segmentation, a variant of CNNs
called fully convolutional neural network (FCN) is more commonly
used, which are discussed in the Subsection 3.1.3.

Loss Functions and Optimization Algorithms

The loss function determines the ability to approximate the ground
truth labels for all training inputs. It takes as inputs samples from
the training set, weights and biases. A network’s goal is to minimize
the loss function to as close to zero as possible during training. If
the loss value is large, the loss function penalizes the network by
frequently changing the weights. Contrary, if the loss value is low,
the weights will only slightly change since the network is performing
well. Different loss functions are frequently used for specific tasks.
For example, in numerical/regression tasks, the mean squared error
would be used as the loss function to calculate the differences between
continuous variables. On the other hand, categorical tasks would use
the cross-entropy loss function to compute the differences between
probability distributions. Different tasks have different outputs and
are thus modelled by different loss functions.

Using an optimization function, such as stochastic gradient descent
(SGD), is the most efficient way to determine the weights and biases.
SGD is the oldest and most basic optimization method. SGD algorithm
is a stochastic optimization algorithm that employs and generates
random variables. It is an iterative method for optimizing a neural
network model’s objective or loss function. The algorithm iteratively
traverses the training set until it converges. The training set is randomly
shuffled after each pass. Other optimization algorithms (for example,
Adam [88] and Adadelta [180]) use more advanced techniques such
as momentum and adaptive learning rates. These techniques allow
faster convergence and make hyperparameter tuning algorithms like
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grid search or random search easier to implement. They do, however,
require more processing time and memory consumption.

Regularization Approaches

Deep neural network’s accuracy can continuously converge to perfection
during training but degrade during validation. This is because the
network has memorized the data, including the noise, too closely. This
is referred to as overfitting. Regularization techniques are used to
prevent overfitting and improve generalizability in neural network
models. Regularization methods that are most commonly used are L1
and L2. Both methods include a regularization term in the loss function
of the model. L1 penalizes the weights’ absolute value, whereas L2,
also known as weight decay, forces the weights to decay towards zero.
Data augmentation, dropout, early stopping and batch normalization
are some regularization techniques. Data augmentation is a technique
for increasing the size of training samples so that the model does not
memorize every variation of the data. As augmented samples, invariant
properties or expected distortions of the data, such as flips, rotations,
scaling, or intensity changes, can be introduced. Dropout works by
randomly dropping a certain percentage of neurons in each layer during
training and setting the activation of the dropped neurons to zero. All
neurons will be active during testing or validation. Different variations
of the model can be obtained by dropping some neurons during the
training phase. Dropout aids in reducing interdependent learning
between nodes. The training of a network can be halted before it
begins to overfit. In practice, early stopping is commonly used and
is implemented by measuring the accuracy or loss on an isolated test
set. When the test performance no longer improves, the training is
terminated. Batch normalization is a technique for enhancing the
performance, speed and stability of trained neural network models [73].
To achieve batch normalization, a normalization step is performed to
fix each layer’s input, means and variances for each mini-batch during
training. Batch normalization, like dropout, forces each layer of a
network to be resistant to variations in its input. At each training step,
each hidden unit is multiplied by the standard deviation and subtracted
from the mean of the mini-batch. Because the random samples chosen
in each mini-batch are different at each step, the standard deviation
and mean fluctuate randomly.

3.1.3 Fully Convolutional Neural Network
Fully convolutional neural network (FCN) is introduced by work of
Long et al. [104] and represents the most successful and advanced deep
learning technique for semantic segmentation. FCNs are a subset of
CNNs that do not have any fully connected layers. They are constructed
with an encoder-decoder structure that allows them to accept inputs
of any size and outputs of the same size.
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Let us observe what happens to an input image when it is brought to
network input. The encoder converts the input image to a high-level fea-
ture representation, while the decoder reads the feature mappings and
restores spatial details to the image space for pixel-by-pixel prediction
via a sequence of upsampling and convolution operations. Upsampling
is accomplished in this case by applying transposed convolutions to the
up-scaled feature maps. Additionally, these transposed convolutions
can be substituted with unpooling and upsampling layers. FCN with
the simple encoder-decoder structure is shown in Figure 3.11.

In comparison to a patch-based CNN for segmentation, FCN is
trained on the complete image and applied to it, eliminating the ne-
cessity for patch selection. FCN, on the other hand, may be limited
in its ability to capture extensive context information in an image for
exact segmentation, as some features may be deleted by the encoder’s
pooling layers. Numerous variants of FCNs have been proposed for
feature propagation from the encoder to the decoder in order to im-
prove segmentation accuracy. The U-Net is the most well-known and
widely used variant of FCNs for medical image segmentation. The
U-Net architecture [145], which is based on the FCN, uses skip con-
nections between the encoder and decoder to recover spatial context
loss throughout the downsampling process, resulting in more accurate
segmentation.

Figure 3.11: An example of general structure of FCN architecture.

U-Net Architecture

Similar to FCN [104], U-Net architecture [145] performs semantic
segmentation. The network architecture is symmetrical, with an en-
coder extracting spatial information from the image and a decoder
creating the segmentation map using the encoded features. The en-
coder is constructed in the conventional manner of a convolutional
network. It begins with two 3 × 3 convolution operations, followed
by a max-pooling operation with a pooling size of 2 × 2 and a stride
of 2. This process is repeated four times, with the number of filters
in the convolutional layers being doubled after each downsampling.
Finally, the encoder and decoder are connected by a series of two
3 × 3 convolution operations. The decoder first up-samples the feature
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map using a 2 × 2 transposed convolution operation, thus halving the
number of feature channels. Then, a sequence of two 3 × 3 convolution
operations is conducted once again. As with the encoder, this sequence
of upsampling and two convolution operations is repeated four times,
thereby halving the number of filters at each stage. Finally, the final
segmentation map is generated using a 1 × 1 convolution operation.
Except for the final convolutional layer, this architecture employs the
ReLU activation function. The final convolutional layer employs the
Sigmoid activation function to produce the final result. The introduc-
tion of skip connections is perhaps the most innovative component of
the U-Net architecture. At each of the four levels, the output of the
convolutional layer is transferred to the decoder prior to the encoder’s
pooling operation. These feature maps are then concatenated with the
output of the upsampling procedure and the resulting feature map is
propagated to subsequent layers. These skip connections enable the
network to recover spatial information that was lost during pooling
operations. The network architecture is illustrated in Figure 3.12.

Figure 3.12: The structure of U-Net architecture. Image source: Ron-
neberger et al. [145]

3D U-Net Architecture

Cicek et al. [186] introduced 3D counterpart of the U-Net architecture.
The network structure is similar to U-Net, with one encoding path and
one decoding path. Each path has four resolution levels. Each layer in
the encoding path contains two 3 × 3 × 3 convolutions and is followed
by a ReLU. It uses a maximum pooling layer to reduce dimensionality.
In the decoding path, each layer contains a 2×2×2 deconvolution layer
with a stride of 2, followed by two 3×3×3 convolution layers. Through
a skip connection, the layer with same resolution in encoding path is
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passed to the decoding path, providing it with original high-resolution
features. This network can not only train on a sparsely labeled data
set and predict other unlabeled places on this data set, but also train
on multiple sparsely labeled data set and then predict new data.

Figure 3.13: The structure of 3D U-Net architecture. Image source:
Cicek et al. [186]

3.1.4 Residual Learning
Deep convolutional neural networks (DCNNs) have significantly in-
creased accuracy for various segmentation and classification tasks.
However, a common obstacle in training DCNNs is the appearance
of vanishing or exploding gradients. As the depth of CNN increases,
information about the gradient passes through many layers and it can
vanish or accumulate large errors by the time it reaches the end of the
network. This problem has been largely addressed using activation
functions with a small derivate such as rectified linear unit (ReLU),
implementation of gradient clipping, intermediate normalization layers,
or careful weight initialization. Nevertheless, with the increasing net-
work depth, accuracy gets saturated and then degrades rapidly. This
problem was addressed with the introduction of shortcut connections
in residual networks (ResNets) [59].

The ResNet contains multiple stacked residual units. Generally, each
residual unit can be expressed with the following two formulations:

yl = H(xl) + F (xl,Wl), (3.11)

and
xl+1 = f(yl), (3.12)

where F is residual function, xl and xl+1 denote the input and output
of the l− th residual unit in the network, while the output of the l− th
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residual unit is denoted with yl. The parameters of the l − th residual
unit are denoted as Wl, while the function f refers to the ReLU.

The identity mapping, by which ResNets learn residual function F
in regard to H(xl), can be written as:

H(xl) = xl (3.13)

Therefore, the identity mapping of original residual block attaches
an identity skip connection allowing information flow within a residual
unit. Numerous ResNet variants have been produced dependent on
the amount of layers (starting with 34 layers and going up to 1202
layers). The most widely used form is ResNet50, which consists of 49
convolutional layers and one FC layer.

Nevertheless, when the depth of the network goes very deep, ResNets
become challenging to converge. These difficulties were addressed in
Pre-ResNets [60] by introducing forward and backward signals that
directly propagate from one block to any other using identity map-
pings after-addition activation and as the skip-connections. This ulti-
mately constructs a new residual block with the BN-ReLU-Conv order.
Zagoruyko [181] introduces level-wise shortcut connections to alleviate
the learning capability and significantly boost network performance.
Moreover, the deep network initialization problem and incompatibil-
ity between ReLU and element-wise summation were addressed in
weighted residual networks (WNR) [151]. Although deeper residual
networks showed performance improvement, diminishing feature reuse
slows down network training. This was addressed by increasing and
decreasing the width and depth, respectively, in improved WNRs [182].

Furthermore, another efficient way to alleviate network performance
is by reusing features. DenseNet [70] introduces connections between
all successive layers in a feed-forward manner where features from each
preceding layer are used as inputs to every other layer. This means that
each layer is receiving cumulative knowledge from all prior layers, i.e., it
reuses features. A variety of compelling benefits are obtained with the
introduction of direct connections between layers. First, it allows more
depth of the network while simultaneously alleviating the vanishing and
exploding gradient problems. Second, the use of features from all layers
leads to improvements in the performance. Finally, it efficiently utilizes
parameters. This allows for less propensity to overfitting and leads to
a reduction of computational costs. CondenseNet [69] combines dense
connectivity with a group convolution to further facilitate feature reuse
through the network. Here, the group convolutions aim at removing
direct connections between layers allowing distinctly smooth feature
reuse.

3.1.5 Autoencoders
Autoencoders (AEs) are a group of unsupervised learning algorithms
that produce a reconstruction of their input. Autoencoders are made
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up of two symmetric neural networks: an encoder and a decoder.
Let us assume that encoder is function f which maps input data x ∈

Rdx to a latent representation z ∈ Rdz . It then can be mathematically
expressed as:

z = f(x) = sf (W · x+ bz) (3.14)

where sf denotes an activation function, W ∈ Rdz×dx is a weight
matrix and bz ∈ Rdz is a bias vector.

The decoder is function g that reconstructs latent representations
back to input space. It can be mathematically expressed as follows:

x̂ = g(z) = sg(W ′z + bx) (3.15)

where sg is an activation function of decoder, W ′ ∈ Rdz×dx is a
weight matrix and bx ∈ Rdz is a bias vector.

The AE training procedure consist of finding the set of parameters
Θ = (W, bz, bx) which are minimizing a loss function given with:

L(x, g(f(x))) (3.16)

The goal of the reconstruction step is to minimize the difference
between x and x̂. This is also known as reconstruction loss. In order
to obtain this, the latent space must learn the most important feature
variations of the original data so that the reconstruction is sufficiently
similar to the original data. This is achieved by simultaneously training
both; the encoder and the decoder. An example of an AE network is
illustrated in Figure 3.14.

Figure 3.14: AE network illustration.

There are four types of autoencoders. Denoising autoencoders [168]
recover a clean image from a partially corrupted input. Here, besides
the identity function, the hidden layer learns robust features to ensure
the result is not another corrupted image. In sparse autoencoders [111]
hidden layers have greater dimensions than the input. They overcome
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the challenge of avoiding the network for learning the identity function
by permitting only a small number of hidden neurons to be active
concurrently. In contractive autoencoders (CAEs) [143], there is an
addition of a new term of their loss function. This addition ensures the
robustness of a model to slight variations of the input values. Finally,
variational autoencoders (VAEs) [89] are distinctive by the use of a
variational approach for latent space learning while having the same
architecture as autoencoders.

3.1.6 Variational Autoencoders
VAEs are a specific type of autoencoders that have probabilistic and
generative nature. This means that the input and the latent space are
supposed to be random variables with probability distributions. The
problem formulation can be seen from a graphical model perspective,
using graph theory to show the dependency between random variables.

Lets assume there is a dataset X = xi
N
i with a random variable x

and N samples. The relationship of random variable z and dataset X
can be mathematically expressed using the probabilistic graph model:

pθ(x, z) = pθ(x|z)p(z) (3.17)

Figure 3.15: Generative and inference process of VAE expressed
through a graphical model.

Using a generative probabilistic model, sampling a random variable
zi from a prior distribution p(z) results in generation of the latent
variables. Here, the data points xi are obtained from conditional
distribution over z, p(x|z. The prior and the likelihood are Gaussian
distributions, that can be written as:

p(z) = N(z|0, I) (3.18)

and

pθ(z|x) = N(x|f(z, θ)), σ2I) (3.19)

where f(x, θ) is a neural network and θ are the generative model
parameters of the network.
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Since the objective is to achieve a correct latent space z in regard
to the observed data, we need to calculate the posterior probability
p(z|x) which according to Bayes can be expressed as:

p(z|x) = p(x, z)p(z)
p(x) (3.20)

where marginal likelihood of pθ(x) is expressed with:

p(x) =
∫
pθ(x, z) =

∫
pθ(x|z)p(z)dz (3.21)

The Equation 3.21 requires all possible values of z, consequently
requiring exponential time to compute. This is solved by approximating
it with simpler distributions such as a Gaussian distribution, expressed
with:

qθ(z|x) = N(z|µ(x, ϕ), σ2(x, ϕ)I) (3.22)

Nevertheless, the total loss increases in this case and there is an
addition of latent loss into the reconstruction loss term. That latent
loss is calculated using the Kullback-Leibler divergence, which is further
explained.

Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence is a measure of difference or similarity
between two probability functions. KL divergence can be mathemati-
cally described with:

KL(p(x)||q(x)) = −
∑

q(x)log q(x)
p(x) (3.23)

There are two main properties of KL divergence. The first property
postulates when p = q then

KL(p||q) ≧ 0 (3.24)

The second property is that KL divergence is asymmetric, therefore:

KL(p||q) ̸= KL(q||p) (3.25)

In the case of second property, i.e., when KL divergence is asymmetric
it is calculated using the following expression:

KL(qθ(z|x)||p(qθ(z|x))) = Eqϕ(z|x)[logqϕ(z|x)]−Eϕ(z|x)[logp(z|x)]+logp(x)
(3.26)

The goal then is to minimize the KL divergence by finding the
optimal variational parameters. However, it can be noted that the
unknown p(x) appears in that divergence. In order to solve this
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problem, the posterior inference can be approximated by combining
this KL divergence with the Evidence Lower Bound (ELBO).

Evidence Lower Bound

If we factorize the marginal likelihood as in:

logp(X) = log
N∏
i=1

p(xi) =
N∑
i=1

log p(xi) (3.27)

then for each of the data points this likelihood can be mathematically
written as:

log pθ(xi) = log
∫
pθ(xi, z)dz

= log
∫ qθ(z|xi)pθ(xi, z)

qθ(z|xi)
dz

= log Eqψ(z|xi)

[
pθ(xi), z
qϕ(z|xi)

] (3.28)

Further, if we apply Jensen’s inequity, defined with:

ψ(E[x]) ≧ E[ψ(x)] (3.29)

then lower bound can be written as:

logEqψ(z|xi)

[
pθ(xi), z
qϕ(z|xi)

]
≧ Eqψ(z|xi)

[
log

pθ(xi), z
qϕ(z|xi)

]
(3.30)

Given that, ELBO can be written as:

ELBO(xi) = Eqψ(z|xi)[log pθ(xi|z) + log p(z) − log qθ(z|xi)] (3.31)

If we assimilate terms from previous Equation 4.7 with Equation
3.23, then for each data point ELBO can be written as:

ELBO(xi) = Eqψ(z|xi)[log pθ(xi|z) −KL(qθ(z|xi)||p(z))] (3.32)

Finally, the ELBO for the whole dataset can be written as:

ELBO(X) =
N∑
i=1

Eqψ(z|xi)[log pθ(xi|z) −KL(qθ(z|xi)||p(z))] (3.33)

Therefore, the model’s objective is to maximize the objective function
through stochastic gradient descent optimization. However, derivatives
of a distribution with respect to its parameters are not possible. To
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tackle with this problem, a reparametrization trick is introduced as
described in the following subsection.

