Implementacija SPWM upravljanja autonomnog naponskog izmjenjivača pomoću Arduino mikroupravljača

Bedeković, Robert

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:027518

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-08

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA

Sveučilišni studij

Implementacija SPWM upravljanja autonomnog naponskog izmjenjivača pomoću Arduino mikroupravljača

Završni rad

Robert Bedeković

Osijek, 2022.

Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom sveučilišnom studiju

Osijek, 23.08.2022.

Odboru za završne i diplomske ispite

preddiplomskom sveučilišnom studij			
Ime i prezime Pristupnika:	Robert	Bedeković	
Studij, smjer:	Preddiplomski sveučilišni studij Elektrotehnika i informacijska tehnologija		
Mat. br. Pristupnika, godina upisa:	4646, 19.07.2019.		
OIB Pristupnika:	59960565805		
Mentor:	Prof. dr. sc. Denis Pelin		
Sumentor:	Andrej Brandis, mag. ing. el.		
Sumentor iz tvrtke:			
Naslov završnog rada:	Implementacija SPWM upravljanja autonomnog naponskog izmjenjiva pomoću Arduino mikroupravljača		
Znanstvena grana rada:	Elektrostrojarstvo (zn. polje elektrotehnika)		
Zadatak završnog rad:	Dizajnirati sustav za sinusno pulsno širinsko upravljanje jednofaznim naponskoim zmjenjivačem a na bazi Arduino mikroupravljača. Testirati upravljački dio na fizički realiziranom izmjenjivaču . Usporediti mjerene rezultate s rezultatima analize/simulacije. Sumentor: Andrej Brandis Tema je rezervirana za studenta Roberta Bedekovića		
Prijedlog ocjene završnog rada:	Izvrstar	n (5)	
Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:	Primjen Postign Jasnoća Razina	na znanja stečenih na fakultetu: 3 bod/boda uti rezultati u odnosu na složenost zadatka: 3 bod/boda n pismenog izražavanja: 2 bod/boda samostalnosti: 3 razina	
Datum prijedloga ocjene od strane mentora:	23.08.2022.		
Datum potvrde ocjene od strane Odbora:	07.09.2022.		
Deturde montero e prodeii konsčes verzii	a rada.	Mentor elektronički potpisao predaju konačne verzije.	
Potvrda mentora o predaji konačne verzije rada:		Datum:	

Prijedlog ocjene završnog rada na reddiplomskom sveučilišnom studiju

IZJAVA O ORIGINALNOSTI RADA

Osijek, 08.09.2022.

Ime i prezime studenta:	Robert Bedeković
Studij:	Preddiplomski sveučilišni studij Elektrotehnika i informacijska tehnologija
Mat. br. studenta, godina upisa:	4646, 19.07.2019.
Turnitin podudaranje [%]:	11

Ovom izjavom izjavljujem da je rad pod nazivom: Implementacija SPWM upravljanja autonomnog naponskog izmjenjivača pomoću Arduino mikroupravljača

izrađen pod vodstvom mentora Prof. dr. sc. Denis Pelin

i sumentora Andrej Brandis, mag. ing. el.

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:

SADRŽAJ

1. UVOD	1
2. TEORIJSKI PREGLED	2
2.1. Izmjenjivači	2
2.2. Pulsno-širinska modulacija	3
3. IMPLEMENTACIJA	8
3.1. Princip rada	8
3.2. Komponente	8
3.3. Shema sklopa1	0
3.4. Generiranje upravljačke matrice1	1
3.5. Objašnjenje koda1	3
4. SIMULACIJA SKLOPA1	4
4.1. Simulacija promjene modulacijskog faktora1	5
4.2. Simulacija promjene dubine modulacije1	5
4.3. Harmonijska analiza napona - simulacija1	6
4.4. Harmonijska analiza struje - simulacija1	8
5. RAD SKLOPA I MJERENJE1	9
5.1. Promjena modulacijskog faktora1	9
5.2. Promjena dubine modulacije2	0
5.2.1. Računska provjera utjecaja dubine modulacije na amplitudu osnovnog harmonika napona	21
5.3. Harmonijska analiza napona2	2
5.4. Harmonijska analiza struje2	3
6. USPOREDBA MJERENJA I SIMULACIJA2	4
7. ZAKLJUČAK	0
LITERATURA	1
SAŽETAK	2
ABSTRACT	2

ŽIVOTOPIS	
PRILOZI	34
Prilog 1: Arduino kod	
Prilog 2: harmonijska analiza napona za pojedine parametre	
Prilog 3: harmonijska analiza struje za pojedine parametre	40

1. UVOD

Razvojem i napretkom energetske elektronike nastali su izmjenjivači, odnosno uređaji koji povezuju istosmjerne izvore s izmjeničnim trošilima koje se koriste u elektromotornim pogonima, frekvencijskim pretvaračima, električnim automobilima, sustavima spajanja fotonaponskih panela, neprekidnim sustavim napajanja (UPS), istosmjernim prijenosnim mrežama, aktivnim filtrima i sve češće u kućanstvu. Razvojem procesa izrade i dizajniranja elektroničkih sklopova i komponenti došlo je do pada cijene izrade, smanjenja dimenzija zbog viših frekvencija i povećanja njihovih efikasnosti do čak 99% [1] što je doprinijelo povećanju njihove uporabe.

U ovom radu je opisana izrada izmjenjivača, implementacija sinusno pulsno-širinske modulacije upravljanja MOSFET-ima preko Arduino mikroupravljača, simulacija sklopa u programu Proteus, prikaz utjecaja modulacijskog faktora i dubine modulacije na izgled valnih oblika napona i struja te harmonijskog sadržaja napona i struja u programu MATLAB. Uspoređivat će se rezultati mjerenja i simulacija.

1.1. Zadatak završnog rada

Dizajnirati i izraditi sustav za sinusno pulsno-širinsko upravljanje jednofaznim naponskim izmjenjivačem preko Arduino mikrokontrolera, izraditi kod, testirati na fizički realiziranom izmjenjivaču te usporediti mjerne rezultate s razultatima simulacije.

2. TEORIJSKI PREGLED

2.1. Izmjenjivači

Izmjenjivači su pretvarači istosmjernog sustava pojne mreže u izmjenični sustav trošila [2]. U ovom radu se koristi jednofazni naponski autonomni izmjenjivač s topologijom mosnog spoja (eng. *Full-Bridge*) prikazan na slici 2.1. Sastoji se od četiri pretvaračke komponente, odnosno MOSFET-a ili IGBT-a. Postoje još nekoliko vrsta pretvaračkih komponenti koje odgovaraju zahtjevima izmjenjivača no zbog lošijih karakteristika se ne koriste.

Sl. 2.1. Topologija mosnog spoja autonomnog naponskog izmjenjivača

Uz mosni spoj postoji još i polumosni spoj (eng. *Half-Bridge*) koji umjesto jedne strane pretvaračkih komponenti koristi kondenzatore te spoj sa srednjom točkom koji koristi transformator s dva primarna i jednim sekundarnim namotom. Sljedeća podjela izmjenjivača je podjela s obzirom na broj faza: dijele se na jednofazne prikazane na slici 2.2. i trofazne.

Sl. 2.2. Simbol jednofaznog izmjenjivača prikazan kao dvoprilaz [2]

Podjela prema izboru frekvencije rada: ako izmjenjivač zavisi o postojanju aktivne izmjenične mreže koja diktira frekvenciju rada, taj izmjenjivač se naziva neautonomni ili zavisni izmjenjivač, a ako izmjenjivač sam diktira frekvenciju rada, naziva se autonomni odnosno nezavisni izmjenjivač. Posljednja podjela je podjela prema izvoru pa prema tome mogu biti naponski i strujni.

2.2. Pulsno-širinska modulacija

Pulsno-širinska modulacija (eng. *Pulse-width modulation*) ili kraće PWM je način upravljanja kojim se postiže da se voltsekunde narinute na trošilo mijenjaju prema unaprijed zadanom zakonu. Mijenjaju li se voltsekunde prema sinusnom zakonu, taj način upravljanja se naziva sinusno pulsno-širinska modulacija [2]. PWM pruža način da se smanji ukupno harmonijsko izobličenje (eng. *Total harmonic distortion*) ili kreće THD struje opterećenja, odnosno prigušenje svih harmonika osim osnovnog bez da se žrtvuje upravljivost. Postoji više tehnika modulacija, nasumična pulsno-širinska modulacija, modificirana pulsnoširinska modulacija, nasumična pulsno-širinska modulacija, prostorno-vektorska modulacija, delta modulacija, asinkrona i sinkrona modulacija. U ovome radu, koristi se sinusoidana pulsnoširinska modulacija ili kraće SPWM. U sinusno pulsno-širinskoj modulaciji impulsi na gejtu MOSFET-a su generirani usporedbom sinusodalnog referentnog naponskog signala sa visokofrekventnim trokutastim signalom. Točke presjecišta sinusoidalnog referentnog naponskog signala i trokutastog signala određuju trenutke uključivanja i isključivanja pretvaračkih komponenti, u ovom slučaju MOSFET-a. Postoji dva oblika SPWM: dvorazinska ili češće bipolarna koja se koristi u ovom radu i trorazinska ili češće unipolarna. Kod bipolarne, kad je referentni sinusni signal u_r veći od trokutastog u_{tr} , napon na trošilu jednak je naponu izvora, a kad je u_r manji od u_{tr} , napon na trošilu jednak je negativnom naponu izvora kao što je prikazano na slici 2.3.

Sl. 2.3. Prikaz bipolarne modulacije s upravljačkim impulsima i valnim oblikom napona trošila [2]

Trorazinsko odnosno unipolarno upravljanje postiže se tako da unutar jedne poluperiode rada svi naponski impulsi su jednog polariteta, dok unutar druge poluperiode svi naponski impulsi su drugog polariteta. Takvo upravljanje se može vidjeti na slici 2.4. Struja na trošilu će se tada ponašati približno sinusno ako se trajanje impulsa Δt_k u N sklopnih perioda mijenjaju tako da vrijedi:

$$\frac{\Delta t_k}{T_s} = m_a \left| \sin \omega t \right|, t_{k-1} \le t \le t_k \tag{2-1}$$

Gdje je:

- Δt_k – trajanje impulsa

- T_s – sklopna perioda

- m_a – dubina modulacije

Sl. 2.4. Trorazinski valni oblik napona trošila [2]

Da bi se promijenila efektivna vrijednost izlaznog napona, širine svih impulsa se povećavaju ili smanjuju uz zadržavanje sinusoidalne proporcionalnosti [3].

