
SUSTAV ZA NADZOR VOZAČA POMOĆU UGRADBENE
RAČUNALNE PLATFORME

Rimal, Rajesh

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj
Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and
Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet
elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:034698

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-19

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science
and Information Technology Osijek

https://urn.nsk.hr/urn:nbn:hr:200:034698
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.etfos.hr
https://repozitorij.etfos.hr
https://zir.nsk.hr/islandora/object/etfos:3479
https://repozitorij.unios.hr/islandora/object/etfos:3479
https://dabar.srce.hr/islandora/object/etfos:3479

JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK

FACULTY OF ELECTRICAL ENGINEERING, COMPUTING AND

INFORMATION TECHNOLOGY

GRADUATE STUDY

DRIVER MONITORING SYSTEM USING AN

EMBEDDED COMPUTER PLATFORM

GRADUATION THESIS

RAJESH RIMAL

OSIJEK, 2022

Form D1: Form for appointing members to the Committee for the graduation exam

Osijek, 14 July 2022

To the Committee for final papers and graduation exams

Appointing members to the Committee for the graduation exam

Name and surname: Rajesh Rimal

Study programme, branch:
Graduate University Study Programme in Automotive

Computing and Communications

Student’s ID number:

Admission date:

D-2ACC

13 November 2020

Student’s personal

identification number:
96884439837

Mentor: Associate Professor Marijan Herceg, PhD

Co-mentor: -

Co-mentor from the company: Zvonimir Kaprocki

Head of the Committee: Associate Professor Mario Vranješ, PhD

Member 1 of the Committee: Associate Professor Marijan Herceg, PhD

Member 2 of the Committee: Associate Professor Ratko Grbić, PhD

Title of the Master’s thesis:
Driver monitoring system using an embedded computer

platform

Scientific branch:
Telecommunications and Informatics (scientific field

Electrical Engineering)

Task of the Master’s thesis:

One of the advanced driver assistance systems (Advanced

Driver Assistance System) is the driver monitoring system,

which detects driver fatigue or insufficient attention based

on images obtained from a camera mounted in the

dashboard. vehicles. Such systems, using algorithms

developed in the field of computer vision, identify a person,

estimate the position of the head, measure the duration of

closed eyelids, frequency of yawning, etc., and based on the

obtained results give an appropriate warning (e.g., sound

signal together with a message on the screen dashboard). As

part of the thesis, it is necessary to first design such an

algorithm on a personal computer and then implement it on

a suitable computer platform with a corresponding camera

(NVIDIA Jetson Nano, Raspberry Pi, etc.). Furthermore, as

part of the diploma work, it is necessary to carry out an

appropriate verification of the system's operation on the

basis of its own recorded video sequences obtained by

directly mounting the platform and camera in a passenger

car.

Suggested grade for the

written part (Master’s thesis):
Excellent (5)

Short explanation of the grade

pursuant to the Requirements

for evaluating final papers and

Master’s theses:

Application of knowledge and skills acquired during one’s

studies: 3 points

Achieved results related to the task’s complexity: 3 points

Clarity and coherence: 3 points

Level of independence: 3 points

Date of the mentor’s grade: 11 July 2022

Mentor's signature allowing the

student to submit the final

version to the Student

Administration Office:

Signature:

Date: 14 July 2022

STATEMENT OF ORIGINALITY

Osijek, 14 July 2022

Name and surname: Rajesh Rimal

Study programme:
Graduate University Study Programme in Automotive Computing

and Communications

Student’s ID number:

Admission date:

 D-2ACC

13 November 2020

Turnitin similarity rate

[%]:
 11

I hereby declare that the submitted Master’s thesis entitled Driver monitoring system using an

embedded computer platform was done under the mentorship of Associate Professor Marijan

Herceg, PhD

 And is my own work and that, to the best of my knowledge, it contains no sourses or resources

other than ones mentioned and ackowlegded. I also declare that the intellectual content of this

thesis is the product of my own work, except in parts where I was provided the assistance of my

mentor, co-mentor or other people which is acknowledged.

 Student’s signature:

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. LITERATURE REVIEW ... 3

2.1. Problem Statement ... 3

2.2. Previous Research and Outcomes .. 3

3. METHODS USED FOR DETECTION OF FACE, EYE, MOUTH, AND THEIR

STATES ... 7

3.1. Dataset used.. 7

3.2. Face Detection .. 7

3.3. Head Position Estimation ... 9

3.4. Eye and eye state detection .. 11

3.4.1. Eye Detection .. 11

3.4.2. Eye state detection .. 12

3.5. Mouth and Yawn Detection ... 13

3.5.1. Mouth Detection ... 13

3.5.2. Yawn Detection .. 13

4. EMBEDDED SYSTEM USED ... 15

4.1. Raspberry Pi ... 15

4.1.1. Raspberry Pi 3 Model B .. 15

4.1.2. Raspberry Pi Camera .. 16

5. ALGORITHM DEVELOPMENT AND IMPLEMENTATION 17

5.1. Objectives ... 17

5.2. DMS Algorithm.. 17

5.3. Algorithm for face detection and localization .. 20

5.4. Algorithm for Detecting Head Position ... 22

5.4.1. Calculation of Rotation Matrix and Euler angles ... 22

5.4.2. Head position detection... 23

5.5. Algorithm for Detecting Closed Eye .. 24

5.5.1. Calculation of ADR .. 25

5.5.2. Eye state detection .. 25

5.6. Algorithm for Detecting Yawn .. 26

5.6.1. Calculation of MAR .. 27

5.6.2. Mouth state detection .. 27

5.7. System Setup .. 28

6. VALIDATION AND TESTING OF PROPOSED SOLUTION 30

6.1. Test in PC ... 31

6.1.1. Reasons for FN ... 32

6.1.2. Reasons for FP .. 34

6.2. Validation in Raspberry Pi ... 36

6.2.1. Execution speed in Pi .. 36

6.2.2. Accuracy in Raspberry Pi ... 37

6.3. Comparison with PC results ... 39

6.4. Testing using Raspberry Pi Camera ... 40

7. CONCLUSION .. 44

REFERENCES .. 45

ABSTRACT ... 48

BIOGRAPHY .. 49

LIST OF FIGURES .. 50

LIST OF TABLES .. 51

LIST OF ALGORITHMS .. 52

ABBREVIATIONS ... 53

ANNEXES .. i

1

1. INTRODUCTION

According to World Health Organization (WHO), approximately 1.3 million people are dying

worldwide each year due to fatal road accidents of which most cases involved overspeeding,

reckless driving, alcohol and drug consumption, and distracted and drowsy driving [1]. In Europe,

data published by European Union (EU) show that fatalities in traffic accidents were around 19.800

in 2021 which is 5% more than in 2020 [2]. National Highway Traffic Safety Administration

(NHTSA) in the USA 2021 claimed there were about 42.915 injuries in road accidents nationwide

which is 10.5% more than in 2020 [3]. These road accidents not only cause the loss of lives but

also lifetime injuries and disabilities, property damage, and economic losses. In vehicles, for the

control of such accidents, the introduction of the driver assistance systems like anti-locking

systems, engine control systems, adaptive cruise control, driver monitoring systems, lane

detection, departure warning system, etc is increasing. These systems form the basis of the

Advanced Driver Assistance Systems (ADAS). These systems are installed in the vehicle to assist

the driver in some cases (ADAS Level 1 or Driver Assistance) or to take full control of the vehicle

and perform the driving task under all the road and environment conditions (ADAS Level 5 or Full

Automation). The ultimate goal of the ADAS is to assist the driving or take control of the vehicle

or alert the driver in dangerous situations. This system reduces the accidents caused by human

factors which are estimated to cause more than 90% of accidents [4] that include loss of control of

the vehicle due to fatigue, distraction, etc. However, only a few vehicle manufacturers have

achieved the ADAS level 3 or are conditionally automated. ADAS level 3 is the automation level

in which the dynamic driving task is performed by the automated driving system with the data

obtained from monitoring the environment. The dynamic driving task includes the task like

steering, braking, accelerating, decelerating, and monitoring the vehicle with additional tasks like

lane departure, taking a turn, using signals, responding to events, etc. Level 3 autonomous vehicle

is capable of driving in certain driving modes and in case of any incapability of the system to drive,

it expects the human driver to respond to the request of intervention [5]. The ultimate goal of these

levels is to minimize and control road accidents that are caused by human error. So, in the vehicles

that will be manufactured soon or in existing ones, if some systems that can assist or alert the driver

in unusual driving conditions are installed, then the road accidents due to driver’s action can be

reduced.

2

One of the approaches to reduce road accidents due to driver’s action is the Driver Monitoring

System (DMS) which is one of the most commonly used or will be compulsorily used in the

coming days. These systems are installed in the vehicle that monitors the series of actions or

conditions of the driver and warns the driver in case of inattention, distraction, fatigue, deprived

sleep, etc. Driving inattention is the degree of non-concentration while driving due to the use of

gadgets, fatigue, distraction, etc. Fatigue and lack of sleep cause drowsiness and driving in this

condition will be threatening. The fatigued or sleep-deprived driver can fall asleep in the middle

of long drives causing accidents that may lead to the loss of life. Also, distraction is another issue

that if not warned may lead to accidents. The DMS aims to alert the driver with continuous warning

messages and sounds if the fatigue conditions like sleepiness and nodding head down, closing of

eyes for a long time, yawning frequently, and the distraction conditions like looking sideways are

observed. If these actions are regularly observed from a camera installed on the dashboard of the

vehicle or the physiological status of the driver is regularly monitored, alerted in case of

abnormalities, or even ask the driver to stop and take rest for some time, the accidents due to

drowsiness and distractions can be reduced.

In section 2, a brief discussion of the existing methods of DMS approaches is discussed, in section

3, the dataset used and methods for detecting the face, mouth, eyes, and their states are described.

In section 4, a description of the embedded system used is provided. In section 5, the algorithms

for the individual, integrated modules of DMS, and system setup are provided. Section 6 presents

the testing results of the developed DMS algorithm in PC and Raspberry Pi and a summary is

presented in section 7.

3

2. LITERATURE REVIEW

In this section, a review of the different methods that are existing in the field of driver monitoring

is given.