Reparametrization Trick

Until now, we have achieved the samples z from distribution qθ(z, x). To
extract the derivates of a function of z with respect to ϕ, reparametriza-
tion of z is needed. In this way, the stochasticity is independent of
the parameters of the distribution. This is done by using an auxiliary
noise variable ϵ−N(0, 1), and we can write:

z = µ(x, ϕ) + σ(x, ϕ)ϵ (3.34)

By taking Monte Carlo estimates, the expectation would be:

ˆELBO =
N∑
i=1

[ 1
L

L∑
l=1

[log pθ(xi|zi,l)] −KL(qϕ(z|xi)||p(z))
]

(3.35)

where zi,l = µ(xi, ϕ) + σ(xi, ϕ)ϵi,l
As the two distributions in the KL-divergence term are Gaussian

distributions, it can be calculated as:

KL(qϕ(z, xi)||p(z)) = −1
2

K∑
k=1

(1 + log (σ2
k(xi, ϕ) −µ2

k(xi, ϕ) − σ2
k(xi, ϕ))

(3.36)
The Gaussian likelihood reconstruction term is:

log pθ(xi|zi,l) = − 1
2σ2 (xi − f(zi,l, θ))2 + const (3.37)

Finally, the estimation of the ELBO from a random data batch of
size B would be:

ELBO(X) = ˆELBO(XB) = N

B

B∑
i=1

ˆELBO(xi) (3.38)
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3.2 Deep Learning for Medical Image
Segmentation

The field of medical image processing is characterized by the use of
mathematical algorithms that process and analyze multidimensional
(2D, 3D, 4D) images to achieve recognition, segmentation, extraction,
3D reconstruction, or 3D visualization of various human organs [45,
12]. As the first step of medical image analysis, semantic segmentation
plays a key role by extracting regions of interest in medical images and
providing more intuitive medical information than raw images.

Semantic segmentation divides the image into several regions based
on the similarity or differences between regions [104]. Generally, it can
be described by a set theory model in the following manner. Given a
medical image I and a set of similarity constraints Ci(i = 1, 2, ...), the
segmentation of I is to obtain a division of it, namely:

N⋃
x=1

Rx = I, Rx

⋂
Ry = ∅,∀x ̸= y, x, y ∈ [1, N ] (3.39)

where Rx satisfies both sets of all pixels in communication similarity
constraint Ci(i = 1, 2, ...), i.e., the image areas. The same is true
for Ry.x, y which are used to distinguish the different regions, N is a
positive integer not less than 2, indicating the number of regions after
division.

Deep learning algorithms based on convolutional neural networks
(CNN) have shown excellent feature extraction capabilities when per-
forming image segmentation operations. They have been extensively
used in medical image segmentation [25]. The process of medical image
segmentation using CNNs can be divided into the following stages:

• Obtain medical imaging dataset, generally including training set,
validation set and testing set. The dataset is often divided into
three parts. Among them, the training set is used to train the
network model, the validation set is used to adjust the model’s
hyperparameters and the testing set is used to verify the final
efficiency of the model.

• Preprocess and expand the image, generally including standard-
ization of input image, perform appropriate data augmentation
techniques on the input image to increase the size of the data
set.

• Use the appropriate medical image segmentation method to
segment the medical image and output the segmented images.

• Performance evaluation. In order to verify the effectiveness of
medical image segmentation, effective performance indicators
need to be set to be verified.
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Before the advent of deep learning, traditional image processing tech-
niques such as model-based methods (e.g., active shape and appearance
models) or atlas-based methods had performed well in segmenting car-
diovascular and medical images [82]. However, they frequently require
significant feature engineering to achieve acceptable accuracy. In con-
trast, algorithms based on deep learning are able to automatically
discover complex data features for object detection and segmentation.
These features are extracted directly from the data using a general
learning procedure in an end-to-end manner. This makes it easy to ap-
ply deep learning-based algorithms to other image analysis applications.
Benefiting from advances in computer hardware, GPUs and tensor
processing units (TPUs) and the increasing availability of training data,
deep learning-based segmentation algorithms have gradually surpassed
the state-of-the-art of conventional methods and are gaining popularity
in research. Comprehensive review papers of cardiac segmentation
methods can be found in [25, 54]. However, since the methods in
this Thesis focus on deep learning, in the following subsections we
provide an overview of the main deep learning algorithms used for
segmentation of whole heart, left and right ventricles and abdominal
aortic aneurysms.

3.2.1 Whole Heart Segmentation Methods
Deep learning-based whole heart segmentation methods can be divided
into three groups: (1) two-stage segmentation methods consisting of lo-
calization and segmentation networks, (2) FCNs with deep supervision,
(3) multi-view CNNs and (4) residual network variants.

Two-stage Segmentation

Two-stage segmentation methods consist of localization and segmenta-
tion networks. These methods characterize the extraction of a region
of interest (ROI), which is then fed into a CNN for subsequent clas-
sification. In this two-step procedure, two CNNs are used. The first,
localization CNN, approximates the center of all cardiac structures’
bounding boxes. The predicted center is then cropped to create a
fixed-size ROI that includes all relevant cardiac substructures. The
second CNN segmentation algorithm predicts the label for each pixel.
The may advantage of such approaches is enabling the segmentation
network to concentrate only on anatomically significant regions and
has been demonstrated to be successful for whole heart segmentation.

The work of Payer et al. [18] introduces a framework consisting
of two separate CNN networks as shown in Figure 3.21. The first
CNN network localizes the approximate center of the heart using land-
mark localization [19, 122]. This network is trained to regress the
bounding box center around all heart structures using a U-Net-based
network with heatmap regression. Input images are downsampled to
a lower resolution due to memory restrictions and after cropping a
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fixed predicted bounding box, voxels are resampled to a higher reso-
lution. After that, three-stage segmentation CNN network inspired
by SpatialConfiguration-Net is employed [19]. Here, the intermediate
label predictions are generated in the first stage using a U-Net-like
architecture. A sigmoid activation function is utilized to constrain the
values between 0 and 1 for each output voxel, resulting in a voxel-wise
probability prediction of all labels. The network then converts these
probabilities to the placements of additional labels in the second stage,
allowing the network to learn possible anatomical label configurations
by suppressing infeasible intermediate predictions. In the third stage,
the combined label predictions are obtained by multiplying the in-
termediate predictions from the U-Net with the modified predictions.
The combination of localization and segmentation layers in the CNNs
minimizes memory and computation needs.

Figure 3.16: An illustration of an automatic multi-label segmentation
framework composed of two CNN networks. The first CNN finds the
center of the bounding box around all heart substructures. The second
CNN crops the area surrounding this center and performs multi-label
segmentation. Image source: Payer et al. [18]

In another two-stage framework, named CFUN, Xu et al. [179]
utilized a modified 3D Faster R-CNN [142] network for localization
named Region Proposal Network (RPN) and modified 3D U-Net for
segmentation. First, modified 3D Faster R-CNN allows detection of
one bounding box around heart structures. Originally proposed ResNet
structure in Faster R-CNN is replaced with P3D ResNet structure [136]
to better handle different information of images. After P3D ResNet,
feature pyramid network (FPN) [99] combines feature maps in different
resolutions. Second, 3D U-Net architecture with deep supervision in
the decoder path generated final segmentation predictions. Further, the
CFUN framework adopts a new loss function based on edge information
named 3D edge-loss that significantly accelerates the convergence of
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training and improves the segmentation results, which can be considered
the biggest strength of this method.

Figure 3.17: An illustration of CFUN framework. The localization 3D
Faster R-CNN network outputs ROI containing the whole heart and
the following modified 3D U-Net architecture provides fine segments
of all heart structures. Image source: Xu et al. [179]

Similarly, the framework proposed by Tong et al. [135] consists of
localization and segmentation networks. In the localization stage, they
use U-Net to detect whole heart ROI coarsely. Following that, they
augment the training set by extracting additional regions of interest
and fusing CT and MRI images to use full multimodality informa-
tion. In the segmentation stage, they employ 3D U-Net with deep
supervision for obtaining final heart segmentation predictions. This
method demonstrates how integrating a 3D U-Net with ROI detection
mitigates the effect of neighbouring tissues and simplifies the compu-
tational process. Nevertheless, this method yields poor segmentation
performance, especially for MRI images. Liu et al. [101] propose the
two-stage U-Net framework that consists of an ROI detection and fine
whole heart segmentation. The adaptive threshold window method is
utilized to minimize noise and the weight map is enhanced to compel
the network to learn the heart structure’s boundary sections. The
second network is fed with the equivalent ROI from the original data
in the first stage.

FCN with Deep Supervision

Deep supervision [84] is the design where multiple segmentation maps
are generated at different resolutions levels. The feature maps from
each network level are transposed by 1 × 1 × 1 convolutions to create
secondary segmentation maps. It has been established that a deep
supervision mechanism can effectively increase the convergence speed
of training by driving the early hidden layers to prioritize discriminative
characteristics for explicit predictions aggressively. Simultaneously,
it has been proved that a deep supervision mechanism substantially
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favors discriminative characteristics for explicit predictions in the early
hidden layers.

One example of using deep supervision is in the work of Yang et
al. [175]. They construct a framework based on a 3D FCN. The
framework is strengthened in the following aspects. First, the network
is initialized by inheriting the knowledge from 3D CNNs trained on the
large-scale Sports-1M video dataset. The gradient flow is then applied
by condensing the back-propagation and utilizing numerous auxiliary
loss functions on the network’s shallow levels. Direct training of the
deep 3D FCN overcomes the issue of over-fitting and low efficiency in
this manner. Taking into account the clear volume imbalance between
different classes, they employ a multi-class form of the dice similarity
coefficient-based loss function (mDSC) to balance the training for all
classes. The method’s primary strength is its use of a pre-trained
network, which ensures proper initialization and minimizes overfitting.
Utilizing auxiliary loss functions facilitates gradient flow and simplifies
the training procedure. The primary disadvantage of this method is
that hyperparameters are determined empirically and segmentation
performance on MRI pictures is low.

Figure 3.18: An illustration of segmentation framework with deep
supervision mechanism. Image source: Yang et al. [179]

Ye et al. [21] base their work on 3D deeply-supervised U-Net.
They extend the multi-branch residual network with muti-depth fusion.
Multi-depth fusion allows better feature aggregation and extraction of
the context information. After that, they apply focal loss that helps
capture more advanced features to provide more precise boundary
identification. In this way, the network application is extended for
multi-category segmentation. Similarly, Yu et al. [91] introduce Den-
seVoxNet, a novel densely connected volumetric CNN that utilizes 3D
FCN for accurate volume-to-volume prediction. The densely-connected
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mechanism maintains the maximum amount of information flow be-
tween layers, which simplifies the training process. Additionally, it
obviates the need to learn redundant feature maps that boost perfor-
mance. The superiority of their method is presented in using focal loss,
which successfully addresses the class imbalance issue.

Dou et al. [134] present another 3D FCN approach based on a
3D deep supervision mechanism (3D DSN). This network provides
volume-to-volume learning, which eliminates redundant computations
and mitigates the effects of overfitting on sparse training data. Addi-
tionally, it turns out that the 3D deep supervision mechanism efficiently
alleviates the usual optimization problem of vanishing gradients that
occurs during the training of 3D deep models. This enhances dis-
crimination capabilities and speeds up convergence. Additionally, the
fully connected conditional random field model is used to refine the
segmentation findings as a post-processing step. Their strategy con-
siderably enhances discrimination capabilities while also speeding up
convergence.

Figure 3.19: An illustration of segmentation framework with deep
supervision mechanism. Image source: Ye et al. [179]

Similarly, Li et al. [76] propose training with 3D FCN and the
addition of dilated convolution layers (3D- HOL layers) to increase
the receptive field and make better use of spatial information. The
introduction of deeply-supervised paths allows the use of multi-scale
information at multiple levels, which accelerates the training process.
The importance of the method stems from its capacity to finely segment
healthy cardiac structures and severely defective heart structures such
as those found in CHD. This is one of the few techniques that can
successfully segment diseased hearts.

Multi-view CNNs

Generally, multi-view learning (MVL) aims to learn the common fea-
ture spaces or shared patterns by combining multiple distinct features
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or data sources. Multi-view CNNs are frameworks that combine infor-
mation from different views into fully connected layers to classify the
voxel where different planes intersect.

Wang and Smedby [20] introduce a framework consisting of two
concatenated U-Net networks. The framework includes three stages:
scout segmentation with orthogonal 2D U-Nets, shape context esti-
mation and final segmentation with U-Net and shape context. In the
first stage, they adapt three independently trained U-Net networks for
segmenting heart structures in different orthogonal projections. The
final segmentation map is obtained by averaging the outputs of these
three U-Nets. In the second stage, the statistical shape model [97] is
created by taking the mean of the signed distance functions of each
segmented region and extracting prominent variations using Principal
Component Analysis (PCA). After estimating the shape models that
fit the probability map of the scout segmentation, in the third stage,
the distance maps of the heart structures are fed into another three
U-Net networks, similar to those used in the first stage. The final
segmentation map is obtained by averaging the outputs of these three
U-Nets. Combining shape context information with orthogonal U-Nets
obtains more consistent segmentation, which yields higher segmenta-
tion accuracy. Nevertheless, the biggest downside of this method is
the use of weighting factors of the shape context generation, which are
determined empirically.

Mortazi et al. [3] present another solution based on an encoder-
decoder CNN architecture: a multi-object multi-planar CNN (MO-MP-
CNN) method. First, multiple 2D CNNs are trained from three different
views, i.e., axial, sagittal and coronal views. Second, an adaptive
fusion method is employed to refine the delineation by combining
different results. Finally, connected component analysis (CCA) is
utilized to determine which regions are reliable and which are not.
The distinctions between these zones are utilized to determine the
segmentation process’s reliability (a higher difference corresponds to a
more reliable segmentation). The primary advantage of this approach
is that it requires less processing power, as numerous 2-D CNNs require
less memory than a 3-D CNN. However, the softmax function in the
network’s last layer may result in data loss due to class normalization.

Residual Networks Variants

Shi et al. [178] proposed a probabilistic deep voxelwise dilated residual
network named Bayesian VoxDRN that can predict voxelwise class
labels with a measure of model uncertainty. By utilizing the dropout
process, the model is able to learn weight distributions with a higher
degree of data explanation. This considerably reduces the likelihood
of over-fitting. Another enhancement is optimizing a binary segmenta-
tion using an iterative switching training technique. This method is
significant because it enables the optimization of binary segmentation
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Figure 3.20: The first two rows show axial, sagittal and coronal planes
of the CT (first three columns) and MR images (last three columns),
annotated cardiac structures and their corresponding surface renditions
(last two rows). Red arrows indicate unsuccessful segmentations. Image
source: Mortazi et al. [3]

using an iterative switching training strategy. The clinical utility of
the uncertainty measurements, on the other hand, is unknown.

Figure 3.21: An example of obtained results. (a) Red circles highlight
the major differences among various methods. (b) Visualization of
uncertainty achieved with a dropout-based Monte Carlo sampling, the
brighter the color, the higher the uncertainty. (c) The relationship
between the segmentation accuracy and the uncertainty threshold
where the shaded area shows standard errorsc. Image source: Shi et al.
[178]
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3.2.2 Bi-ventricles and myocardium segmentation
methods

Deep learning-based methods for the bi-ventricles and myocardium
segmentation task can be divided into four groups: (1) U-Net and its
variants, (2) U-Net with deep supervision, (3) U-Net with residual
connections and (4) U-Net with transformers.

U-Net Architecture

As discussed in subsection 3.1.3, U-Net and 3D U-Net have symmetrical
architecture, with an encoder extracting spatial information from the
image and a decoder creating the segmentation map using the encoded
features.

Few works use U-Net architecture to provide experimental analysis
observing the influence of different parameters for final segmentation
results. For example, Baumgartner et al. [12] investigate 2D U-Net
and 3D U-Net with various hyperparameters. They compare the
performance of 2D and 3D convolutional layers and training with Dice
loss versus training with cross-entropy loss. Their optimal architecture
was determined to be a U-Net with two-dimensional convolutional
layers trained with cross-entropy loss. Patravali et al. [127] evaluated
a 2D and 3D U-Net trained with varying Dice and cross-entropy losses.
According to their experiments, the optimal architecture was a two-
dimensional U-Net with a Dice loss. Jang et al. [78] implemented an
M-Net architecture [115] in which the decoding layers’ feature maps are
concatenated with those of the previous layer. A weighted cross-entropy
loss was used to train the matching network.

Luo et al. [108] propose a method based on U-Net and combined
with image sequence information. They introduce two modules: the
contextual extraction module and the segmentation module. The
context extraction module can fully extract the context features of the
image to be segmented and effectively combines the sequence features.
The segmentation module is an encoder-decoder module and input
image can directly predict a segmented image. The module effectively
learns the characteristics of the original image and avoids feature loss
and gradient dispersion by the design of the skip connection.

The work of Galea et al. [47] introduces a method that consists of
three parts: data preprocessing, ROI localization and segmentation
using U-Net and DeepLab architectures [27]. In the preprocessing
stage, the data is normalized using each particular slice’s mean value
and standard deviation. After that, preprocessed input images are
fed to the networks. Further, they explore if models would benefit by
focusing only on ROIs. They compare segmentation with and without
using ROI and as expected, they obtain higher accuracies when using
ROI. An illustration of their method is shown in Figure 3.22.
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Figure 3.22: An illustration of three-step method proposed by Galea
et al. Image source: Galea et al. [47]

U-Net with Deep Supervision

Khened et al. [86] implemented a dense U-Net. Their method starts
by finding the region of interest with a Fourier transform followed
by a Canny edge detector on the first harmonic image and compute
an approximate radius and center of the LV with a circular Hough
transform on the edge map previously generated. After that, they use
a U-Net with dense blocks instead of a basic convolution block to make
the system lighter. The first layer of this network also corresponds to
an inception layer.

Snauw et al. [158] combine DenseNet and U-Net in order to solve the
segmentation and classification tasks. They include three branches into
the network: main branch, segmentation branch and diagnosis branch.
The composite function for every operation in the model consists of
BN-ReLU operation. The network is trained using a loss function that
is a convex combination of segmentation and classification losses.