Parametri SPWM su modulacijski faktor m_f definiran kao omjer prijenosne frekvencije i modulacijske frekvencije te modulacijski indeks odnosno dubina modulacije m_a kao omjer amplitude sinusnog napona i trokutastog napona.

$$m_f = \frac{f_0}{f} \tag{2-2}$$

$$m_a = \frac{\widehat{U}_r}{\widehat{U}_t}$$
(2-3)

Gdje je:

- *m_f* modulacijski faktor
- f₀ prijenosna frekvencija
- f modulacijska frekvencija
- m_a dubina modulacije
- \hat{U}_r amplituda sinusnog napona
- \hat{U}_{tr} amplituda trokutastog napona

U pulsno-širinskoj modulaciji javlja se velik udio harmonijskih članova u naponu trošila (THDU), no s povećavanjem modulacijskog faktora ti istih harmonici se potiskuju u više frekvencije. Dakle, kada se koristi veća sklopna frekvencija, kvaliteta valnog oblika napona može se poboljšati i olakšati filtriranje. Međutim, to dovodi do većih gubitaka sklapanja. Stoga je važno uzeti u obzir ukupne performanse sustava pri odabiru frekvencije sklapanja [4]. Zbog induktivnog karaktera trošila koje se ponaša kao niskopropusni filter harmonici napona imaju mali utjecaj na struju trošila jer se više frekvencije značajnije prigušuju. Normirane vrijednosti amplituda harmonika napona za bipolarnu SPWM su prikazani u tablici 2.1.

Ded homeonileo	Modulacijski indeks						
Red narmonika	0,2	0,4	0,6	0,8	1		
1	0,2	0,4	0,6	0,8	1		
m_f	1,242	1,15	1,006	0,818	0,601		
$m_f \pm 2$	0,016	0,061	0,131	0,22	0,318		
$m_f \pm 4$					0,018		
$2m_f\pm 1$	0,19	0,326	0,37	0,314	0,181		
$2m_f \pm 3$		0,024	0,071	0,139	0,212		
$2m_f\pm 5$				0,013	0,033		
$3m_f$	0,335	0,123	0,083	0,171	0,113		
$3m_f\pm 2$	0,044	0,139	0,203	0,176	0,062		
$3m_f \pm 4$		0,012	0,047	0,104	0,157		
$3m_f\pm 6$				0,016	0,044		
$4m_f \pm 1$	0,163	0,157	0,008	0,105	0,068		
$4m_f \pm 3$	0,012	0,07	0,132	0,115	0,09		
$4m_f\pm 5$			0,034	0,084	0,119		
$4m_f\pm7$				0,017	0,05		

Tablica. 2.1. Bipolarna sinusna pulsno-širinska modulacija: normirane vrijednosti amplituda harmonika $\hat{U}(n)/(E/2)$ za $m_{f} \ge 9$ [2]

Izraz za ukupnu harmonijsku distorziju napona je:

$$THDU = \sqrt{\frac{U^2}{U^2(1)} - 1} = \sqrt{\frac{2}{m_a^2} - 1}$$
(2-4)

U tablici 2.2. se vidi promjena *THDU* za različite vrijednosti dubine modulacije bipolarne modulacije

m_a	0,4	0,6	0,8	1
THDU	339,12%	213,44%	145,77%	100%

Tablica. 2.2. promjena THDU za različite vrijednosti m_a bipolarne modulacije

3. IMPLEMENTACIJA

U ovom završnom radu implementacija sinusno pulsno-širinske modulacije obavljena je preko Arduino mikrokontrolera koji daje upravljačke impulse MOSFET driveru. Driver pojačava te impulse te ih šalje na MOSFET-e. Impulsi su kreirani prema kodu u Arduino programu koji je baziran na C++ programskom jeziku.

3.1. Princip rada

Na slici 3.1. je prikazan blok dijagram sa sastavnim djelovima izmjenjivača.

Sl. 3.1. Blok dijagram sa sastavnim dijelovima izmjenjivača

Preko digitalnih pinova Arduino mikrokontrolera D8 i D9 se generiraju impulsi za MOSFET-e usporedbom sinusoidalnog referentnog naponskog signala sa trokutastim signalom. Kad je sinus veći od trokuta pin D8 je podešen na 5V dok je pin D9 podešen na 0V. U suprotnom slučaju, kad je sinus manji od trokuta, pin D8 je podešen na 0V dok je pin D9 podešen na 5V. D8 daje impulse MOSFET-ima 1 i 4, a D9 daje impulse MOSFET-ima 2 i 3 prikazanim na slici 2.1., odnosno isti impulsi se daju MOSFET-ima koji zajedno vode.

3.2. Komponente

U radu su korištene komponente iz tablice 3.1.,dok je trošilo za sva mjerenja prigušnica s otporom od 2Ω i induktivitetom od 0.3H.

Komponenta	Broj komponenti	Vrijednost / ime komponente
Mikrokontroler	1	Arduino nano
Driver	2	IR2112
MOSFET	4	IRF3205
Opornik	4	10kΩ
Opornik	4	1kΩ
Opornik	4	10Ω
Dioda	2	1N4007
Kondenzator	2	Tantal 100µF
Kondenzator	2	Elektrolitski 100µF

Tablica. 3.1. Korištene komponente

Arduino nano je mikrokontroler s Atmega328 procesorom brzine 16MHz. Sadrži 22 digitalna I/O pina sa maksimalnim izlazom od 40mA po pinu, 8 analogna pina, 32kB flash memorije, 2kB radne memorije. Radi na 5V ali se može napajati s do 12V, za rad troši 19mA [5]. Vrlo je kompaktan s dimenzijama 18x45mm i 7g težine. Arduino nano se nalazi na slici 3.2.

Sl. 3.2. Arduino nano

Generalno arduino mikrokontroler generira vrlo niski naponski nivo SPWM impulsa koji nije dovoljan za sklapanje MOSFET-a pa se između arduino pinova i gejta MOSFET-a koriste MOSFET driveri. U ovom radu se koriste IR2112 driveri. Kao što je objašnjeno u podatkovnim tablicama, IR2112 su visokonaponski i brzi MOSFET i IGBT driveri s neovisnom visokom i niskom razinskom stranom referentnih izlaznih kanala [6]. Tipična konekcija IR2112 je prikazana na slici 3.3.

Sl. 3.3. Tipična konekcija IR2112 drivera [3]

3.3. Shema sklopa

Na slici 3.4. je prikazana shema sklopa, dok je na slici 3.5. prikazana slika sklopa na eksperimentalnoj pločici. Sklop je dizajniran po uputama iz [6] korištenjem tipične konekcije drivera za svaku stranu sklopa povezani trošilom u sredini.

Sl. 3.4. Shema sklopa

Sl. 3.5. Sklop na eksperimentalnoj pločici

3.4. Generiranje upravljačke matrice

Upravljačka matrica odnosno tablica se kreira pomoću programa MATLAB. MATLAB je programski jezik i okruženje koje omogućuje manipulacije matricama, crtanje funkcija i podataka, implementaciju algoritama, simulacije i mnogo drugih stvari [7]. Na slici 3.6. prikazana je skripta koja je napravljena za generiranje upravljačke matrice.

	POBLIS	н у	VIEW							
•	Refactor	% ‰ %7 ∑ •∃ ⊡•	Profiler Analyze	Run Section	Section Break Run and Advance Run to End	Run	Step	Stop		
	tar N Zaura	ni rad 🕨 laal			SECTION		RUN			
mes 7	Editor - D:	Google Drive	kUp \FFRIT\6. sem	estar\7avrs	ni rad\lookUp\spwm.m		Θ×	Works	pace	
	spwm.m	× +						Name	<u> </u>	Value
	1 2 3 4 5 6 7	<pre>mf=10; ma=0.8 ; period = fs = 1000 f=50; t = 0:1/f trokut =</pre>	0.02; 0000; Fs:period-: sawtooth()	L/fs; nf*2*pi*+	f*(t-(f/mf)/(fs/10	0)),1/2)		A f fs ma mf per	iod	1x20000 double 50 1000000 0.8000 10 0.0200 1x20000 double
	8 9 10	sinus = ma*sin(2*pi*f*t); plot(t,sinus) hold on					1x20000 double 1x20000 double 1x20000 double			
	11 12 13 14	plot(t,tr grid on A = 0.5+0 figure	rokut) 0.5*sign(s:	inus-trol	<ut);< td=""><td></td><td></td><td></td><td></td><td></td></ut);<>					

Sl. 3.6. Skripta za generiranje upravljačke matrice

U skripti se prvo definiraju varijable modulacijskog faktora m_f , dubine modulacije m_a , period, sklopne frekvencije f_s i frekvencije sinusa f. Nakon varijabla definira se jednodimenzionalna matrica vremena t, jednodimenzionalna matrica trokut kao funkcija modulacijskog faktora, vremena, frekvencije i sklopne frekvencije s vremenskim pomakom te jednodimenzionalna matrica sinus kao umnožak dubine modulacije i sinusa kao funkcije vremena i frekvencije. Funkcijom plot crtaju se matrice sinus i trokut u ovisnosti o vremenu prikazanu na slici 3.7. koje se povezuje u jednu sliku naredbom hold on.

Sl. 3.7. Funkcije sinus i trokut u ovisnosti o vremenu

Jednodimenzionalna matrica A je matrica kojoj su vrijednosti 0 ili 1, dobije se pomoću funkcije sign s parametrima sinus-trokut koja vraća vrijednost 1 ako je argument veći od 0, a vrijednost 0 ako je argument manji od 0. Prikaz matrice A se može vidjeti na slici 3.8.

Sl. 3.8. Prikaz matrica A s označenim vremenskim intervalima koja predstavlja upravljačke impulse koje arduino šalje na MOSFET drivere

Kreira se tablica u kojoj se izračuna razlika trenutne vrijednosti vremena i prošle vrijednosti vremena svake točke iz slike 3.8. Dobivene vrijednosti pomnože se s 100000 tako da se dobije vrijednost u mikrosekundama te se zapiše kao niz. Primjer niza: int SPWM_time[22]={865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 294, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470, 865, 865, 1470, 294, 1470, 865};

3.5. Objašnjenje koda

Program započinje kreiranjem upravljačke matrice SPWM_time[], objašnjeno u predhodnom poglavlju, za svaku upravljačke matricu dodaje se char SPWM_pin[] matrica jednake duljine kojoj su elementi naizmjence B00000001 i B00000010 pomoću kojih se direktno adresiraju bitovi PORTB-a na arduinu u koje spadaju digitalni pinovi 8 do 13. B00000001 aktivira digitalni pin 8 i deaktivira ostale pinove, dok B00000010 aktivira digitalni pin 9 i deaktivira ostale pinove. Unutar funkcije setup se registar DDRB direktno adresira na B1111111 odnosno u PORTB-u se svi pinovi podese na digitalni izlaz. Unutar funkcije loop prvo se deklarira varijabla i kao integer te for petlja kojoj je argument varijabla *i* koja kreće od 0 do duljine upravljačke matrice sa korakom od 1. Unutar for petlje PORTB podesi se na vrijednost *i*-tog elementa matrice SPWM_pin[] te se upotrijebi funkcija delayMicroseconds koja zaustavlja izvršavanje koda za određeno vrijeme s argumentom *i*-tog elementa matrice SPWM_time.

4. SIMULACIJA SKLOPA

U ovom radu za simulaciju je korišten program Proteus koji ima opciju implementiranja arduino koda u modelu arduino mikrokontrolera. Proteus kombinira jednostavnost korištenja s moćnim skupom značajki kako bi se omogućio brz dizajn, testiranje i simulacije [8]. Za simulaciju harmonijske analize valni oblici struja i napona prebačene su u MATLAB te je korištena MATLAB-ova naredba brza Fourierova transformacija (eng. *Fast Fourier Transformation*) ili kraće FFT za harmonijsku analizu. U simulaciji kao i u mjerenju za trošilo je korištena prigušnica 2Ω i 0.3H. Na slici 4.1. je prikazana shema sklopa za simulaciju.

