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Abstract

Medical image segmentation plays a pivotal role in various medical applications from
surgical planning to diagnosis and research. Typically, medical image segmentation
heavily relies on neural networks to achieve accurate segmentation across different
imaging modalities such as CT, MRI, microscopy, dermatoscopy, and others. However,
the effectiveness of neural networks is significantly influenced by the availability and
quality of training data, which is often challenging to acquire due to the high time and
financial cost of image acquisition, invasiveness of some imaging procedures, large file
sizes, and regulatory challenges. The labor-intensive and expert-driven nature of an-
notating medical images for segmentation further compounds these challenges, making
the assembly of large, high-quality datasets for training medical image segmentation
models particularly difficult.

Statistical learning theory principles indicate that more complex medical image seg-
mentation tasks require neural networks with a greater number of parameters for effec-
tive segmentation. This requirement for more parameters, in turn, demands larger sam-
ple sizes to avoid overfitting. In medical imaging, however, there is a lack of datasets
with large sample sizes. Therefore, there is a large need for data-efficient segmentation
methods that can deliver reliable results with limited training samples.

In this thesis, we present an overview of medical image segmentation methods and
existing strategies for improving their data efficiency. In addition, we propose vari-
ous new methods that simplify the segmentation task, allowing convolutional neural
networks to perform accurate segmentation with fewer parameters and, by extension,
smaller sample sizes. Our methods center on transforming the segmentation boundary
into a representation that can modeled with fewer parameters. We do so by leveraging
domain knowledge and traditional image-processing techniques to identify beneficial
image transformations. The parameters of the image transformations are dynamically
selected for each image using neural networks, breaking down the segmentation task
into two more manageable stages: an initial rough localization of the target object fol-
lowed by the segmentation of a simplified representation of the image.

More specifically, we use two neural networks to tackle segmentation tasks effec-
tively. The first network focuses on roughly locating the target object, using either Gaus-
sian distributions centered on the object or simple segmentation maps as initial guides.
We construct a function that, given this rough localization, produces parameters for the
image transformation aimed at simplifying the segmentation task. The decision-making
process for the function and the image transformations relies on both domain knowledge
and empirical results. For example, to segment elliptical objects more efficiently, we ap-
ply the polar transform with the polar origin positioned at the object’s center. The image
undergoes the image transformation according to the resulting parameters, preparing it
for the second neural network, which performs the detailed segmentation. This second
network is specifically trained on transformed images using parameters obtained from
ground truth segmentation masks.

By training the second network on transformed images, we simplify the segmenta-
tion boundary and thus can use networks with fewer parameters for the task. Networks
with fewer parameters need less data to train, and so our approach naturally leads to
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increases in data efficiency. Our results demonstrate comparable or improved accuracy
using fewer data samples or labels across various medical imaging applications, such as
segmentation of liver and epicardial adipose tissue from CT scans, skin lesions, polyps
from colonoscopy images, and cells from microscopic images.

The two networks can be separate neural networks or they can be connected and
trained end-to-end. A notable benefit of this approach is that the rough localization and
fine segmentation networks can share the same commonly used medical image segmen-
tation architecture. This allows for easy transfer learning between the two networks,
speeding up training times and improving performance. In addition, the networks can
be pretrained using existing available medical image segmentation datasets or networks.

In addressing the challenge of data efficiency in medical image segmentation, this
thesis introduces the following original scientific contributions:

1. A new biomedical image segmentation method based on polar transform pre-
processing with a learned center point. We introduce a novel preprocessing tech-
nique for medical images, particularly those with elliptically shaped objects. By
applying a polar transform to the image, we simplify circular decision boundaries
into linear ones, making segmentation more straightforward. A key contribution
is developing a neural network to identify the optimal origin for the polar trans-
formation, enhancing segmentation performance and allowing the use of less com-
plex networks.

2. An improved method of reducing the input image size in neural networks us-
ing salient image crops. Building on the insights of model-driven polar trans-
formations, we propose a model-driven cropping technique to minimize neural
network input sizes without sacrificing fine details. By localizing the target object
in a downsampled image and extracting identified regions of interest from a high-
resolution image, we maintain precise segmentation with smaller network input
sizes. Since model complexity increases with image size, this reduction in input
sizes improves data efficiency.

3. A new neural network architecture for high-resolution image segmentation that
combines object detection in low-resolution images and segmentation in high-
resolution images. We extend our preprocessing methods to create an end-to-
end trainable network that combines low-resolution object localization with high-
resolution image segmentation. We allow network convergence in two key ways.
First, we use a shared architecture between the localization and segmentation
subnetworks which allows transfer learning. Secondly, we ensure gradient flow
throughout the network by passing information from one subnetwork to the other.
We show that training this end-to-end network increases the robustness of both the
localization and segmentation stages.

4. A new method of embedding depth information in two-dimensional convolu-
tional neural network input data. Acknowledging the data efficiency limitations
of 3D networks for volumetric data like CT scans, we develop a method to em-
bed depth information into 2D slices by adding a normalized z-coordinate channel
to each slice. We show that this allows effective segmentation of CT images with
slice-based 2D networks.

The effectiveness of these methods is validated across various medical imaging
modalities, including CT scans, microscopy, dermatoscopy, and colonoscopy, showing
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not only enhanced data efficiency but also achieving state-of-the-art segmentation re-
sults in certain tasks. The techniques introduced are versatile, suitable for a broad spec-
trum of medical imaging fields, and can serve as general preprocessing steps for any
convolutional neural network-based segmentation architecture.