U-Net with Residual Connections

Isensee et al. [74] implemented an ensemble of 2D and 3D U-Net
architectures (with residual connections along with the upsampling
layers). Concerning the 3D network, due to the large interslice gap
on the input images, pooling and upscaling operations are carried out
only in the short-axis plane. Moreover, due to memory requirements,
the 3D network involves a smaller number of feature maps. Both
networks were trained with a Dice loss. Yang et al. [176] implemented
a 3D U-Net with residual connections instead of a commonly used
concatenation operator. They also used pre-trained weights for the
downsampling path using the C3D network known to work well on
video classification tasks [165]. Their network was trained with a
multi-class Dice loss.

The work of Sander et al. [147] combines automatic segmentation
and assessment of segmentation uncertainty. They train three networks:
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dilated CNN, dilated residual network (DRN) and U-Net for automatic
segmentation of LV, RV and Myo. Spatial uncertainty maps of the
obtained segmentations are generated to detect failures in segmentation
masks (to investigate uncertainty). They use two measures of predictive
uncertainty: entropy and a measure derived by Monte Carlo dropout
(MC-dropout)[46]. With simulated and manual correction of detected
segmentation failures, this combined approach increases performance
compared to an approach with only a segmentation. An illustration of
their network architecture is shown in Figure 3.23.

Figure 3.23: An illustration of the proposed two-step method. In the
first step, MR images are automatically segmented, while the second
step distinguishes acceptable mistakes from segmentation failures using
distance transform maps. Image source: Sander et al. [147]

U-Net with Transformers

Chen et al. [26] proposed architecture, TransUNet, that incorporates
Transformers [103], with inherent global self-attention mechanisms
into U-Net. As the input sequence for extracting global contexts, the
Transformer encodes tokenized image patches from a CNN feature
map. On the other hand, the decoder upsamples the encoded features
before combining them with the high-resolution CNN feature maps
to enable exact localization. Transformers overcome U-Net limited
localization ability due to insufficient low-level details. An illustration
of TransUnet is shown in Figure 3.24.

Cao et al. [22] propose U-Net based architecture named Swin-Unet.
They use hierarchical Swin Transformer [103] with shifted windows
as the encoder to extract context features and a symmetric Swin
Transformer-based decoder with patch expanding layer designed to
perform the up-sampling operation to re-store the spatial resolution of
the feature maps. Their architecture outperforms those methods with
full-convolution or the combination of transformer and convolution.
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Figure 3.24: An illustration of the framework. (a) Transformer layer,
(b)architecture of the proposed TransUNet. Image source: Chen et al.
[26]

Moreover, this is the first U-Net based architecture that leverage
the power of pure Transformer for medical image segmentation. An
illustration of Swin-Unet is shown in Figure 3.25.

3.2.3 Abdominal Aortic Aneurysm Segmentation
Methods

Traditionally, AAA segmentation has been addressed with intensity-
based semi-automatic methods (level-sets, active shape models, graph
cuts) combined with shape priors [44, 96, 5, 41, 156], deformable
models [37, 123]. Even if some of these algorithms provide reason-
ably good results, they require the optimization of many parameters
and are dataset-dependent, which reduces the robustness and the
reproducibility required in a real clinical setting.

Given that the annotated datasets of AAA have only recently
emerged, the development of specific methods based on deep learning
is gaining momentum. Deep learning-based methods for the AAA
segmentation task can be divided into two groups:(1) FCNs and (2)
various CNN variants.

FCNs

The work of Lopez-Linares et al. [100] introduces a framework that
includes adapted Detect Net for AAA region of interest (ROI) de-
tection. They introduce a segmentation network based on FCN and
holistically-nested edge detection for thrombus segmentation. They use
contract enhancement, resizing and ROI extraction to alleviate image
quality in a pre-processing stage. Such images are then fed as input
to the network. In the post-processing stage, they binarize obtained
predicted segmentation to remove an unnecessary small objects and
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Figure 3.25: The architecture of Swin-Unet, which is composed of
encoder, bottleneck, decoder and skip connections. Encoder, bottleneck
and decoder are all constructed based on swin transformer block. Image
source: Cao et al. [22]

obtain high segmentation accuracy. Zheng et al. [183] investigate the
impact of using an extremely small number of datasets for AAA seg-
mentation. They trained the U-Net network on just two CT datasets
while maintaining high accuracy using strong data augmentation. They
also use a linear mapping transformation to eliminate the inter-subject
variation of image contrast. An illustration of the framework is shown
in Figure 3.26.

Lu et al. [106] propose AAA segmentation with DeepAAA. Their
framework consists of two steps: aorta segmentation and aorta con-
tour fitting. In the first step, they develop a variant of a 3D U-Net
that accepts data with varying numbers of images. The second step
uses elliptical fitting to determine the greatest aortic diameter using
segmented aortic outlines. Because they developed a general AAA
detector that worked with both contrast and non-contrast CT scans,
they trained the model on both types of CT images. Thus, they achieve
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Figure 3.26: An illustration of a framework of 3D AAA reconstruction
with modified U-Net and strong data augmentation. Image source:
Zheng et al. [183]

a high detection rate for contrast and non-contrast CT scans on im-
ages with different resolutions and slice thicknesses. Their approach
shows high generalization ability and performance highly similar to
literature-reported values for radiologist sensitivity.

Wang et al. [20] propose a U-Net-like architecture that fuses the high-
level part of the MR and CT images, allowing successful multi-modal
segmentation. The main benefits of fusing higher-level feature layers
are as follows. The validation accuracy of the fusion model increases
faster than that of separate models during training, while maintaining
the same number of model parameters. While shared layers can learn
higher feature representations from both visual modalities, individual
models can only learn from one. The fusion models allow a shared
representation to be learned for all image modalities. That means that
the representations of infused layers are similar to CT and MR images
showing similar parts of the aorta. Such a network can be trained
end-to-end with non-registered CT and MR images using a shorter
training time. An illustration of framework is shown in Figure 3.27.

CNN variants

Hong et al. [65] use a deep belief network (DBN) for AAA ROI
detection, segmentation, classification and measurement of AAA. ROI
detection step uses two DBNs. The first DBN detects large aneurysm
patches, while the second detects small ones, bones, organs and air.
Another separate DBN is trained with patches containing an aneurysm
for segmentation purposes. The use of DBN has shown efficient in
solving this task as DBN allows a significant reduction in training
complexity while leveraging high segmentation accuracy.
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Figure 3.27: An illustration of fusion model for CT and MR image
modalities. The top layers in an encoder and decoder are fused from
two separate streams into one stream. Image source: Wang et al. [20]

Fantazzini et al. [42] propose framework that consist of three stages.
First, a 2D U-Net is trained on down-sampled axial slices to localize
and extract an initial aortic mask from CTA data. The extraction of
an ROI serves to reduce the amount of required memory. After that,
2D U-Nets trained on different planes are used to process the identified
ROI. These planes are acquired by extracting 2D slices along the axial,
sagittal and coronal axes of the CTA scan at a higher resolution. The
three-plane U-Net predictions are then concatenated to produce a
spatially coherent final segmentation, overcoming the constraints of
single-plane CNNs.

Jiang et al. [79] propose method to cope with the limited medical
follow-up dataset of AAAs. Their method uses a vascular growth and
remodeling computational model. It is able to capture the variations
of actual patient’s AAA geometries and is used to generate a limited
in silico dataset. After that, the probabilistic collocation method
reproduces a large in silico dataset by approximating simulation outputs.
A DBN is then trained to provide fast predictions of patient-specific
AAA expansion, using both in silico data and patients’ follow-up data.

Caradu [23] presents open-sourced software PRAEVAorta with dedi-
cated deep learning-based algorithms for fully automatic segmentation
of AAAs. This software automatically detects AAAs morphology
(including an inner lumen and the thrombus, which might easily be
put into clinical practice. They facilitate image segmentation and
analysis by enabling investigators to more quickly discover aneurysms,
define their anatomic properties (including the presence of intralumi-
nal thrombus) and calculate the aneurysm’s diameters, lengths and
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volumes automatically. It presents the advantage of reducing seg-
mentation time and user interaction. Nevertheless, their analysis was
limited to strict infra-renal AAAs since the precise characterization of
patients with complex aneurysms, including the para-renal and visceral
segments, still requires future validation.

3.2.4 Common Evaluation Metrics
Comparing images to assess the accuracy of segmentation is critical for
evaluating progress in this field of research. The following four metrics
are most commonly used to evaluate segmentation performance: the
Dice similarity coefficient (DSC), Jaccard Index (JI), surface distance
(SD) and Hausdorff distance (HD). DSC and JI measure the level of
overlap between the ground truth and predicted segmentations, while
SD and HD examine boundary distances. The DSC metric measures the
degree of overlap between the ground truth and predicted segmentation.
It is a commonly used metric for evaluating segmentation quality and
can be written as:

DSC(G,P ) = 2|G ∩ P |
|G| + |P |

(3.40)

where G is the ground truth and P is the predicted mask.
Similarly, the Jaccard Index (JI) emphasizes the size of the inter-

section divided by the size of the union of the sample sets. The
mathematical representation of the JI can be written as:

JI(G,P ) = |G ∩ P |
|G ∪ P |

(3.41)

where G is the ground truth and P is the predicted mask.
SD measures an average of the minimum voxel-wise distance between

the ground truth and predicted object boundaries and can be written
as:

SD(G,P ) = 1
nG + nP

 ∑
xP ∈P

d̄(xP , G) + d̄(xG, P )

 (3.42)

where nG and nP denote the number of voxels on the object bound-
aries in the ground truth and predicted segmentations, respectively.

Furthermore, HD represents the maximum of the minimum voxel-
wise distances between the ground truth and predicted object bound-
aries and can be written as:

HD(G,P ) = max
g∈G

 min
p∈P


√
g2 − p2


 (3.43)

where g is the ground truth and p is the predicted mask.
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3.3 Challenges and Limitations
As reviewed in previous sections, various approaches and methods are
introduced for the task of cardiovascular structures segmentation. Here
we highlight common challenges and limitations of previously proposed
methods.

While huge collections of general-purpose images are easily available
and accessible to researchers, collecting and utilizing medical images is
a considerable hurdle to developing new deep learning-based systems.
Although every hospital has image archiving and transmission systems
that regularly store millions of images, medical image databases are
typically small and confidential for research purposes. There are two
reasons why this massive amount of stored data cannot be directly
used for medical image analysis:

• Ethical, privacy, security and legal issues. The transmission,
storage and use of medical data are subject to specific regulations.
Informed consent of the patient is usually required for the use of
an image in a study, as well as data anonymization methods to
protect the patient’s privacy.

• Insufficient expert annotations for the images. Training an al-
gorithm to segment medical images usually requires labelling
each pixel in the image according to its class, i.e., object or back-
ground, which is often time consuming and subject to observer
error. As a result, the number of publicly available annotated
datasets is limited.

Efficient learning from limited annotated data is an important area of
research. In developing deep learning-based segmentation approaches,
the following strategies are usually used to increase the size of the
dataset:

• Data augmentation is the technique of extending a dataset by
generating new images, either through simple operations such
as translations and rotations, or with advanced techniques such
as principal component analysis [144], histogram matching, or
elastic deformations [62, 118].

• Data augmentation using synthetic image creation methods to
augment the database, for example, alleviate existing dataset
using GANs [152, 154].

• To train the network with more data, many applications convert
3D medical volumes into stacks of independent 2D images instead
of using the full-size images [34, 100]. However, the obvious
drawback is that the anatomical context in orthogonal directions
to the slice plane is completely ignored. To increase the amount
of data, partial volumes or image patches are often extracted
from the images.
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3.4 Conclusion
Segmentation of medical images is a crucial step in extracting mean-
ingful information from body structures. It allows complex analysis
of segmented regions and extraction of quantitative information that
could be useful in the development of computer-aided diagnosis sys-
tems. Deep learning techniques have increased the accuracy of complex
segmentation tasks that could not be solved using conventional image
processing algorithms. However, in order for deep learning systems to
be used in clinical practice, several challenges inherent to the field of
medical imaging must be overcomed. These mainly relate to the gen-
eralization of segmentation approaches, which require large amounts
of annotated medical image data obtained with different protocols
in different environments, covering most anatomical and pathological
variations in patients. As a result, researchers use intelligent data
augmentation techniques and specially designed loss functions to com-
pensate for the lack of data and annotations. According to literature,
the most commonly used supervised deep learning segmentation net-
works in medical imaging are variants of encoder-decoder architectures.
Developing new building blocks to improve the efficiency and accuracy
of these networks is a current research topic.
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Whole Heart and Heart
Chambers Segmentation

This chapter presents a new, fully automatic approach for robust and
accurate whole heart and heart chambers segmentation. We present
a novel connectivity structure of residual unit, which we refer to
as a feature merge residual unit (FM-Pre-ResNet). The proposed
connectivity allows the creation of distinctly deep models without an
increase in the number of parameters compared to the pre-activation
residual units. Following that, we present a novel 3D encoder-decoder-
based architecture that successfully integrates FM-Pre-ResNet units
with VAEs. FM-Pre-ResNet units are used to learn a low-dimensional
representation of the input during the encoding stage. The VAE
reconstructs the input image from the low-dimensional latent space,
ensuring that all model weights are strongly regularized while avoiding
overfitting on the training data. Finally, during the decoding stage,
the final segmentations are created. The proposed method is evaluated
on the 40 test subjects of the MICCAI Multi-Modality Whole Heart
Segmentation (MM-WHS) Challenge. Our method achieves an average
DSC, JI, SD and HD for WHS of 90.39%,82.24%, 1.1093 and 15.3621
on CT images and 89.50%, 80.44%, 1.8599, 25.6558 on MRI images,
respectively.

The outline of the chapter is structured as follows. Section 4.1
gives the main objectives of conducted research. Section 4.2 gives a
theoretical background of used methods and describes our proposed
method for whole heart and heart chambers segmentation. Section 4.3
describes the experimental setup, gives network training details and
presents obtained results. Finally, discussion and concluding remarks
are provided in Section 4.5.
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4.1 Objectives
This research aims to develop an efficient method for fully automatic
segmentation of heart structures in CT and MRI images. Deep neural
network architectures provide more abstract learning, resulting in bet-
ter performance and higher accuracy in cardiovascular segmentation
tasks. For example, in 3D U-Net architecture features from contracting
and expanding pathways are concatenated with skip connections to
retrieve lost image information that occurs during the down-sampling
process. Intuitively, this indicates that part of the information is lost
during the encoding process and can not be recovered when decoding.
Variational autoencoders enable regularization during the training to
ensure that the latent space, i.e., encoded space, keeps the maximum
of information when encoding, which results in the minimum recon-
struction error during the decoding. Furthermore, since the number
of features in the contracting pathway is significantly lower than the
number in the expanding pathway, direct concatenation of these fea-
tures may not produce the most optimal results. The increment in
the number of layers provides larger parameter space enabling learning
of more abstract features. Nevertheless, with the increasing depth,
information about the gradient passes through many layers and it can
vanish or accumulate large errors by the time it reaches the end of the
network resulting in saturated accuracy that degrades rapidly. Since
some features are best constructed in shallow networks and others re-
quire more depth, the introduction of skip connections allows residual
learning and increases the network’s capability, flexibility and perfor-
mance. Nevertheless, even residual learning networks with extremely
large depth are challenging to converge.

Therefore, the objectives of this research can be summarized as
below:

1. To develop a novel residual unit connectivity structure (FM-Pre-
ResNet) that enables the construction of a deeper models with a
less or equal number of parameters to the original pre-activation
residual unit.

2. To propose a novel 3D encoder-decoder based architecture that
efficiently incorporates FM-Pre-ResNet units and is additionally
guided with variational autoencoders (VAE) for the task of whole
heart segmentation.

3. To compare the performance and result obtained from the pro-
posed method with existing methods.

Hereby, we present a novel 3D encoder-decoder-based architecture
with variational autoencoder regularization. Our intention is to achieve
high optimization in training performance, efficiency and final segmen-
tation result accuracy for the whole heart segmentation task.
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4.2 Methodology
This section presents the proposed segmentation method for whole
heart and heart chambers segmentation from CT and MRI images.
We present a theoretical background of the proposed FM-PreResNet
units and VAEs. We give an overall design of the proposed encoder-
decoder-based architecture with VAE and introduce its main building
blocks and purpose. We give dataset description, implementation
details, present conducted experiments and obtained results. Finally,
we provide some concluding remarks.

4.2.1 Feature Merge Residual Units
As discussed in Section 3.1.4, residual learning reformulates the layers
as learning residual functions with reference to the layer inputs instead
of learning unreferenced functions. Generally, each residual unit can
be expressed with the following two expressions:

yl = H(xl) + F (xl,Wl), (4.1)

and
xl+1 = f(yl), (4.2)

where F is residual function, xl and xl+1 are vectors that denote
the input and output of the l − th residual unit in the network, while
the output of the l − th residual unit is denoted with vector yl. The
parameters of the l − th residual unit are denoted as Wl, while the
function f refers to the rectified linear unit (ReLU).