Sl. 4.1. Shema sklopa za simulaciju

4.1. Simulacija promjene modulacijskog faktora

Na slici 4.2. su prikazani simulirani valni oblici napona i struja izlaza za promjenu modulacijskog faktora.

Sl. 4.2. Valni oblici simuliranih izlaznih napona i struja za konstantni $m_a=1$, pri mijenjanju m_f : a) $m_f=10$, b) $m_f=20$, c) $m_f=30$, d) $m_f=40$

Kao i u pretpostavci povećavanjem modulacijskog faktora oblik struje se približava sinusnom obliku, odnosno THDI se smanjuje dok se efektivna vrijednost struje ne mijenjaju.

4.2. Simulacija promjene dubine modulacije

Na slici 4.3. prikazani su simulirani valni oblici napona i struja izlaza za promjenu dubine modulacije.

Sl. 4.3. Valni oblici simuliranih izlaznih napona i struja za konstantni m_f =20, pri mijenjanju m_a : a) m_a =0.4, b) m_a =0.6, c) m_a =0.8, d) m_a =1

Iz slike 4.3 može se zaključiti da kao i u pretpostavci povećavanjem dubine modulacije povečava se efektivna vrijednost struje te se titranje struje, THDU i THDI smanjuju.

4.3. Harmonijska analiza napona - simulacija

Na slici 4.4. je prikazana harmonijska analiza simuliranog valnog oblika napona izlaza za parametre dubine modulacije $m_a=1$ i modulacijskog faktora $m_f=20$, dok je na slici 4.5. prikazana harmonijska analiza simuliranog valnog oblika napona izlaza za parametre: dubine modulacije $m_a=1$ i modulacijski faktor $m_f=40$.

Sl. 4.5. Harmonijska analiza simuliranog valnog oblika napona izlaza za $m_a=1$ i $m_f=20$

Povećanjem modulacijskog faktora značajni harmonici se guraju u područje sklopne frekvencije. Prvi značajni nadharmonik dobija se na frekvenciji 1kHz odnosno 2kHz, sljedeći skup značajnih nadharmonika se dobija na dvostruko većoj frekvenciji što odgovara teorijskom razmatranju harmonijske analize za bipolarnu modulaciju, prikazano tablicom 2.1.

4.4. Harmonijska analiza struje - simulacija

Na slici 4.6. je prikazana harmonijska analiza simuliranog valnog oblika struje izlaza za parametre: dubina modulacije $m_a=1$ i modulacijski faktor $m_f=20$, dok je na slici 4.7. prikazana harmonijska analiza simuliranog valnog oblika struje izlaza za parametre: dubina modulacije $m_a=1$ i modulacijski faktor $m_f=40$.

Sl. 4.6. Harmonijska analiza simuliranog valnog oblika struje izlaza za $m_a=1$ i $m_f=20$

Sl. 4.7. Harmonijska analiza simuliranog valnog oblika struje izlaza za $m_a=1$ i $m_f=40$

Povećanjem modulacijskog faktora značajni harmonici se guraju u područje veće frekvencije, THDI se smanjuje jer se valni oblici struja bliže sinusu, a efektivna vrijednost struje se ne mijenja.

5. RAD SKLOPA I MJERENJE

Valni oblici izlaznih napona i struja su snimljeni osciloskopom te importirani u MATLAB za određivanje harmonijske analize.

5.1. Promjena modulacijskog faktora

Na slici 5.1. su prikazani valni oblici izlaznog napona i struja za konstantnu dubinu modulacije $m_a=1$ i različite modulacijske faktore.

Sl. 5.1. Izmjereni valni oblici izlaznih napona i struja za konstantni $m_a=1$, pri mijenjanju m_f : a) $m_f=10$, b) $m_f=20$, a) $m_f=30$, a) $m_f=40$

Iz slike 5.1. se može zaključiti da povećanjem modulacijskog faktora, koji se preslikava na brže izmjene polariteta napona, THDI se smanjuje jer struja izlaza bolje opisuje sinusni valni oblik dok se efektivna vrijednost struje ne mijenjaju.

5.2. Promjena dubine modulacije

Na slici 5.2. su prikazani valni oblici izlaznog napona i struja za konstantni modulacijski faktor $m_f=20$ i različite vrijednosti dubine modulacije.

Sl. 5.2. Izmjereni valni oblici izlaznih napona i struja za konstantni $m_f=20$, pri mijenjanju m_a : a) $m_a=0.4$, b) $m_a=0.6$, c) $m_a=0.8$, d) $m_a=1$

Iz slike 5.2. se može zaključiti da povećanjem dubine modulacije struja izlaza je manje valovita, THDU i THDI smanjuju te se efektivna vrijednost struje povećava.

Izmjereni valni oblici dobro opisuju valne oblike iz simulacija 4.2. i 4.3., postoji razlika u valnom obliku izlaznog napona, čija se maksimalna vrijednost naponskog pulsa neznatno mijenja unutar osnovne periode, dok je u simulaciji konstantan. Pri mjerenju struje prisutan je šum koji je posljedica osjetljivosti mjerne opreme. Iz tog razloga se "nazubljenost" valnog oblika struje iz simulacije gotovo ne prepoznaje pri mjerenju s većim modulacijskim faktorom.

5.2.1. Računska provjera utjecaja dubine modulacije na amplitudu osnovnog harmonika napona

U tablici 5.1. je prikaz računske provjere dubine modulacije.

$$Z = \sqrt{R^2 + (2\pi fL)^2} = 94,269\Omega$$
(5-1)

$$\widehat{U}(1) = \widehat{I}(1) \cdot Z = 50 \cdot 10^{-3} \cdot 94,269 = 4,71V$$
 (5-2)

$$m_a = \frac{\widehat{U}(1)}{E} = \frac{4,71}{12} = 0,393 \tag{5-3}$$

Gdje je:

- E napon izvora = 12 V
- R otpor trošila = 2 Ω
- L induktivitet trošila = 0.3 H
- -f frekvencija = 50 Hz
- Z impedancija trošila
- $\hat{U}(1)$ amplituda prvog harmonika napona trošila
- $\hat{I}(1)$ amplituda prvog harmonika struje trošila

Tablica. 5.1. Računska provjera ma

m_a	0,4	0,6	0,8	1
$\hat{I}(1)$	50mA	80mA	100mA	130mA
$\hat{U}(1)$	4,71V	7,54V	9,43V	12,25V
<i>m_a</i> račun	0,393	0,628	0,786	1,021

Iz tablice se može zaključiti da dubina modulacije korištena u kodu odgovara izmjerenoj vrijednosti dubine modulacije u stvarnosti uz neznatna odstupanja.

5.3. Harmonijska analiza napona

Harmonijska analiza 2 odabrana napona je prikazana na slikama 5.3. i 5.4.

Sl. 5.4. Harmonijska analiza napona izlaza za $m_a=1$ i $m_f=40$

Sa slika 5.3. i 5.4. se mogu primjetiti isti trendovi kao u simulacijama. Povećanjem modulacijskog faktora značajni harmonici guraju u područje sklopnih frekvencija.

5.4. Harmonijska analiza struje

Harmonijske analize dvije odabrane struje su prikazane na slikama 5.5. i 5.6.

Sl. 5.6. Harmonijska analiza struje izlaza za $m_a=1$ i $m_f=40$

Na slikama 5.5. i 5.6. se mogu primjetiti isti trendovi kao u simulacijama. Povećavanjem modulacijskog faktora THDI se smanjuje, dok efektivna vrijednost struje ostaje ista.

6. USPOREDBA MJERENJA I SIMULACIJA

Na slici 6.1. vidi se usporedba mjerenja i simulacija valnih oblika napona i struja.

Sl. 6.1. Usporedba mjerenja (lijevo) i simulacija (desno)

Sa slike 6.1. može se vidjeti da se mjerenja i simulacija poklapaju za sve promjene modulacijskih faktora i dubina modulacija uz manja odstupanja. Postoji razlika u mjerenju valnog oblika izlaznog napona, čija se maksimalna vrijednost naponskog pulsa neznatno mijenja unutar osnovne periode, dok je u simulaciji konstantan. Pri mjerenju struje dolazi do šuma uzrokavanog osjetljivošću mjerne sonde jer je maksimalna vrijednost struje za sva mjerenja 130mA i nesavršenosti komponenti.

Na slici 6.2. prikazana je usporedba mjerenja i simulacija THDU-a dok je na 6.3. prikazana usporedba mjerenja i simulacija THDI-a.

Sl. 6.2. Usporedba mjerenja i simulacija THDU-a

Sl. 6.3. Usporedba mjerenja i simulacija THDI-a

Dobiveni rezultati se poklapaju uz manja odstupanja zbog osjetljivosti mjerene sonde i nesavršenosti komponenti u mjerenjima. Osjetljivost mjerne sonde koja uzrukuje šum u mjerenjima se preslikava na neznatne amplitude svih viših harmonika.

U tablici 6.1. prikazane su normirane vrijednosti harmonika napona mjerenja i simulacija za različite vrijednosti modulacijskog faktora. Mjereni valni oblici su preko osciloskopa importirani u MATLAB, dok su za simulaciju traženi valni oblici iz programa Proteus importirani u MATLAB u kojem se provela harmonijska analiza naredbom FFT (eng. *Fast Fourier Transformation*). Na slici 6.4. prikazana je harmonijska analiza odabranog signala iz koje se može iščitati normirana vrijednost istosmjerne komponente odnosno nultog harmonika, amplituda osnovnog odnosno prvog harmonika, THD i normirane vrijednosti viših harmonika. Sve vrijednosti harmonijskih analiza struja i napona se mogu vidjeti u prilogu 2. i prilogu 3.