The research presented in this thesis has resulted in the publication of four research
papers in scientific journals (all as first author) and five papers presented at international
scientific conferences (of which four as first author).
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Samenvatting

Medische beeldsegmentatie speelt een centrale rol in verschillende medische toepassin-
gen, van chirurgische planning tot diagnose en onderzoek. Over het algemeen steunt
medische beeldsegmentatie sterk op neurale netwerken om nauwkeurige segmentatie te
bereiken bij verschillende beeldmodaliteiten zoals CT, MRI, microscopie, dermatoscopie
en andere. De effectiviteit van neurale netwerken wordt echter aanzienlijk beïnvloed
door de beschikbaarheid en kwaliteit van training data, die vaak moeilijk te verkrijgen
is vanwege de dure en langdurige acquisitie, de invasiviteit van sommige technieken,
grote bestandsgroottes en wettelijke uitdagingen. De arbeidsintensieve en deskundige
aard van het annoteren van medische beelden voor segmentatie maakt deze uitdagin-
gen nog groter, waardoor het bijzonder moeilijk is om grote datasets van hoge kwaliteit
samen te stellen voor het trainen van segmentatiemodellen voor medische beelden.

Statistische leertheoretische principes geven aan dat complexere medische beeldseg-
mentatie neurale netwerken met een groot aantal parameters vereist voor effectieve seg-
mentatie. Dit vereist op zijn beurt grotere steekproeven om overfitting te voorkomen.
In de medische beeldvorming is er echter een gebrek aan datasets van dergelijke om-
vang. Daarom is er een grote behoefte aan gegevensefficiënte segmentatiemethoden die
betrouwbare resultaten kunnen leveren met beperkte training data.

In dit proefschrift presenteren we een overzicht van segmentatiemethoden voor
medische afbeeldingen en bestaande strategieën om hun gegevensefficiëntie te ver-
beteren. Daarnaast stellen we verschillende nieuwe methoden voor die de segmen-
tatietaak vereenvoudigen, waardoor convolutionele neurale netwerken nauwkeurige
segmentatie kunnen uitvoeren met minder parameters en, bij uitbreiding, kleinere
steekproeven. Onze methoden zijn gericht op het transformeren van de segmen-
tatiegrens in een representatie die met minder parameters gemodelleerd kan worden.
We doen dit door domeinkennis en traditionele beeldverwerkingstechnieken te ge-
bruiken om gunstige beeldtransformaties te identificeren. De parameters van de beeld-
transformaties worden dynamisch geselecteerd voor elk beeld met behulp van neu-
rale netwerken, waardoor de segmentatietaak wordt opgesplitst in twee gemakkelijkere
hanteerbare fasen: een eerste ruwe lokalisatie van het doelobject gevolgd door de seg-
mentatie van een vereenvoudigde weergave van het beeld.

Concreet gebruiken we twee neurale netwerken om segmentatietaken uit te voeren.
Het eerste netwerk richt zich op het ruwweg lokaliseren van het doelobject, waarbij
Gaussiaanse verdelingen gecentreerd op het object of eenvoudige segmentatiekaarten,
als initiële richtlijnen worden gebruikt. We construeren een functie die, gegeven deze
ruwe lokalisatie, parameters produceert voor de beeldtransformatie om de segmen-
tatietaak te vereenvoudigen. Het besluitvormingsproces voor de functie en de beeld-
transformaties is gebaseerd op zowel domeinkennis als empirische resultaten. Om bi-
jvoorbeeld elliptische objecten efficiënter te segmenteren passen we de polaire transfor-
matie toe, met de polaire oorsprong in het midden van het object. Het beeld ondergaat
de beeldtransformatie volgens de resulterende parameters en wordt voorbereid voor
het tweede neurale netwerk, dat dan gedetailleerde segmentatie uitvoert. Dit tweede
netwerk wordt specifiek getraind op getransformeerde beelden met behulp van param-
eters verkregen uit segmentatiemaskers ter referentie.
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Door het tweede netwerk te trainen op getransformeerde beelden, vereenvoudigen
we de segmentatiegrens en kunnen we dus netwerken gebruiken met minder param-
eters. Netwerken met minder parameters vereisen minder gegevens om te trainen,
en dus leidt onze aanpak van nature tot een toename in gegevensefficiëntie. Onze re-
sultaten tonen een vergelijkbare of verbeterde nauwkeurigheid bij gebruik van minder
data of labels in verschillende medische beeldvormingstoepassingen, zoals segmentatie
van de lever en epicardiaal vetweefsel uit CT-scans, huidlaesies, poliepen uit colono-
scopiebeelden en cellen uit microscopische beelden.

De twee neurale netwerken kunnen afzonderlijke netwerken zijn of ze kunnen na
verbinding end-to-end worden getraind. Een opmerkelijk voordeel van deze aanpak
is dat de ruwe lokalisatie- en fijne segmentatienetwerken dezelfde veelgebruikte archi-
tectuur voor medische beeldsegmentatie kunnen delen. Dit maakt transferleren tussen
de twee netwerken eenvoudig, wat de trainingstijd verkort en de prestaties verbetert.
Bovendien kunnen de netwerken worden voorgetraind met behulp van bestaande
beschikbare datasets of netwerken voor medische beeldsegmentatie.