Multiple stacked residual units form ResNets. The identity mapping,
by which ResNets learn residual function F in regard to H(xl), can
be written as:

H(xl) = xl (4.3)

Therefore, the identity mapping of the original residual unit attaches an
identity skip connection allowing information flow within a residual unit
as shown in Figure 4.1a. As introduced in Pre-ResNets (Figure 4.1b),
if H(xl) and f are both an identity mapping, the direct propagation
of information through the entire network in forward and backward
fashion can be written as:

xl+1 = H(xl + F (xl,Wl)) (4.4)

To obtain more features from an original image and to improve the
networks’ capacity, we try to merge the feature from a previous layer
in the residual signal branch and add the residual blocks of earlier
groups based on the original Pre-ResNet. As shown in (Figure 4.1b),
the original Pre-ResNet consist of two parts: the identity mapping
and the residual signal branch. We separately add a weight layer
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(convolution) at the top and bottom of the original residual signal.
The output of the top weight layer is concatenated with the output
of the residual signal. In this way, it merges the feature from the
previous layer into a subsequent one. After that, the concatenated
result passes through another weight (convolution) layer to reduce
the feature map dimension as illustrated in (Figure 4.1c). Therefore,
following the concept described in Equation (4.4), we propose a new
residual structure named feature merge residual unit that can be
written as follows:

Z(xl) = F (z(xl),Wl) ◦ z(xl)) (4.5)

and
xl+1 = H(xl + g′(Z(xl),W ′

l ) (4.6)

where ◦ presents the concatenation operation, Z(xl) denotes the
concatenated result, while the functions z and g′ denote the convo-
lution layers, added at the top and at the bottom of the residual
unit, respectively. In this manner, the top convolution layers’ output
is concatenated with the residual signals’ output, which allows the
merge of features from preceding layers. After that, the concatenated
result is passed through a bottom convolution layer to reduce channel
dimension, as shown in Figure 4.1c.

Figure 4.1: An illustration of different connectivity types of residual
units. (a) Original residual unit. (b) Pre-ResNet unit. (c) Proposed
FM-Pre-ResNet unit.
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4.2.2 Variational Autoencoder
As discussed in Section 3.1.6, VAEs are able to capture latent repre-
sentations, which makes them ideal for use in generative settings [89,
124]. Since VAEs optimization objective ELBO can be written as:

LV AE(i, î) = LREC(i, î) + K,L[qΛ(r|i)||p(r)] (4.7)

where the term LREC(i, î) denotes reconstruction loss and can be
further written as:

LREC(i, î) = −Eqr|i[log(p∆(i|r))] (4.8)

where î denotes the reconstructed input.
The term K,L[qΛ(r|i)||p(r)] from Equation (4.7) defines the KL

divergence of the approximating variational density, which can be
expressed as:

qΛ(r|i) = N (r;µΛ, σ
2
Λ) (4.9)

The standard prior on the latent variable can be written as:

p(r) = N (r; 0.1) (4.10)

where the aligned Gaussian (µΛ, σ
2
Λ) is expressed by the encoder network

VΛ(·).
Following this, the low dimensional representations of the input

data i can be obtained by introducing the latent random variable
r. The input images are mapped to a low dimensional space using
VAE encoder VΛ(·). After that, the output of the encoder of the
segmentation network, EΩ(·), takes samples from the latent space as
shown in Figure 4.2. In this manner, segmentation encoder and VAE
jointly share the decoder D∆(·), which can be also written as:

L(o, ô) = LREC(o, ŝ) + KL[qΛ(r|i)||p(r)] (4.11)

The final segmentation, ô, is obtained from the decoder using following
expression:

ô = D∆[EΩ(i) ◦ VΛ(i)] (4.12)

which can be written as:

ô = D∆[h ◦ r] (4.13)

where ◦ denotes concatenation, H = EΩ(i) is the output of the seg-
mentation encoder and r ∼ qΛ(r|i) is a sample from the latent space
that is learnt by VAE.
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Loss Function

The loss function plays an important role in improving the models’
performance. In this work, we employ total loss function that is the
addition of soft dice loss, L2 loss and standard VAE penalty term [125]
and can be written as:

L = Ldice + 0.1 · LL2 + 0.1 · LKL (4.14)

The term that represents the soft dice loss, Ldice [117], can be written
as:

Ldice = 2 · ∑
Pgt · Ppred∑

p2
gt + ∑

p2
pred + ϵ

(4.15)

where ϵ denotes a small constant used for computational stability, i.e., to
avoid
zero division.

The loss L2 represents loss on the VAE encoder output and can be
written as:

LL2 = ||Iinput − Ipred||22 (4.16)

The standard VAE penalty term, LKL, represents KL divergence
between a prior distribution N(0, 1) and the estimated normal distri-
bution N(µ, σ2), which can be written as:

LKL = 1
N

∑
µ2 + σ2 − log σ2 − 1 (4.17)

where N represents the entire set of image voxels. Finally, the hyper-
parameter weight of 0.1 is empirically found to provide a good balance
between VAE loss term and soft dice loss in Equation (4.14).

4.2.3 Architecture Overview
An image segmentation task can be written as mapping:

g(·) : I → O (4.18)

where i ∈ I denote input images, while o ∈ O denote their correspond-
ing segmentations. For an encoder-decoder based architecture, the
same mapping function can be written as:

g(·) = EΩ(D∆(·)) (4.19)

where EΩ, D∆ are an encoder and the decoder networks parametrized
by Ω and ∆, respectively. Introduction of shared VAE, expressed with
VΛ(·), at the encoders’ endpoint allows mapping of input images to
a lower-dimensional latent, i.e., encoded, space. The output of an
encoder EΩ contains the samples from the latent space.
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Therefore, our proposed architecture consists of three main stages:
(1) encoding stage, (2) reconstruction of the input with variational au-
toencoder and (3) decoding stage. An encoding stage incorporates fea-
ture merge residual units by which the network learns a low-dimensional
representation of the input. The variational autoencoder reconstructs
the input image from low-dimensional latent space to regularize all
model weights and adds additional guidance to the encoding stage.
Finally, in the decoding stage, the network learns high-level features
and creates the final segmentations. The decoder consists of FM-
Pre-ResNet units. Every FM-Pre-ResNet unit in decoder doubles the
spatial dimension while reduces the feature numbers by a factor of 2.
Each decoder level is concatenated with the corresponding encoder
output. The final layer of the decoder provides whole heart segmen-
tation and has the same number of features and spatial size as the
original input image. An illustration of the proposed architecture is
shown in Figure 4.2.

Figure 4.2: An illustration of proposed network architecture for the
3D whole heart segmentation. Input is a volumetric CT or MRI image.
Each red block is the FM-Pre-ResNet block. The VAE branch is added
at encoders’ output and is used only during training. The decoder stage
creates the final whole heart segmentation. Image source: Habijan et
al. [56]

4.3 Implementation Details
In this section, we give a dataset description on which we conducted
our experiments. After that, we give details about network training
and implementation. We train four different networks to provide a
successful ablation study: Pre-ResNet, Pre-ResNet with VAE, FM-
Pre-ResNet and FM-Pre-ResNet with VAE. We evaluate the proposed
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method using Multi-Modality Whole Heart Segmentation Challenge
(MM-WHS) dataset and presently conducted experiments and results.
Finally, we compare our results to the state-of-the-art research and
provide concluding remarks.

4.3.1 Dataset Description
In this work, we use 3D CT and 3D MRI datasets provided by Multi-
Modality Whole Heart Segmentation (MMWHS) Challenge organized
by Zhuang, Yang and Li in conjunction with STACOM and MICCAI
2017 [160]. The CT data were acquired from 64-slice CT scanners
using CT angiography at two different states. The in-plane resolution
of the axial slices is (0.78 × 0.78) mm and the average slice thickness
is 1.60 mm. The MRI data is acquired using a 1.5T Philips scanner
and Siemens Magnetom Avanto 1.5T scanner. Whole heart imaging is
done using 3D balanced steady-state free precession (b-SSFP) sequence
and realized free-breathing scans by enabling a navigator beam before
data acquisition for each cardiac phase. All the data were collected
from clinical environments, so the image quality was variable. This
enables an assessment of the validation and robustness of the developed
algorithms with representative clinical data rather than selected best
quality images.

The dataset includes 60 CT and 60 MRI whole heart images, where
20 volumes of each modality have corresponding delineations of seven
heart structures performed by clinicians or by students majoring in
biomedical engineering or medical physicists using the semi-automatic
ITK-SNAP software [177]. Each manual segmentation result was
examined by senior researchers specialized in cardiac imaging with
experience of more than five years and modifications have been taken if
a revision was necessary. These seven structures include the following:
LV, RV, LA, RA, the myocardium of the LV (Myo), the trunk from the
aortic valve to the superior level of the atria (Ao) and the trunk from
the pulmonary valve to the bifurcation point (PA). The remaining 40
volumetric images are used for testing purposes. Ground truths of the
testing dataset are provided in encrypted form and can be decoded
to evaluate algorithms using the procedure described in [160]. An
example of input images in different views with corresponding manual
segmentation is shown in Figure 4.3.

4.3.2 Data Preprocessing and Augmentation
To alleviate the irregularities of variable contrast in some MRI images,
we normalize all input images (both CT and MRI) to have zero mean
and unit std. The volumes were cropped and zero-padded to a fixed
size of 176×224×144 to provide a fine ROI for the network input while
making sure all heart structures are inside the selected ROI. We apply
three different data augmentation methods to increase the sample
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Figure 4.3: An example of one slice with corresponding ground truth
from 3D volume across axial, coronal and sagittal planes. The ground
truths include seven heart structures: LV (red), RV (magenta), LA
(blue), RA (green), Myo (yellow), Ao (orange) and PA (cyan). Image
source: Habijan et al. [56]

size of training data and enhance the robustness and generalization
ability, namely random axis mirror flip, random scaling and intensity
shift. Random axis mirror flip creates a mirror reflection of an original
image along one (or more) selected axis and is commonly flipped at
a rate of 50%. Random scaling operation S scales input image and
performs independently in different directions. Intensity shift performs
an element-wise addition of a scalar to the image and affects the
brightness of the original image. Details about parameters of used data
augmentation methods are presented in Table 4.1, while examples of
input images after applying different data augmentation methods are
shown in Figure 4.4. Moreover, we empirically found that advanced
augmentation techniques, such as random histogram matching, or
random image filtering, do not show any additional improvements to
the final segmentation result.

Table 4.1: Data augmentation parameters.

Method Parameters

Random flip along all axis with probability 0.5
Random scale S ∈ [0.9, 1.1]
Intensity shift between [−0.1, 0.1]

4.3.3 Network Implementation and Training
In our experiments, we train four encoder-decoder based architectures:
(1) 3D Pre-ResNet without VAE regularization, (2) 3D Pre-ResNet with
VAE regularization, (3) FM-Pre-ResNet without VAE regularization
and (4) FM-Pre-ResNet with VAE regularization. All four networks
are trained from scratch and separately for CT and MRI images. The
whole experimental procedure is implemented in Pytorch and trained
on two NVIDIA Titan V100 GPUs, simultaneously. Our training and
validation dataset consists of 20 CT volumes and 20 MRI volumes,
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Figure 4.4: An example of different augmentation methods. Top row,
from left to right on: input CT image, image after axis flip, image
after scale, image after intensity shift. Bottom row, from left to right
on: input MRI image, image after axis flip, image after scale, image
after intensity shift.

with 80% − 20% training and validation split, respectively. We use
adaptive learning rate optimizer Adam with an initial learning rate of
α0 = 10−4 and gradually decrease it according to following expression:

α = α0 ∗

1 − c

Tc

0.9

(4.20)

where Tc is a total number of epochs (200 in our case) and c is an
epoch counter.

Furthermore, to ensure our models generalizes well on unseen data,
i.e. to reduce the effect of overfitting or underfitting, we employ L2
norm regularization with a weight of 10−5 and the spatial dropout
with a rate of 0.2 after the initial encoder convolution. Since early
stopping aims at finding the network parameters at the point of the
lowest validation loss we implement early stopping with patience set
to 50. All trained networks are evaluated using a testing dataset that
includes 40 subjects for both CT and MRI images [161].

Moreover, the network is trained for 200 epochs since further training
appears not to decrease validation loss as shown in Figure 4.5 and Figure
4.6. Moreover, Figure 4.5 and Figure 4.6 indicate decrease in loss value
when number of epochs increases. This is a clear indication that the
network is successfully learning from the input data. We can also see
significant improvement regarding training and validation accuracies
of networks with VAEs, which confirms our initial assumption that
VAE successfully provides regulation during training.

Furthermore, Pre-ResNet has demonstrated that increasing the
depth of the network improves model performance significantly. The
addition of two convolutional layers at the top and bottom of the
pre-activation residual block introduced in our FM-Pre-ResNet unit
allows for the feature fusion block to reach the same depth with fewer
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Figure 4.5: Training and validation accuracies on CT dataset. (a)
3D Pre-ResNet network architecture, (b) 3D FM-Pre-ResNet network
architecture, (c) 3D Pre-ResNet + VAE network architecture, (d) 3D
FM-Pre-ResNet + VAE network architecture.

parameters which benefits model performance. Therefore, the proposed
type of connectivity of the FM-Pre-ResNet unit in terms of depth and
number of parameters regarding Pre-ResNet implies no increase in the
number of parameters compared to the Pre-ResNet. Time-wise, each
training epoch (200 cases) and prediction times on two GPU-s (NVIDIA
Titan V) are significantly reduced with architectures with VAE. This
shows the computational efficiency of our choice for VAE introduction.
Comparison of depth, number of parameters, training times per epoch
and prediction time of one volume for different architectures is shown
in Table 4.2.
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Figure 4.6: Training and validation accuracies and losses on MRI
dataset. (a) 3D Pre-ResNet network architecture, (b) 3D FM-Pre-
ResNet network architecture, (c) 3D Pre-ResNet + VAE network
architecture, (d) 3D FM-Pre-ResNet + VAE network architecture.

Table 4.2: Comparison of depth, number of parameters (×106), training
times per epoch (min) and prediction time (sec) for one volume for
different architectures: Pre-ResNet, 3D Pre-ResNet + VAE, FM-Pre-
ResNet and FM-Pre-ResNet + VAE.

Architecture Depth Number of Parameters Training Time Prediction Time

3D Pre-ResNet 110 23.48 10 0.7
3D Pre-ResNet + VAE 110 26.18 8 0.6

3D FM-Pre-ResNet 218 22.54 9 0.5
3D FM-Pre-ResNet + VAE 218 25.14 7 0.4
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4.4 Experiments and Results
To demonstrate the effectiveness of the proposed approach and our
design choice for the new FM-ResNet unit, we train encoder-decoder-
based architecture using 3D Pre-ResNet without and with VAE regu-
larization and the proposed method FM-Pre-ResNet without and with
VAE regularization. To evaluate the proposed methodology perfor-
mance, we compare ground truth masks with obtained segmentations
for each CT and MRI volume. We used commonly used four metrics to
evaluate segmentation accuracy, namely, DSC, JI, SD and HD, which
are discussed in subsection 3.2.4. For ease of understanding, it is
helpful to mention that DSC and JI should be high as possible, while
SD and HD should be as low as possible. Table 4.3 summarizes an
average whole heart segmentation results on CT and MRI images.

On CT images, the 3D Pre-ResNet network achieves average WHS
segmentation results for DSC, JI, SD and HD of 87.11%, 80.16%, 1.71
mm and 24.44 mm, respectively. The addition of VAE at Pre-ResNet
segmentation encoders’ endpoint improve DSC, JI, SD and HD val-
ues for 2.12%, 1.0%, 0.2039 mm and 2.704 mm, respectively. The
3D FM-Pre-ResNet network achieves DSC, JI, SD and HD values of
90.03%, 82.14%, 1.43 mm and 18.82 mm, respectively. Compared to
3D Pre-ResNet, it achieves improvement in DSC, JI, SD and HD values
of 2.92%, 1.98%, 0.2789 mm and 5, 6307 mm, which means that the
proposed FM-PreResNet unit significantly improves segmentation accu-
racy. Moreover, the highest DSC, JI, SD and HD are achieved using 3D
FM-Pre-ResNet + VAE network and report values of 90.39%, 82.24%,
1.1093 mm and 15.3621 mm, respectively. Similarly, on MRI images,
the 3D Pre-ResNet network achieves average WHS segmentation results
for DSC, JI, SD and HD of 83.06%, 75.54%, 5.9201 mm and 42.5578
mm, respectively. The addition of VAE at Pre-ResNet segmentation
encoders’ endpoint improve DSC, JI,SD and HD values for 2.28%,
0.09%, 2.15 mm 3.6766 mm. The 3D FM-Pre-ResNet network achieves
average DSC, JI, SD and HD values of 88.40%, 78.55%, 2.4558 mm and
32.0451 mm, respectively. Compared to 3D Pre-ResNet, it achieves
improvement in DSC, JI, SD and HD values of 5.34%, 3.01%, 3.4643
mm and 10.5127 mm, which means that the proposed FM-PreResNet
unit significantly improves segmentation accuracy.