Sl. 6.4. Harmonijska analiza odabranog signala

		simulacija	mjerenje	simulacija	mjerenje
red harmonika	<i>m</i> _{<i>a</i>} =1	<i>m</i> _{<i>a</i>} =1, <i>m</i> _{<i>f</i>} =20	<i>m</i> _a =1, <i>m</i> _f =20	<i>m</i> _a =1, <i>m</i> _f =40	<i>m</i> _a =1, <i>m</i> _f =40
1	1	1	1	1	1
m_f	0,601	0,603	0,621	0,605	0,483
$m_f \pm 2$	0,318	0,317	0,328	0,317	0,171
$m_f \pm 4$	0,018	0,019	0,018	0,023	0,091
$2m_f \pm 1$	0,181	0,182	0,168	0,183	0,227
$2m_f \pm 3$	0,212	0,214	0,202	0,212	0,136
$2m_f\pm 5$	0,033	0,04	0,032	0,05	0,036
$3m_f$	0,113	0,116	0,127		
$3m_f \pm 2$	0,062	0,059	0,065		
$3m_f \pm 4$	0,157	0,153	0,186		
$3m_f\pm 6$	0,044	0,046	0,037		
$4m_f \pm 1$	0,068	0,064	0,074		
$4m_f \pm 3$	0,09	0,011	0,054		
$4m_f \pm 5$	0,119	0,117	0,089		
$4m_f \pm 7$	0,05	0,054	0,076		

Tablica. 6.1. Normirane vrijednosti harmonika napona mjerenja i simulacija

U tablici 6.2. su prikazana odstupanja značajnih normiranih vrijednosti harmonika napona mjerenja i simulacija od teorijskih normiranih vrijednosti harmonika u postotcima iz tablice 2.1. računato prema formuli:

$$G_{\%} = \left| \frac{G - G_{ref}}{G_{ref}} \right| \cdot 100\% = \left| \frac{0,603 - 0,601}{0,601} \right| \cdot 100\% = 0,333\%$$
(6-1)

Gdje je:

- $G_{\%}$ odstupanje pojedinih harmonika napona od teorijskih vrijednosti
- G normirana vrijednost pojedinog harmonika napona
- G_{ref} normirana vrijednosti napona pojedinog harmonika iz tablice 2.1.

	simulacija	mjerenje	simulacija	mjerenje
red harmonika	<i>m</i> _a =1, <i>m</i> _f =20	<i>m</i> _a =1, <i>m</i> _f =20	<i>m_a</i> =1, <i>m_f</i> =40	<i>m_a</i> =1, <i>m_f</i> =40
1	0	0	0	0
m_f	0,333	3,328	0,666	16,139
$m_f \pm 2$	0,314	3,145	0,314	46,226
$m_f \pm 4$	5,556	0	27,778	405,556
$2m_f \pm 1$	0,552	7,182	1,105	25,414
$2m_f \pm 3$	0,943	4,717	0	35,849
$2m_f\pm 5$	21,212	3,031	51,515	9,091
$3m_f$	2,655	12,389		
$3m_f \pm 2$	4,839	4,839		
$3m_f \pm 4$	2,548	18,471		
$3m_f\pm 6$	4,545	15,909		
$4m_f \pm 1$	5,882	8,824		
$4m_f \pm 3$	87,778	40		
$4m_f \pm 5$	1,681	25,21		
$4m_f \pm 7$	8	52		

Tablica. 6.2. Odstupanja značajnih normiranih vrijednosti harmonika napona od teorijskih normiranih vrijednosti u postotcima

Iz tablica 6.1. i 6.2. se može zaključiti da se razultati poklapaju, ali postoje manja odstupanja zbog osjetljivosti mjerne sonde i nesavršenosti komponenti. S većim redom harmonika poklapanje s teorijskim normiranim harmonicima napona iz tablice 2.1. se smanjuje. Postoji nekoliko nasumičnih odstupanja amplituda pojedinih harmonika, najveće u $m_f \pm 4$ harmoniku kojem odstupanje iznosi 405,556% u mjerenju s $m_a=1$ i $m_f=40$.

U tablici 6.3. mogu se vidjeti rezultati THD simulacija i mjerenja iz priloga 2. i priloga 3.

	simu	lacija	mjer	enje
$m_a=1$	<i>m_f</i> =20 <i>m_f</i> =40		<i>m_f</i> =20	<i>m_f</i> =40
THDU	100,29	100,59	107,03	137,66
THDI	3,93	2,02	20,1	19,64

Tablica. 6.3. THD simulacija i mjerenja

Iz tablice 6.3. se može zaključiti da se THDU simulacije poklapa s teorijskom tablicom 2.2. u kojoj s dubinom modulacije m_a =1 THDU iznosi 100% dok je u mjerenju THDU nešto veći od teorijskog zbog osjetljivosti mjerne opreme i nesavršenosti komponenata. Povečanjem modulacijskog faktora THDI se smanjuje te je značajno manji od THDU što također odgovara teoriji te je glavni cilj implementacije SPWM upravljanja. Odstupanje THDI mjerenja od simulacija bilo je predvidivo zbog nesavršenosti komponenti i osjetljivosti mjerne opreme jer je maksimalna struja mjerenja iznosila 130mA.

7. ZAKLJUČAK

Iz mjerenja valnih oblika struja i napona vidi se da su se dobili željeni oblici koji su gotovo jednaki u mjerenju na stvarnom sklopu i simulaciji u Proteus programu uz minimalna odstupanja koja su se javila zbog osjetljivosti mjerne sonde i nesavršenosti komponenata. Harmonijska analiza daje zadovoljavajuće rezultate za različite dubine modulacije i modulacijske faktore pri mjerenju i simulaciji s odstupanjem do 27% uz nekoliko nasumičnih odstupanja amplituda pojedinih harmonika do 400%. Dokazano je da se povećanjem dubine modulacije efektivna vrijednost struje povećava, titranje smanjuje te THDU i THDI smanjuju dok se povećanjem modulacijskog faktora THDI smanjuje i efektivna vrijednost struje ostaje ista. Harmonijski sadržaj struje s maksimalnih 20,1% u mjerenju i 3,92% u simulaciji znatno je manji od harmonijskog sadržaja napona s maksimalnih 137,66% u mjerenju i 100,59% u simulaciji zbog svojstva induktiviteta koji se ponaša kao niskopropusni filter te prigušuje više harmonike struje.

Arduino nano pokazao se dobrim mikrokontrolerom zbog svoje cijene i jednostavnosti jer je zadovoljio sve potrebe ovog rada. Proteus se pokazao dobrim programom za simulaciju i mjerenje unutar njega zbog mogućnosti implementacije Arduino koda unutar modela Arduino mikrokontrolera. Nedostatak Proteusa je bio prikaz harmonijskog sadržaja pa je iz tog razloga korišten MATLAB koji se za to pokazao pogodnim.

LITERATURA

[1] B.K. Bose, The Past, Present, and Future Of Power Electronic, IEEE industrial electronic magazine, 2009, dostupno na: <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5075788</u>
 [15.5.2022.]

[2] I.Flegar, Elektonički energetski pretvarači, Kigen d.o.o., Zagreb, 2010.

[3] Sine Pulse Width Modulation (SPWM), WatElectronic.com, 2019, dostupno na: https://www.watelectronics.com/sine-pulse-width-modulation-spwm-working [15.5.2022.]

[4] J. Yin, Unified Power Flow Controller Techonlogy and Application, Elsevier, 2017.

[5] Arduino uvodna web stranica, dostupno na: <u>https://www.arduino.cc/en/guide/introduction</u>[15.5.2022.]

 [6] IR2112(-1-2)(S)PbF Data Sheet, International Rectifier, 2005, dostupno na: <u>https://www.datasheets.com/en/part-details/ir2112-infineon-technologies-ag-12929940</u>
 [15.5.2022.]

[7] MathWorks MATLAB uvodna web stranica, dostupno na: https://www.mathworks.com/products/matlab.html [15.5.2022.]

[8] Proteus uvodna web stranica, dostupno na: <u>https://www.labcenter.com/</u> [15.5.2022.]

SAŽETAK

U završnom radu opisana je izrada jednofaznog naponskog izmjenjivača u mosnom spoju te implementacija pulsno-širinske modulacije preko Arduino mikroupravljača. Napravljena je teorijska podloga za analizu rada. Cilj je bio napraviti izmjenjvač, napraviti kod za SPWM, uspješno implementirati kod te analizirati rezultate. Nakon toga je objašnjen princip rada. Dan je popis komponenti korištenih u radu, shema rada te je objašnjen kod i generiranje matrica korištenih u kodu. Objašnjene su simulacije u Proteus-u i mjerenja na stvarnom sklopu u slučaju promjene modulacijskog faktora i dubine modulacije te harmonijska analiza napona i struja u MATLAB-u. Napravljena je usporedba mjerenja i simulacija te analiza rezultata.

Ključne riječi: Arduino, izmjenjivač, MATLAB, Proteus, pulsno-širinska modulacija

ABSTRACT

Implementation of SPWM control of an autonomous voltage inverter using an Arduino microcontroller

The final paper describes the creating of a single-phase voltage inverter in a full-bridge configuration and the implementation of pulse-width modulation using an Arduino microcontroller. A theoretical basis for the analysis of the work was made. The goal was to create an inverter, create code for SPWM, successfully implement the code, and analyze the results. After that, the working principle was explained. The list of components used in the project and the scheme of project is given, and the code and generating matrices used in the code are explained. Simulations in Proteus and measurements on the real circuit for different modulation factor and depth of modulation and harmonic analysis of voltages and currents in MATLAB are explained. A comparison of measurements and simulations and an analysis of the results were made.

Keywords: Arduino, inverter, MATLAB, Proteus, pulse-width modulation

ŽIVOTOPIS

Robert Bedeković rođen je 24.5.2000. u Virovitici. 2007. godine upisuje Osnovnu školu Petra Preradovića u Pitomači. 2015. godine se upisuje u Tehničku školu Virovitica, smjer elektrotehničar. Tijekom srednjoškolskog obrazovanja sudjeluje na natjecanjima iz matematike te 2019. godine predstavlja svoj rad – samobalansirajući Arduino robot i školu na međunarodnom sajmu gospodarstva, obrtiništva i poljoprivrede Viroexpo. 2019. godine upisuje Fakultet elektrotehnike, računarstva i informacijskih tehnologija u Osijeku, smjer elektrotehnika. Na drugoj godini Preddiplomskog studija elektrotehnike odabire smjer Elektroenergetika.

PRILOZI

Prilog 1 – Arduino kod

Linija Kod

1:	// ma=1 mf=10
	<pre>//int SPWM_time[22]={865, 1470, 294, 1765, 112, 988, 112, 1765, 294,</pre>
	1470, 865, 865, 1470, 294, 1765, 112, 988, 112, 1765, 294, 1470,
2:	865};
	//char SPWM_pin[22]={B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
3:	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010};
4:	// ma=1 mf=20
	//int SPWM_time[38]={543, 385, 694, 239, 826, 120, 924, 37, 1976,
	13, 958, 73, 880, 175, 854, 219, 621, 463, 463, 621, 219, 854, 175,
5:	880, 73, 958, 13, 1976, 37, 924, 120, 826, 239, 694, 385, 543};
	//char SPWM_pin[38]={B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
6.	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010, B00000010, B00000010, B000000010, B000000010, B000000010, B0000000010, B0000000010, B0000000010, B0000000010, B0000000000
-	
7:	// ma=1 mf=30
	//int SPWM_time[54]={316, 288, 245, 456, 181, 517, 123, 569, 74,
	613, 35, 644, 11, 1656, 11, 644, 35, 613, 74, 569, 123, 517, 181, AFC 24F 200 21C 21C 200 24F 4FC 101 F17 122 FC0 74 C12
	450, 245, 200, 510, 510, 200, 245, 450, 101, 517, 125, 509, 74, 015, 35 677 11 1656 11 677 25 612 77 560 123 517 181 756
8:	245 288 316\:
0.	//char_SPWM_pin[54]={B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
9:	B0000001, B00000010};
10:	// ma=1 mf=40
	//int SPWM_time[74]={261, 220, 300, 181, 338, 145, 373, 110, 406,
	80, 434, 53, 458, 31, 478, 16, 491, 14, 1222, 14, 491, 16, 478, 31,
	458, 53, 434, 80, 406, 110, 373, 145, 338, 181, 300, 220, 261, 261,
	220, 300, 181, 338, 145, 373, 110, 406, 80, 434, 53, 458, 31, 478,
11.	16, 491, 14, 1222, 14, 491, 16, 478, 31, 458, 53, 434, 80, 406, 110,
11:	$3/3$, 145, 338, 181, 300, 220, 261};
	$7/CHar SPWM_print[74] = \{B00000001, B00000010, B00000001, B00000001, B00000001, B00000001, B00000001, B00000001, B00000001, B00000001, B000000001, B0000000001, B000000001, B0000000000$
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010.
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010.
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,
12:	B00000001, B00000010, B00000001, B00000010, B00000001, B00000010,