Om de uitdaging van gegevensefficiëntie in medische beeldsegmentatie aan te gaan,
introduceert dit proefschrift de volgende originele wetenschappelijke bijdragen:

1. Een nieuwe biomedische beeldsegmentatiemethode gebaseerd op polaire trans-
formatie voorbewerking met een geleerd middelpunt. We introduceren een
nieuwe voorbewerkingstechniek voor medische beelden met elliptisch gevormde
objecten. Door een polaire transformatie op de afbeelding toe te passen, vereen-
voudigen we cirkelvormige beslissingsgrenzen in lineaire, waardoor segmentatie
eenvoudiger wordt. Een belangrijke bijdrage is de ontwikkeling van een neuraal
netwerk om de optimale oorsprong voor de polaire transformatie te identificeren,
waardoor de segmentatieprestaties verbeteren en het gebruik van minder com-
plexe netwerken mogelijk wordt.

2. Een verbeterde methode voor het verkleinen van de invoerafbeelding in neurale
netwerken met behulp van saillante bijgesneden afbeeldingen. Voortbouwend
op de inzichten van modelgedreven polaire transformaties, stellen we een mod-
elgedreven techniek om bij te snijden voor om de invoerafmetingen van neurale
netwerken te minimaliseren zonder fijne details op te offeren. Door het doelobject
te lokaliseren in een gedownsampled beeld en geïdentificeerde interessegebieden
te extraheren uit een beeld met hoge resolutie, behouden we nauwkeurige seg-
mentatie met kleinere inputs voor het netwerk. Aangezien de complexiteit van het
model toeneemt met de grootte van de afbeelding, verbetert deze reductie van de
inputgrootte de gegevensefficiëntie.

3. Een nieuwe neurale netwerkarchitectuur voor beeldsegmentatie met hoge reso-
lutie die objectdetectie in beelden met lage resolutie en segmentatie in beelden
met hoge resolutie combineert. We breiden onze voorbewerkingsmethoden uit
om een end-to-end trainbaar netwerk te creëren dat objectlokalisatie in lage res-
olutie combineert met beeldsegmentatie in hoge resolutie. We maken netwerk-
convergentie op twee belangrijke manieren mogelijk. Ten eerste gebruiken we
een gedeelde architectuur tussen de lokalisatie- en segmentatie subnetwerken, wat
transferleren mogelijk maakt. Ten tweede zorgen we ervoor dat de gradiënt door
het netwerk stroomt door informatie van het ene subnetwerk door te geven aan het
andere. We laten zien dat het trainen van dit end-to-end netwerk de robuustheid
van zowel de lokalisatie- als de segmentatiefase verhoogt.

4. Een nieuwe methode om diepte-informatie te incorporeren in de data aan de in-
gang van tweedimensionale convolutionele neurale netwerken. Met het oog op
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de beperkingen van de gegevensefficiëntie van 3D-netwerken voor volumetrische
gegevens zoals CT-scans, ontwikkelen we een methode om diepte-informatie te
incorporeren in 2D-doorsneden door een genormaliseerde z-coördinaat toe te voe-
gen aan elke doorsnede. We demonstreren dat dit effectieve segmentatie van CT-
beelden met 2D netwerken op basis van doorsneden mogelijk maakt.

De effectiviteit van deze methoden wordt gevalideerd voor verschillende
modaliteiten in medische beeldvorming, waaronder CT-scans, microscopie, dermato-
scopie en colonoscopie, waarbij niet alleen een verbeterde gegevensefficiëntie wordt
aangetoond, maar ook state-of-the-art segmentatieresultaten voor bepaalde taken. De
geïntroduceerde technieken zijn veelzijdig, geschikt voor een breed spectrum van medis-
che beeldvorming en kunnen dienen als algemene voorbewerkingsstappen voor elke op
convolutionele neurale netwerken gebaseerde segmentatiearchitectuur.

Het onderzoek gepresenteerd in dit proefschrift resulteerde in de publicatie van
vier onderzoekspapers in wetenschappelijke tijdschriften (allemaal als eerste auteur) en
vijf papers die op internationale wetenschappelijke conferenties werden gepresenteerd
(waarvan vier als eerste auteur).
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Sažetak

Segmentacija medicinske slike igra ključnu ulogu u raznim medicinskim primjenama
od kirurškog planiranja preko dijagnostike do istraživanja. Taj se proces često oslanja
na neuronske mreže za točnu segmentaciju raznih modaliteta slike kao što su CT, MRI,
mikroskopija, dermatoskopija i druge. Med̄utim, uspješnost ovih modela je značajno
uvjetovano dostupnosti i kvalitetom podataka za trening, koje je često teško prikupiti
zbog visokih vremenskih i financijskih zahtjeva dobivanja slika, invazivnosti nekih
procedura medicinskog slikanja, velikih datoteka i regulatornih zahtjeva vezanih uz
medicinske slike.

Količina truda i stručnosti koju zahtjeva označavanje medicinskih slika dodatno
pogoršava navedene izazove, što čini prikupljanje velikih visokokvalitetnih skupova
podataka za treniranje neuronskih mreža posebnom zahtjevnim. Zbog ovog nedostatka
podataka potrebno je razviti podatkovno učinkovite modele segmentacije koji mogu dati
pouzdane rezultate s ograničenim brojem uzoraka.