Moreover, the highest DSC, JI, SD and HD are achieved using 3D
FM-Pre-ResNet + VAE network and report values of 89.50%, 80.44%,
1.8599 mm and 25.6558 mm, respectively. These results highlight the
improvement in segmentation accuracy afforded by the introduction of
FM-Pre-ResNet units and VAE. Boxplots showing the distribution of
the DSC for WH, LV, Myo, LA, RA, RV, AO and PA using different
segmentation networks on MMWHS CT and MRI testing datasets
are presented in Fig 4.7 and Fig 4.8, respectively. Boxplots illustrate
interquartile range (bounds of box), mean (X inside a box), median
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Table 4.3: Comparison of an average WHS results in terms of DSC, JI,
SD and HD on different architectures for CT and MRI testing dataset

CT MRI
Architecture DSC JI SD HD DSC JI SD HD

3D Pre-ResNet
0.8711 0.8016 1.7110 24.4421 0.8306 0.7554 5.9201 42.5578
±0.0721 ±0.0609 ±0.4991 ±17.8355 ±0.9254 ±0.0581 ±0.4421 ±21.6645

3D Pre-ResNet + VAE
0.8923 0.8116 1.5071 21.7381 0.8534 0.7545 3.7701 38.8812
±0.0209 ±0.0358 ±1.407 ±16.8850 ±0.0441 ±0.0583 ±0.9100 ±23.5812

3D FM-Pre-ResNet
0.9003 0.8214 1.4321 18.8114 0.8840 0.7855 2.4558 32.0451
±0.0148 ±0.0271 ±0.0518 ±12.4032 ±0.0701 ±0.0455 ±0.7956 ±17.5508

3D FM-Pre-ResNet + VAE
0.9039 0.8224 1.1093 1.1093 0.8950 0.8044 1.8599 25.6558
±0.0517 ±0.0571 ±0.0215 ±12.3737 ±0.0215 ±0.0757 ±0.6740 ±16.4001

(centerline), maximum and minimum values (whiskers) and outliers
(circles outside whiskers).

Figure 4.7: Boxplots showing the DSC dispersion for WH, LV, Myo,
LA, RA, RV, AO and PA using different segmentation networks on
the MMWHS CT testing dataset.

The p-values have been calculated using a Wilcoxon rank-sum test to
show the significant difference of used architectures. Bonferroni correc-
tion was used for controlling the family-wise error rate. Figures 4.9 and
4.10 show the comparisons of p-values for CT and MRI testing datasets,
respectively. The visual inspection of the obtained segmentations using
each network investigated in this work are presented in Figure 4.11 for
the CT dataset and Figure 4.12 for the MRI dataset.

For example, Figure 4.12(d) shows clear improvements regarding
LV segmentation that is obtained using FM-Pre-ResNet compared to
missed segmentation of LV parts while using Pre-ResNet without pro-
posed feature merge residual unit as shown in Figure 4.12(b). Moreover,
Figure 4.12(f) shows a significant reduction in segmentation error than
all other presented networks. These further highlights the benefits of
the proposed FM-Pre-ResNet + VAE approach. Nonetheless, in both
modalities, PA and Myo’s segmentation results are significantly lower
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Figure 4.8: Boxplots showing the DSC dispersion for WH, LV, Myo,
LA, RA, RV, AO and PA using different segmentation networks on
the MMWHS MRI testing dataset.

than other substructures due to high shape variations and heteroge-
neous intensity of blood fluctuations. Figure 6.7 shows 3D visualization
of the best and the worse segmentation cases on the CT and MRI test
dataset obtained using the proposed FM-Pre-ResNet + VAE approach.
Furthermore, Pre-ResNet has demonstrated that increasing the depth
of the network improves model performance significantly. The addition
of two convolutional layers at the top and bottom of the pre-activation
residual block introduced in our FM-Pre-ResNet unit allows for the
feature fusion block to reach the same depth with fewer parameters
which benefits model performance.

Additional, structure-wise segmentation accuracies for the LV, RV,
LA, RA, Myo, Ao and PA, for both CT and MRI images, are summa-
rized in Table 4.4 and 4.5.

Comparison with Other Methods

The proposed approach was compared with other similar deep learning
approaches in terms of image segmentation accuracy as shown in Table
4.6 and Table 4.7. An approach that combines atlas registration with
CNNs’ [48] provides an incremental segmentation that allows user
interaction, which can be beneficial in a clinical setting. Nevertheless,
the challenges of accurate atlas registration resulted in low accuracy
on MRI images. Deep supervision mechanism [135] and use of transfer
learning [98] result in an increase of trainable parameters and overall
network complexity. In contrast, we aim to introduce a lightweight
network that results in a significantly deep network without increasing
parameter number. Moreover, in [98] report an average WHS DSC of
0.914 ± 0.075 on CT images and .890 ± 0.054 on MRI images using a
hold-out set of 10% of training data and evaluate their method with
10-fold cross-validation. Our results report 0.9039 ± 0.0517 on CT
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Figure 4.9: Comparison of Wilcoxon rank sum test of each heart struc-
ture for different architectures on the MM-WHS CT testing dataset.

images and 0.8950 ± 0.0215 on MRI images and are evaluated on all
unseen 40 subjects, which shows that the VAE stage’s introduction
significantly helps in overcoming overfitting problems. Therefore, these
results highlight the advantages of our proposed method.

4.5 Conclusion
Accurate heart and its substructures segmentation enable faster vi-
sualization of target structures and data navigation, which benefits
clinical practice by reducing diagnosis and prognosis times. This chap-
ter introduced an encoder–decoder-based architecture for whole heart
segmentation on CT and MRI images. Our proposed method intro-
duces a novel connectivity structure of residual unit that we refer
to as feature merge residual unit (FM-Pre-ResNet). The proposed
connectivity allows the creation of distinctly deep models without an
increase in the number of parameters compared to the Pre-ResNet
units. FM-Pre-ResNet enables the construction of profound models
without increasing the number of parameters in comparison to pre-
activation residual units. By incorporating two convolutional layers at
the top and bottom of the pre-activation residual block, the parameters
of the two branches are balanced. In comparison, the bottom layer
reduces the dimension of the channel. This allows for the construction
of a more detailed model with a similar number of parameters to the
initial pre-activation residual unit.
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Figure 4.10: Comparison of Wilcoxon rank sum test of each heart
structure for different architectures on the MMWHS MRI testing
dataset.

Furthermore, we construct an encoder–decoder-based architecture
that incorporates the VAE encoder at the segmentation encoder output
to have a regularizing effect on the encoder layers. FM-Pre-ResNet
units are used to learn a low-dimensional representation of the input
during the encoding stage. Following that, VAE reconstructs the input
image from the low-dimensional latent space, ensuring that the model
weights are strongly regularized while also avoiding over-fitting on the
training data. The VAE acts as a regulator of model weights, adds
additional guidance and exploits the encoder endpoint features. In the
end, the segmentation decoder learns high-level features and creates the
final segmentations. We evaluated the proposed approach on MMWHS
CT and MRI testing datasets and obtain average WHS DSC, JI, SD
and HD values of 90.39%, 82.24%, 1.1093, 15.3621 for CT images and
89.50%, 80.44%, 1.8599, 25.6558 for MRI images, respectively. Results
for CT datasets are highly comparable to the state-of-the-art.
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Table 4.4: Structure-wise DSC evaluation of proposed architecture
and other 3D based architectures in terms of DSC, JI, HD, SD on CT
testing dataset for LV, RV, LA, RA, Myo, Ao and PA

Heart Structure
Metrics Architecture LV Myo RV LA RA AO PA

DSC

3D Pre-ResNet 0.9165 0.8662 0.8709 0.9181 0.8609 0.9251 0.8093
±0.0512 ±0.0524 ±0.0642 ±0.0417 ±0.08 ±0.4404 ± 0.1331

3D Pre-ResNet +VAE 0.9245 0.8762 0.9124 0.9281 0.8709 0.935 0.8311
±0.0176 ±0.0212 ±0.009 ±0.0392 ± 0.0532 ±0.0149 ± 0.0199

3D FM-Pre-ResNet 0.9165 0.851 0.9179 0.899 0.8683 0.9326 0.9272
±0.0125 ±0.015 ±0.0063 ±0.0277 ± 0.0376 ±0.0105 ± 0.0141

3D FM-Pre-ResNet + VAE 0.9177 0.8791 0.8882 0.931 1 0.8617 0.9449 0.8271
±0.049 ±0.0504 ±0.0546 ±0.0396 ±0.0802 ±0.0404 ± 0.1331

JI

3D Pre-ResNet 0.8501 0.7675 0.7764 0.8511 0.7635 0.863 0.6973
±0.0814 ±0.0786 ±0.0914 ±0.0668 ±0.1121 ±0.0666 ± 0.163

3D Pre-ResNet +VAE 0.8601 0.7775 0.7863 0.8611 0.7734 0.873 0.7073
±0.0762 ±0.0329 ±0.0155 ±0.068 ± 0.089 ±0.0266 ± 0.0338

3D FM-Pre-ResNet 0.8699 0.7873 0.7961 0.8709 0.7832 0.8828 0.7171
±0.0398 ±0.0488 ±0.0338 ±0.0323 ± 0.0592 ±0.0601 ± 0.0756

3D FM-Pre-ResNet + VAE 0.8709 0.7883 0.7971 0.8719 0.7842 0.8838 0.7181
±0.0573 ±0.0725 ±0.0834 ±0.0736 ±0.1131 ±0.0568 ± 0.1449

SD

3D Pre-ResNet 0.1078 1.3061 1.4767 1.2568 1.7143 0.8131 1.8828
±0.5188 ±0.6522 ±0.764 ±0.7873 ±0.8301 ±0.4853 ± 2.5626

3D Pre-ResNet +VAE 1.0778 1.2544 1.3574 1.2047 1.6980 0.6251 1.6320
±0.4210 ±0.6003 ±0.5321 ±0.5504 ± 0.4321 ±0.7001 ± 1.0848

3D FM-Pre-ResNet 0.9321 1.1178 1.2047 1.0157 1.5534 0.5220 1.5884
±0.7701 ±0.5987 ±0.4895 ±0.7754 ± 0.3305 ±0.0653 ± 1.0012

3D FM-Pre-ResNet + VAE 0.7455 1.0057 0.9907 1.1775 1.3544 0.4444 1.735
±0.8905 ±0.3210 ±0.2078 ±0.6055 ±0.5587 ±0.3217 ± 1.0997

HD

3D Pre-ResNet 9.5403 13.573 14.3229 10.3919 13.0453 8.0746 10.3851
±4.8047 ±4.5287 ±13.1375 ±6.7654 ±6.9765 ±4.2339 ± 13.1497

3D Pre-ResNet +VAE 7.5402 12.4457 13.5571 9.0781 14.210 9.7758 12.8835
±4.0019 ±3.9210 ±11.2474 ±5.4880 ±5.7871 ±5.4421 ±15.5432

3D FM-Pre-ResNet 7.0037 10.7785 10.0787 9.4743 11.0375 8.1170 10.5532
±3.5707 ±3.7500 ±9.457 ±4.7171 ±3.8810 ±3.5778 ±3.4210

3D FM-Pre-ResNet + VAE 5.5011 8.3257 7.3854 8.7555 9.5777 6.5781 9.5587
±2.3088 ±2.9901 ±7.7809 ±3.2089 ±3.5432 ±6.5001 ±8.5578

Table 4.5: Structure-wise DSC evaluation of proposed architecture and
other 3D based architectures in terms of DSC, JI, HD, SD on MRI
testing dataset for LV, RV, LA, RA, Myo, Ao and PA

Heart Structure
Metrics Architecture LV Myo RV LA RA AO PA

DSC

3D Pre-ResNet 0.9014 0.8088 0.8644 0.8751 0.8521 0.8891 0.7945
±0.0342 ±0.0178 ±0.0457 ±0.0111 ±0.1089 ±0.2701 ± 0.3002

3D Pre-ResNet +VAE 0.9121 0.8077 0.8544 0.8810 0.8566 0.8932 0.7763
±0.0458 ±0.0388 ±0.1882 ±0.0157 ± 0.0501 ±0.0327 ± 0.0497

3D FM-Pre-ResNet 0.9080 0.8220 0.8632 0.8846 0.8432 0.8755 0.7947
±0.0102 ±0.0245 ±0.0233 ±0.0589 ± 0.0799 ±0.0301 ± 0.0243

3D FM-Pre-ResNet + VAE 0.9313 0.8147 0.8777 0.9017 0.8702 0.8821 0.8020
±0.0885 ±0.0119 ±0.0154 ±0.0867 ±0.0146 ±0.0137 ± 0.1102

JI

3D Pre-ResNet 0.8005 0.6222 0.7129 0.7419 0.7051 0.7208 0.6076
±0.1155 ±0.1235 ±0.1494 ±0.1084 ±0.1453 ±0.1395 ± 0.1286

3D Pre-ResNet +VAE 0.8344 0.7178 0.7123 0.7942 0.7108 0.8155 0.6328
±0.0587 ±0.0441 ±0.0328 ±0.0758 ± 0.0107 ±0.0789 ± 0.0977

3D FM-Pre-ResNet 0.8001 0.7244 0.7732 0.8155 0.7201 0.8053 0.6855
±0.06732 ±0.0483 ±0.1652 ±0.0559 ± 0.1551 ±0.1344 ± 0.0266

3D FM-Pre-ResNet + VAE 0.8159 0.7388 0.7244 0.8053 0.7221 0.8147 0.7095
±0.0.0891 ±0.0552 ±0.0341 ±0.0322 ±0.2175 ±0.0285 ± 0.1532

SD

3D Pre-ResNet 3.1154 4.1305 3.8078 1.9685 3.1319 1.7262 1.9394
±4.2951 ±4.4141 ±5.6198 ±1.8108 ±3.0756 ±1.8632 ± 0.8231

3D Pre-ResNet +VAE 2.0102 3.7214 2.5699 1.5421 2.6542 1.2201 1.5572
±3.0051 ±3.2708 ±4.3201 ±1.3037 ±2.7822 ±1.2447 ±0.6241

3D FM-Pre-ResNet 1.4425 2.1778 2.8321 1.7728 2.4880 1.0027 2.3571
±0.6055 ±4.2871 ±3.5542 ±1.4002 ±2.3551 ±1.1998 ±0.7581

3D FM-Pre-ResNet + VAE 0.9789 1.7562 1.2552 1.8853 1.99722 0.6799 2.0774
±1.7757 ±1.3321 ±1.9947 ±1.5570 ±1.8771 ±0.7844 ± 0.8231

HD

3D Pre-ResNet 33.6531 38.8297 31.2102 17.6381 31.2076 9.5942 10.3042
±23.5248 ±29.8463 ±27.1629 ±15.0182 ±27.6534 ±7.5978 ±4.1532

3D Pre-ResNet +VAE 31.5542 35.5541 28.8105 17.5428 24.7579 8.7709 8.5721
±18.2863 ±25.8371 ±21.4779 ±11.3571 ±23.8901 ±6.3481 ±2.7799

3D FM-Pre-ResNet 29.8821 36.4528 25.7773 18.5789 26.8832 7.2027 11.2577
±14.5887 ±27.3378 ±19.8421 ±9.2297 ±25.7892 ±3.5599 ±6.7987

3D FM-Pre-ResNet + VAE 26.5428 34.1750 23.5771 19.7750 16.7750 5.5897 9.4477
±11.4450 ±18.2889 ±14.543 ±9.4798 ±6.9543 ±3.4201 ±3.5947
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Figure 4.11: Comparison of the results of four different network archi-
tectures. (a) The input original CT image. (b) Segmentation result of
Pre-ResNet without VAE. (c) Segmentation result of Pre-ResNet with
VAE. (d) Segmentation result of FM-Pre-ResNet without VAE. (f)
Segmentation result of proposed FM-Pre-ResNet with VAE obtains the
most accurate results on the testing dataset. Image source: Habijan et
al. [56]

Table 4.6: Comparison of an average DSC, JI, SD and HD of the
state-of-the-art whole heart segmentation methods on CT images.

Authors Method DSC JI SD(mm) HD(mm)

Galisot et al. [48] Multi Atlas + CNN 0.838 ± 0.152 0.742 ± 0.161 4.812 ± 13.604 34.634 ± 12.351
Payer et al. [18] Localization + 0.908 ± 0.086 0.832 ± 0.037 1.117 ± 0.250 25.242 ± 10.813

segmentaiton CNN
Mortazi et al. [3] multi planar CNN 0.879 ± 0.079 0.792 ± 0.106 1.538 ± 1.006 28.481 ± 11.434
Wang et al. [20] Statistical shape 0.894 ± 0.030 0.810 ± 0.048 1.387 ± 0.516 31.146 ± 13.203

priors + CNN
Tong et al. [135] Deeply supervised 0.849 ± 0.061 0.742 ± 0.086 1.925 ± 0.924 44.880 ± 16.084

3D U-Net
Liao et al. [98] multi planar 2D CNN 0.914 ± 0.075 0.840 ± 0.075 1.42 ± 0.46 28.042 ± 12.142
Ours FM-Pre-ResNet + VAE 0.9039 ± 0.0517 0.8224 ± 0.0571 1.1093 ± 0.0215 15.362 ± 12.3737

Table 4.7: Comparison of an average DSC, JI, SD and HD of the
state-of-the-art whole heart segmentation methods on MRI images.