2.1. Problem Statement

The concept of driver monitoring is a new feature and is only used in vehicles of some

manufacturers like BMW, Ford, General Motors, Tesla, and Subaru. Although these manufacturers

claim that their system will detect and prevent driver drowsiness and inattention, the tests

performed by the Consumer Reports team uncovered various deficits in the system and were

marked as not safe for driving [6]. The European Union and China are on their way to making

DMS mandatory in all new vehicles, while the United States is investing trillions of dollars in all-

around safer roads. A general safety regulation passed by the EU Council of Ministers mandates

the installation of all the necessary advanced safety systems in all new cars in the EU market. The

advanced safety system comprises the camera-based DMS to detect the drowsiness or inattention

of the driver and alert the driver in case of any distraction is observed. The regulation will be

implemented over four years. First, starting in 2022, the regulation is enforced on all new type-

approved cars with certain ADAS levels. However, by the end of 2026, the regulation will be

employed for all the newly produced cars of all ADAS levels. This regulation aims to avoid at

least 140.000 serious injuries by 2038. The United States on July 1st, 2020, passed the Moving

forward Act that will force the installation of the technology that detects inattentive and intoxicated

drivers in a newly produced vehicle [7]. Hence, the new types and methods of the DMS will be

coming into effect that can be an effective approach to reducing the accidents and fatalities caused.

2.2. Previous Research and Outcomes

Different approaches were discussed and presented in the previous years in the field of DMS. The

various existing methods are presented in [8] for the DMS. The first method is the subjective

method in which sleepiness is measured by different surveys, questionnaires, tests, and

electrophysiological measures, and the obtained data is interpreted to predict the factors that are

leading to a vehicle accident. These data provide the means for other methods to focus while

detecting and preventing factors that are related to the driver's drowsiness. The second method is

the physiological method which provides a more objective method to measure the drowsiness level

4

by measuring the physiological signals from the human body like electrocardiogram (ECG),

electroencephalogram (EEG), and electrooculogram (EOG). This method is more reliable and

accurate compared to other methods, however, using it in a real-time application in the vehicle is

difficult and more intrusive for drivers. The third method is the vehicle-based method which

includes the subjective analysis of data based on real pieces of evidence like accident reports,

driver survey reports, police reports, etc. following the event and suggests the typical driver’s and

vehicle’s behavior during these events exhibit certain characteristics. These characteristics imply

that a vehicle involved in an accident driven by a drowsy driver yields distinct driving patterns that

can be measured and then used to detect a possible drowsy driving situation. The next one is the

behavioral approach which includes the detection of the face of the drivers, their eyes, and their

mouth to predict the abnormalities of the driver based on their state. The states may be face

detected or not, turned up/down/left/right/forward, opened or closed eyes and mouth. The final

method is a hybrid that includes the fusion of different methods. The most common approach is

the behavioral method where different methods are used to detect the face, eyes, and mouth and

algorithms for detecting their states and behaviors.

In [9], the authors have proposed a face detection method based on the Viola-Jones (VJ) algorithm

that is widely used in many applications including DMS. The authors presented an approach to

develop the face detection method that was about 15 times faster than the other methods existing

at that time. The algorithm is based on selecting the Haar Features, creating an integral image,

AdaBoost training, and cascading classifiers. Although the VJ detector is widely used due to its

fast detection speed, effective feature selection, and invariance on scale and location, it possesses

some disadvantages also. For example, VJ detectors cannot detect the rotated face, they are

sensitive to lighting conditions, and can detect the front face only.

In [10], a real-time face detector is developed with higher accuracy and real-time speed known as

FaceBoxes. The main advantage of this method is a real-time execution speed that can be achieved

on the central processing units (CPU). The method is using the convolutional neural network

(CNN) with two types of convolutional layers; Rapidly Digested Convolutional Layer (RDCL)

and the Multiple Scale Convolutional Layers (MSCL) with two and four convolutional layers in

each type respectively. Additionally, the anchor densification strategy contributes to making this

method efficient and accurate in CPUs. This method claims to have the accuracy of 98.91% and

5

96.30% in Annotated Faces in-the-wild (AFW)[11] and PASCAL face datasets respectively with

20 frames per second (fps) for video graphics array (VGA)-resolution i.e. 640 x 480 images in

CPU and 125 fps in the graphical processing unit (GPU).

In [12], the authors have presented a method known as a single-shot multibox detector (SSD) for

object detection with a CNN to produce a fixed-sized gathering of bounding boxes and score if the

objects are present in those boxes followed by non-maximum suppression to finally detect the

objects. It uses visual geometry group (VGG)-16 as a base network but other networks also can be

used. A similar approach to detecting the face can be applied if a model is trained on the face

datasets. The main drawback of this method is that it cannot detect small objects and needs a larger

number of data to train the model.

In [13], a deep learning approach to the detection and alignment of the face is proposed. The

multitask cascaded neural network (MTCNN) model of three stages is proposed which works for

face detection and alignment with higher accuracy. The three stages of this model are proposal

network (P-Net) to obtain candidate face window and approximate bounding box regression

vectors, refine network (R-Net) to refine the windows and sort out the false one, and O-net to

finally obtain the bounding box and five facial landmark positions. The speed of this method was

obtained to be 99 fps in GPU for VGA-resolution images and only 16 fps on 2.60GHz CPU.

A solution named MediaPipe FaceMesh that detects the face at first and extracts the 468 facial

landmarks points are proposed in [14]. This solution is developed by Google and designed to work

in smartphones, CPU, and GPU devices. It uses the machine learning algorithms to first detect the

face based on BlazeFace [15], crops and inputs the detected face to the face landmark model and

extracts the facial landmarks from the facial surfaces based on [16]. This method aims to achieve

high performance in devices with both CPU and GPU.

In [17], the author provided the Dlib model trained to detect and identify 68 facial landmarks using

Dlib’s pre-trained facial landmark predictor. There are two shape predictor models with one

localizing 68 and the other 5 facial landmark points. These models are trained in the i-Bug 300 W

dataset [18]. The detection is based on the Histogram of Oriented Gradients (HOG).

The authors in [19] provided the method of the detection of the blinks using facial landmarks. This

paper suggested eye aspect ratio (EAR) as a measure of determining the state of the eye i.e. whether

6

it is closed or open. EAR is the ratio of the height and the width of the eye. The EAR is assumed

to be constant when it is open and almost close to zero when it is closed. In [20], the authors have

also used a similar concept to determine the state of the eye. This method involves the detection

of the eye’s region, illumination normalization, binarization with adaptive thresholding,

calculating the ratio of height to width of the binarized eye, and cumulative difference in the

number of black pixels of the binarized eye region in successive frames. The blink is detected by

combining the above-discussed method based on a support vector machine (SVM).

In [21], the authors have presented the DMS in which the facial expression of the driver is captured

through the video sequences using a camera placed on the dashboard. The face and eyes were

detected using pre-trained detectors based on the VJ algorithm. The algorithm monitors the

detected face and eyes to estimate the normal positioned head and eye state. A separate pre-trained

detector was used to detect the left and right turn of a face.

In [22], the authors have also used the Viola-Jones algorithm to detect the face at first, then localize

the facial points, and then construct the 3D model of the face based on the 2D localized points to

estimate the head position. Different methods like simultaneous modeling and tracking (SMAT)

were used to localize the 2D points and point iterative pose estimation (POSIT) and random

sampling and consensus (RANSAC) were used to construct the 3D model from the localized

points. The 3D model developed is used to estimate the pose of the driver. Also, the Percentage of

Closure (PERCLOS) parameter was used to detect the eyes state.

The authors in [23] have developed their CNN classification model that detects the state of the eye

and decides if the driver is drowsy or not. The model is developed by using the dataset of 48.000

eye images from the MRL eye dataset [24] from Kaggle and training datasets under a CNN model

based on ResNet architecture with three convolutional layers. For detecting the eye state in real-

time, the eye region is detected and localized using the Google MediaPipe detector from each

frame captured by the webcam, cropped, and fed to developed CNN to detect the eye state whose

accuracy was obtained as 95%.

7

3. METHODS USED FOR DETECTION OF FACE, EYE,

MOUTH, AND THEIR STATES

In this section, the methods that are used in this thesis will be discussed. In particular, the datasets

used, detectors for face, eye, and mouth, and their states will be described and discussed.

3.1. Dataset used

Three different datasets for Driver monitoring were analyzed. The first dataset used is DMD

(Driver Monitoring Dataset) [25], created within the framework of the Vision Inspired Driver

Assistance System’s (VI-DAS) project led by Vicomtech, which is an organization working on

applied research in digital technologies. This dataset consists of 20 videos taken from the camera

in the driver’s dashboard and has 4 different male individuals. Next is the YawDD [26] dataset

which consists of 29 videos taken from the camera installed in a driver’s dashboard, has both male

and female, and each video contains actions like driving silently, yawning, eyes closing, talking,

etc. The third dataset is DrivFace [27] which contains images of 4 individuals driving in real-time

and has 2 males and females each. The total sample in this dataset is 606. The detailed comparison

of the dataset is shown in Annex I.

3.2. Face Detection

For face detection, detectors like FaceBoxes, SSD, MediaPipe FaceMesh, MTCNN, DLib, and VJ

algorithm are used and compared. The performance of each detector is based on the time needed

to detect a face in each frame and the accuracy of detection of the face. At first, all the detectors

were run where Dlib, MTCNN, and VJ were slower compared to other detectors. So, the accuracy

was not calculated for these detectors. The accuracy of the detector is measured using parameters

like precision, recall, and F1-Score. The detector with the highest F1-Score will be the most

accurate. The precision, recall, and F1-Score are calculated as shown in equations 3.1 to 3.3.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

3.1

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

3.2

8

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =

2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

 3.3

where TP represents true positives, FP represents false positives and FN represents false negatives.

Based on the time taken to detect a face in each frame and the F1-Score, MediaPipe FaceMesh is

selected for the face detection of the driver which is shown in Table 3.1.

Table 3.1 Comparison of face detectors based on F-1 score and time to detect face

Detectors Dataset

Name

Frames Time per

Frame

(ms)

TP FP FN Precision Recall F1-

Score

FaceBoxes YawDD 64593 37.736 64586 0 0 1.0000 1.0000 1.0000

DMD 38574 38.236 38471 55 7 0.9986 0.9998 0.9992

SSD YawDD 64593 26.685 63314 0 1272 1.0000 0.9803 0.9901

DMD 38574 31.993 30299 19 8184 0.9994 0.7873 0.8808

MediaPipe

FaceMesh

YawDD 64593 9.114 64564 0 22 1.0000 0.9997 0.9998

DMD 38574 7.098 38383 0 104 1.0000 0.9973 0.9986

Dlib YawDD 26166 175.4 - - - - - -

VJ YawDD 26116 41.518 - - - - - -

MTCNN YawDD 2741 943.635 - - - - - -

The MediaPipe FaceMesh has a high speed and high accuracy in CPU-based devices. The main

advantage of using this method over other methods is its high speed, and good accuracy, and most

important, it localizes the facial points after detection. Unlike other detectors, it is not needed to

use a separate different detector to localize the facial points. The MediaPipe FaceMesh is an end-

to-end neural network-based model that estimates 468 3D facial points in real-time. Only with the

use of a single camera and without the need for a depth sensor, these 3D facial points are estimated.