Iz područja statistike i teorije statističkog učenja, postavljena je teorija da, kako zadaci
segmentacije medicinskih slika postaju kompleksniji, oni zahtijevaju neuronske mreže
sa sve više parametara za uspješnu segmentaciju. Taj zahtjev za povećanjem param-
etara tada zahtjeva više uzoraka kako bi se izbjegla prenaučenost modela. Med̄utim, u
medicinskim slikama nema dovoljno podatkovnih skupova s velikim brojem uzoraka. U
ovom doktorskom radu je predstavljen pregled metoda segmentacije medicinskih slika
i postojeće strategije poboljšanja podatkovne učinkovitosti tih metoda.

Predstavljene su razne nove metode koje pojednostavljuju zadatak segmentacije, što
omogućuje treniranje neuronskih mreža s manjim brojem parametara te time manje
potrebnih uzoraka. Metode se zasnivaju na transformiranju segmentacijske granice u ob-
lik koji se može modelirati manjim brojem parametara. To se postiže korištenjem znanja
iz domene i tradicionalnim tehnikama obrade slike kako bi se identificirale korisne trans-
formacije slike. Razvijene su neuronske mreže koje dinamički odred̄uju parametre tih
transformacija za svaku sliku. Time se zadatak segmentacije razlomi na dva lakša za-
datka: inicijalna gruba lokalizacija ciljanog objekta koja je popraćena segmentacijom po-
jednostavljene reprezentacije slike.

Uspješnost predstavljenih metoda procijenjena je u raznim modalitetima medicinske
slike, uključujući CT, mikroskopiju, dermatoskopiju i kolonoskopiju. Pokazana su
poboljšanja ne samo u podatkovnom učinkovitosti nego su i za neke segmentacijske
zadatke postignuti rezultati bolji od onih objavljenih u dosadašnjoj literaturi. Predstavl-
jene metode su fleksibilne i koriste za širok spektar tipova medicinskih slika. Mogu se
koristiti kao opći koraci pretprocesiranja slika za bilo koju arhitekturu segmentacijskih
konvolucijskih neuronskih mreža.

Konkretnije, koriste se dvije neuronske mreže za učinkovito rješavanje problema seg-
mentacije. Prva se mreža fokusira na grubo lokaliziranje ciljanog objekta koristeći kao
oznake Gaussovu distribuciju centriranu na objektu ili standardne segmentacijske mape.
Zatim se konstruira funkcija koja za danu grubu lokalizaciju daje parametre transfor-
macije slike, a čija je svrha pojednostavljivanje zadatka segmentacije. Proces odluči-
vanja o korištenoj funkciji i transformaciji slike zasniva se na znanju iz domene i em-
pirijski utvrd̄enim rezultatima. Primjerice, kako bi se učinkovitije segmentirali eliptični
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objekti koristi se polarna transformacija slike, i to tako da je polarno ishodište pozi-
cionirano u središtu objekta. Ulazna slika prolazi kroz transformaciju slike prema do-
bivenim parametrima kao priprema za drugu neuronsku mrežu koja obavlja detaljnu
segmentaciju. Ta je druga mreža posebno trenirana na transformiranim slikama koris-
teći parametre koji su dobiveni od ručno označenih segmentacijskih maski.

Treniranjem druge mreže na transformiranim slikama pojednostavljuje se granica
segmentacije, te se time mogu koristiti mreže s manje parametara za zadatak seg-
mentacije. Mreže s manje parametara trebaju manje podataka za treniranje, tako da ovaj
pristup prirodno dovodi do povećanja učinkovitosti podataka. Rezultati pokazuju us-
poredivu ili poboljšanu točnost korištenjem manjeg uzorka ili manjeg broja oznaka u
različitim aplikacijama medicinskih slika, kao što su segmentacija jetre i epikardijalnog
masnog tkiva iz CT skeniranja, kožnih lezija, polipa iz kolonoskopskih slika i stanica iz
mikroskopskih slika.

Spomenute dvije mreže mogu biti zasebne neuronske mreže ili se mogu povezati i za-
jednički trenirati. Značajna je prednost ovog pristupa to što mreže za grubu lokalizaciju i
finu segmentaciju mogu dijeliti istu često korištenu arhitekturu za segmentaciju medicin-
skih slika. To omogućuje jednostavan prijenos znanja izmed̄u dviju mreža, ubrzavajući
vrijeme obuke i poboljšavajući točnost. Osim toga, mreže se mogu unaprijed trenirati uz
pomoć postojećih dostupnih skupova podataka ili neuronskih mreža za segmentaciju
medicinskih slika.

U svrhu poboljšanja podatkovne učinkovitosti segmentacije medicinskih slika, ovaj
doktorski rad predstavlja sljedeće izvorne znanstvene doprinose:

1. Nova metoda segmentacije biomedicinskih slika temeljena na pretprocesiranju
polarnom transformacijom s naučenim ishodištem. Predstavljena je nova tehnika
pretprocesiranja medicinskih slika, posebice onih koje sadrže objekte eliptičnih ob-
lika. Primjenom polarne transformacije kružne se granice odluke pojednostavljuju
u linearne, što čini segmentaciju jednostavnijom. Razvijena je neuronska mreža da
identifikaciju optimalnog ishodišta polarne transformacije. Poboljšana je kvaliteta
segmentacije i omogućeno korištenje manje kompleksnih neuronskih mreža.