Authors Method DSC JI SD(mm) HD(mm)

Galisot et al. [48] Multi Atlas + CNN 0.817 ± 0.059 0.695 ± 0.081 2.420 ± 0.925 30.938 ± 12.190
Payer et al. [18] Localization + 0.863 ± 0.043 0.762 ± 0.064 1.890 ± 0.781 30.227 ± 14.046

segmentaiton CNN
Mortazi et al. [3] multi planar CNN 0.818 ± 0.096 0.701 ± 0.118 3.040 ± 3.097 40.092 ± 21.119
Wang et al. [20] Statistical shape 0.855 ± 0.069 0.753 ± 0.094 1.963 ± 1.012 30.201 ± 13.2216

priors + CNN
Tong et al. [135] Deeply supervised 0.674 ± 0.182 0.532 ± 0.178 9.776 ± 0.924 44.880 ± 16.084

3D U-Net
Liao et al. [98] multi planar 2D CNN 0.914 ± 0.075 0.840 ± 0.075 1.42 ± 0.46 28.042 ± 12.142
Ours FM-Pre-ResNet + VAE 0.8950 ± 0.0215 0.8044 ± 0.0757 1.8599 ± 0.6740 25.6558 ± 16.4001
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Figure 4.12: Comparison of the results for four different network
architectures. (a) The input original MRI images. (b) Segmentation
result of Pre-ResNet without VAE. (c) Segmentation result of Pre-
ResNet with VAE. (d) Segmentation result of FM-Pre-ResNet without
VAE. (f) Segmentation result of proposed FM-Pre-ResNet with VAE
obtains the most accurate results on the testing dataset. Image source:
Habijan et al. [56]

Figure 4.13: 3D visualization of the best and worse cases of WHS
results in the CT and MRI test dataset. Image source: Habijan et al.
[56]
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Bi-Ventricles and Myocardium
Segmentation

This chapter presents a new automatic method for LV, RV and Myo
segmentation from Cine MRI images. We introduce a new architec-
ture that incorporates SERes blocks into 3D U-Net architecture (3D
SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation
operations into residual learning. The adaptive feature recalibration
ability of squeeze-and-excitation operations boosts the network’s rep-
resentational power while feature reuse utilizes effective learning of
the features, which improves segmentation performance. We evaluate
the proposed method on the MICCAI Automated Cardiac Diagnosis
Challenge (ACDC) testing dataset. Our pipeline obtains an average
DSC for LV, RV and Myo at end-diastole of 95%, 90%, 83%, respec-
tively. Similarly, we obtain an average DSC for LV, RV and Myo at
end-systole of 86%, 83%, 85%, respectively. We calculate significant
clinical metrics, i.e., indicators of hearts function, including volume of
the left ventricle at end-diastole (LVEDV), LVESV, LVEF, RVEDV,
RVESV, RVEF, MyoLVES and MyoMED. The Bland-Altman and
analysis show a high correlation coefficient of R=0.99 for LVEDV and
LVESV, while R=0.95 for LVEF. Correlations of RVEDV, EVESV
and RVEF are R=0.97, R=0.93, R=0.69, respectively. Finally, R=0.96
for MyoLVES and R=0.95 for MyoMED further show the strength of
accuracy and precision of our proposed method.

The outline of the chapter is structured in the following manner.
Section 5.1 gives the main objectives of conducted research. Section
5.2 gives a theoretical background of used methods and describes our
proposed method for LV, RV and Myo segmentation. Section 5.4
describes the experimental setup, gives network training details, and
presents obtained results. Finally, concluding remarks are provided in
Section 5.5.
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5.1 Objectives
This research aims to develop an efficient method for fully automatic
segmentation of LV, RV and Myo from Cine MRI images. As discussed
in Section 3.1, the basic building block for most CNN architectures is
the convolution layer. The convolutional layer learns by capturing local
spatial patterns along all the input channels and generates feature maps
jointly encoding the spatial and channel information. While much effort
is put into improving this encoding of spatial and channel information,
encoding of the spatial and channel-wise patterns independently is less
explored. Recent work attempted to address this issue by explicitly
modeling the interdependencies between the channels of feature maps.
An architectural component called squeeze and excitation (SE) block
[67] was introduced, which can be seamlessly integrated within any
CNN model. The SE block factors out the spatial dependency by
global average pooling to learn a channel-specific descriptor, which
is used to recalibrate the feature map to emphasize useful channels.
Further, we incorporate SE block into residual learning, obtaining a
new structure that we call SERes block. Specifically, 3D SERes-U-Net
is a U-Net-like architecture including an encoder and a decoder with
four skip connection paths. The encoder and decoder of 3D SERes-
U-Net contain SERes blocks for learning high-level semantic features
and model the long-range dependencies among different channels of
the learned feature maps. The encoder and decoder are connected by
the skip connections for feature concatenation.

Therefore, the objectives of this research can be summarized as
below:

1. To introduce a SERes building block that uses adaptive feature
recalibration ability of squeeze-and-excitation operations boosts
the network’s representational power while feature reuse utilizes
effective learning of the features, which improves segmentation
performance.

2. To propose a new 3D encoder-decoder based architecture that effi-
ciently incorporates SERes blocks into 3D U-Net-like architecture
named 3D SERes-U-Net.

3. To compare the performance and results obtained from the pro-
posed method with existing methods.

Hereby, we present a new 3D encoder-decoder-based architecture that
efficiently incorporates SERes blocks into 3D U-Net-like architecture
and we name it 3D SERes-U-Net. We intend to optimize training
performance, efficiency and final segmentation result accuracy for the
LV, RV, and Myo segmentation tasks.
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5.2 Methodology
This section presents the proposed method for LV, RV and Myo heart
segmentation from Cine MRI images. We present a theoretical back-
ground of the proposed SERes units and give an overall design of the
proposed 3D SERes-U-Net architecture. We give dataset description,
implementation and training details, present conducted experiments,
and obtained results. Finally, we provide some concluding remarks.

5.2.1 Sqeeze and Excitation
The SERes block takes the advantages of the squeeze and excitation
operations [66] for adaptive feature recalibration and residual learning
for feature reuse [59]. The 3D SERes block can be expressed with the
following expression:

Xres = Fres(X) (5.1)

where X refers to the input feature, Xres is the residual feature, and
Fres(X) is residual mapping that needs to be learned.

pn = Fsq(xresn ) = 1
L×H ×W

L∑
i=1

H∑
j=1

W∑
k=1

xresn (i, j, k) (5.2)

where p = [p1, p2, ..., pn] and pn is the n − th element of p ∈ Rn, Fsq
refers to the squeeze function which groups global spatial information
into channel-wise statistics using global average pooling, L×H ×W
is the spatial dimension of Fres, xresn ∈ RL×H×W represents the feature
map of the n−th channel from the feature Xres and N is the number of
channels of the residual mapping. Scale values for the residual feature
channels s ∈ RN can be expressed with:

s = Fex(p,W) = σ(W2δ(W1p)) (5.3)

where Fex is the excitation function which generates them. It is
parameterized by two fully connected layers with parameters W1 ∈
R

N
r

×N and W2 ∈ RN× N
r , theReLU function δ and the sigmoid function

σ, and reduction ration r. The channel-wise multiplication between
feature map and learned scale value sn can be expressed with:

X̃
res

n = Fscale(Xres
n , sn) = sn · Xres

n ,∈ RH×W×L (5.4)

Finally, applying the squeeze and excitation operations obtains the
calibrated residual feature, which can be expressed with:

X̃
res = [X̃res

1 , X̃
res

2 , ..., X̃
res

n ] (5.5)

The output feature Y after the ReLU function δ is obtained as:

Y = δ(X̃res + X) (5.6)
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where (X̃res + X) refers to element-wise addition and a shortcut con-
nection.

An illustration of the 3D ResNet block and 3D SERes block is shown
in Figure 5.1.

Figure 5.1: An illustration used residual blocks. (a) The original 3D
ResNet block and (b) structure of the 3D SERes block.

5.2.2 Architecture Overview
Our proposed network architecture is based on the standard 3D U-
Net [186] which follows encoder-decoder architecture. The encoder
or contracting pathway encodes the input image and learns low-level
features, while the decoder or expanding pathway learns high-level
features and gradually recovers original image resolution. Like 3D
U-Net, our contracting pathway consist of three downsampling layers.
We replace initially used pooling layers in the original 3D U-Net with
convolutional layers with stride equal to 2. Instead of plain units, we
adopt SERes blocks consisting of squeeze and excitation operations
followed by a residual block to accelerate convergence and training.
Each residual unit inside the SERes block consists of two convolutional
layers followed by batch normalization and ReLU activation. Similarly,
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three SERes blocks are used in the expanding path. This pathway has
three up-sampling layers, each of which doubles the size of the feature
maps. Moreover, a 2 × 2 × 2 convolutional layer is adopted after each
upsampling layer. The network can acquire the importance degree of
each residual feature channel through the feature recalibration strategy.
This enhances useful channel features according to the importance
degree and suppresses less useful ones. Therefore, by modeling the
interdependencies between channels, the 3D SERes block performs
dynamic recalibration of residual feature responses in a channel-wise
manner. In this way, the network can capture every residual feature
channel’s importance degree, which improves its representational power.
An overall network SERes-U-Net architecture is presented in Figure
5.2.

Figure 5.2: Illustration of SERes-U-Net architecture for LV, RV, Myo
segmentation. Image source: Habijan et al. [55].

5.3 Implementation Details
In this section, we give a dataset description on which we conducted
our experiments. After that, we give details about network training
and implementation. We train two different networks to provide a
successful ablation study: 3D U-Net and proposed 3D SERes-U-Net.
We evaluate the proposed method using Automated Cardiac Diagnosis
Challenge (ACDC) dataset [1] and present conducted experiments and
results. Finally, we compare our results to the state-of-the-art research
and provide concluding remarks.
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5.3.1 Dataset Description
The Automated Cardiac Diagnosis Challenge (ACDC) dataset [1]
consists of real-life clinical cases obtained from an everyday clinical
setting at the University Hospital of Dijon (France). The dataset
includes cine-MRI images (2D + time) of patients suffering from
different pathologies, including myocardial infarction, hypertrophic
cardiomyopathy, dilated cardiomyopathy, abnormal right ventricle, and
normal cardiac anatomy. Dataset has been evenly divided based on
the pathological condition and includes 100 cases with corresponding
ground truth for training and 50 cases for testing through an online
evaluation platform. Clinical experts manually annotated LV, RV and
Myo at systolic and diastolic phases, for which the weight and height
information was provided as well. Images are acquired as a series of
short-axis slices covering the LV from the base to the apex. The spatial
resolution goes from 1.37 to 1.68 mm2/pixel, slice thickness is between
5-8 mm, while an inter-slice gap is 5 or 10 mm. An example of input
images in different views with corresponding manual segmentation is
shown in Figure 5.3.

Figure 5.3: An example of the ACDC dataset. Top row (from left to
right): original input image at ED, corresponding GT and input image
with GT overlay. Bottom row (from left to right): original input image
at ES, corresponding GT and input image with GT overlay. RV is
represented in red color, Myo in green color, and LV in blue color.

5.3.2 Data Preprocessing and Augmentation
To overcome high-intensity irregularities of MRI images, we normal-
ize each volume based on the standard and mean deviation of their
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intensity values. The volumes were center-cropped to a fixed size
and zero-padded to provide fine ROI for the network input. For data
augmentation, we apply a random axis mirror flip with a probability
of 0.5, random scale and intensity shift on input images.

5.3.3 Network Implementation and Training
We use L2 norm regularization with a weight of 10−5 and employ the
spatial dropout with a rate of 0.2 after the initial encoder convolution.
We use Adam optimizer with initial learning rate of α0 = 10−4 and
gradually decrease it according to following expression:

α = α0 ∗

1 − e

Te

0.9

(5.7)

where Te is a total number of epochs and e is an epoch counter. We
employ a smoothed negative Dice score [106] loss function, defined
with:

Dloss = − 2 ∑N
i=1 pigi + 1∑N

i=1 pi + ∑N
i=1 gi + 1

(5.8)

where pi is probability of predicted regions, gi is the ground truth
classification for every i voxel.

We train two networks to provide a successful ablation study: 3D
Res-U-Net and proposed 3D SERes-U-Net. The networks are trained
separately for each of cardiac phase. For both network architectures,
we use 80%-20% training and validation split, respectively, i.e., we use
80 patient images for training and 20 for validation. Final segmenta-
tion accuracy testing was done through an online ACDC Challenge
submission page on 50 patient subjects [2]. The total training time took
approximately 34 hours for 200 epochs since further training appears
not to decrease validation loss. We used two NVIDIA Titan V100
GPU simultaneously. Moreover, Figure 5.4 and Figure 5.5 indicate
decrease in loss value when number of epochs increases. This is a clear
indication that the network is successfully learning from the input
data. We can also see significant improvement regarding training and
validation accuracies and faster and smoother convergence of the 3D
SERes-U-Net network architecture. On MRI images of the ED cardiac
phase, the 3D Res-U-Net model has an average efficiency of 96.18% of
trained accuracy while validation error was on average 94.24%. On the
other hand, the 3D SERes-U-Net obtains an average training accuracy
of 99.35%, while validation accuracy is 89.71%. A clear improvement
in training is obtained with the addition of the SE block, i.e., using
the proposed 3D SERes-U-Net architecture. Comprehensive training
on MRI images at the ES phase has lower accuracy in comparison to
the ED phase. For example, 3D Res-U-Net yields an average training
accuracy of 88.07% and validation accuracy of 85.13%. The inclusion
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of SE blocks in the proposed 3D SERes-U-Net architecture improves
training and validation accuracies for 4.69% and 3.57%, respectively.

Figure 5.4: Training and validation accuracies on Cine MRI dataset at
ED cardiac phase. (a) 3D Res-U-Net network architecture and (b) 3D
SERes-U-Net network architecture.

Figure 5.5: Training and validation accuracies on Cine MRI dataset at
ES cardiac phase. (a) 3D Res-U-Net network architecture and (b) 3D
SERes-U-Net network architecture.

5.4 Experiments and Results
To evaluate the segmentation performance of the proposed method,
we observe distance and clinical indices metrics. Distance measures
include calculation of DSC and HD, which provides information on
similarity between obtained segmentations for LV, RV and Myo with
their reference ground truth. Based on these results, it is shown
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that the inclusion of SE blocks into the proposed 3D SERes-U-Net
architecture yields slightly better results than plain 3D Res-U-Net
architecture. Detailed qualitative segmentation results are presented
in Table 5.1 and Table 5.2.

Table 5.1: The segmentation accuracy results for LV, RV and Myo
expressed in Dice score (DSC) and Hausdorff distance (HD) for the
proposed method at ED for 3D Res-U-Net and proposed 3D SERes-U-
Net.

ED

Methods LV RV Myo

Dsc Hd Dsc Hd Dsc Hd

3D Res-U-Net 0.93 38.2 0.86 52.9 0.8 32.95
(0.063) (4.872) (0.091) (12.441) (0.063) (5.600)

3D SERes-U-Net 0.95 11.53 0.9 23.41 0.83 13.77
(0.007) (0.410) (0.021) (12.357) (0.007) (1.987)

Table 5.2: The segmentation accuracy results for LV, RV and Myo
expressed in Dice score (DSC) and Hausdorff distance (HD) for the
proposed method at ES for 3D Res-U-Net and proposed 3D SERes-U-
Net.

ES

Methods LV RV Myo

Dsc Hd Dsc Hd Dsc Hd

3D Res-U-Net 0.86 29.77 0.77 36.99 0.81 30.29
(0.028) (1.774) (0.042) (5.395) (0.028) (1.103)

3D SERes-U-Net 0.86 11.94 0.83 21.49 0.85 15.00
(0.127) (8.499) (0.028) (5.755) (0.007) (1.979)

Our proposed 3D SERes-U-Net obtains an average DSC for LV, RV
and Myo at end-diastole of 95%, 90%, 83%, respectively. Similarly,
we obtain an average DSC for LV, RV and Myo at end-systole of
86%, 83%, 85%, respectively. The 3D Res-U-Net network achieves
an average DSC for LV, RV and Myo at end-diastole of 93%, 86%,
80%, respectively. The addition of squeeze and excitation operations,
i.e., use of proposed SERes blocks, improves DSC and HD for 2%, 4%
and 3%, respectively. Similarly, the 3D Res-U-Net network achieves
an average DSC for LV, RV and Myo at end-systole of 86%, 77, 81,
respectively. The addition of squeeze and excitation operations, i.e.,



106 Chapter 5. Bi-Ventricles and Myocardium
Segmentation

use of proposed SERes blocks, improves DSC for 0.2%, 6% and 4%,
respectively. Therefore, obtained results using the proposed 3D SERes-
U-Net shows significant improvements in DSC in comparison to the
network without squeeze and excitation operations (3D Res-U-Net).
Boxplots showing the distribution of the DSC for LV, RV and Myo in
ES and ED cardiac cycle phases are presented in Fig 5.6, while Figure
5.7 and Figure 5.8 shows visual examples of obtained segmentation
predictions.

Figure 5.6: Boxplots showing the DSC dispersion for LV, RV and
Myo using (a) 3D Res-U-Net segmentation network and proposed (b)
3D SERes-U-Net on the ACDC testing dataset. Boxplot illustrates
interquartile range (bounds of box), mean (X inside a box), median
(centerline), maximum and minimum values (whiskers) and outliers
(circles outside whiskers). Image source: Habijan et al. [55].

Figure 5.7: An example of obtained results. Top row: an original MRI
image at the end-diastolic phase of the cardiac cycle. Middle row:
Obtained segmentation. Bottom row: an overlay of the original image
and obtained segmentation prediction. Image source: Habijan et al.
[55].