The input to the model is the RGB frame from a camera or a stream of frames. From the frame,

the face is detected using the BlazeFace [15]. The BlazeFace detector is a lightweight detector that

produces the face bounding box with several landmarks like eyes center, nose tip, etc. These

landmarks are used to align the face bounding box rectangle horizontally with the line joining the

center of the eyes. The rectangle bounding box is cropped from the original image and resized

9

from 256x256 in the full model to 128x128 in the smallest model. This will be the input for the

mesh prediction which produces the vector of 3D landmark coordinates.

For the mesh prediction, the model uses the straightforward residual neural network architecture.

In first layers, the more aggressive subsampling is used and the majority of the computation is

dedicated to its shallow part i.e. the layers closer to the input layer. As a result, the neurons'

receptive fields begin to cover large areas of the input image comparatively early. When such a

receptive field reaches the image boundary, the model can rely on its relative location in the input

image (due to convolution padding). As a result, the neurons in the deeper layers are likely to

distinguish between mouth-relevant and eye-relevant features. This leads to the construction of a

high-level and low-dimensional mesh representation. Thus, a mesh is turned into the coordinates

in the last few layers of the network. The training of this model is done in the 30K in-the-wild

mobile camera photos taken using different sensors in different lighting conditions.

In Figure 3.1, the results of the MediaPipe FaceMesh algorithm are shown.

3.3. Head Position Estimation

Head position estimation is the determining the position or orientation of the head with respect to

the camera. The head position estimation used in this thesis is based on the Perspective-n-Point

(PnP) concept. If the camera is placed at a fixed position, there are two types of motion of an object

2.2

 (a) (b)

Figure 3.1: FaceMesh face detection [26] (a - Original Image, b – Image of detected face in the green

bounding box and 468 localized facial landmarks in red dots)

10

with respect to the camera; translation motion i.e. moving the object from its current 3D location

(x, y, z) to some new 3D location (x', y', z'), and rotational motion where the object can rotate about

camera’s X, Y and Z axes that can be represented by Euler angles (roll, yaw, and pitch) which is

shown in Figure 3.2. In this thesis, the head position is calculated only based on the yaw and pitch

of the head from a normal position. The normal position is the position where the driver looks

forward towards the road. The yaw is the turn of the head in the left and right direction while the

pitch is the turn of the head in the up and down direction and the roll is the turn of the head in the

down-right or down-left direction.

Figure 3.2 Head orientation showing pitch, roll, and yaw movements [28]

If the two coordinates system are available i.e. 2D coordinates (u,v) from the image plane and 3D

world coordinates (x, y, z), then using the intrinsic parameter of the calibrated camera, the

rotational and translational vectors, also known as extrinsic parameters, are calculated. The PnP

problem is governed by Equation 3.4.

𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 𝛾 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑡1

𝑡2

𝑡3

] [

𝑥
𝑦
𝑧
1

]

3.4

Where u and v are the coordinates of the image plane, fx and fy are the focal length of the camera,

𝛾 is the skew parameter, u0 and v0 are the principal points, and s is the scale factor for the image

point as the depth is unknown. The r11 to r33 and t1 to t3 are the required rotational and translational

vector elements. The rotational vector is converted into a rotational matrix and from the obtained

rotational matrix, Euler angles can be obtained as pitch (θ), yaw(ψ), and roll (φ) of a driver. The

rotational matrix obtained is in the form represented by Equation 3.5. Also, the rotations of ψ, θ,

11

and φ radians about the 3 principle axes X, Y, and Z can be defined by standard definitions as

represented in Equations 3.6 to 3.8 respectively.

𝐑 = [
𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

]

3.5

𝐑𝐱(𝛙) = [
1 0 0
0 cos ψ − sin ψ
0 sin ψ cos ψ

]

3.6

𝐑𝐲(𝛉) = [
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

]

3.7

𝐑𝐳(𝛗) = [
cos φ − sin φ 0
sin φ cos φ 0

0 0 1
]

3.8

Where R is the obtained rotation matrix, Rx(ψ), Rx(θ), and Rx(φ) are the rotation about the X, Y,

and Z-axis respectively. By equating the elements of the rotation matrix R with the elements of the

dot product of Equations 3.6, 3.7, and 3.8, the Euler angles can be calculated.

3.4. Eye and eye state detection

3.4.1. Eye Detection

The eye-detection method used in this thesis is also based on MediaPipe’s Face Mesh. Once the

face is detected and localized, out of 468 3D facial points, 16 points are used to locate each eye.

The facial points that surround the left eye are 33, 246, 161, 160, 159, 158, 157, 173, 133, 155,

154, 153, 145, 144, 163, 7 and the right eye are 362, 398, 384, 385, 386, 387, 388, 466, 263, 249,

390, 373, 374, 380, 381, 382. Once these points are located its will be used in further processing

of the frames for the driver monitoring algorithm. The detection of the eyes and the localization of

the points that surrounds the eyes is shown in Figure 3.3.

12

Figure 3.3: Detected eyes in green bounding boxes and localized pink points [26]

3.4.2. Eye state detection

The eyes state detection is based on a similar concept as EAR, but here the area of the eyes and

the distance between them is used as input parameters. This method for detection of the eye state

is also scale-invariant as the EAR method. The eye facial points are used to calculate the area over

the distance ratio (ADR) value in each frame. The ADR is calculated using the formula stated in

Equation 3.9.

𝐴𝐷𝑅 =
√𝑆1 + √𝑆2

2 ∗ 𝑑

3.9

where S1 and S2 represent the area of the left and right eye respectively and d represents the

distance between the center of the two eyes as shown in Figure 3.4. The ADR value calculated is

compared with the threshold ADR value to detect the eye state i.e. whether closed or open.

Figure 3.4 Eye Area over the Distance calculation [26]

13

3.5. Mouth and Yawn Detection

3.5.1. Mouth Detection

Similar to eyes detection, the mouth detection method used in this thesis also uses the same facial

landmark points from MediaPipe FaceMesh. 20 facial landmarks can be obtained from the 468

points that surround the mouth. With these facial points, the mouth is detected and localized. The

facial landmarks that surrounds the mouth are 62, 183, 42, 41, 38, 12, 268, 271, 272, 407, 292,

325, 319, 403, 316, 15, 86, 179, 89, 96. The detection of the mouth and the localization of the

points that surround the mouth is illustrated in Figure 3.5.

Figure 3.5 Detected mouth in the green bounding box and localized pink points [26]

3.5.2. Yawn Detection

Yawn detection proposed in this thesis is based on the calculation of the mouth aspect ratio (MAR)

which represents the ratio of the height to the width of the mouth. It is similar to the calculation of

EAR and is calculated using the formula stated in Equation 3.10

where p0, p4, p6, p10, p14, and p16 represent the coordinates represented in (x-coordinate, y-

coordinate) of the facial landmarks that surround the mouth. Out of 20 points, only 6 are taken to

calculate the MAR value. The arrangement of those 6 points is shown in Figure 3.6.

𝑀𝐴𝑅 =
|(𝑝4 − 𝑝16)| + |(𝑝6 − 𝑝14)|

2 ∗ |(𝑝0 − 𝑝10)|

3.10

14

Figure 3.6 Arrangement of points for calculation of MAR [26]

15

4. EMBEDDED SYSTEM USED

In this thesis, the proposed DMS is implemented in Raspberry Pi.

4.1. Raspberry Pi

Raspberry Pi is a small credit-card-sized single-board computer developed by Raspberry Pi

Foundation. The first-generation Raspberry Pi Model B was launched in February 2012. It became

extremely popular due to its price (around $35) and small size. After the popularity of the first-

generation model, there were several generations of Raspberry Pi released. The board comes with

a Broadcom system on a chip (SoC) consisting integrated ARM processor (CPU) and a built-in

GPU. The processor clock speed is moving from 700 MHz to 1.4 GHz for Pi 3B+ or 1.5 GHz for

Pi 4. Secure Digital (SD) cards are used for the storage of the operating system and programs.

There are up to four USB ports and an HDMI port mounted on the board. Using GPIO pins

standard protocols such as I2C are supported. All B models have an Ethernet connection, while

the Pi 3 and Pi Zero W have Wi-Fi 802.11n and Bluetooth.

4.1.1. Raspberry Pi 3 Model B

The Raspberry Pi 3 Model B was released in 2016 with a 1.2 GHz 64-bit quad-core processor and

built-in 802.11n Wi-Fi and Bluetooth capabilities. This model is equipped with Broadcom

BCM2837 SoC with an integrated quad-core ARM Cortex-A53 CPU with a clock speed and

Broadcom VideoCore IV GPU. The RAM available is 1 GB. The network support includes 10/100

Ethernet and 2.4GHz Wi-Fi 802.11n. It is also equipped with the Bluetooth 4.1 Classic. The

available Input/Output are 4 USB 2.0, HDMI, 3.5 mm analog connection, Camera Serial Interface

(CSI), and Display Serial Interface (DSI). The board is supplied by a 5V power supply through a

USB micro connector. The board also consists of a 40 GPIO pin-header with I2C and SPI support

[29]. The image of the model used is provided in Figure 4.1

16

Figure 4.1 Raspberry Pi 3 Model B board specifications

4.1.2. Raspberry Pi Camera

The Raspberry Pi Camera module used in this thesis is a high-definition camera that is compatible

with both Raspberry Pi models A and B. This camera connects to the board via the CSI connector

with the 15-pin ribbon cable. It is a 5-megapixel camera with 2592 x 1944 still picture resolution.

The maximum image transfer rate is 1080p at 30 frames per second (fps) and 720p at 60 fps. The

additional feature includes automatic exposure control, white balance, band filter, 50/60 Hz

luminance detection, and black level calibration [30].

Figure 4.2 Raspberry Pi Camera Module

17

5. ALGORITHM DEVELOPMENT AND IMPLEMENTATION

5.1. Objectives

The main objective of this thesis is to develop a DMS in a PC environment and test it in real-time

in Raspberry Pi. This ADAS involves the system of continuous monitoring of the driver and raises

the alarm if any inattention or drowsiness is observed. Inattention in driving refers to turning

sideways and not paying attention to the road, and drowsiness refers to the condition where the

driver is fatigued and feels sleepy. The drowsiness can be measured by the frequency of yawning,

frequency of blinking the eyes, looking down for a long time, eyes closed for a long time, etc. As

a part of the graduate thesis, a behavioral method of detecting the drowsiness or inattention of a

driver is proposed. The specific objectives of the project are:

a. Develop the algorithm to detect the face, eyes, and mouth of the driver.

b. Based on the detected face, eyes, and mouth, develop the algorithm that detects the head

position (looking forward, turning left/right/up/down), the eyes state i.e. opened and

closed, and warn the driver if it is closed for a long time. Furthermore, detecting the yawing,

detecting the frequency of yawning, and warning the driver if the frequency is high.

c. Integrate the individual algorithms to develop a working DMS.

d. Implement the integrated module to the embedded system (Raspberry Pi) and test the

developed model and optimize it to run in real-time conditions.