2. Poboljšanje metode za smanjenje veličine ulaznih slika u neuronske mreže
obrezivanjem i korištenjem značajnih dijelova slike. Motivirano uvidima ko-
rištenjem polarne transformacije, predložena je tehnika obrezivanja slika navod̄ena
modelom u svrhu smanjenja veličine ulaznih slika u neuronsku mrežu bez gubitka
detalja. Precizna je segmentacija zadržana usprkos smanjenju veličine ulazne slike
time što se ciljani objekt lokalizira u slici niske rezolucije te se obrezuje regija od in-
teresa iz slike visoke rezolucije. Pokazano je da ovaj pristup povećava podatkovnu
učinkovitost jer kompleksnost modela raste s veličinom ulazne slike.

3. Nova arhitektura neuronske mreže za segmentaciju slika visoke rezolucije koja
kombinira detekciju objekata na slikama niske rezolucije i segmentaciju ob-
jekata na slikama visoke rezolucije. Predstavljene metode pretprocesiranja slika
su dodatno unaprijed̄ene tako što se razvila cjelovita neuronska mreža koja se
može u cijelosti trenirati koja kombinira detekciju objekta na slici niske rezolu-
cije i segmentira objekt na obrezanom dijelu slike visoke rezolucije. Mreži je
omogućena konvergencija na dva načina. Prvo, koristi se ista arhitektura mreže za
grubu i detaljnu segmentaciju, što omogućuje prijenosno učenje. Drugo, informa-
cije se prosljed̄uju od grube do detaljne segmentacijske podmreže, što osigurava
tok gradijenta kroz cijelu mrežu. Pokazano je da treniranje ove cjelovite mreže
povećava robusnost i grubog i detaljnog stadija segmentacije.
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4. Nova metoda ugradnje dubinskih informacija u ulazne podatke dvodimenzion-
alne konvolucijske neuronske mreže. S obzirom na ograničenja u podatkovnoj
učinkovitosti 3D neuronskih mrežama za segmentaciju volumetričnih slika kao
što je CT, razvijena je metoda ugradnje dubinskih informacija u 2D presjeke slike
proširenjem presjeka dodatnim kanalom koji predstavlja normaliziranu z koor-
dinatu. Pokazano je da ovo omogućuje uspješnu segmentaciju CT slika s 2D
mrežama temeljenih na presjecima.

Svaka se od predstavljenih metoda može koristiti kao opći korak pretprocesir-
anja neovisno o korištenoj arhitekturi konvolucijske neuronske mreže. Ovi doprinosi
prikazuju mogućnosti općenitog pojednostavljenja zadataka segmentacije medicinskih
slika i poboljšanja podatkovne učinkovitosti s raznim modalitetima i zadacima medicin-
skih slika.

Kao rezultat istraživanja predstavljenog u ovom doktorskom radu objavljeno je če-
tiri rada u med̄unarodnim znanstvenim časopisima (svi kao prvi autor) i pet radova na
med̄unarodnim znanstvenim skupovima (četiri od kojih kao prvi autor).
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1 Introduction

Medical image segmentation, the process of delineating one region of the image such
as cancerous tissues from the rest of the image, is a crucial step in computer-assisted
medical image analysis. Whether the ultimate goal is surgical planning [Sel+02], diag-
nosis [Dev+21], performing measurements [Sob+19] or doing population-level research
[Bas+10], segmentation is often the first step in understanding 2D and 3D medical im-
ages.

Neural networks have become the standard tool to achieve biomedical image seg-
mentation in almost all problem areas including, among others, segmenting organs or
specific tissues from CT, MRI, or X-ray images [Ant+22]; cells from microscopic images
[Edl+21]; and skin lesions from dermatoscopic images [Cod+19].

The results of these methods are highly dependent on the quantity and quality of the
training data [Cho+16]. However, obtaining medical imaging data is challenging due
to several reasons. Firstly, capturing medical images is costly both in terms of time and
finances. For instance, MRI and CT scanning can take 30 minutes or more and require
equipment that is inaccessible to large parts of the world. Secondly, such data is often
large in terms of file size and stored in complex systems, increasing the friction of shar-
ing and using the data. Finally, some jurisdictions define medical images as personally
identifiable data [Lot+20] and thus require explicit consent for their secondary use to
train neural networks. While valid and understandable, these patient privacy concerns
can limit the use of already existing large databases in medical institutions.

After obtaining a medical image, the image needs to be labeled with high-quality
delineations of the target region. Such labeling is often done through a tedious and
time-consuming process where multiple experts manually draw curves or polygons on
the image. While some labeling methods make this process easier [Lut+19], each image
still needs to be checked by an expert in the field. For challenging problems, this often
requires highly trained and experienced specialists.

These challenges make collecting large medical image segmentation datasets infea-
sible. Therefore, to improve performance and robustness, there is a need to develop
data-efficient segmentation methods. Data efficiency sometimes referred to as sample
efficiency, measures how well a model performs with respect to the amount of training
data. Data-efficient models achieve good results given a small amount of data. Here,
the amount of data is determined by both sample size and the number of features inside
each sample.

This thesis will demonstrate that as the complexity of segmentation tasks increases,
neural networks require a greater number of parameters to achieve effective segmenta-
tion. However, the need for more parameters necessitates a larger sample size of train-
ing data to develop an accurate model. This presents a significant challenge in medical
image segmentation, where there is a need for high-parameter models but insufficient
available training data. To address this issue, we introduce various methods designed to
mitigate the gap between the need for complex models and the scarcity of training data.