B00000001, B00000010, B00000001, B00000010, B00000001, B00000010, B00000001, B00000010, B00000001, B000000010, B000000001, B000000010. B00000001, B00000010, B00000001, B00000010}; // ma=0.8 mf=20 13: //int SPWM_time[40]={534, 407, 656, 291, 760, 196, 840, 129, 887, 100, 896, 110, 868, 158, 804, 240, 710, 348, 596, 470, 470, 596, 348, 710, 240, 804, 158, 868, 110, 896, 100, 887, 129, 840, 196, 14: 760, 291, 656, 407, 534}; //char SPWM_pin[40]={B00000001, B00000010, B00000001, B00000010, 15: B00000001, B00000010, B00000001, B00000010, B00000001, B00000010}; 16: // ma=0.6 mf=20 //int SPWM_time[40]={525, 430, 617, 343, 695, 271, 756, 222, 791, 200, 797, 208, 776, 244, 728, 305, 658, 385, 572, 477, 477, 572, 385, 658, 305, 728, 244, 776, 208, 797, 200, 791, 222, 756, 271, 17: 695, 343, 617, 430, 525}; //char SPWM_pin[40]={B00000001, B00000010, B00000001, B000000010, B000000001, B000000010, 18: B00000001, B00000010, B00000001, B00000010, B00000001, B00000010}; 19: // ma=0.4 mf=20 int SPWM_time[40]={517, 452, 578, 395, 631, 347, 671, 314, 695, 300, 699, 305, 684, 329, 653, 369, 606, 423, 548, 484, 484, 548, 423, 606, 369, 653, 329, 684, 305, 699, 300, 695, 314, 671, 347, 631, 20: 395, 578, 452, 517}; char SPWM pin[40]={B00000001, B00000010, B00000001, B00000010}; 21: 22: void setup() { DDRB = B11111111; // set portB to digital output 23: 24: } 25: void loop() { 26: int i; 27: for(i=0 ; i<40 ; i++){</pre> 28: PORTB = SPWM pin[i]; 29: delayMicroseconds(SPWM_time[i]); 30: } } 31:

Prilog 2 – harmonijska analiza napona za pojedine parametre

ma=1, mf=20, mjerenje:

Sampling time	=	5e-05 sec.		1650 Hz	h33	2.37%	75.3°	3600 Hz	h72	1.71%	88.0°
Samples per cy	cle =	400		1700 Hz	h34	5.49%	39.2°	3650 Hz	h73	7.57%	5.4°
DC component	=	0.069		1750 Hz	h35	3.21%	47.4°	3700 Hz	h74	5.32%	-37.8°
Fundamental	=	11.92 peak (8	8.428 rms)	1800 Hz	h36	4.28%	-26.5°	3750 Hz	h75	8.92%	267.8°
THD	=	107.03%		1850 Hz	h37	20.20%	258.1°	3800 Hz	h76	2.05%	163.6°
				1900 Hz	h38	4.69%	-41.3°	3850 Hz	h77	5.41%	-61.2°
0 Hz	DC	0.58%	270.0°	1950 Hz	h39	16.76%	111.9°	3900 Hz	h78	7.17%	38.9°
50 Hz	Fnd	100.00%	-63.5°	2000 Hz	h40	5.43%	-79.5°	3950 Hz	h79	11.22%	185.4°
100 Hz	h2	6.31%	21.2°	2050 Hz	h41	23.10%	183.8°	4000 Hz	h80	1.89%	-8 .9°
150 Hz	h3	5.67%	211.7°	2100 Hz	h42	7.75%	175.2°	4050 Hz	h81	7.36%	223.5°
200 Hz	h4	6.73%	-83.1°	2150 Hz	h43	12.88%	40.6°	4100 Hz	h82	2.18%	-63.6°
250 Hz	h5	4.38%	53.6°	2200 Hz	h44	0.73%	91.2°	4150 Hz	h83	4.35%	-50.3°
300 Hz	h6	2.36%	258.3°	2250 Hz	h45	2.67%	104.4°	4200 Hz	h84	6.05%	-67.3°
350 Hz	h7	3.75%	127.4°	2300 Hz	h46	5.72%	41.2°	4250 Hz	h85	5.58%	168.3°
400 Hz	h8	2.57%	228.9°	2350 Hz	h47	4.46%	170.2°	4300 Hz	h86	2.82%	169.5°
450 Hz	h9	4.89%	-59.8°	2400 Hz	h48	3.94%	249.6°	4350 Hz	h87	3.13%	213.4°
500 Hz	h10	7.24%	111.0°	2450 Hz	h49	3.61%	10.2°	4400 Hz	h88	3.58%	245.5°
550 Hz	h11	8.21%	127.7°	2500 Hz	h50	3.55%	80.2°	4450 Hz	h89	0.60%	56.1°
600 Hz	h12	3.46%	-34.4°	2550 Hz	h51	2.96%	64.1°	4500 Hz	h90	7.29%	148.7°
650 Hz	h13	4.08%	-10.0°	2600 Hz	h52	7.33%	187.2°	4550 Hz	h91	2.43%	100.0°
700 Hz	h14	5.45%	126.3°	2650 Hz	h53	6.93%	262.7°	4600 Hz	h92	1.11%	92.0°
750 Hz	h15	4.09%	-49.0°	2700 Hz	h54	9.17%	34.5°	4650 Hz	h93	2.12%	136.7°
800 Hz	h16	4.56%	15.9°	2750 Hz	h55	4.77%	99.2°	4700 Hz	h94	5.98%	-48.3°
850 Hz	h17	4.99%	-65.2°	2800 Hz	h56	18.62%	257.0°	4750 Hz	h95	4.91%	4.5°
900 Hz	h18	32.84%	258.7°	2850 Hz	h57	5.90%	-2.9°	4800 Hz	h96	4.71%	-35.2°
950 Hz	h19	6.90%	225.1°	2900 Hz	h58	6.50%	122.2°	4850 Hz	h97	1.91%	33.4°
1000 Hz	h20	62.08%	121.8°	2950 Hz	h59	3.95%	-14.4°	4900 Hz	h98	3.23%	260.1°
1050 Hz	h21	5.88%	121.0°	3000 Hz	h60	12.65%	169.9°	4950 Hz	h99	6.07%	91.1°
1100 Hz	h22	23.14%	-14.2°	3050 Hz	h61	2.58%	-46.1°				
1150 Hz	h23	3.43%	79.5°	3100 Hz	h62	10.58%	248.8°				
1200 Hz	h24	1.79%	-49.8°	3150 Hz	h63	7.89%	235.1°				
1250 Hz	h25	7.43%	-30.0°	3200 Hz	h64	8.66%	102.3°				
1300 Hz	h26	6.29%	112.9°	3250 Hz	h65	1.80%	82.2°				
1350 Hz	h27	1.96%	215.8°	3300 Hz	h66	3.68%	166.5°				
1400 Hz	h28	1.97%	-88.8°	3350 Hz	h67	3.53%	137.8°				
1450 Hz	h29	1.32%	-58.0°	3400 Hz	h68	1.39%	225.8°				
1500 Hz	h30	4.68%	8.6°	3450 Hz	h69	3.07%	-40.8°				
1550 Hz	h31	6.24%	151.8°	3500 Hz	h70	3.66%	66.8°				
1600 Hz	h32	8.09%	194.9°	3550 Hz	h71	10.78%	152.0°				

1	6 00	• •	
ma-I	mt - 20	c1m11	9C119.
ma-1,	m_{-20} ,	Sinu	aura.
			5

Sampling time	=	1e-05 sec.		1650 Hz	h33	0.43%	180.0°	3600 Hz	h72	0.12%	90.0°
Samples per cycle = DC component =		2000		1700 Hz	h34	0.56%	-90.0°	3650 Hz	h73	4.97%	0.0°
DC component	=	0.084		1750 Hz	h35	3.20%	180.0°	3700 Hz	h74	0.83%	-90.0°
Fundamental	=	11.98 peak (8	3.473 rms)	1800 Hz	h36	0.52%	90.0°	3750 Hz	h75	11.93%	0.0°
THD	=	100.29%		1850 Hz	h37	20.59%	180.0°	3800 Hz	h76	0.17%	-90.0°
				1900 Hz	h38	0.66%	90.0°	3850 Hz	h77	1.18%	0.0°
0 Hz	DC	0.70%	270.0°	1950 Hz	h39	18.45%	180.0°	3900 Hz	h78	0.48%	90.0°
50 Hz	Fnd	100.00%	180.0°	2000 Hz	h40	0.21%	-90.0°	3950 Hz	h79	7.63%	180.0°
100 Hz	h2	0.33%	270.0°	2050 Hz	h41	18.24%	0.0°	4000 Hz	h80	0.04%	-90.0°
150 Hz	h3	0.37%	180.0°	2100 Hz	h42	0.29%	90.0°	4050 Hz	h81	6.47%	0.0°
200 Hz	h4	0.41%	90.0°	2150 Hz	h43	21.36%	0.0°	4100 Hz	h82	0.28%	270.0°
250 Hz	h5	0.24%	0.0°	2200 Hz	h44	0.78%	90.0°	4150 Hz	h83	1.15%	180.0°
300 Hz	h6	0.33%	270.0°	2250 Hz	h45	3.98%	0.0°	4200 Hz	h84	0.39%	-90.0°
350 Hz	h7	0.01%	0.0°	2300 Hz	h46	0.08%	90.0°	4250 Hz	h85	11.70%	180.0°
400 Hz	h8	0.10%	90.0°	2350 Hz	h47	0.17%	0.0°	4300 Hz	h86	0.96%	-90.0°
450 Hz	h9	0.26%	180.0°	2400 Hz	h48	0.45%	90.0°	4350 Hz	h87	5.37%	180.0°
500 Hz	h10	0.24%	- 90.0°	2450 Hz	h49	0.35%	180.0°	4400 Hz	h88	0.47%	-90.0°
550 Hz	h11	0.05%	180.0°	2500 Hz	h50	0.13%	90.0°	4450 Hz	h89	0.93%	180.0°
600 Hz	h12	0.18%	-90.0°	2550 Hz	h51	0.02%	180.0°	4500 Hz	h90	1.55%	-90.0°
650 Hz	h13	0.32%	180.0°	2600 Hz	h52	0.58%	90.0°	4550 Hz	h91	0.39%	0.0°
700 Hz	h14	0.38%	270.0°	2650 Hz	h53	0.37%	180.0°	4600 Hz	h92	5.18%	270.0°
750 Hz	h15	0.49%	0.0°	2700 Hz	h54	4.21%	90.0°	4650 Hz	h93	0.69%	180.0°
800 Hz	h16	2.30%	270.0°	2750 Hz	h55	0.80%	0.0°	4700 Hz	h94	8.78%	-90.0°
850 Hz	h17	0.29%	180.0°	2800 Hz	h56	15.65%	90.0°	4750 Hz	h95	0.00%	180.0°
900 Hz	h18	31.47%	-90.0°	2850 Hz	h57	0.50%	0.0°	4800 Hz	h96	1.74%	90.0°
950 Hz	h19	0.61%	180.0°	2900 Hz	h58	6.95%	90.0°	4850 Hz	h97	0.35%	0.0°
1000 Hz	h20	60.30%	-90.0°	2950 Hz	h59	0.41%	180.0°	4900 Hz	h98	4.41%	90.0°
1050 Hz	h21	0.70%	0.0°	3000 Hz	h60	11.56%	-90.0°	4950 Hz	h99	0.18%	180.0°
1100 Hz	h22	31.68%	-90.0°	3050 Hz	h61	0.12%	180.0°				
1150 Hz	h23	0.70%	0.0°	3100 Hz	h62	5.92%	90.0°				
1200 Hz	h24	1.94%	-90.0°	3150 Hz	h63	0.11%	180.0°				
1250 Hz	h25	0.28%	180.0°	3200 Hz	h64	15.29%	90.0°				
1300 Hz	h26	0.55%	90.0°	3250 Hz	h65	0.50%	180.0°				
1350 Hz	h27	0.07%	0.0°	3300 Hz	h66	4.64%	90.0°				
1400 Hz	h28	0.53%	90.0°	3350 Hz	h67	0.25%	0.0°				
1450 Hz	h29	0.41%	180.0°	3400 Hz	h68	0.45%	90.0°				
1500 Hz	h30	0.04%	90.0°	3450 Hz	h69	0.12%	0.0°				
1550 Hz	h31	0.27%	180.0°	3500 Hz	h70	0.35%	270.0°				
1600 Hz	h32	0.11%	90.0°	3550 Hz	h71	1.06%	0.0°				