5.2. DMS Algorithm

For detecting the face, eyes, and mouth and their states, as discussed in sections 3.2 to 3.5,

MediaPipe FaceMesh is used. The complete algorithm of DMS is shown in Figure 5.1. The DMS

takes the frame from the camera or video sequence and displays appropriate warning signs if any

abnormal behavior is detected in the driver. The system starts with loading a frame from a camera

or recorded video sequence and starts a timer. When the frames are loaded then, the first step is to

detect the face using the algorithm DETECTFACE. If the face is detected, then the facial landmark

points are localized and recorded for further use and if not, then the next frame is loaded. Also, the

face not detected counter is started and the system warns the driver with the warning message

“Face is not detected. Check and reset”. The recorded landmarks are used to calculate the pitch,

ADR, and MAR values using functions HEAD_POSITION_DATA, COMPUTE_ADR, and

18

COMPUTE_MAR respectively. The calculated values are stored till the time elapsed is less than

10 seconds. In the frame in which the time elapsed is more than 10 seconds, threshold MAR, ADR,

and face normal pitch are calculated. This is done once only exactly after 10 seconds is over.

Moreover, if the time elapsed is more than 10 seconds and the threshold is set, the algorithm detects

the head position as described using the function DETECT_HEAD_POS. If the head position is

not in normal position, the head turn timer counter is started. The timer increases time in each

frame and resets when the head is back to its normal position. If the head is turned for more than

or equal to the threshold time, then the alarm is raised as “ALARM!!! Head Turn more than

threshold time”. If the head position is in a normal state, the eyes and mouth state are detected.

The next detection is the yawn detection, where the calculated MAR in each frame is compared to

the threshold MAR. If the calculated MAR is greater than the threshold MAR, the algorithm

detects the mouth state as open. However, for a yawn to complete, the mouth should gradually

open for more than or equal to the threshold time. The yawn is detected if the mouth is found open

for consecutive frames for at least a threshold time. When in the frame the mouth is detected as

open, the yawn time counter starts and continues to increase time in the consecutive frames till the

mouth is in an open state. If the yawn last for more than or equal to threshold time, the yawn is

detected. The frequency of yawning is calculated and warned the driver with the message

“Yawning too much. Please rest” if the driver is yawning more than the predefined value. The

yawn detection is done using the function DETECT_YAWN.

Finally, the last detection involves the detection of the eyes state and warning the driver if the eye

is found closed for a long period i.e. greater than the threshold time. The function

DETECT_EYE_LONG_CLOSED is used to detect eye state and raise a warning if needed. The

ADR value in each frame is compared to the threshold ADR and the eye state is detected as closed

if the ADR value is less than the threshold. The eye close counter is started which only resets if

the eye is in an open state. So, if the eye is found closed in a close state for more than Threshold

Time, then the alarm is raised as “Eye Closed more than threshold time”

19

20

Figure 5.1 DMS flow chart

5.3. Algorithm for face detection and localization

The function DETECTFACE takes a frame from the video sequence, detects the face if there is

any, and localizes the facial points. Furthermore, it also consists of a branch that checks the

condition of the setup is complete or not. If the setup is complete, the function

DETECT_HEAD_POS is called to detect the head position. If the head position is normal,

21

DETECT_YAWN and DETECT_EYE_LONG_CLOSED are called for detection of eye closure and

yawn. The brief working of the algorithm DETECTFACE is given in Algorithm 1.

Algorithm 1 Face detection and localization

Algorithm 1: DETECTFACE

Input : The individual frame from the video sequence

Output : Detected face with landmarks coordinates if the face is available

begin

1 idxLeftEye ←[33, 246, 161, 160, 159, 158, 157, 173, 133, 155, 154, 153, 145, 144, 163,

7]

2 idxRightEye ←[362, 398, 384, 385, 386, 387, 388, 466, 263, 249, 390, 373, 374, 380,

381, 382]

3 idxMouth ← [62, 183, 42, 41, 38, 12, 268, 271, 272, 407, 292, 325, 319, 403, 316, 15,

86, 179, 89, 96]

4 startTime ← time.time()

5 cap ← cv2.VideoCapture (FilePath) (“0” for camera)

6 while True:

7 ret, image ← cap.read()

8 if not ret:

9 break

10 else:

11 image ← cv2.resize(image,(640,480))

12 results ← face_mesh.process(image)

14 if results.multi_face_landmarks:

15 for face_landmark in result.multi_face_landmark:

16 landmarks ← load landmark coordinates (x,y,z)

17 eyes_left ← calculate coordinates of the left eye as per idxLeftEye

18 eyes_right ←calculate coordinates of the right eye as per idxRightEye

19 mouth ← calculate coordinates of mouth as per idxMouth

20 MAR ← CALCULATIONS.COMPUTE_MAR(mouth)

21 ADR ← CALCULATIONS.COMPUTE_ADR (eyes_left,

eyes_right)

22 pitch, yaw, roll ← HEAD_POSITION.HEAD_POSITION_DATA

(image.shape, landmarks)

23 if (time.time()-startTime)< self.setup_time:

24 YAWN_DETECTOR.SETUP_MAR(MAR)

25 EYE_LONG_CLOSED_DETECTOR.SETUP_ADR (ADR)

26 HEAD_POSITION.SETUPPITCH(pitch, yaw, roll)

27 else:

28 text = HEAD_POSITION.DETECT _HEADPOS(image,

pitch, yaw, roll, frame_count, threshold)

 if text == “Normal Position”:

29 EYE_LONG_CLOSED_DETECTOR.

DETECT_EYELONGCLOSED(image, ADR, frame_count, threshold)

22

30 YAWN_DETECTOR.DETECT_YAWN (image, MAR,

frame_count, threshold)

31 else:

32 print(“Face Not Detected”)

end

5.4. Algorithm for Detecting Head Position

The head position detection is based on the PnP concept and involves the coordinates of the face

from the image plane, the real 3D coordinates of the face, and the camera intrinsic parameters. The

OpenCV’s solvePnP function is used to calculate the rotational matrix, from which Euler’s angles

are calculated and compared to the threshold to warn the driver if any abnormal position of the

head is found.

5.4.1. Calculation of Rotation Matrix and Euler angles

For the calculation of the rotation vector using solvePnP for each frame, 36 points scattered around

are chosen for which the coordinates (u,v) from the image are obtained. The 3D coordinates are

obtained from the generic face model proposed by MediaPipe licensed under Apache License,

Version 2.0. The 3D coordinates (x, y, z) are obtained for the same 36 landmark points as in the

image plane. The next parameter in solvePnP is the camera matrix and distortion matrix. The

camera matrix is given by the intrinsic camera parameters as stated in Equation 3.4. The focal

lengths fx and fy are calculated as the width of the image frame, a skew parameter 𝛾 is set to 0, and

principal points u0 and v0 are calculated as half of the width and height of the image frame

respectively. The camera matrix is given by Equation 5.1.

𝐶𝑎𝑚𝑒𝑟𝑎 𝑀𝑎𝑡𝑟𝑖𝑥 = [
𝑤 0 𝑤/2
0 𝑤 ℎ/2
0 0 1

]
5.1

where w and h represent image width and height respectively. The second matrix, the distortion

matrix consists of the coefficients which are assumed to be zero. These coefficients are considered

zero assuming the camera used has no distortion. After all the parameters of the solvePnP are

known, the calculation returns rotation and translation vector. The rotation vector is converted to

a rotation matrix using OpenCV's Rodrigues function. From the rotational matrix, 3 angles are

obtained using OpenCV's RQDecomp3x3 function. This function calculates the Euler angles

23

described in section 3.3 The obtained angles are pitch, yaw, and roll respectively measured in

degrees. The calculation of these angles is shown in Algorithm 2

Algorithm 2 Calculation of Pitch, Yaw, and Roll

Algorithm 2: HEAD_POS_ESTIMATOR.HEAD_POSITION_DATA

Input : Facial landmarks (landmarks)

Output : Calculated pitch, yaw, and roll

begin

1 height, width ← image.shape()

2 camera_matrix ← [width, 0, height/2],

 [0, width, width/2],

 [0, 0, 1]]

3 dist_matrix ← 4x1 null matrix

4 metric_landmarks, pose_transform_mat ← get_metric_landmarks (landmarks.copy(),

pcf)

5 model points ← calculate 36 3D coordinates from metric_landmarks

7 image_points ← calculate 36 2D coordinates from landmarks

8 success,rVec, tVec ← cv2.solvePnP (model_points, image_points, camera_matrix,

 dist_matrix, flags=cv2.SOLVEPNP_ITERATIVE)

9 rotationMatrix, jac ← cv2.Rodrigues(rotation_vector)

10 angles, mtxR, mtxQ, Qx, Qy, Qz ← cv2.RQDecomp3x3(rotationMatrix)

11 pitch, yaw, roll ← angles[0], angles[1], angles[2]

12 return pitch, yaw, roll

end

5.4.2. Head position detection

Once, calculating the pitch, yaw and roll are done, the next task is to estimate the position of the

head of the driver based on these 3 values. When the camera is straight in front of the driver, the

normal yaw and roll angles are considered as 00. The left or right turn indicates the value of yaw

less than 00 (negative values) or more than 00 (positive values) respectively. Similarly, the down-

left or down-right indicate the value of roll less than 00 (negative values) or more than 00 (positive

values) respectively. However, the normal pitch of the face depends on how high the face is from

the camera. To know the normal pitch of the face, the algorithm runs for 10 seconds before the

detection of position starts. After 10 seconds the algorithm estimates the normal pitch value of the

driver and sets the threshold for all kinds of turns. The criteria of the head position estimation are

checked in each frame and positions are estimated as listed in Table 5.1.

24

Table 5.1 Head position estimation conditions

Position Criteria

Left Turn Yawcurrent_frame <= -350

Right Turn Yawcurrent_frame >= 350

Down-Left Turn Rollcurrent_frame <= -350

Down-Right Turn Rollcurrent_frame >= 350

Up Turn Pitchcurrent_frame <= Normal pitch - 350

Down Turn Pitchcurrent_frame >= Normal pitch + 350

Normal Position Looking forward and all the above conditions are false.

Once the driver’s head position is detected other than in normal position, the timer counter starts

and if the head is turned continuously even after Threshold Time as calculated in Equation 5.2, the

algorithm produces the alarm “ALARM!!! Head Turn more than threshold time”. The algorithm

stops the warning, and timer counter and resets it when the head position is found in normal

position.