The central idea behind the methods presented in this thesis is simplifying the seg-
mentation problem. By reducing the complexity, neural networks can operate with fewer
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parameters, consequently lowering the demand for large sample sizes. This simplifica-
tion is achieved by applying domain knowledge and established image processing tech-
niques to identify image transformations that simplify the segmentation boundary into
one that can be modeled using fewer parameters. Neural networks are then employed
to dynamically determine the most effective transformation parameters for each image,
thereby dividing the complex task of segmentation into two simpler steps: initial rough
localization of the object and subsequent segmentation of a simplified image representa-
tion based on this localization.

We evaluate our methods on a large variety of medical imaging modalities includ-
ing CT, microscopy, dermatoscopy, and colonoscopy. The results demonstrate improve-
ments in data efficiency across a wide array of medical image segmentation tasks while
achieving state-of-the-art results for some of them. All of the methods presented here
are generally applicable across different medical imaging domains and can be used as
preprocessing steps independent of the underlying convolutional neural network archi-
tecture.

1.1 Contributions

This thesis aims to develop new methods of achieving data efficiency in medical im-
age segmentation. In particular, we propose the following original contributions to the
scientific literature:

A new biomedical image segmentation method based on polar transform preprocess-
ing with a learned center point.

We propose a method for preprocessing medical images where the objects of interest
are elliptically shaped, as is often the case for organ or skin lesion segmentation. Mo-
tivated by the intuition that a polar transform transforms circular decision boundaries
into linear ones, we show that this can be used to simplify the decision boundary of
segmentation models. As a beneficial transformation depends on the selected origin,
we construct a neural network to predict the center points of the objects that need to be
segmented. Following this preprocessing, we train a segmentation network on polar-
transformed images and observe improvements in segmentation performance, allowing
for the use of networks with reduced parameters or smaller datasets compared to ex-
isting studies. This contribution is explained in more detail in Chapter 4 and has been
preliminarily published in a journal article [Ben+21], with additional extensions of the
method presented in a conference paper [Ben+22b].

An improved method of reducing the input image size in neural networks using
salient image crops.

Knowing that reducing network input sizes generally benefits data efficiency and train-
ing times and building on the insights from our polar transform approach, we propose
model-driven image cropping as a strategy to decrease neural network input sizes. We
use a neural network with a regular segmentation architecture that roughly localizes a
target object within a downsampled image. The rough localization is then used to ex-
tract high-resolution crops of the target objects in the original image resolution. These
cropped images are then segmented using a second specially trained network, enabling
precise delineation while working with significantly reduced network input sizes com-
pared to the original image dimensions. This method is presented in Chapter 5 and
published in a journal paper [Ben+23].
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A new neural network architecture for high-resolution image segmentation that com-
bines object detection in low-resolution images and segmentation in high-resolution
images.

We expand upon our model-driven preprocessing techniques to make it end-to-end
trainable. We do so by connecting a subnetwork that performs learned cropping to a
segmentation subnetwork, connected via a cropping layer. The shared architecture be-
tween the two subnetworks allows us to use transfer learning to help the subnetworks
converge. Additionally, pass information between the subnetworks to ensure gradient
flow throughout the entire network. This integrated approach allows for the fine-tuning
of the network as a whole, enhancing the robustness of each subnetwork to the potential
inaccuracies of the other. We present this contribution in Chapter 5. This contribution
was published in a conference paper [BHG24].

A new method of embedding depth information in two-dimensional convolutional
neural network input data.

In the thesis, we show that using larger images necessitates higher-capacity models,
which negatively impacts data efficiency. Particularly for volumetric data like CT scans,
training 2D neural networks often proves more data-efficient than their 3D counterparts.
Addressing this, we introduce a straightforward method to incorporate depth informa-
tion into 2D slices of CT images for use in fully convolutional neural networks. Assum-
ing each slice is located at some z-axis value in the scan, we append the normalized z-
coordinate (0 being the bottom and 1 at the top of each scan cropped to the same region)
as an additional channel to each image slice, enhancing the network’s ability to interpret
depth, which, as we demonstrate, leads to improved segmentation outcomes. Details of
this method are discussed in Chapter 6 and have been published in a conference paper
[BHG21].

1.2 List of Publications

1.2.1 Publications in Scientific Journals

• [Ben+21] Marin Benčević, Irena Galić, Marija Habijan, and Danilo Babin. “Training
on Polar Image Transformations Improves Biomedical Image Segmentation”. In:
IEEE Access 9 (2021), pp. 133365–133375. ISSN: 2169-3536. DOI: 10.1109/ACCESS.
2021.3116265

• [Ben+22a] Marin Benčević, Irena Galić, Marija Habijan, and Aleksandra Pižurica.
“Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and
Quantification Based on Deep Learning: A Systematic Review”. In: Applied Sciences
12.10 (May 2022), p. 5217. ISSN: 2076-3417. DOI: 10.3390/app12105217

• [Ben+23] Marin Benčević, Yuming Qiu, Irena Galić, and Aleksandra Pižurica.
“Segment-Then-Segment: Context-Preserving Crop-Based Segmentation for Large
Biomedical Images”. In: Sensors 23.2 (Jan. 2023), p. 633. ISSN: 1424-8220. DOI:
10.3390/s23020633