Next, we observe and discuss the best and worst segmentation results.
Figure 5.9 shows an example of the most successful segmentation that
yields DSC of 98%, 93%, 87% for LV, RV and Myo at ED phase,
respectively. The results of the same patient image in the ES phase
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Figure 5.8: An example of obtained results. Top row: original MRI
image at the end-systolic phase of the cardiac cycle. Middle row:
Obtained segmentation. Bottom row: an overlay of the original image
and obtained segmentation prediction. Image source: Habijan et al.
[55].

are somewhat lower; DSC is 97%, 91%, and 86% for LV, RV and
Myo, respectively. As DSC, segmentation of the LV in the ED phase
commonly has high accuracy for different patient images compared
to the ES phase. This is due to the high contrast in the ED images,
where structures can be more easily distinguished even with the naked
eye.

Figure 5.9: An example of most successful segmentation in ED (left)
and ES (right) phases.

Another common problem was segmentation failure, mostly for Myo
and RV in both phases of the cardiac cycle. For example, we noticed
that our model has difficulties in correctly segmenting RV and Myo as
shown in Figure 5.10. This may be partially explained by the fact that
an accurate myocardium segmentation requires the precise delineation
of two walls instead of one, which was the case for the LV and RV.

The overfitting issue is successfully overcomed in the most cases.
Still, we observe an overfitting in basal part of RV where model hardly
distinguishes between RV and RA. This failure is characteristic only
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Figure 5.10: An example of RV and Myo segmentation failure in ED
and ES phases.

in ES phase, which resulted in significantly lower DSC in comparison
to ED phase. An example of such failure is shown in Figure 5.11.

Figure 5.11: Comparison of the automatically obtained segmentations
and the reference volumes of the MRI scans. The image shows correla-
tion and Bland-Altman plots for the LV volumes at and diastole and
at the end-systole as well as ejection fraction.

Figure 5.12 shows 3D visualization of the best and the worse segmen-
tation cases on the MRI test dataset obtained using the proposed 3D
SERes-U-Net architecture. From visual inspection, we may see that fail-
ures in worst segmentation cases are primarily due to over-segmented
Myo and missing parts of the RV.

After we successfully obtained segmentations, we calculated signifi-
cant clinical metrics. These metrics are significant indicators of hearts’
function and include the volume of the left ventricle at end-diastole
(LVEDV), the volume of the left ventricle at end-systole (LVESV), left
ventricles’ ejection fraction (LVEF), the volume of the right ventricle
at end-diastole (RVEDV), volume of the right ventricle at end-systole
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Figure 5.12: 3D visualization of the best and worse cases for LV, RV
and Myo at ED and ES in different rotation views.

(RVESV), right ventricles’ ejection fraction (RVEF), myocardium vol-
ume at end-systole (MyoLVES), and myocardium mass at end-diastole
(MyoMED). The Bland-Altman and analysis show a high correlation
coefficient of R=0.99 for LVEDV and LVESV, while R=0.95 for LVEF.
Correlations of RVEDV, EVESV and RVEF are R=0.97, R=0.93,
R=0.69, respectively. Finally, R=0.96 for MyoLVES and R=0.95 for
MyoMED further show the strength of accuracy and precision of our
proposed pipeline. Table 5.3 gives detailed representation of obtained
results. For more convenient representation, in Figure 5.13 we show
correlation and Bland-Altman plots for the LV volumes at ED and at
ES cardiac phases. Figure 5.14 shows correlation and Bland-Altman
plots for the RV volumes at ED and at ES cardiac phase as well as EF.
Figure 5.15 shows correlation and Bland-Altman plots for the Myo
volumes at ED and at ES cardiac phase as well as EF.

5.4.1 Comparison with Other Methods
The proposed approach was compared with other similar deep learning
approaches in terms of image segmentation accuracy, as shown in Table
5.4 and Table 5.5.

Most of the previous work includes modifications and experiments
using 2D or 3D U-Net architecture. For example, Isensee et al. [74]
implemented an ensemble of 2D and 3D U-Net architectures. Baum-
gartner et al. [12] tested influence of using different hyperparameters
on the U-Net and the FCN for this particular application. They also
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Table 5.3: Calculated clinical indexes. R is correlation coefficient, while
mae is mean absolute error.

Network 3D Res-U-Net 3D SERes-U-Net
Clinical
index

R bias + σ mae R bias + σ mae

LVEDV 0.985 -19.66 + 28.70 4.52 0.990 10.44 + 17.04 1.25
LVESV 0.980 -30.92 + 30.98 0.03 0.989 -18.20 + 20.70 -4.91
LVEF 0.938 -13.51 + 16.69 1.59 0.949 -28.01 + 18.19 3.30
RVEDV 0.819 -60.88 + 92.32 15.72 0.966 -16.12 + 28.50 -6.0
RVESV 0.829 54.07 + 59.19 2.56 0.925 -40.55 + 28.41 -13.16
RVEF 0.627 -22.10 + 30.20 4.05 0.721 52.53 + 26.21 6.19
MyoMED 0.945 -17.54 + 60.14 21.30 0.956 -20.84 + 46.62 12.89
MyoLVES 0.909 -29.05 + 65.49 18.22 0.963 -26.96 + 34.16 3.60

explore the impact of using 2D and 3D convolution layers and a training
Dice loss versus a cross-entropy loss. Their best architecture ended up
being a U-Net with 2D convolution layers trained with a cross-entropy
loss. Jang et al. [78] use M-Net, which is a modification of U-Net,
which has the feature maps of the decoding layers which are concate-
nated with those of the previous layer. Khened et al. [86] use a dense
U-Net. Their method begins by locating the region of interest on the
first harmonic image using a Fourier transform followed by a Canny
edge detector. They next compute the approximate radius and center
of the LV using a circular Hough transform on the previously obtained
edge map. They then replace the convolutional blocks in a U-Net with
dense blocks to make the system lighter. This network’s initial layer
also corresponds to an inception layer. The network was trained using
a weighted average of dice and cross-entropy losses. Zotti et al. [185]
modified U-Net by using convolutional layers along the skip connections
to create Grid Net. Additionally, the architecture records a shape prior
to completing the final decision, which is employed as an additional
features map. Wolterink et al. [173] instead, the encoder-decoder
architecture uses a sequence of convolutional layers with increasing
levels of kernel dilation. This ensures that sufficient image context was
used for each pixel’s label prediction. This CNN was fed simultaneously
with spatially corresponding ED and ES 2D slices while the output of
the network was split in two, one softmax for ED and one for ES. The
only exception to using a U-Net-like network is Tziritas and Grinias
[71], which implemented a Chan-Vese level-set method followed by an
MRF graph cut segmentation method and spline fitting to smooth out
the resulting boundaries. Experimental results show that the proposed
3D SERes-U-Net has better performance for RV, LV-Myo and LV
segmentation than other current state-of-the-art models.
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Figure 5.13: Comparison of the automatically obtained segmentations
and the reference volumes of the MRI scans. The image shows correla-
tion and Bland-Altman plots for the LV volumes at end-diastole and
at the end-systole as well as ejection fraction. Image source: Habijan
et al. [55].

5.5 Conclusion
In this chapter, we presented a new automatic method for LV, RV and
Myo segmentation from Cine MRI images. For this purpose, we used
the ACDC challenge dataset. As a result of the different breath-holds
used during the acquisition of the dataset, it contains a large image
shift and slice thickness. Therefore, we assumed that considering 3D
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Figure 5.14: Comparison of the automatically obtained segmentations
and the reference volumes of the MRI scans. The image shows correla-
tion and Bland-Altman plots for the RV volumes at end-diastole and
at the end-systole as well as ejection fraction. Image source: Habijan
et al. [55].

information can impair model generalization. This was the main reason
for choosing to develop the 3D method over the 2D method.

In this research, we introduced a new deep neural network archi-
tecture named 3D SERes-U-Net for automatic segmentation of LV,
RV and Myo from Cine MRI images. The 3D SERes-U-Net incorpo-
rates SERes blocks into 3D U-net architecture. The SERes blocks use
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Figure 5.15: Comparison of the automatically obtained segmentations
and the reference volume of the myocardium end systolic volume and
myocardium mass. The image shows correlation and Bland-Altman
plots to compare automatically obtained segmentation and the reference
values. Image source: Habijan et al. [55].

Table 5.4: Comparison of the segmentation accuracy of the proposed
method and the state-of-the-art methods at ED cardiac phase. LV:
Endocardial contour of the left ventricle; RV: Endocardial contour
of the right ventricle;Myo: Epicardial contour of the left ventricle
(myocardium); DSC: Dice Index; HD: Hausdorff distance.

LV RV Myo
Authors DSC HD DSC HD DSC HD
Isense et al. [74] 0.968 7.4 0.946 10.1 0.902 8.7
Baumgartner et al. [12] 0.963 6.5 0.932 12.7 0.892 8.7
Jang et al. [78] 0.959 7.7 0.929 12.9 0.875 9.9
Zotti et al. [185] 0.957 6.6 0.941 10.3 0.884 8.7
Khened et al. [86] 0.964 8.1 0.935 14.0 0.889 9.8
Wolternik et al. [173] 0.961 7.5 0.928 11.9 0.875 11.1
Tziritas-Grinias et al. [71] 0.948 8.9 0.863 21.0 0.794 12.6
Proposed 0.95 11.53 0.90 23.41 0.83 13.77
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Table 5.5: Comparison of the segmentation accuracy of the proposed
method and the state-of-the-art methods at ES cardiac phase.

LV RV Myo
Authors DSC HD DSC HD DSC HD
Isense et al. [74] 0.931 6.9 0.899 12.2 0.919 8.7
Baumgartner et al. [12] 0.911 9.2 0.883 14.7 0.901 10.6
Jang et al. [78] 0.921 7.1 0.885 11.8 0.895 8.9
Zotti et al. [185] 0.905 8.7 0.882 14.1 0.896 9.3
Khened et al. [86] 0.917 9.0 0.879 13.9 0.898 12.6
Wolternik et al. [173] 0.918 9.6 0.872 13.4 0.894 10.7
Tziritas-Grinias et al. [71] 0.865 11.6 0.743 25.7 0.801 14.8
Proposed 0.86 11.94 0.83 21.49 0.85 15.00

squeeze-and-excitation operations together with residual learning. The
adaptive feature recalibration ability of squeeze-and-excitation opera-
tions boosts the network’s representational power while feature reuse
utilizes effective learning of the features, which improves segmentation
performance. We evaluate the proposed method on the Automated
Cardiac Diagnosis Challenge (ACDC) testing dataset. Our pipeline ob-
tains an average DSC for LV, RV and Myo at end-diastole of 95%, 90%,
83%, respectively. Similarly, we obtain an average DSC for LV, RV,
and Myo at end-systole of 86%, 83%, 85%, respectively. We calculate
significant clinical metrics, i.e., indicators of hearts function, including
LVEDV, LVESV, LVEF, RVEDV, RVESV, RVEF, MyoLVES, and
MyoMED. The Bland-Altman and analysis show a high correlation
coefficient of R=0.99 for LVEDV and LVESV, while R=0.95 for LVEF.
Correlations of RVEDV, EVESV and RVEF are R=0.97, R=0.93,
R=0.69, respectively. Finally, R=0.96 for MyoLVES and R=0.95 for
MyoMED further show the strength of accuracy and precision of our
proposed method. Our proposed 3D SERes-U-Net obtains competitive
results for all three structures. The results on the LV segmentation
are highly comparative. Nevertheless, it appears that the same level of
accuracy is still challenging to obtain for the RV and the MYO. The
RV often has the highest Hausdorff distances, the lowest Dice scores,
the lowest correlation values and the largest biases. Furthermore, we
have seen that most segmentation failures and errors appeared in RV
and Myo due to overfitting problems. We have noticed that Myo
segmentations, particularly at ES, vary the most. This may partly be
explained because correct myocardium segmentation necessitates the
precise delineation of two walls rather than just one for the LV and
RV.
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Abdominal Aortic Aneurysms
Segmentation

This chapter presents a new automatic approach for robust and re-
producible abdominal aortic aneurysm (AAA) segmentation. The 3D
U-Net segmentation network is adapted by introducing residual units
in an encoder part and a deep supervision mechanism in the decoder
part. We train four different architectures from stretch: (1) 3D U-Net
network architecture, (2) 3D U-Net with residual blocks in encoder
pathway (3D U-Net RE), (3) 3D U-Net with deep supervision (3D U-
Net DS) and (4) 3D U-Net with residual blocks in an encoder pathway
and deep supervision in decoder pathway (3D U-Net RE + DS). In this
way, we demonstrate the effect of residual units and deep supervision
for this particular clinical application. Networks are trained, validated,
and evaluated on 19 pre-operative CTA volumes from different pa-
tients using a 4-fold cross-validation approach to increase the results’
robustness. Our pipeline achieves a Dice score of 91.03% for AAA
segmentation.

The outline of the chapter is structured in the following manner.
Section 6.1 gives the main objectives of conducted research. Section
6.2 gives a theoretical background of the used methods and describes
our proposed method for AAA segmentation. Section 6.4 describes
the experimental setup, gives network training details and presents
obtained results. Finally, concluding remarks are provided in Sections
6.5.
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6.1 Objectives
This research aims to develop an efficient method for the fully auto-
matic segmentation of the AAA regions in CTA images. Generally,
deep learning approaches require a large amount of data for a good
generalization. Nevertheless, a limited annotated dataset complicates
training and testing. Thus, we take advantage of the feature reuse
mechanism to alleviate these obstacles. The proposed network relies on
a modified 3D U-Net architecture. We introduce residual connections
in the encoder pathway and deep supervision in the decoder pathway.
The proposed method reduces the time of the segmentation process
compared to the conventional manual method. It is comparable or
equivalent in terms of performance and accuracy.

Therefore, the main objectives can be summarized and listed as
below:

1. To develop an automatic method for detecting and identifying
AAA regions from CTA images using deep learning methodology.

2. To alleviate common obstacles of constructing very deep neural
network architectures using feature reuse mechanism and by
combining multiple segmentation maps created at different scales.

3. To compare the performance and result obtained from the pro-
posed method with existing methods.

Hereby, we present a new 3D U-Net with residual blocks in an encoder
pathway and deep supervision in decoder pathway and we name it
3D U-Net (RE + DS). We intend to optimize training performance,
efficiency and final segmentation result accuracy for the task of AAA.

6.2 Architecture Overview
Motivated by the high success of 3D U-Net, we propose a modification
to 3D U-Net architecture by adding residual units in the contracting
pathway and deep supervision in expanding the pathway for the task of
an abdominal aortic aneurysm segmentation. The addition of residual
units in the contracting pathway preserves information. It significantly
increases network performance, while the addition of deep supervision
in expanding pathway injects gradient signals deep into the network.

The proposed architecture has encoding and decoding pathways.
In the encoding pathway, the input representations are increasingly
encoded as they advance deeper within the network. In contrast, the
decoding pathway reincorporates obtained representations with super-
ficial features resulting in precise localization of the interest structures.
For simplicity purposes, all processing blocks in the encoding pathways
are referred to as the encoding module. Likewise, all processing blocks
in the decoding pathways are referred to as the decoding module.
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Each encoding module represents a residual block consisting of two
3x3x3 convolution layers with a dropout layer in between. They are
reciprocally connected with stride 2, 3×3×3 convolutions. Similarly,
the decoding pathway consists of up-scaling with stride 2, after which
comes a 3x3x3 convolution. The up-sampling module halves the num-
ber of feature maps that are further concatenated with the encoding
pathway and subsequently passed to the decoding module. A decoding
module consists of a 3×3×3 convolution and a 1×1×1 convolution,
which again halves the number of feature maps. Additionally, we apply
deep supervision in the decoding pathway by integrating segmenta-
tion layers at different network levels. These segmentation layers are
further combined with element-wise summation and form the final
network output, i.e., AAA segmentations. Auxiliary supervision paths
were added so that intermediate feature maps could get supervision
to restore details further and improve segmentation accuracy. An
illustration of the network is shown in Figure 6.1.

Figure 6.1: Illustration of 3D U-Net (RE + DS) architecture for AAA
segmentation.

The deep supervision approach forces the output from the decoder
units to yield meaningful segmentation maps. This technique is mainly
introduced for obtaining transparency and robustness of the features
extracted in the middle of the network and helps to address the van-
ishing gradient problem. It allows gradient information to flow back
directly from the loss to every decoder block. The feature maps from
each network level are transposed by 1 × 1 × 1 convolutions to create
secondary segmentation maps. These are then combined in the fol-
lowing way. First, the segmentation map with the lowest resolution
is upsampled with bilinear interpolation to have the same size as the
second-lowest resolution segmentation map. The element-wise sum
of the two maps is then upsampled and added to the third-lowes seg-
mentation map and so on until we reach the highest resolution level.
These additional segmentation maps do not primarily serve for any
further refinement of the final segmentation map created at the last
layer of the model because the context information is already provided
by long skip connections. The secondary segmentation maps help in
the speed of convergence by encouraging earlier layers of the network
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to produce better segmentation results. A similar principle has been
used by Kayalibay et al. [84] and Isensee et al. [75].

6.3 Implementation Details
In this section, we give a dataset description on which we conducted
our experiments. After that, we give details about network training
and implementation. We train four different networks to provide a
successful ablation study: (1) 3D U-Net network architecture, (2) 3D
U-Net with residual blocks in encoder pathway (3D U-Net RE), (3)
3D U-Net with deep supervision (3D U-Net DS) and (4) 3D U-Net
with residual blocks in an encoder pathway and deep supervision in
decoder pathway (3D U-Net RE + DS).