Where AverageFPS represents the mean value of fps observed during the setup period and F is the

factor that should be known by the user so that Threshold Time is always approximately equal to

2 seconds.

5.5. Algorithm for Detecting Closed Eye

The algorithm is based on the calculation of ADR as Equation 3.9 and its comparison to the

threshold value of ADR to determine whether the eye is in an open or closed state. The open eye

will have the maximum ADR value and the closed eye will have the minimum ADR value close

to zero. This concept is used to estimate the state of the eye. If the eye is in a closed state, the

algorithm then starts the time counter. If the eye is closed for a sufficiently long time than

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑇𝑖𝑚𝑒 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑃𝑆

𝐹

5.2

25

Threshold Time from Equation 5.2, the algorithm produces the warning message “Eye Closed more

than threshold time” to the driver.

5.5.1. Calculation of ADR

In each frame, the ADR value is calculated from the 32 facial points that surround the eyes as

represented in Algorithm 3 using Equation 3.9.

Algorithm 3 Calculation of ADR

Algorithm 3: CALCULATIONS.COMPUTE_ADR

Input : Eyes facial landmarks point coordinates (16 (x,y) for each eye i.e.

leftEyeCoordinates and rightEyeCoordinates arranged in a list)

Output : Calculated ADR value

begin

1 left_eye_area ← Calculate the area of the left eye

2 right_eye_area ← Calculate the area of the right eye

3 left_eye_center ← Calculate the center of the left eye

4 right_eye_center ← Calculate the center of the right eye

5 eyes_distance ← Calculate the distance between the center of the left and right eye

7 ADR ← (sqrt(left_eye_area) + sqrt(right_eye_area)) / (2 * eye_distance)

8 return ADR

end

5.5.2. Eye state detection

For the eye state detection, the ADR value calculated in section 5.5.1 must be compared to some

threshold value. If the value of ADR is below the threshold value, the eye is declared as closed

otherwise it is open. However, setting a threshold is a problem because the ADR value depends

upon the facial structure and differs from individual to individual. To calculate the adaptive

threshold of ADR, the algorithm DETECT_FACE runs for 10 seconds (setup period) to record the

value of ADR of a person at the beginning of the program. Based on this recorded ADR, a threshold

is calculated which becomes the threshold of that individual. In case the driver is changed, the

threshold needs to be set up again. The threshold is calculated using 15% of the highest ADR

values recorded during the setup period. These highest ADR values represent the open eye state.

The threshold is calculated using the formula as represented in Equation 5.3

𝐴𝐷𝑅 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.90 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑂𝑝𝑒𝑛𝐸𝑦𝑒𝐴𝐷𝑅 5.3

26

where averageOpenEyeADR represents the average of the 15% of recorded ADR values arranged

in descending order during the setup period. This means that 15% of the data on open eye states

are used to find the average ADR value of the open eye of an individual. Then, the threshold is set

using this average ADR.

The threshold is set immediately in the next frame once the setup period is over. After this, the

ADR of each frame is compared to the threshold value. If the ADR value is less, the timer counter

starts and stops only when the eye is opened in the following frames. If the time for which the eye

is closed is greater than Threshold Time, the warning message is displayed to the driver. The eye-

long closed detection is presented in Algorithm 4.

Algorithm 4 Detection of eye long-closed state

Algorithm 4: EYELONGCLOSEDDETECTOR.DETECT_EYELONGCLOSED

Input : Calculated ADR value of each frame after the setup period is over (ADR).

Output : State of Eyes

begin

1 If is_threshold_set is False:

2 setup_adr_list.sort(reverse=True)

3 length ← len(setup_adr_list)

4 length_for_threshold ← 0.15 * length

5 threshold ← 0.90 * (sum(setup_adr_list[:length_for_threshold])/

length_for_threshold)

6 is_threshold_set ← True

7 else:

8 if ADR < threshold:

9 if close_timer_counter == 0:

10 close_timer_counter ← time.time()

11 else:

12 end_time ← time.time()

13 if end_time – close_timer_counter > time_threshold:

14 print(“Wake Up!!!!”)

15 else:

16 close_timer_counter ← 0

end

5.6. Algorithm for Detecting Yawn

The yawn detection algorithm consists of two steps where the first step is the calculation of the

MAR and the second step consist of a recording of the MAR value of the individual during the

27

setup period, calculating the threshold value, and comparing the calculated MAR value with a

threshold MAR value.

5.6.1. Calculation of MAR

In each frame, the MAR value is calculated from the 6 facial points out of 20 points that surround

the mouth as represented in Algorithm 5 using Equation 3.9.

5.6.2. Mouth state detection

For the mouth state detection i.e. open or closed, the MAR value calculated as in section 5.6.1 is

compared with the threshold value of MAR. Similar to the ADR value, the MAR also depends

upon the facial structure and hence differs from person to person. So, to set the threshold that is

adaptive to the individual, the MAR value will be recorded in the initial setup period. Once the

setup period is over, the threshold is calculated in the next frame. The threshold is calculated by

using the minimum value of MAR i.e. MAR of a closed mouth as represented in Equation 5.4

where minMAR is the minimum MAR value recorded during the setup period. If the MAR value

is greater than the MAR threshold, then the mouth is in an open state otherwise it is closed. For

yawning, the mouth has to be in an open state for at least Threshold Time seconds which is

calculated as Equation 5.2.

When the mouth is detected as open, the timer counter starts and only stops once the mouth is

detected as a closed state. If the mouth is detected open even after 2 seconds the algorithm detects

that the person is yawning. The yawn detection method is shown in Algorithm 6.

Algorithm 5 Calculation of MAR

Algorithm 5: CALCULATIONS.COMPUTE_MAR

Input : Mouth facial landmarks point coordinates (20 (x,y) for mouth i.e.

mouthCoordinates arranged in a list)

Output : Calculated MAR value

begin

1 a ← abs(dist.euclidean(mouth[4], mouth[16]))

2 b ← abs(dist.euclidean(mouth[6], mouth[14]))

3 c ← abs(dist.euclidean(mouth[0], mouth[10]))

4 MAR ← ((a + b) / (2.0 * c)) * 100

5 return ← MAR

end

𝑀𝐴𝑅 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 4 ∗ 𝑚𝑖𝑛𝑀𝐴𝑅 5.4

28

Algorithm 6 Yawn detection

Algorithm 6: YAWNDETECTOR.DETECT_YAWN

Input : Calculated MAR value of each frame after the setup period is over (MAR).

Output : State of the mouth

begin

1 if is_threshold_set is True:

5 threshold ← 4 * min(setup_mar_list)

6 is_threshold_set ← False

7 else:

8 if MAR > threshold:

9 if open_timer_counter == 0:

10 open_timer_counter ← time.time()

11 else:

12 end_time ← time.time()

13 if end_time – open_timer_counter > time_threshold:

14 print(“Yawning”)

15 else:

16 open_timer_counter ← 0

end

5.7. System Setup

The developed DMS application contains different modules like driverMonitoring.py as the main

module, faceDetect.py for face detection, and calculations.py for calculation of ADR and MAR.

Other modules include headPostionEstimation.py for estimating the head position of the driver,

faceGeometry.py which contains the 3D real-world coordinates of a generic model, and

eyeLongClosedDetection.py for detecting the eye state and raising warning if necessary. The final

module is the yawnDetection.py to detect the mouth state and yawn. The application was run on

64-bit Windows OS with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz PC environment. For the

application to run on PC, the packages like mediapipe, opencv-python, scipy, numpy, etc. are

installed. These packages are installed using the pip install <package-name> command. Then after

the DMS application can be run through the command prompt using the command python

driverMonitoring.py -f <video-path> and can be quitted by key ‘q’.

In Raspberry Pi, the installation of the packages is similar to PC using pip3 install <package-

name> except for the mediapipe package which can be installed using the command sudo pip3

install mediapipe-rpi3 for Raspberry Pi 3 and sudo pip3 install mediapipe-rpi4 for the Raspberry

Pi 4. The additional dependency packages if needed can be found in [31]. The DMS application

29

in Raspberry Pi can be run from python3 driverMonitoring.py -f <video-path> -s <skip-frames>

and can be quitted by key ‘q’. For running the application through a webcam or Pi camera, 0 is

written as an argument in place of <video-path>.

30

6. VALIDATION AND TESTING OF PROPOSED SOLUTION

The testing and validation of the proposed solution are presented in this section. After the

algorithms for each module i.e. face and head position detection, eye and eye long-closed

detection, and mouth and yawning detection are developed, the individual modules are integrated

to form a single DMS. The integrated module is tested on both the PC environment and Raspberry

Pi. The system is tested using the YawDD dataset. Altogether 15 video sequences (8 males and 7

females) with 33.218 frames of resolution 640 x 480 recorded at 30 fps are used from this dataset.

The example of the frames in this dataset is shown in Figure 6.1. The brief detail of the dataset

can be found in Annex I.

(a)

(b)

Figure 6.1 Examples of the image in the YawDD dataset [26] (a – Image from a video

sequence named 2-Female.avi, b - Image from a video sequence named 7-Male.avi) [26]

The video sequences are run and the individual frame is labeled as TN, TP, FN, and FP. The

meaning of this labeling is represented in Table 6.1. After labeling each frame, the precision, recall,

and F1 score are calculated to test the accuracy of the system. These labels are labeled by the

comparison of the original frames i.e. ground truth data with the predicted frame’s data.

Table 6.1 Labels description

Labels Description

TN Predicted a normal condition in a frame and it is correct

TP Predicted an abnormal condition in a frame and it is correct

31

FN Predicted a normal condition in a frame and it is incorrect

FP Predicted an abnormal condition in a frame and is incorrect

The normal condition represents the ordinary driving conditions like the face is present in a frame,

the eye is in a normal state i.e. not closed for a long time, no yawning, and no head turns in any

direction while driving. Whereas the abnormal condition represents the conditions like face not

present in a frame, eyes closed for a long time, yawning, and turning in either direction

(up/down/left/right).

6.1. Test in PC

In the PC environment, the overall accuracy measured in terms of the F1-Score of the system was

obtained as 0.91 as shown in Table 6.2. The F1-Score of the videos ranges from 0.56 to 1 which

means the algorithm can predict the driver's behavior in most of the videos as it was designed.

However, in some of the driver’s video sequences, the accuracy was obtained very low due to the

high number of FN or FP.