• [Ben+24] Marin Benčević, Marija Habijan, Irena Galić, Danilo Babin, and Aleksan-
dra Pižurica. “Understanding Skin Color Bias in Deep Learning-Based Skin Lesion
Segmentation”. In: Computer Methods and Programs in Biomedicine 245 (Mar. 2024),
p. 108044. ISSN: 01692607. DOI: 10.1016/j.cmpb.2024.108044

https://doi.org/10.1109/ACCESS.2021.3116265
https://doi.org/10.1109/ACCESS.2021.3116265
https://doi.org/10.3390/app12105217
https://doi.org/10.3390/s23020633
https://doi.org/10.1016/j.cmpb.2024.108044
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1.2.2 Publications in Scientific Conferences

• [BHG21] Marin Benčević, Marija Habijan, and Irena Galić. “Epicardial Adipose
Tissue Segmentation from CT Images with A Semi-3D Neural Network”. In: 2021
International Symposium ELMAR. Zadar, Croatia: IEEE, Sept. 2021, pp. 87–90. ISBN:
978-1-66544-437-8. DOI: 10.1109/ELMAR52657.2021.9550936

• [Ben+22b] Marin Benčević, Marija Habijan, Irena Galić, and Danilo Babin. “Using
the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA
Images”. In: 2022 International Symposium ELMAR. Sept. 2022, pp. 191–194. DOI:
10.1109/ELMAR55880.2022.9899786

• [Ben+22c] Marin Benčević, Marija Habijan, Irena Galić, and Aleksandra Pižurica.
“Self-Supervised Learning as a Means to Reduce the Need for Labeled Data in
Medical Image Analysis”. In: 2022 30th European Signal Processing Conference (EU-
SIPCO). Belgrade, Serbia: IEEE, Aug. 2022, pp. 1328–1332. ISBN: 978-90-827970-9-1.
DOI: 10.23919/EUSIPCO55093.2022.9909542

• [Ver+23] Nicolas Vercheval, Marin Benčević, Dario Mužević, Irena Galić, and Alek-
sandra Pižurica. “Counterfactual Functional Connectomes for Neurological Clas-
sifier Selection”. In: 2023 31st European Signal Processing Conference (EUSIPCO).
Helsinki, Finland: IEEE, Sept. 2023, pp. 1050–1054. ISBN: 978-94-6459-360-0. DOI:
10.23919/EUSIPCO58844.2023.10289859

• [BHG24] Marin Benčević, Marija Habijan, and Irena Galić. “Crop-Guided
Neural Network Segmentation of High-Resolution Skin Lesion Images”. In:
MOSTART2024: International Conference on Digital Transformation in Education and
Artificial Intelligence Applications. Mostar, Bosnia and Herzegovina, Apr. 2024

1.3 Organization of the Thesis

Aside from this introductory chapter, the thesis is organized into two background and
theory chapters followed by three chapters that present the main novel contributions of
this thesis, followed by a conclusion at the end.

Chapter 2 offers a detailed look at various medical imaging modalities and their tech-
nical details for neural network training. It lays the groundwork for image segmentation,
with a focus on segmentation convolutional neural networks. The chapter concludes
with a review of medical image segmentation techniques, from traditional image pro-
cessing techniques to recent neural network-based methods.

Chapter 3 delves into the principles underpinning data efficiency from the fields of
statistics and learning theory, establishing core dependencies between model complexity,
sample size, and segmentation error. These principles guide the methods presented in
the remainder of the thesis. This chapter also provides a synopsis of different strategies
for improving data efficiency in neural network-based image segmentation.

In Chapter 4, we show a general overview of the model-driven preprocessing meth-
ods described in this thesis. It then shows a specific implementation using the polar
transform as the main transformation used to improve data efficiency and shows em-
pirical studies of the method across various medical image modalities. These methods
were published in [Ben+21] and [Ben+22b].

Following this, Chapter 5 expands on the model-driven preprocessing con-
cept, focusing on a method to reduce the input size for neural networks. We

https://doi.org/10.1109/ELMAR52657.2021.9550936
https://doi.org/10.1109/ELMAR55880.2022.9899786
https://doi.org/10.23919/EUSIPCO55093.2022.9909542
https://doi.org/10.23919/EUSIPCO58844.2023.10289859
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achieve this by predicting salient image crops that are used to crop target ob-
jects from a high-resolution image. The chapter describes results published in
[bencevicSegmentthenSegmentContextPreservingCropBased2023] and [BHG24].

Chapter 6 presents a small detour from the model-driven preprocessing approach as
it is a standalone method of preprocessing 3D images to be more easily segmented by
2D neural networks. This is achieved by adding the CT slice depth as a separate channel
of a 2D slice image, as published in [BHG21].