ma=1, mf=40, mjerenje:

Sampling time	=	5e-05 sec.		1650 Hz	h33	6.03%	242.2°	3600 Hz	h72	5.60%	215.7°
Samples per cycle = 400			1700 Hz	h34	1.86%	175.7°	3650 Hz	h73	3.62%	105.1°	
DC component	=	0.079		1750 Hz	h35	10.17%	70.0°	3700 Hz	h74	2.53%	145.1°
Fundamental	=	10.36 peak (7.322 rms)	1800 Hz	h36	3.07%	196.6°	3750 Hz	h75	2.32%	32.0°
THD	=	137.66%		1850 Hz	h37	15.47%	217.4°	3800 Hz	h76	1.65%	138.5°
				1900 Hz	h38	4.48%	239.4°	3850 Hz	h77	36.44%	77.4°
0 Hz	DC	0.76%	270.0°	1950 Hz	h39	81.85%	69.1°	3900 Hz	h78	1.90%	112.6°
50 Hz	Fnd	100.00%	265.5°	2000 Hz	h40	7.49%	66.2°	3950 Hz	h79	7.60%	266.5°
100 Hz	h2	4.24%	-86.8°	2050 Hz	h41	48.33%	237.9°	4000 Hz	h80	8.71%	33.6°
150 Hz	h3	8.09%	-4.0°	2100 Hz	h42	2.77%	237.7°	4050 Hz	h81	40.17%	213.0°
200 Hz	h4	2.36%	-0.4°	2150 Hz	h43	8.73%	265.0°	4100 Hz	h82	3.18%	186.5°
250 Hz	h5	4.70%	181.9°	2200 Hz	h44	2.86%	59.4°	4150 Hz	h83	4.40%	246.3°
300 Hz	h6	3.40%	118.5°	2250 Hz	h45	8.16%	176.6°	4200 Hz	h84	2.66%	-20.3°
350 Hz	h7	10.33%	250.9°	2300 Hz	h46	2.69%	84.2°	4250 Hz	h85	16.06%	68.7°
400 Hz	h8	2.29%	191.8°	2350 Hz	h47	7.58%	103.9°	4300 Hz	h86	0.80%	236.5°
450 Hz	h9	8.87%	83.3°	2400 Hz	h48	2.77%	226.5°	4350 Hz	h87	11.41%	228.2°
500 Hz	h10	0.20%	142.8°	2450 Hz	h49	5.54%	237.3°	4400 Hz	h88	3.57%	262.9°
550 Hz	h11	6.91%	202.2°	2500 Hz	h50	3.69%	-38.0°	4450 Hz	h89	3.49%	-62.7°
600 Hz	h12	3.08%	92.2°	2550 Hz	h51	4.35%	128.4°	4500 Hz	h90	3.41%	-70.4°
650 Hz	h13	2.86%	155.1°	2600 Hz	h52	1.57%	-10.7°	4550 Hz	h91	2.95%	170.4°
700 Hz	h14	3.58%	-57.2°	2650 Hz	h53	3.24%	191.1°	4600 Hz	h92	2.17%	103.0°
750 Hz	h15	3.43%	123.9°	2700 Hz	h54	2.64%	253.7°	4650 Hz	h93	5.51%	223.2°
800 Hz	h16	4.99%	-11.0°	2750 Hz	h55	2.10%	229.4°	4700 Hz	h94	4.04%	176.9°
850 Hz	h17	2.84%	198.7°	2800 Hz	h56	1.50%	-66.0°	4750 Hz	h95	4.56%	57.3°
900 Hz	h18	1.27%	156.4°	2850 Hz	h57	6.64%	87.9°	4800 Hz	h96	3.13%	137.2°
950 Hz	h19	7.66%	84.5°	2900 Hz	h58	6.74%	144.3°	4850 Hz	h97	2.65%	190.0°
1000 Hz	h20	4.85%	217.7°	2950 Hz	h59	1.16%	248.6°	4900 Hz	h98	4.30%	97.7°
1050 Hz	h21	0.70%	-44.7°	3000 Hz	h60	3.35%	172.5°	4950 Hz	h99	1.27%	-20.4°
1100 Hz	h22	2.11%	107.5°	3050 Hz	h61	2.26%	25.0°				
1150 Hz	h23	4.00%	20.7°	3100 Hz	h62	3.44%	37.1°				
1200 Hz	h24	5.01%	159.5°	3150 Hz	h63	1.49%	5.3°				
1250 Hz	h25	3.75%	69.3°	3200 Hz	h64	3.91%	57.5°				
1300 Hz	h26	2.04%	1.7°	3250 Hz	h65	3.85%	232.2°				
1350 Hz	h27	5.99%	-83.4°	3300 Hz	h66	5.57%	-31.4°				
1400 Hz	h28	6.17%	23.3°	3350 Hz	h67	3.66%	111.3°				
1450 Hz	h29	7.71%	63.0°	3400 Hz	h68	4.00%	-4.3°				
1500 Hz	h30	0.51%	-3.7°	3450 Hz	h69	4.22%	232.3°				
1550 Hz	h31	6.24%	214.6°	3500 Hz	h70	4.31%	217.7°				
1600 Hz	h32	3.30%	-68.9°	3550 Hz	h71	6.55%	150.1°				

ma=1, mf=40, simulacija:

Sampling time	=	1e-05 sec.		1650 Hz	h33	0.98%	180.0°	3600 Hz	h72	0.68%	90.0°
Samples per cycle = DC component =		2000		1700 Hz	h34	0.12%	90.0°	3650 Hz	h73	1.08%	0.0°
DC component	=	0.012		1750 Hz	h35	0.75%	0.0°	3700 Hz	h74	0.71%	270.0°
Fundamental	=	11.97 peak (8	3.461 rms)	1800 Hz	h36	2.80%	270.0°	3750 Hz	h75	3.21%	180.0°
THD	=	100.59%		1850 Hz	h37	0.19%	0.0°	3800 Hz	h76	0.48%	90.0°
				1900 Hz	h38	31.47%	-90.0°	3850 Hz	h77	20.06%	180.0°
0 Hz	DC	0.10%	270.0°	1950 Hz	h39	0.03%	180.0°	3900 Hz	h78	0.11%	90.0°
50 Hz	Fnd	100.00%	180.0°	2000 Hz	h40	60.53%	-90.0°	3950 Hz	h79	18.47%	180.0°
100 Hz	h2	0.19%	90.0°	2050 Hz	h41	0.39%	0.0°	4000 Hz	h80	0.23%	-90.0°
150 Hz	h3	0.36%	180.0°	2100 Hz	h42	31.72%	270.0°	4050 Hz	h81	18.27%	0.0°
200 Hz	h4	0.03%	90.0°	2150 Hz	h43	0.14%	180.0°	4100 Hz	h82	0.50%	90.0°
250 Hz	h5	1.15%	0.0°	2200 Hz	h44	2.31%	-90.0°	4150 Hz	h83	21.18%	0.0°
300 Hz	h6	1.27%	-90.0°	2250 Hz	h45	0.68%	180.0°	4200 Hz	h84	0.51%	90.0°
350 Hz	h7	0.73%	180.0°	2300 Hz	h46	1.87%	90.0°	4250 Hz	h85	5.02%	0.0°
400 Hz	h8	0.51%	90.0°	2350 Hz	h47	1.00%	0.0°	4300 Hz	h86	0.55%	270.0°
450 Hz	h9	0.35%	0.0°	2400 Hz	h48	0.73%	90.0°	4350 Hz	h87	0.09%	180.0°
500 Hz	h10	0.30%	270.0°	2450 Hz	h49	0.72%	180.0°	4400 Hz	h88	1.44%	90.0°
550 Hz	h11	0.69%	180.0°	2500 Hz	h50	1.74%	90.0°	4450 Hz	h89	0.63%	0.0°
600 Hz	h12	0.90%	-90.0°	2550 Hz	h51	0.75%	180.0°	4500 Hz	h90	0.43%	90.0°
650 Hz	h13	0.60%	180.0°	2600 Hz	h52	0.78%	90.0°	4550 Hz	h91	0.56%	180.0°
700 Hz	h14	0.34%	270.0°	2650 Hz	h53	0.39%	0.0°	4600 Hz	h92	0.57%	270.0°
750 Hz	h15	0.41%	0.0°	2700 Hz	h54	0.30%	-90.0°	4650 Hz	h93	0.84%	180.0°
800 Hz	h16	0.23%	90.0°	2750 Hz	h55	0.63%	0.0°	4700 Hz	h94	0.03%	-90.0°
850 Hz	h17	0.05%	180.0°	2800 Hz	h56	0.17%	90.0°	4750 Hz	h95	0.02%	180.0°
900 Hz	h18	0.17%	270.0°	2850 Hz	h57	0.15%	180.0°	4800 Hz	h96	0.68%	90.0°
950 Hz	h19	0.84%	0.0°	2900 Hz	h58	0.27%	270.0°	4850 Hz	h97	0.30%	180.0°
1000 Hz	h20	0.26%	90.0°	2950 Hz	h59	0.18%	0.0°	4900 Hz	h98	0.09%	270.0°
1050 Hz	h21	0.18%	180.0°	3000 Hz	h60	0.87%	90.0°	4950 Hz	h99	0.41%	0.0°
1100 Hz	h22	0.65%	-90.0°	3050 Hz	h61	0.17%	180.0°				
1150 Hz	h23	0.21%	0.0°	3100 Hz	h62	0.14%	270.0°				
1200 Hz	h24	0.14%	90.0°	3150 Hz	h63	0.69%	0.0°				
1250 Hz	h25	0.12%	180.0°	3200 Hz	h64	0.16%	90.0°				
1300 Hz	h26	0.94%	270.0°	3250 Hz	h65	0.85%	180.0°				
1350 Hz	h27	0.32%	180.0°	3300 Hz	h66	0.57%	90.0°				
1400 Hz	h28	0.89%	270.0°	3350 Hz	h67	0.65%	180.0°				
1450 Hz	h29	0.05%	0.0°	3400 Hz	h68	0.46%	90.0°				
1500 Hz	h30	0.57%	270.0°	3450 Hz	h69	0.44%	180.0°				
1550 Hz	h31	0.15%	0.0°	3500 Hz	h70	0.28%	90.0°				
1600 Hz	h32	1.69%	-90.0°	3550 Hz	h71	0.80%	180.0°				