Table 6.2 PC environment test results in terms of recall, precision, and F1-score

S.No. Video Name TP TN FP FN Recall Precision F1 Score

1 1-Female.avi 511 1937 0 0 1.00 1.00 1.00

2 2-Female.avi 180 1668 0 19 0.90 1.00 0.95

3 3-Female.avi 527 2156 60 0 1.00 0.90 0.95

4 5-Female.avi 123 1516 75 119 0.51 0.62 0.56

5 6-Female.avi 442 708 157 0 1.00 0.74 0.85

6 8-Female.avi 703 1502 75 91 0.89 0.90 0.89

7 11-Female.avi 281 1015 128 0 1.00 0.69 0.81

8 1-Male.avi 420 1866 0 0 1.00 1.00 1.00

9 2-Male.avi 701 1536 85 0 1.00 0.89 0.94

10 3-Male.avi 242 1552 14 19 0.93 0.95 0.94

11 4-Male.avi 259 1429 0 43 0.86 1.00 0.92

12 7-Male.avi 338 1721 62 0 1.00 0.85 0.92

13 9-Male.avi 353 1292 111 0 1.00 0.76 0.86

32

6.1.1. Reasons for FN

FNs were observed in some video sequences where the maximum number counts during the

yawning detection and rest during head position estimation and eye long-closed detection. A high

number of FNs were observed in yawning detection as the algorithm failed to detect the yawn.

The main reasons for the FN are

• Due to the covering of the mouth during yawning. If a person starts yawning, the algorithm

starts the timer counter and notes down the start frame number. The yawn is only detected if

the person’s mouth is open as in yawning for at least 2 seconds for around 30 fps video i.e.

approximately 60 frames. If the person opens their mouth for yawning for at least or more than

2 seconds, the algorithm at the end of the yawn i.e. when the mouth is predicted as closed,

detects the person has just yawned from the start frame to the frame preceding the current

frame. However, if the person closes the mouth during yawning, the mouth is not detected after

some frames which means the mouth is in a closed state. So yawn is not detected as the timer

counter resets to zero and the yawning is not detected due to the less time between the start of

the yawn and the frame where the mouth is closed. Also, if the mouth is closed by hand from

the start of the yawing, here the algorithm predicts the normal frames, and FNs are observed

in these cases.

Similar conditions of covering the mouth with hands while yawing were observed in video

sequences named “5-Female.avi” and “8-Female.avi” as shown in Table 6.2. Figure 6.2 shows

the FNs observed when an individual from video sequence “8-Female.avi” covered her mouth

with hands during yawing and the algorithm did not predict those frames as the individuals

were yawning. The mouth was open from the 679th frame and in the 721st frame the mouth was

closed by hand and the time elapsed was only 1.57sec and couldn’t detect the yawn as the

mouth open was not detected for more than the threshold time which is almost 2 seconds.

14 10-Male.avi 355 1776 0 0 1.00 1.00 1.00

15 11-Male.avi 175 1310 47 0 1.00 0.79 0.88

Overall 5610 22984 814 291 0.95 0.87 0.91

33

(a)

(b)

(c)

(d)

Figure 6.2 FNs observed due to covering the mouth by hand [26]. (a –Yawn starts from Frame

679, b- Frame 720 where the mouth is still detected as open for 1.57 sec, c – Frame 721 where the

mouth is closed by hand and timer resets, d – arbitrary Frame 754 where the mouth is detected

open again for 0.38 sec after mouth was uncovered.

• Due to the short yawn, which is not detected by the algorithm. The algorithm starts the timer

counter but cannot exceed 2 seconds hence not labeled as yawning. This condition is observed

in a video sequence named “2-Female.avi” and “4-Male.avi”. In Figure 6.3, from 313th to 331st

frame, the mouth is detected as open i.e. approximately 1.84 seconds which is less than 2

seconds.

34

(a)

(b)

(c)

(d)

Figure 6.3 FNs observed due to short yawn time [26] (a – Yawn start from frame 313, b – Mouth

open detected for 0.67 sec at frame 320, c – Mouth open detected for 1.82 sec at Frame 330, d –

Mouth detected as closed in Frame 331 so that yawn is not detected)

• The FNs were also observed due to setting incorrect thresholds for pitch, MAR, and ADR. For

example, the algorithm calculates the threshold MAR to predict whether the mouth is open or

closed. If the threshold calculated is high then it actually should have been, the algorithm

cannot detect the yawn when an individual is yawning.

6.1.2. Reasons for FP

The algorithm detected the abnormalities in some frames when there is none. During this

condition, FPs are detected. For example, if a person is laughing and the algorithm detects it as

yawning.

35

The main reasons for the FP are:

• The FP’s in most cases were observed when an individual was laughing. During laughing the

person’s mouth is detected as open. So, if the mouth is open for more than a threshold time,

the algorithm counted it as a yawn. For instance, the video sequences “3-Female.avi”, “5-

Female.avi”, “6-Female.avi”, “8-Female.avi”, and “11-Female.avi”, “2-Male.avi”, “7-

Male.avi”, “9-Male.avi” and “11-Male.avi”. Figure 6.4 shows the yawning detected during

laughing for the video “9-Male.avi”.

(a)

(b)

(c)

Figure 6.4 FPs observed due to laughing[26] (a- Frame 1960 from which yawn is detected

as started, b – Frame 1985 after 1.37 seconds and mouth is still open, c – Person is detected

as yawning even after 3.36 sec at Frame 2019)

36

• The next reason for the FP’s is the calculation of the threshold during the setup period. If the

threshold set is very low and while comparing the calculated values with the threshold values,

the FP’s may be detected.

The execution speed of the developed DMS in the PC was not a problem, as the speed was obtained

to be 32.03 fps for VGA-resolution images and up to 60.29 fps for 160 x 120 resolution images

which can be shown in Table 6.3.

Table 6.3 Execution Speeed in PC

S.No. Video Name
Image size (640x480)

Execution Speed (fps)

Image size (160x120)

Execution Speed (fps)

1 1-Female.avi 31.88 59.44

2 2-Female.avi 33.40 63.32

3 3-Female.avi 33.47 63.42

4 5-Female.avi 32.80 61.84

5 6-Female.avi 33.59 57.11

6 8-Female.avi 33.70 61.5

7 11-Female.avi 34.73 62.26

8 1-Male.avi 30.13 61.47

9 2-Male.avi 29.80 63.3

10 3-Male.avi 30.35 55.76

11 4-Male.avi 30.92 55.83

12 7-Male.avi 31.46 60.29

13 9-Male.avi 31.65 56.97

14 10-Male.avi 31.40 60.65

15 11-Male.avi 31.20 61.17

Average 32.03 60.29

6.2. Validation in Raspberry Pi

The same set of video sequences that were tested in the PC environment is tested in Raspberry Pi.

In Raspberry Pi also, the test was considering both factors, execution speed and accuracy.

6.2.1. Execution speed in Pi

The initial speed for a 160 x 120 frame was found to be around 4-5 fps which was very low for a

system designed to be working in a real-time environment. Also, any abnormalities in the video

sequences were detected using a series of consecutive frames at a certain time which is at least 2

37

seconds. This means the decision of any abnormalities is not detected from one frame but a series

of consecutive frames. This advantage is used to speed up the execution of the video in Raspberry

Pi. During one frame the detection of the state of the eyes and the mouth, and head position is

done, and some consecutive frames are skipped where no detection is done. The state of these

skipped consecutive is ignored as this will not hamper the detection in most of the cases. In

Raspberry Pi, for the developed system to be working at least at 24 fps, 5 and 6 frames were

skipped and the testing is performed. While skipping 5 and 6 frames, the average execution speed

was obtained as 24.07 and 26.69 fps respectively which is shown in Table 6.4. The threshold time

for the detection of eye long closed or yawning or head position is calculated using Equation 5.2

where factor F is estimated as 13.5 to make the threshold time approximately equal to 2 seconds.

Table 6.4 Execution Speed in Raspberry Pi

S.No. Video Name
5 Frames Skipped 6 Frames Skipped

Execution Speed (fps) Execution Speed (fps)

1 1-Female.avi 23.96 26.35

2 2-Female.avi 24.06 26.82

3 3-Female.avi 24.18 26.78

4 5-Female.avi 24.11 26.61

5 6-Female.avi 24.02 26.43

6 8-Female.avi 24.07 26.66

7 11-Female.avi 24.21 26.65

8 1-Male.avi 23.99 26.72

9 2-Male.avi 24.04 26.79

10 3-Male.avi 24.13 26.82

11 4-Male.avi 24.12 26.84

12 7-Male.avi 24.04 26.81

13 9-Male.avi 24.00 26.73

14 10-Male.avi 24.11 26.64

15 11-Male.avi 24.03 26.70

Average 24.07 26.69

6.2.2. Accuracy in Raspberry Pi

As described in section 6.2.1, the test in Raspberry Pi is performed in the video sequences by

skipping 5 and 6 frames to validate the model developed in the PC. Similar to the PC environment,

the F1-Score for each video sequence is calculated by labeling the frames as TP, TN, FP, and FN

respectively according to Table 6.1. The recall, precision, and the F1-score are calculated from

38

those labeling. The overall accuracy of the system measured in the F1-score was obtained as 0.91

and 0.92 while 5 frames and 6 frames are skipped respectively as shown in Table 6.5 and Table

6.6. The minimum accuracy was calculated as 0.82 and 0.69 respectively for 5 and 6 frames

skipped algorithms whereas, in some video sequences, the maximum accuracy of 1.00 was also

obtained in both cases.

Table 6.5 Raspberry Pi test results while skipping 5 frames

S.No. Video Name TP TN FP FN Precision Recall F1-Score

1 1-Female.avi 103 398 0 0 1.00 1.00 1.00

2 2-Female.avi 34 349 0 7 1.00 0.83 0.91

3 3-Female.avi 94 470 0 0 1.00 1.00 1.00

4 5-Female.avi 30 343 0 10 1.00 0.75 0.86

5 6-Female.avi 80 158 19 0 0.81 1.00 0.89

6 8-Female.avi 90 334 0 33 1.00 0.73 0.85

7 11-Female.avi 41 239 0 11 1.00 0.79 0.88

8 1-Male.avi 81 387 0 0 1.00 1.00 1.00

9 2-Male.avi 105 287 45 0 0.70 1.00 0.82

10 3-Male.avi 49 311 5 3 0.91 0.94 0.92

11 4-Male.avi 52 291 0 8 1.00 0.87 0.93

12 7-Male.avi 77 326 28 0 0.73 1.00 0.85

13 9-Male.avi 74 258 23 0 0.76 1.00 0.87

14 10-Male.avi 51 359 0 0 1.00 1.00 1.00

15 11-Male.avi 70 235 0 0 1.00 1.00 1.00

Overall 1031 4745 120 72 0.90 0.93 0.91

Table 6.6 Raspberry Pi test results while skipping 6 frames

S.No. Video Name TP TN FP FN Precision Recall F1-Score

1 1-Female.avi 83 330 0 0 1.00 1.00 1.00

2 2-Female.avi 28 286 0 6 1.00 0.82 0.90

3 3-Female.avi 81 385 0 0 1.00 1.00 1.00

4 5-Female.avi 23 271 13 8 0.64 0.74 0.69

5 6-Female.avi 61 146 1 0 0.98 1.00 0.99

6 8-Female.avi 108 255 0 24 1.00 0.82 0.90

7 11-Female.avi 44 180 10 0 0.81 1.00 0.90

8 1-Male.avi 73 310 0 0 1.00 1.00 1.00

9 2-Male.avi 81 246 30 1 0.73 0.99 0.84

10 3-Male.avi 24 263 3 12 0.89 0.67 0.76

11 4-Male.avi 44 237 0 7 1.00 0.86 0.93

39

Table 6.6 Raspberry Pi test results while skipping 6 frames

S.No. Video Name TP TN FP FN Precision Recall F1-Score

12 7-Male.avi 66 274 14 0 0.83 1.00 0.90

13 9-Male.avi 62 194 34 0 0.65 1.00 0.78

14 10-Male.avi 70 288 0 0 1.00 1.00 1.00

15 11-Male.avi 54 189 0 4 1.00 0.93 0.96

 Overall 902 3854 105 62 0.90 0.94 0.92

6.3. Comparison with PC results

The test results of the PC and the Raspberry Pi in both cases are similar for particular video