6.3.1 Dataset Description
In our experiments, we use 3D CT images of unruptured AAAs ac-
quired as a part of standard medical procedures and treatments from
patients at the University Hospitals Leuven, Belgium. The dataset is
publicly available for research purposes [172]. It consists of 19 volu-
metric CT images in the nearly raw raster data with corresponding
AAA ground truth (GT) segmentations. GTs were segmented using
BioPARR software and 3D Slicer. The remaining unwanted segmenta-
tion artifacts were manually corrected from the resulting label maps.
Images have different dimensions, with a spacing of 0.625 mm in each
direction. Additionally, the dataset also includes geometries of the
ITL internal surface, AAA internal and external surface and finite
element meshes of the AAA and ITL in the stereolithography (STL)
format and characterization of the boundary conditions external load
for finite element model and material properties. An example of one
image slice along with three different views and corresponding ground
truth images are presented in Figure 6.2.

6.3.2 Preprocessing and Data Augmentation
With CT intensity values being non-standardized, normalization is
critical to allow for data from different institutes, scanners and acquired
with varying protocols to be processed by one single algorithm. We
normalize each input CT image by subtracting the mean and dividing
by the standard deviation of the AAA region. Since we use a very
limited training dataset, we try to alleviate the training dataset size
using extensive data augmentation techniques. The following augmen-
tation techniques were applied on the fly during training: random
rotations, random scaling, random elastic deformations, gamma correc-
tion augmentation and mirroring. Nevertheless, the low resolution of
input images distortion and random rotations significantly worsen final
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Figure 6.2: Example images from used AAA dataset. Up row, from
left to right: cropped axial, coronal and sagittal image slices within
the AAA ROI. Bottom row, from left to right: corresponding ground
truth masks for axial, coronal and sagittal image slices.

segmentation results. Therefore, we decided to use just permutations
as a data augmentation technique.

Figure 6.3: Example of input images after normalization.

6.3.3 Network Implementation and Training
We trained and evaluated our network on the training dataset via
four-fold cross-validation. The network architecture is trained with
sampled patches of size 64×64×64, the leaky ReLu, with batch size of 6,
validation batch size of 12, padding=same, with instance normalization
instead of commonly used batch normalization and without validation
patch overlap. Training is done using the Adam optimizer with an
initial learning rate lrinit = 5 ∗ 104, and the learning rate schedule: l2
weight decay of 105 and lrinit = 0.985 epoch.

We use a dice loss function to cope with class imbalances. For the
loss function, we employ a smoothed negative dice score [106], defined
with:
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Dloss = − 2 ∑N
i=1 pigi + 1∑N

i=1 pi + ∑N
i=1 gi + 1

(6.1)

where pi represents predicted AAA probability, while gi represents
the ground truth classification for every i voxel. As seen in Equation
6.1, the summation is done over all N voxels in the CT image. Division
with zero is avoided with additional ones in the denominator and
numerator. All the experiments were implemented using the Keras and
Tensorflow deep learning libraries. We trained our network on NVidia
Geforce Titan V GPU, and training took approximately 1 hour.

The network is trained for 200 epochs since further training appears
not to decrease validation loss. Moreover, Figure 6.4 indicates a
decrease in loss value when the number of epochs increases. This is a
clear indication that the network is successfully learning from the input
data. We can also see significant improvement regarding training and
validation accuracy and faster and smoother convergence of the 3D
U-Net with residual blocks in an encoder pathway and deep supervision
in the decoder pathway.

The 3D U-Net model has an average efficiency of 91.58% of trained
accuracy while validation error was on average 85.43%. On the other
hand, the addition of residual blocks in an encoder pathway obtains
an average training accuracy of 93.18%, while validation accuracy is
83.89%. Similarly, the addition of only deep supervision in the decoder
pathway yields training accuracy of 96.74% and validation error an
average of 85.67%. A clear improvement in training is obtained with
the proposed 3D U-Net with residual blocks in an encoder pathway
and deep supervision in the decoder pathway. The inclusion of residual
connections in an encoder pathway and deep supervision in the decoder
pathway yields an average training accuracy of 96.07% and a validation
accuracy of 95.03%.

6.4 Experiments and Results
In our experiments, we train four different architectures: (1) 3D U-Net
network architecture, (2) 3D U-Net with residual blocks in encoder
pathway (3D U-Net RE), (3) 3D U-Net with deep supervision (3D U-
Net DS) and (4) 3D U-Net with residual blocks in an encoder pathway
and deep supervision in decoder pathway (3D U-Net RE+DS). In this
way, we demonstrate the effect of residual units and deep supervision
for this particular clinical application. To evaluate the segmentation
performance of the proposed method, we calculate the DSC of predicted
AAA segmentations. Based on these results, it is shown that the
inclusion of residual blocks into U-Net’s encoder pathway and deep
supervision in the decoder pathway yields significantly better results
than plain 3D U-Net architecture. Detailed qualitative segmentation
results is presented in Table 6.1.
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Figure 6.4: Training and validation accuracies for different networks.
(a) 3D U-Net network architecture, (b) 3D U-Net with residual blocks
in encoder pathway, (c) 3D U-Net with deep supervision and (d) 3D
U-Net with residual blocks in an encoder pathway and deep supervision
in decoder pathway.

For plain U-Net, we obtain an average DSC of 74.53%. An addition
of residual connections in the encoding pathway yields improvement of
2.36%, while the addition of deep supervision obtains an improvement
of 12.7% in comparison to plain 3D U-Net. The most significant im-
provements in DSC overlap are noticed when both residual connections
and deep supervision are applied. We obtained a DSC of 91.03%
using the proposed modified 3D U-Net with deep supervision. The
reason behind this improvement is in addition of auxiliary supervision
branches in the decoding pathway of the network. Boxplots showing
the distribution of the DSC for AAA for different networks are shown
in Figure 6.5.

Figure 6.6 show visual examples of obtained segmentation predic-
tions. Visual comparisons between the ground truth and obtained
segmentations are shown in Figure 6.8. Some observed difficulties in
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Table 6.1: Obtained results for AAA segmentation.

Network Average DSC
3D U-Net 0.7453 ± 0.112
3D U-Net (RE) 0.7689 ± 0.208
3D U-Net (DS) 0.8723 ± 0.124
3D U-Net RE+DS 0.9103 ± 0.156

Figure 6.5: Boxplots showing the DSC dispersion for AAA using
different segmentation networks. Boxplot illustrates interquartile range
(bounds of box), mean (X inside a box), median (centerline), maximum
and minimum values (whiskers) and outliers (circles outside whiskers).

segmentation are caused by the low image quality, contrast differences,
and the highly anatomical complexity of the structures. Here, we
may also observe the influence of the overfitting issue on the final
segmentation result in the coronal view. This failure is due to the
model hardly distinguishing between background and AAA structure
due to low contrast.

Figure 6.7 shows 3D visualization of the best and the worse AAA
segmentation cases obtained using our proposed 3D U-Net architecture
with residual blocks in the encoding pathway and deep supervision in
the decoding pathway.

6.4.1 Comparison with Other Methods
In Table 6.2, we compare the average obtained DSC of the proposed
method to the current state-of-the-art that deals with AAA segmen-
tation. Our method produces comparative results and shows higher
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Figure 6.6: An example of obtained AAA segmentations. Top row:
an original image. Middle row: ground truth. Bottom row: obtained
segmentation predictions.

DSC overlap for AAA segmentation than the current state-of-the-art.
Nevertheless, a few things need to be addressed. The main downside
of our approach is that we, in lack of different, publically available
datasets, train on already cropped images within the AAA ROI, while
the state-of-the-art methods use full cardiac CTA images. Compar-
ison to the state-of-the-art may not be fully adequate as the rest of
the methods, besides segmentation, deal with AAA ROI detection.
Therefore, the training on our dataset was much easier.
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Figure 6.7: 3D visualization of the AAA results of the CT test datasets.

Figure 6.8: Comparison between ground truth and obtained AAA
segmentations. Top row: an original AAA images with GT overlay.
Bottom row: AAA images with obtained segmentation predictions.

Table 6.2: Comparison of proposed method with the state-of-the-art

Method Authors Average DSC
Active contours + Lareyre et. al [94] 0.88 ± 0.12
thresholding
Deep AAA Lu et. al [106] 0.873 ± 0.129
Adapted DetectNet + FCN +
Holistically-Nested Linares et. al [100] 0.82 ± 0.07
Edge Detection Network
U-Net with small Zheng et al. [183] 0.824 ± 0.131
training dataset
3D U-Net Proposed method 0.9103 ± 0.156
with deep supervision
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6.5 Conclusion
The risk of aneurysm rupture is a critical unmet requirement in the as-
sessment of AAA disease. The first step in providing such an assessment
is in obtaining precise aneurysm segmentations. This segmentation
method enables a more detailed examination of the AAA, which may
aid in more precisely estimating the rupture risk.

In this chapter, we presented our proposed method for AAA seg-
mentation. The proposed network relies on a modified 3D U-Net
architecture. We introduce residual connections in the encoder path-
way and deep supervision in the decoder pathway. Here, encoding
units capture context information while decoding units restore details
and spatial dimensions to enable pixel-wise classification. We train
four different architectures: (1) 3D U-Net network architecture, (2) 3D
U-Net with residual blocks in encoder pathway (3D U-Net RE), (3)
3D U-Net with deep supervision (3D U-Net DS), and (4) 3D U-Net
with residual blocks in an encoder pathway and deep supervision in
decoder pathway (3D U-Net RE+DS). All four networks are trained
from scratch. In this way, we demonstrate the effect of residual units
and deep supervision for this particular clinical application. To increase
the robustness of the results, all four networks are trained, validated,
and evaluated on 19 pre-operative CTA volumes from different patients
using a 4-fold cross-validation approach. In the first experiment, we
train the original 3D U-Net, which we use as a baseline. In the second
experiment, we add residual connections into the 3D U-Net encoding
pathway to explore the benefits of shortcut connections. This modi-
fication improved results by 2.36%. In the third experiment, we add
only deep supervision to our baseline. This modification showed a vast
improvement of 12.7% DSC in comparison to the original 3D U-Net.
In the final experiment, our proposed solution for AAA segmentation -
3D U-Net with residual connections in the encoder pathway and deep
supervision in the decoding pathway obtains a DSC of 91.03%. This
shows an improvement of 16.5% in comparison to the baseline 3D
U-Net architecture. Finally, we compared obtained results to state-of-
the-art methods. We obtained a DSC of 91.03% using a modified 3D
U-Net with deep supervision. Overall, results obtained with modified
3D U-Net with deep supervision show much higher DSC than those
obtained using the original 3D U-Net.
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Conclusion

7.1 Conclusion
Recent advances in medical imaging have been facilitated by the
widespread application of deep learning techniques. Supervised machine
learning with CNNs has been a major driver of this change. Typically,
CNNs work with images and produce a single prediction per image
pattern, such as an image class label or disease burden quantification.
FCNs, similar networks to CNNs, are also commonly used. They
predict values for each pixel or voxel rather than a single value for the
entire image. Precise segmentation models can provide fast and reliable
quantification of tissue volume, eliminating the need for tedious manual
labeling. These networks have a large number of parameters that can
be optimized or trained by frequently providing training patterns and
changing the network parameters to reduce the discrepancy between
the expected and desired output values.

This thesis introduced one theoretical improvement of deep learning
mechanisms by introducing a novel connectivity structure of resid-
ual units. Further, we introduced a series of deep-learning methods
for heart and heart chambers segmentation. We focus on improv-
ing deep learning segmentation methods for whole heart segmenta-
tion, bi-ventricle and myocardium segmentation, and abdominal aortic
aneurysm segmentation. Different cardiovascular structures are cho-
sen to show the applicability of the deep learning methods to various
segments of the cardiovascular system. Although cardiac images have
been chosen as a target organ for analysis, the proposed methods can
be applied to any other organs and image modalities. In this chapter,
we first review our main contributions and then outline a few directions
for future research.
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7.1.1 Review of our Contributions
This Thesis developed new, robust, and accurate methods for cardiac
image segmentation and analysis. This Thesis focuses on improving
deep learning-based cardiovascular segmentation methods for whole
heart segmentation, bi-ventricle, myocardium segmentation and quan-
tification, and abdominal aortic aneurysm segmentation. During the
literature review, we have determined that there is still a need to
improve the performance of deep neural networks while maintaining
high accuracy in medical segmentation tasks. Since common obstacles
in training deeper neural network architectures are the appearance of
vanishing gradients, accuracy degradations and extensive parameter
growth that lead to computationally expensive models, we mainly focus
on developing methods that would help alleviate previously mentioned
problems.

In Chapter 4, we introduced a novel connectivity structure of residual
units named feature merge pre-activation residual units (FM-Pre-
ResNets) that allow the creation of distinctly deeper models without
an increase in the number of network parameters compared to the
pre-activation residual units. FM-Pre-ResNets adds the two additional
convolutional layers at the top and the bottom of the pre-activation
residual block. The top convolution layer balances the parameters of the
two branches while the bottom layer reduces the channel dimension. In
this way, it is possible to construct a deeper model with similar or fewer
parameters than the original pre-activation residual unit. After that,
we incorporate new FM-Pre-ResNets into a new 3D encoder-decoder
architecture based on FM-Pre-ResNets and variational autoencoder
(VAE) is proposed for the task of segmenting the entire heart from
CT and MR images. Here, FM-Pre-ResNet units are used to learn a
low-dimensional representation of the input during the encoding stage.
Following that, the variational autoencoder (VAE) reconstructs the
input picture from the low-dimensional latent space, ensuring that
the model weights are strongly regularized while also avoiding over-
fitting on the training data. The decoding stage generates the final
segmentation of the complete heart.

In Chapter 5 we present modified 3D U-Net architecture that incor-
porates SERes blocks into 3D U-Net architecture (3D SERes-U-Net)
for the task of LV, RV, and Myo segmentation and quantification.
The SERes blocks incorporate channel-wise squeeze and excitation
operations into residual learning. An adaptive feature re-calibration
ability of squeeze and excitation operations boosts the network’s repre-
sentational power, while feature reuse utilizes effective learning of the
features, which improves segmentation performance.

In Chapter 6, we present a modified 3D U-Net architecture with
the addition of residual units in the contracting pathway and deep
supervision in expanding pathways for the task of an abdominal aortic
aneurysm segmentation. The addition of residual units in the contract-
ing pathway preserves information. It significantly increases network
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performance, while the addition of deep supervision in expanding
pathway inject gradient signals deep into the network.

In this Thesis, cardiac images have been chosen as a target organ for
analysis; however, the proposed methods can be applied to any other
organs and image modalities.

In terms of publications, so far this work resulted in two journals
in the Science Citation Index Expanded (SCIE), one journal in the
Emerging Sources Citation Index (ESCI) and five proceedings of in-
ternational conferences (as a first author). Additionally, the research
work during this thesis that contributions to other people’s work (as a
co-author) resulted in the two journals in the Science Citation Index
Expanded (SCIE), and five proceedings of international conferences.
To summarize, the work conducted during this Thesis resulted in 5
journal publications (of which 3 as the first author), 10 papers are
published at international conferences (of which 5 as the first author),
and 1 publication in book chapters (as co-author).

7.1.2 Future Research
The research presented in this thesis opens up several directions for
future work. First, medical images, such as those from CT or MRI,
are often very large. Spatial 3D data naturally requires 3D models,
which consume a large amount of GPU resources. Additional research
and development to create lightweight models for both training and
inference are needed. Second, deep learning models have high capacity
and a high degree of complexity, resulting in low generalization capacity
for outlier samples. In addition, abnormal tissues can differ significantly
in size and shape, leading to significant differences in test images. Third,
there is an increasing need to alleviate and solve key challenges for the
potential use and transition of deep learning methods into real clinical
practice.

Deep learning models usually require a large amount of annotated
samples to train neural networks. This is one of the main challenges in
applying deep learning-based methods for medical image segmentation
and analysis. Medical image datasets are usually minimal due to patient
privacy and lack of annotation by trained radiologists. Moreover, it is
challenging to acquire training samples in many real-world scenarios,
especially for cardiovascular data. To address this challenge, the
focus should be on self-supervised methods, the use of deep generative
models and the development of advanced data augmentation strategies
to enlarge the number of training samples. It is also necessary to
collaborate with different hospitals and physicians to produce as much
annotated data as possible from different clinical settings. The potential
increase in data diversity (data obtained from different imaging devices,
different ethnological groups, and geographical areas) would enable
the development of more accurate methods, accelerating the transition
of deep learning into actual clinical practice. Other constraints for
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incorporating deep learning methods into real clinical practice are
those inherent in the deep learning field, such as logistical issues in
deployment, consideration of adoption barriers and necessary route
modifications. While various clinical evaluations are conducted as
part of controlled trials and are often seen as the gold standard for
evidence production, they are not always appropriate or practical.
Additional performance indicators should be set to convey real-world
clinical relevance and be easily understood by physicians. It is critical
to conduct robust clinical evaluations that utilize criteria that are
obvious to physicians and go beyond only technical accuracy, i.e., to
include measures of quality of care. Moreover, legal regulation that
strikes a balance between the speed of innovation and the potential
for harm is necessary to guarantee that patients are not exposed to
harmful interventions or denied access to helpful advanced procedures.

Finally, although numerous methods have been developed in the
literature for segmenting the whole heart and heart chambers, they
are ineffective for images with severe CHD, which have significant
heterogeneity in heart shape and great vessel connections. In future
research, we will aim to combine the capabilities of deep learning
for processing regular structures with those of graph algorithms for
dealing with large deviations and provide a framework for segmenting
the entire heart and large vessels in congenital heart disease, as graph
matching has already shown success in a number of applications with
large deviations.
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