Prilog 3 – harmonijska analiza struja za pojedine parametre

ma=1, mf=20, mjerenje:

Sampling time	=	1.98413e-05	sec.	1650 Hz	h33	0.32%	165.7°	3600 Hz	h72	0.95%	34.2°
Samples per cycle = 1008 DC component = 0.004709		1008		1700 Hz	h34	0.12%	46.2°	3650 Hz	h73	0.09%	-47.5°
DC component = 0.004709 Fundamental = 0.1225 peak (0.08664 rms)			1750 Hz	h35	0.36%	120.8°	3700 Hz	h74	0.46%	75.4°	
Fundamental	=	0.1225 peak	(0.08664 rms)	1800 Hz	h36	0.79%	205.6°	3750 Hz	h75	0.81%	221.4°
THD	=	20.10%		1850 Hz	h37	0.61%	168.8°	3800 Hz	h76	0.45%	-5.5°
				1900 Hz	h38	1.45%	-67.2°	3850 Hz	h77	0.90%	231.8°
0 Hz	DC	3.84%	90.0°	1950 Hz	h39	0.44%	-86.4°	3900 Hz	h78	0.19%	22.8°
50 Hz	Fnd	100.00%	241.4°	2000 Hz	h40	0.36%	134.8°	3950 Hz	h79	0.33%	254.7°
100 Hz	h2	3.57%	196.5°	2050 Hz	h41	0.34%	208.4°	4000 Hz	h80	0.35%	13.0°
150 Hz	h3	4.19%	220.7°	2100 Hz	h42	0.52%	123.9°	4050 Hz	h81	0.96%	225.5°
200 Hz	h4	2.33%	261.8°	2150 Hz	h43	0.36%	75.4°	4100 Hz	h82	0.70%	28.5°
250 Hz	h5	2.07%	200.7°	2200 Hz	h44	0.68%	242.8°	4150 Hz	h83	0.93%	257.4°
300 Hz	h6	1.06%	209.2°	2250 Hz	h45	0.46%	-20.9°	4200 Hz	h84	0.23%	145.0°
350 Hz	h7	0.77%	-89.0°	2300 Hz	h46	0.46%	11.2°	4250 Hz	h85	0.77%	245.1°
400 Hz	h8	0.90%	79.4°	2350 Hz	h47	0.64%	169.0°	4300 Hz	h86	0.41%	178.7°
450 Hz	h9	1.90%	167.0°	2400 Hz	h48	0.35%	200.5°	4350 Hz	h87	0.65%	238.5°
500 Hz	h10	1.40%	159.4°	2450 Hz	h49	0.57%	128.7°	4400 Hz	h88	0.80%	192.4°
550 Hz	h11	0.98%	138.9°	2500 Hz	h50	1.12%	243.0°	4450 Hz	h89	0.20%	227.0°
600 Hz	h12	0.44%	-70.1°	2550 Hz	h51	0.45%	143.2°	4500 Hz	h90	0.91%	266.8°
650 Hz	h13	0.56%	-55.7°	2600 Hz	h52	0.45%	-81.8°	4450 Hz	h89	0.20%	227.0°
700 Hz	h14	0.43%	267.7°	2650 Hz	h53	0.46%	186.7°	4500 Hz	h90	0.91%	266.8°
750 Hz	h15	0.42%	-72.7°	2700 Hz	h54	0.27%	23.9°	4550 Hz	h91	0.18%	181.3°
800 Hz	h16	0.61%	204.7°	2750 Hz	h55	0.68%	141.9°	4600 Hz	h92	1.04%	-43.6°
850 Hz	h17	1.90%	235.0°	2800 Hz	h56	0.66%	57.5°	4650 Hz	h93	0.49%	185.4°
900 Hz	h18	1.78%	119.1°	2850 Hz	h57	0.74%	60.8°	4700 Hz	h94	0.43%	164.3°
950 Hz	h19	2.96%	194.4°	2900 Hz	h58	0.92%	55.3°	4750 Hz	h95	0.29%	213.6°
1000 Hz	h20	1.66%	163.7°	2950 Hz	h59	0.49%	35.6°	4800 Hz	h96	1.49%	-32.0°
1050 Hz	h21	1.35%	142.0°	3000 Hz	h60	0.50%	-69.6°	4850 Hz	h97	0.60%	101.0°
1100 Hz	h22	1.57%	82.5°	3050 Hz	h61	0.64%	137.5°	4900 Hz	h98	1.46%	38.8°
1150 Hz	h23	1.61%	203.1°	3100 Hz	h62	1.74%	247.6°	4950 Hz	h99	0.80%	165.7°
1200 Hz	h24	0.27%	261.4°	3150 Hz	h63	1.13%	223.4°				
1250 Hz	h25	1.27%	81.3°	3200 Hz	h64	0.79%	-4.1°				
1300 Hz	h26	0.86%	215.4°	3250 Hz	h65	0.21%	70.1°				
1350 Hz	h27	0.83%	142.2°	3300 Hz	h66	0.93%	136.8°				
1400 Hz	h28	0.52%	140.6°	3350 Hz	h67	0.61%	-50.5°				
1450 Hz	h29	0.68%	57.4°	3400 Hz	h68	0.68%	102.1°				
1500 Hz	h30	0.47%	44.8°	3450 Hz	h69	1.07%	-8.9°				
1550 Hz	h31	0.68%	244.9°	3500 Hz	h70	0.67%	151.9°				
1600 Hz	h32	1.21%	168.0°	3550 Hz	h71	0.37%	40.3°				

Sampling time	=	1e-05 sec.		1650 Hz	h33	0.02%	43.7°	3600 Hz	h72	0.01%	3.7°
Samples per cycle = 2000			1700 Hz	h34	0.00%	153.3°	3650 Hz	h73	0.07%	268.6	
DC component	=	0.001538		1750 Hz	h35	0.09%	79.0°	3700 Hz	h74	0.01%	158.5
Fundamental	=	0.1271 peak	(0.08989 rms)	1800 Hz	h36	0.03%	-0.2°	3750 Hz	h75	0.16%	265.4°
THD	=	3.93%		1850 Hz	h37	0.56%	85.5°	3800 Hz	h76	0.00%	14.9°
				1900 Hz	h38	0.03%	-0.6°	3850 Hz	h77	0.02%	-74.7°
0 Hz	DC	1.21%	90.0°	1950 Hz	h39	0.47%	85.1°	3900 Hz	h78	0.01%	-0.2°
50 Hz	Fnd	100.00%	90.9°	2000 Hz	h40	0.01%	9.8°	3950 Hz	h79	0.10%	79.7°
100 Hz	h2	0.06%	1.8°	2050 Hz	h41	0.44%	267.8°	4000 Hz	h80	0.01%	8.5°
150 Hz	h3	0.19%	39.4°	2100 Hz	h42	0.02%	0.8°	4050 Hz	h81	0.08%	266.7
200 Hz	h4	0.21%	0.3°	2150 Hz	h43	0.50%	267.4°	4100 Hz	h82	0.00%	29.4°
250 Hz	h5	0.10%	- 27.7°	2200 Hz	h44	0.03%	-1.0°	4150 Hz	h83	0.02%	63.5°
300 Hz	h6	0.02%	3.5°	2250 Hz	h45	0.09%	-87.5°	4200 Hz	h84	0.00%	61.6°
350 Hz	h7	0.06%	-0.5°	2300 Hz	h46	0.01%	2.9°	4250 Hz	h85	0.14%	80.3°
400 Hz	h8	0.07%	0.6°	2350 Hz	h47	0.01%	-17.6°	4300 Hz	h86	0.01%	159.3°
450 Hz	h9	0.06%	30.8°	2400 Hz	h48	0.02%	0.1°	4350 Hz	h87	0.06%	77.7°
500 Hz	h10	0.02%	3.0°	2450 Hz	h49	0.01%	38.9°	4400 Hz	h88	0.00%	98.9°
550 Hz	h11	0.04%	7.3°	2500 Hz	h50	0.01%	2.5°	4450 Hz	h89	0.01%	59.7°
600 Hz	h12	0.02%	2.6°	2550 Hz	h51	0.01%	7.4°	4500 Hz	h90	0.01%	165.5°
650 Hz	h13	0.04%	35.9°	2600 Hz	h52	0.02%	-0.6°	4550 Hz	h91	0.01%	-39.5°
700 Hz	h14	0.01%	14.6°	2650 Hz	h53	0.01%	40.1°	4600 Hz	h92	0.05%	170.2°
750 Hz	h15	0.04%	-47.6°	2700 Hz	h54	0.09%	-3.9°	4650 Hz	h93	0.01%	53.7°
800 Hz	h16	0.12%	177.9°	2750 Hz	h55	0.02%	-63.3°	4700 Hz	h94	0.09%	170.7°
850 Hz	h17	0.03%	33.4°	2800 Hz	h56	0.29%	-4.7°	4750 Hz	h95	0.00%	9.1°
900 Hz	h18	1.72%	178.4°	2850 Hz	h57	0.01%	-48.1°	4800 Hz	h96	0.02%	-5.1°
950 Hz	h19	0.04%	53.0°	2900 Hz	h58	0.13%	-4.6°	4850 Hz	h97	0.00%	-34.7°
1000 Hz	h20	2.99%	178.2°	2950 Hz	h59	0.01%	42.6°	4900 Hz	h98	0.05%	-7.2°
1050 Hz	h21	0.04%	-57.9°	3000 Hz	h60	0.19%	174.2°	4950 Hz	h99	0.01%	27.6°
1100 Hz	h22	1.42%	178.0°	3050 Hz	h61	0.01%	19.0°				
1150 Hz	h23	0.03%	-57.8°	3100 Hz	h62	0.10%	-4.8°				
1200 Hz	h24	0.06%	176.6°	3150 Hz	h63	0.01%	18.5°				
1250 Hz	h25	0.02%	32.5°	3200 Hz	h64	0.25%	- 5.4°				
1300 Hz	h26	0.04%	-0.2°	3250 Hz	h65	0.01%	47.2°				
1350 Hz	h27	0.02%	-6.6°	3300 Hz	h66	0.08%	-4.9°				
1400 Hz	h28	0.04%	-0.2°	3350 Hz	h67	0.01%	-25.8°				
1450 Hz	h29	0.02%	42.7°	3400 Hz	h68	0.01%	0.1°				
1500 Hz	h30	0.02%	2.3°	3450 Hz	h69	0.01%	-8.7°				
1550 Hz	h31	0.02%	31.8°	3500 Hz	h70	0.00%	39.6°				

ma=1, mf=20, simulacije:

1600 Hz

h32

0.02% 1.8°

3550 Hz

h71

0.01% -71.6°

Sampling time	=	1.96528e-05	Sec.	1650 Hz	h33	0.64%	-81.2°	3600 Hz	h72	0.58%	128.7°
Samples per cycle = 1018 DC component = 0.002587				1700 Hz	h34	1.15%	144.8°	3650 Hz	h73	0.87%	-70.2°
DC component	=	0.002587		1750 Hz	h35	0.78%	92.1°	3700 Hz	h74	0.63%	19.2°
Fundamental	=	0.1101 peak	(0.07789 rms)	1800 Hz	h36	1.09%	119.6°	3750 Hz	h75	1.06%	15.6°
THD	=	19.64%		1850 Hz	h37	1.39%	-38.3°	3800 Hz	h76	0.87%	13.2°
				1900 Hz	h38	0.22%	92.2°	3850 Hz	h77	0.64%	121.7°
0 Hz	DC	2.35%	90.0°	1950 Hz	h39	0.99%	208.3°	3900 Hz	h78	0.78%	99.5°
50 Hz	Fnd	100.00%	211.1°	2000 Hz	h40	0.74%	105.7°	3950 Hz	h79	0.28%	200.2°
100 Hz	h2	6.30%	186.6°	2050 Hz	h41	1.85%	261.6°	4000 Hz	h80	1.35%	95.9°
150 Hz	h3	2.15%	163.8°	2100 Hz	h42	0.32%	19.9°	4050 Hz	h81	0.87%	93.2°
200 Hz	h4	2.50%	190.5°	2150 Hz	h43	0.07%	254.1°	4100 Hz	h82	0.53%	189.9°
250 Hz	h5	2.36%	202.6°	2200 Hz	h44	0.44%	-70.3°	4150 Hz	h83	0.38%	72.7°
300 Hz	h6	2.93%	206.5°	2250 Hz	h45	0.85%	150.3°	4200 Hz	h84	0.29%	148 7°
350 Hz	h7	1.94%	122.3°	2300 Hz	h46	0.38%	-75.8°	4250 Hz	h85	0.87%	212.9°
400 Hz	h8	1.03%	172.9°	2350 Hz	h47	1.03%	228.5°	4300 Hz	h86	1 73%	101.0°
450 Hz	h9	1.03%	176.1°	2400 Hz	h48	0.69%	32.6°	4350 Hz	h87	0.65%	-16.2°
500 Hz	h10	0.99%	239.6°	2450 Hz	h49	1.40%	160.2°	4400 Hz	h88	1 17%	196.2°
550 Hz	h11	0.33%	152.8°	2500 Hz	h50	0.22%	187.9°	4450 Hz	h89	1 34%	131.5°
600 Hz	h12	0.81%	43.6°	2550 Hz	h51	0.21%	-63.5°	4500 Hz	h90	0.67%	128.2°
650 Hz	h13	0.26%	138.7°	2600 Hz	h52	0.60%	263.4°	4550 Hz	h91	0.34%	231.8°
700 Hz	h14	0.61%	162.7°	2650 Hz	h53	0.16%	196.0°	4600 Hz	h92	1.33%	69.1°
750 Hz	h15	0.49%	127.8°	2700 Hz	h54	0.59%	-72.3°	4650 Hz	h93	0.66%	157.6°
800 Hz	h16	0.49%	174.8°	2750 Hz	h55	1.22%	254.2°	4700 Hz	h94	0.97%	33.4°
850 Hz	h17	0.29%	- 77.3°	2800 Hz	h56	0.81%	66.9°	4750 Hz	h95	0.26%	248.6°
900 Hz	h18	0.75%	218.6°	2850 Hz	h57	0.69%	-16.0°	4800 Hz	h96	0.50%	-75.6°
950 Hz	h19	1.88%	110.7°	2900 Hz	h58	0.87%	240.7°	4850 Hz	h97	0.45%	-3.2°
1000 Hz	h20	1.05%	162.0°	2950 Hz	h59	0.71%	168.2°	4900 Hz	h98	1 74%	174 3°
1050 Hz	h21	0.82%	206.9°	3000 Hz	h60	0.57%	260.1°	4950 Hz	h99	1.03%	65.3°
1100 Hz	h22	0.97%	198.6°	3050 Hz	h61	0.40%	-32.3°	1000112			00.0
1150 Hz	h23	0.33%	129.4°	3100 Hz	h62	0.84%	244.3°				
1200 Hz	h24	1.03%	249.3°	3150 Hz	h63	0.95%	-33.3°				
1250 Hz	h25	0.76%	147.0°	3200 Hz	h64	0.44%	165.5°				
1300 Hz	h26	1.07%	189.8°	3250 Hz	h65	1.09%	153.6°				
1350 Hz	h27	1.52%	235.0°	3300 Hz	h66	1.05%	212.7°				
1400 Hz	h28	0.45%	162.5°	3350 Hz	h67	0.74%	201.7°				
1450 Hz	h29	0.93%	80.8°	3400 Hz	h68	0.37%	156.8°				
1500 Hz	h30	0.93%	206.7°	3450 Hz	h69	0.81%	266.2°				
1550 Hz	h31	1.14%	154.3°	3500 Hz	h70	0.96%	156.1°				
1600 Hz	h32	1.06%	125.3°	3550 Hz	h71	0.75%	184.8°				

ma=1, mf=40, mjerenje:

Sampling time	=	1e-05 sec.		1650 Hz	h33	0.03%	89.2°	3600 Hz	h72	0.01%	-7.2°
Samples per cycle = 2000			1700 Hz	h34	0.00%	-5.6°	3650 Hz	h73	0.01%	261.6°	
DC component = 0.0004966 Fundamental = 0.1058 peak (0.07479 rms)				1750 Hz	h35	0.02%	264.2°	3700 Hz	h74	0.01%	174.0°
Fundamental	=	0.1058 peak	(0.07479 rms)	1800 Hz	h36	0.08%	176.9°	3750 Hz	h75	0.04%	83.9°
THD	=	2.02%		1850 Hz	h37	0.01%	256.4°	3800 Hz	h76	0.01%	-7.9°
				1900 Hz	h38	0.83%	176.6°	3850 Hz	h77	0.26%	83.2°
0 Hz	DC	0.47%	270.0°	1950 Hz	h39	0.00%	139.6°	3900 Hz	h78	0.00%	-13.2°
50 Hz	Fnd	100.00%	91.1°	2000 Hz	h40	1.52%	176.4°	3950 Hz	h79	0.23%	83.0°
100 Hz	h2	0.08%	0.3°	2050 Hz	h41	0.01%	261.2°	4000 Hz	h80	0.00%	174.7°
150 Hz	h3	0.12%	95.8°	2100 Hz	h42	0.76%	176.3°	4050 Hz	h81	0.23%	262.6°
200 Hz	h4	0.00%	182.3°	2150 Hz	h43	0.00%	100.5°	4100 Hz	h82	0.01%	-8.5°
250 Hz	h5	0.23%	268.0°	2200 Hz	h44	0.05%	176.2°	4150 Hz	h83	0.26%	262.5°
300 Hz	h6	0.22%	179.7°	2250 Hz	h45	0.02%	89.0°	4200 Hz	h84	0.01%	-8.7°
350 Hz	h7	0.11%	92.3°	2300 Hz	h46	0.04%	-4.3°	4250 Hz	h85	0.06%	262.0°
400 Hz	h8	0.06%	-0.7°	2350 Hz	h47	0.02%	263.8°	4300 Hz	h86	0.01%	173.2°
450 Hz	h9	0.04%	263.4°	2400 Hz	h48	0.01%	-4.7°	4350 Hz	h87	0.00%	106.3°
500 Hz	h10	0.03%	179.4°	2450 Hz	h49	0.01%	88.5°	4400 Hz	h88	0.02%	-8.3°
550 Hz	h11	0.06%	92.1°	2500 Hz	h50	0.03%	-4.7°	4450 Hz	h89	0.01%	258.9°
600 Hz	h12	0.08%	179.1°	2550 Hz	h51	0.01%	88.2°	4500 Hz	h90	0.00%	-9.6°
650 Hz	h13	0.05%	92.3°	2600 Hz	h52	0.01%	-5.1°	4550 Hz	h91	0.01%	85.4°
700 Hz	h14	0.03%	179.1°	2650 Hz	h53	0.01%	260.1°	4600 Hz	h92	0.01%	172.7°
750 Hz	h15	0.03%	263.7°	2700 Hz	h54	0.01%	176.2°	4650 Hz	h93	0.01%	84.0°
800 Hz	h16	0.01%	-1.9°	2750 Hz	h55	0.01%	261.9°	4700 Hz	h94	0.00%	180.3°
850 Hz	h17	0.00%	128.2°	2800 Hz	h56	0.00%	-7.6°	4750 Hz	h95	0.00%	163.2°
900 Hz	h18	0.01%	179.0°	2850 Hz	h57	0.00%	98.7°	4800 Hz	h96	0.01%	-9.6°
950 Hz	h19	0.04%	265.9°	2900 Hz	h58	0.01%	176.0°	4850 Hz	h97	0.00%	88.1°
1000 Hz	h20	0.01%	-2.3°	2950 Hz	h59	0.00%	254.2°	4900 Hz	h98	0.00%	176.2°
1050 Hz	h21	0.01%	99.5°	3000 Hz	h60	0.01%	-5.8°	4950 Hz	h99	0.00%	256.5°
1100 Hz	h22	0.03%	178.3°	3050 Hz	h61	0.00%	97.0°				
1150 Hz	h23	0.01%	258.6°	3100 Hz	h62	0.00%	176.7°				
1200 Hz	h24	0.00%	-3.6°	3150 Hz	h63	0.01%	261.4°				
1250 Hz	h25	0.00%	104.7°	3200 Hz	h64	0.00%	-9.0°				
1300 Hz	h26	0.04%	177.9°	3250 Hz	h65	0.01%	86.6°				
1350 Hz	h27	0.01%	94.1°	3300 Hz	h66	0.01%	-6.7°				
1400 Hz	h28	0.03%	177.7°	3350 Hz	h67	0.01%	87.1°				
1450 Hz	h29	0.00%	232.0°	3400 Hz	h68	0.01%	-7.1°				
1500 Hz	h30	0.02%	177.7°	3450 Hz	h69	0.01%	88.4°				
1550 Hz	h31	0.01%	254.3°	3500 Hz	h70	0.00%	-8.1°				
1600 Hz	h32	0.05%	177.3°	3550 Hz	h71	0.01%	86.2°				