sequences. In Figure 6.5, the test results are represented by F1-Score along the y-axis and the video

sequence name along the x-axis. The x-axis label represents the video sequence name in the

abbreviated form. For example, F1 represents 1-Female.avi and M1 represents 1-Male.avi. The

difference between the F1 score in some video sequences is due to the threshold value. The

threshold value is set by the data recorded in the setup period. During this period, the ADR, MAR,

and pitch are recorded to calculate the threshold value. So, on the PC, all the frames are processed

without skipping, and in Raspberry Pi, the frames are skipped and processed. This led to the

difference in threshold value in the same video while running on the PC and Raspberry Pi. In the

Raspberry Pi also, the difference in threshold was found in some video sequences while skipping

5 and 6 frames which led to the difference in F1-Score.

40

Figure 6.5 Comparison of the F1-Score of PC and Raspberry pi

6.4. Testing using Raspberry Pi Camera

The DMS developed is finally tested in real-time using a Raspberry Pi camera. The test was

performed to demonstrate the working of the DMS inside the office. An algorithm with 5 frame

skipping is used here in testing. Figure 6.6 shows the random frame where the individual is looking

toward the camera and no abnormalities are observed. In Figure 6.7, the individual mouth started

to open from frame 1890 and the yawning is detected after 2 seconds has been elapsed in frame

1940. In Figure 6.8, some of the positions of the head are shown. The algorithm raises the warning

if the individual turns his head in any direction other than looking forward for more than 2 seconds.

Finally, in Figure 6.9, the individual’s eyes are detected as closed from frame 520, and the warning

of eye closure is raised after 2 seconds in frame 565. The warning is turned off once the person

returns to the normal position.

1.00
0.95 0.95

0.56

0.85
0.89

0.81

1.00
0.94 0.94 0.92 0.92

0.86

1.00

0.88

1.00

0.91

1.00

0.86
0.89

0.85
0.88

1.00

0.82

0.92 0.93

0.85 0.87

1.00 1.00 1.00

0.90

1.00

0.69

0.99

0.90 0.90

1.00

0.84

0.76

0.93 0.90

0.78

1.00
0.96

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

 1.10

F1 F2 F3 F5 F6 F8 F11 M1 M2 M3 M4 M7 M9 M10 M11

F1
-S

C
O

R
E

VIDEOS

Comparison of F1-Score

PC Pi 5 Frame Skip Pi 6 Frame Skip

41

Figure 6.6 Normal Frame

(a)

(b)

(c)

Figure 6.7 Yawning detection (a – Individual starts to yawn at frame 1890, b – Arbitrary frame

1915 after 1.03 secs, c – Yawning detected after 2 seconds in frame 1940)

42

(a)

(b)

(c)

Figure 6.8 Head Position Estimation (a –Turning right, b-Turning left, c- Turning down)

(a)

(b)

43

(c)

Figure 6.9 Eye long-closed detection (a - Individual close eye at frame 520, b – Arbitrary

frame 540 after 0.81 secs, c – Eye long-closed detected after 2 seconds in frame 565)

44

7. CONCLUSION

In this thesis, a DMS was developed in the PC environment and the same system was validated

using the Raspberry Pi. The implementation of this system is based on the behavioral approach of

drowsiness detection where the state of eyes and the mouth, and head position are used to detect

drowsiness or inattentiveness, regularly monitor them, and alarm in case of abnormality. The

system was created and tested using the DMD and YawDD dataset. A CNN-based model known

as MediaPipe FaceMesh was used for the face detection and localization of the facial points. The

concept of ADR and MAR is used to predict the eye and the mouth state from the facial points that

surround the eye and mouth as mentioned in Equations 3.9 and 3.10. Furthermore, the concept of

Euler angles based on the rotational matrix is used to estimate the head position from the 36 - 2D

and 3D facial points surrounding the face. The algorithm also calculates the adaptive threshold for

MAR, ADR, and mean position of a face which will vary from individual to individual. The DMS

tested on 15 video sequences of the YawDD dataset obtained the accuracy of 91% on PC and the

same tested in the Raspberry Pi, the accuracy was 91% and 92% in two cases. i.e. skipping 5 and

6 frames in the video sequence as discussed in section 6.2.2. In PC the execution speed varied

from a minimum average of 32.03 fps to a maximum of 60.09 fps. The overall execution speed

was obtained as 24.07 and 26.69 fps in Raspberry Pi. The results are satisfactory with the prospect

of further improvement in a more adaptive threshold setting in all the cases. Also, the developed

system can detect the face and facial states during the daytime or when there is enough light as the

normal RGB camera or the RGB frames of the videos during the daytime were used. This

limitation can be corrected by the use of IR cameras or night vision cameras. Similarly, the model

that can recognize the facial expression and behaviors like laughing, talking, eating,

smoking/vaping, etc. and an additional feature of gaze detection in the eyes to detect unnecessary

distractions while the use of a phone could be used in integration with this developed system to

increase the accuracy and performance of the real-time working DMS.

45

REFERENCES

[1] “Road traffic injuries,” World Health Organization, Jun. 21, 2021.

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed May 15,

2022).

[2] Directorate-General for Mobility and Transport, “Road safety in the EU: fatalities in 2021

remain well below pre-pandemic level,” Mar. 28, 2022. Accessed: Jun. 15, 2022. [Online].

Available: https://transport.ec.europa.eu/news/preliminary-2021-eu-road-safety-statistics-

2022-03-28_en

[3] National Center for Statistics and Analysis, “Early estimate of motor vehicle traffic fatalities

in 2021,” National Highway Traffic Safety Administration, Washington, DC, DOT HS 813

283, Apr. 2022. Accessed: Jun. 19, 2022. [Online]. Available:

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813283

[4] S. Singh, “Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash

Causation Survey,” National Highway Traffic Safety Administration, Washington, DC, DOT

HS 812 115, Feb. 2015. Accessed: Jun. 20, 2022. [Online]. Available:

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115

[5] SAE International and SAE J3016, “SAE International Technical Standard Provides

Terminology for Motor Vehicle Automated Driving Systems,” Oct. 02, 2014.

https://www.sae.org/binaries/content/assets/cm/content/news/press-releases/pathway-to-

autonomy/automated_driving.pdf (accessed Jun. 29, 2022).

[6] K. Barry, “Driver Monitoring Systems Can Help You Be Safer on the Road,” Consumer

Reports, Feb. 17, 2022. https://www.consumerreports.org/car-safety/driver-monitoring-

systems-ford-gm-earn-points-in-cr-tests-a6530426322/ (accessed May 15, 2022).

[7] F. Lyrheden, “Driver Monitoring (DMS) on its way to becoming mandatory in vehicles

around the world,” Smart Eye, Sep. 29, 2020. https://smarteye.se/blogs/driver-monitoring-

dms-on-its-way-to-become-mandatory-in-vehicles-around-the-world/ (accessed May 15,

2022).

[8] A. Čolić, O. Marques, and B. Furht, Driver Drowsiness Detection. Cham: Springer

International Publishing, 2014. doi: 10.1007/978-3-319-11535-1.

[9] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of

Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[10] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “FaceBoxes: A CPU Real-time Face

Detector with High Accuracy,” arXiv:1708.05234 [cs], Dec. 2018, Accessed: Jan. 28, 2022.

[Online]. Available: http://arxiv.org/abs/1708.05234

[11] Xiangxin Zhu and D. Ramanan, “Face detection, pose estimation, and landmark localization

in the wild,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition,

Providence, RI, Jun. 2012, pp. 2879–2886. doi: 10.1109/CVPR.2012.6248014.

[12] W. Liu et al., “SSD: Single Shot MultiBox Detector,” in Computer Vision – ECCV 2016, vol.

9905, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International

Publishing, 2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.

46

[13] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using

Multitask Cascaded Convolutional Networks,” IEEE Signal Process. Lett., vol. 23, no. 10,

pp. 1499–1503, Oct. 2016, doi: 10.1109/LSP.2016.2603342.

[14] Google LLC, “MediaPipe Face Mesh,” MediaPipe.

https://google.github.io/mediapipe/solutions/face_mesh (accessed Jan. 19, 2022).

[15] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grundmann, “BlazeFace:

Sub-millisecond Neural Face Detection on Mobile GPUs,” 2019, doi:

10.48550/ARXIV.1907.05047.

[16] Y. Kartynnik, A. Ablavatski, I. Grishchenko, and M. Grundmann, “Real-time Facial Surface

Geometry from Monocular Video on Mobile GPUs,” 2019, doi:

10.48550/ARXIV.1907.06724.

[17] D. King, “Dlib-Models,” Github. https://github.com/davisking/dlib-models (accessed Nov.

21, 2021).

[18] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 Faces in-the-Wild

Challenge: The First Facial Landmark Localization Challenge,” in 2013 IEEE International

Conference on Computer Vision Workshops, Sydney, Australia, Dec. 2013, pp. 397–403. doi:

10.1109/ICCVW.2013.59.

[19] T. Soukupova, “Real-Time Eye Blink Detection using Facial Landmarks,” p. 8.

[20] W. O. Lee, E. C. Lee, and K. R. Park, “Blink detection robust to various facial poses,” Journal

of Neuroscience Methods, vol. 193, no. 2, pp. 356–372, Nov. 2010, doi:

10.1016/j.jneumeth.2010.08.034.

[21] L. Masanovic, M. Vranjes, R. Dzakula, and Z. Lukac, “Driver monitoring using the in-vehicle

camera,” in 2019 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi

Sad, Serbia, May 2019, pp. 33–38. doi: 10.1109/ZINC.2019.8769377.

[22] L. M. Bergasa, J. M. Buenaposada, J. Nuevo, P. Jimenez, and L. Baumela, “Analysing

Driver’s Attention Level using Computer Vision,” in 2008 11th International IEEE

Conference on Intelligent Transportation Systems, Beijing, China, Oct. 2008, pp. 1149–1154.

doi: 10.1109/ITSC.2008.4732544.

[23] M. Elham Walizad, M. Hurroo, and D. Sethia, “Driver Drowsiness Detection System using

Convolutional Neural Network,” in 2022 6th International Conference on Trends in

Electronics and Informatics (ICOEI), Tirunelveli, India, Apr. 2022, pp. 1073–1080. doi:

10.1109/ICOEI53556.2022.9777182.

[24] R. Fusek, “Pupil localization using geodesic distance,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 11241 LNCS, pp. 433–444, 2018, doi: 10.1007/978-3-030-03801-4_38.

[25] J. D. Ortega et al., “DMD: A Large-Scale Multi-modal Driver Monitoring Dataset for

Attention and Alertness Analysis,” in Computer Vision – ECCV 2020 Workshops, vol. 12538,

A. Bartoli and A. Fusiello, Eds. Cham: Springer International Publishing, 2020, pp. 387–405.

doi: 10.1007/978-3-030-66823-5_23.

47

[26] Abtahi, Shabnam, Omidyeganeh, Mona, Shirmohammadi, Shervin, and Hariri, Behnoosh,

“YawDD: Yawning Detection Dataset.” IEEE DataPort, Aug. 01, 2020. doi:

10.21227/E1QM-HB90.

[27] K. Diaz-Chito, A. Hernández-Sabaté, and A. M. López, “A reduced feature set for driver

head pose estimation,” Applied Soft Computing, vol. 45, pp. 98–107, Aug. 2016, doi:

10.1016/j.asoc.2016.04.027.

[28] E. N. Arcoverde Neto et al., “Enhanced real-time head pose estimation system for mobile

device,” ICA, vol. 21, no. 3, pp. 281–293, Apr. 2014, doi: 10.3233/ICA-140462.

[29] Raspberry Pi Foundation, “Raspberry Pi 3 Model B,” Raspberry Pi.

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/ (accessed Jun. 14, 2022).

[30] Raspberry Pi Foundation, “Raspberry Pi Documentation-Camera,” Raspberry Pi.

https://www.raspberrypi.com/documentation/accessories/camera.html (accessed Jun. 16,

2022).

[31] N. Singh, “MediaPipe Python Package (Unofficial) for RaspberryPi OS(32 bit) on Raspberry

Pi 3 / 4,” PyPi, Nov. 03, 2021. https://pypi.org/project/mediapipe-rpi3/#description (accessed

Jul. 07, 2022).

48

ABSTRACT

In this thesis, Driver Monitoring System (DMS) is proposed based on the behavioral approach

where the system detects the fatigue and inattention of the driver based on the images obtained

from the camera mounted on the vehicle’s dashboard. The driver monitoring dataset (DMD) and

YawDD datasets were used to develop the model on a personal computer (PC) and the same model

was implemented in the Raspberry Pi. The convolutional neural network (CNN)-based method

MediaPipe Facemesh was used to detect a face and the localization of the landmarks. Also, the

methods like the use of area over the distance ratio (ADR), mouth aspect ratio (MAR), and Euler

angles were used to detect the eye, mouth state, and head position. The algorithm also calculates

the adaptive threshold for MAR, ADR, and mean position of a face which will vary from individual

to individual. The developed system is also tested using the Raspberry Pi camera.

Keywords: MediaPipe Facemesh, DMS, ADR, MAR, Euler angles, threshold, Raspberry Pi

49

BIOGRAPHY

RAJESH RIMAL

He was born on 30th Jan 1994 in Arjundhara-9, Jhapa district from Nepal. He completed his

primary and secondary school at Deep Jyoti Vidya Mandir in Jhapa, Nepal in 2010. In 2012, he

completed his higher secondary education at College for Higher Education (COHED) in Jhapa,

Nepal. In the same year, he got admitted to the undergraduate study of Mechanical Engineering at

Pulchowk Campus, Institute of Engineering (IOE) which he completed in 2016. In December

2017, he was awarded a “Bachelor’s Degree in Mechanical Engineering” by Tribhuvan University.

After completing his studies, he worked in automotive companies like Ashok Leyland and MAN

Bus and Trucks as a Service Engineer for 4 years.

In 2020, he enrolled in the graduate study program named Automotive Computing and

Communications in the Faculty of Electrical Engineering, Computer Science, and Information

Technology (FERIT) at Josip Juraj Strossmayor University of Osijek.

Osijek, 14th July 2022

50

LIST OF FIGURES

Figure 3.1: FaceMesh face detection [26] (a - Original Image, b – Image of detected face in the

green bounding box and 468 localized facial landmarks in red dots) ... 9

Figure 3.2 Head orientation showing pitch, roll, and yaw movements [28] 10

Figure 3.3: Detected eyes in green bounding boxes and localized pink points [26] 12

Figure 3.4 Eye Area over the Distance calculation [26] ... 12

Figure 3.5 Detected mouth in the green bounding box and localized pink points [26] 13

Figure 3.6 Arrangement of points for calculation of MAR [26]... 14

Figure 4.1 Raspberry Pi 3 Model B board specifications ... 16

Figure 4.2 Raspberry Pi Camera Module ... 16

Figure 5.1 DMS flow chart ... 20

Figure 6.1 Examples of the image in the YawDD dataset [26] (a – Image from a video sequence

named 2-Female.avi, b - Image from a video sequence named 7-Male.avi) [26] 30

Figure 6.2 FNs observed due to covering the mouth by hand [26]. (a –Yawn starts from Frame

679, b- Frame 720 where the mouth is still detected as open for 1.57 sec, c – Frame 721 where the

mouth is closed by hand and timer resets, d – arbitrary Frame 754 where the mouth is detected

open again for 0.38 sec after mouth was uncovered. .. 33

Figure 6.3 FNs observed due to short yawn time [26] (a – Yawn start from frame 313, b – Mouth

open detected for 0.67 sec at frame 320, c – Mouth open detected for 1.82 sec at Frame 330, d –

Mouth detected as closed in Frame 331 so that yawn is not detected) ... 34

Figure 6.4 FPs observed due to laughing[26] (a- Frame 1960 from which yawn is detected as

started, b – Frame 1985 after 1.37 seconds and mouth is still open, c – Person is detected as

yawning even after 3.36 sec at Frame 2019) .. 35

Figure 6.5 Comparison of the F1-Score of PC and Raspberry pi ... 40

Figure 6.6 Normal Frame ... 41

Figure 6.7 Yawning detection (a – Individual starts to yawn at frame 1890, b – Arbitrary frame

1915 after 1.03 secs, c – Yawning detected after 2 seconds in frame 1940) 41

Figure 6.8 Head Position Estimation (a –Turning right, b-Turning left, c- Turning down) 42

Figure 6.9 Eye long-closed detection (a - Individual close eye at frame 520, b – Arbitrary frame

540 after 0.81 secs, c – Eye long-closed detected after 2 seconds in frame 565) 43

51

LIST OF TABLES

Table 3.1 Comparison of face detectors based on F-1 score and time to detect face 8

Table 5.1 Head position estimation conditions ... 24

Table 6.1 Labels description ... 30

Table 6.2 PC environment test results in terms of recall, precision, and F1-score 31

Table 6.3 Execution Speeed in PC .. 36

Table 6.4 Execution Speed in Raspberry Pi.. 37

Table 6.5 Raspberry Pi test results while skipping 5 frames .. 38

Table 6.6 Raspberry Pi test results while skipping 6 frames .. 38

52

LIST OF ALGORITHMS

Algorithm 1 Face detection and localization .. 21

Algorithm 2 Calculation of Pitch, Yaw, and Roll ... 23

Algorithm 3 Calculation of ADR .. 25

Algorithm 4 Detection of eye long-closed state ... 26

Algorithm 5 Calculation of MAR ... 27

Algorithm 6 Yawn detection ... 28

53

ABBREVIATIONS

WHO World Health Organization

EU European Union

NHTSA National Highway Traffic Safety Administration

ADAS Advanced Driver Assistance Systems

DMS Driver Monitoring System

ECG Electrocardiogram

EEG Electroencephalogram

EOF Electrooculogram

VJ Viola-Jones

CNN Convolutional Neural Network

RDCL Rapidly Digested Convolutional Layer

MSCL Multiple Scale Convolutional Layers

SSD Single Shot Multibox Detector

CPU Central Processing Unit

GPU Graphical Processing Unit

VGG Visual Geometry Group

VGA Visual Graphic Array

MTCNN Multitask Cascaded Neural Network

HOG Histogram of Gradients

EAR Eye Aspect Ratio

54

SVM Support Vector Machine

SMAT Simultaneous Modeling and Tracking

POSIT Point Iterative Pose Estimation

RANSAC Random Sampling and Consensus

PERCLOS Percentage of Closure

DMD Driver Monitoring Dataset

ADR Area over Distance Ratio

MAR Mouth Aspect Ratio

SoC System on Chip

SD card Secure Digital Card

CSI Camera Serial Interface

DSI Display Serial Interface

TN True Negative

FN False Negative

TP True Positive

FP False Positive

Fps Frames per second

VI-DAS Vision Inspired Driver Assistance Systems

i

ANNEXES

Annex I: Dataset details

Description Dataset Name

DMD Yaw DD DrivFace

Resolution 1280 x 720 640 x 480 640×480

FPS 29.76 30.00 -

Type Video Video Image

Format MP4 AVI JPG

No of Videos 20.00 29 -

Total no of Frames 192509.00 Each above 1400 606.0

Video Length Each video is 1

min to 9 min

Each video

around 1 min

-

No of Participants 5 29 4

Participants Male Yes Yes Yes

Female No Yes Yes

Other People in the Car No Yes Yes

Other People's face detected No No Yes

Scenarios Car Yes Yes Yes

Simulator Yes No No

Environment

Condition

Sunny Yes Yes Yes

Cloudy Yes No No

Raining Yes No No

Night No No No

Driving Mode Stationary Yes Yes No

Driving Yes No Yes

Camera Position Car Dashboard Yes Yes Yes

Car front-Rear view mirror No Yes No

Driver Wearing

Glass

Prescription Glass Yes Yes Yes

Sunglasses No Yes No

ii

No Glasses Yes Yes Yes

Mouth Position Normal-

Talking-

Yawning

Normal-Talking-

Yawning

Normal-

Talking-

Yawning

Researchers are allowed to use pictures in their

paper

Yes Yes/No Yes