The thesis concludes with the Conclusion, summarizing key findings and contribu-
tions made throughout the study and offering an overview of the research outcomes in
a wider context of medical image segmentation.
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[Ben+21] Marin Benčević, Irena Galić, Marija Habijan, and Danilo Babin. “Training on
Polar Image Transformations Improves Biomedical Image Segmentation”.
In: IEEE Access 9 (2021), pp. 133365–133375. ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2021.3116265.
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sandra Pižurica. “Counterfactual Functional Connectomes for Neurologi-
cal Classifier Selection”. In: 2023 31st European Signal Processing Conference
(EUSIPCO). Helsinki, Finland: IEEE, Sept. 2023, pp. 1050–1054. ISBN: 978-
94-6459-360-0. DOI: 10.23919/EUSIPCO58844.2023.10289859.

https://arxiv.org/abs/1511.06348
https://arxiv.org/abs/1902.03368
https://doi.org/10.1007/s12652-020-01998-w
https://doi.org/10.1038/s41592-021-01249-6
https://doi.org/10.1016/j.jacr.2020.04.007
https://doi.org/10.1016/j.jacr.2020.04.007
https://doi.org/10.1038/s42256-019-0018-3
https://doi.org/10.1038/s42256-019-0018-3
https://doi.org/10.1109/TMI.2002.801166
https://doi.org/10.1109/TMI.2002.801166
https://doi.org/10.1109/EMBC.2019.8856981
https://doi.org/10.23919/EUSIPCO58844.2023.10289859




9

2 Neural Network-Based
Segmentation of Biomedical Images

Image segmentation is the process of defining the borders of regions or objects on an
image. For instance, delineating the liver from its surrounding tissue in a CT scan, sep-
arating each of a cell’s organelles in a microscopic image, or determining the border be-
tween healthy and unhealthy tissue in a dermatoscopic image. This chapter introduces
the different types of biomedical images as well as the process of segmenting them. We
will first provide an overview of the world of biomedical images and its diverse modali-
ties and imaging techniques. We will touch on the technical details of how these images
are stored and used in segmentation algorithms. Then, we will more formally describe
the process of image segmentation from traditional segmentation methods to the most
current deep learning methods.

Biomedical imaging covers a wide range of techniques used in both biology and
medicine [Wal+19]. This includes complex modalities like CT scans and simpler ones
like photographs of a patient’s skin or plants. Because of this variety, a method designed
for one modality might not work for another without changes. So, understanding each
modality’s specifics is crucial when considering segmentation methods. The next section
will provide an overview of different biomedical imaging modalities, focusing on those
most relevant to this thesis.

2.1 Common Types of Biomedical Images

Broadly, we may classify biomedical images into ones that have three and two spatial
dimensions. Images with three spatial dimensions include modalities such as CT and
MRI. Examples of image modalities with two spatial dimensions, among others, include
X-ray imaging, most microscopic images, and dermatoscopic images. Images from both
of these categories can also include additional dimensions such as time. It is worth not-
ing that biomedical images do not always fit neatly into distinct categories. While our
classification provides a general overview, there are emerging techniques that merge dif-
ferent modalities [Str+02], blurring the classification boundaries presented here.

2.1.1 3D Modalities

It is hard to overstate the importance of 3D modalities such as CT and MRI in contem-
porary medical practice, scientific advancements, and patient outcomes [Wal+19]. These
techniques offer medical professionals a window into the patient’s body, allowing much
safer and more reliable diagnosis, treatment, and surgical planning.

The foundational principle behind these modalities revolves around emitting a signal
capable of penetrating tissues. This signal interacts variably with different tissue types.
After transmission through the body, the residual signal is detected and used to create
an image. By repeating this process across various planes of the body and leveraging
computational algorithms, a 3D volume of the patient’s anatomy is constructed. From
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there, these modalities are often stored as voxel-based 3D files, where a voxel is the
smallest 3D unit equivalent to a pixel in 2D images. They are usually stored alongside
patient data such as age, sex, imaging parameters, and other relevant information.

In the subsequent sections, we will delve deeper into the specifics of the two pre-
dominant 3D biomedical imaging modalities: CT and MRI.

Computed Tomography (CT)

Computed tomography is an X-ray-based imaging technique where different planes of
the subject are captured and then reconstructed into a 3D image using a process called
tomography [Gol07a]. CT, as opposed to MRI, uses ionizing radiation that can be harm-
ful in large doses. As such, the benefit of each scan should be weighed against potential
hazards. Notably, there is a relationship between radiation dose and image quality. The
radiation dose has to be carefully balanced to achieve the required image quality without
subjecting the patient to undue radiation [Gol07b].

This balance between radiation dose and image quality has implications for seg-
mentation methods. Low-dose and high-dose CT images visually differ — enough to
cause issues in the segmentation model’s performance across these two domains [Li+23].
High-quality images result in better neural network models, but their availability is
much more limited than low-dose scans.

Another way to enhance the quality of CT images is the use of contrast agents. Typ-
ically administered intravenously, these agents are designed to have a high intensity on
the resulting CT image. A common example of this is CT angiography where contrast is
used to make it easier to delineate blood vessels from surrounding tissue [Gol07a].

CT images are generally stored as W×H×D matrices, with each element indicating
the grayscale intensity of a voxel (volumetric pixel) within the 3D volume. In contrast
with regular pixels, voxels can have different lengths along each dimension and usually
are not cubes [Mot+21]. The voxel’s depth (along the z-axis) is known as slice thickness,
and it is chosen based on the task at hand. Thinner slices increase the spatial detail in
the image making it easier to see minute details. However, thinner slices generally also
increase the noise in the image. Slice thickness is selected to maintain a tradeoff between
spatial resolution and level of noise. The width and height of the voxel are governed by
the field of view and the scanner itself.

Voxel values in CT images are typically stored as 12-bit signed integers. These values
represent the attenuation of the X-ray as it passes through various tissues. Denser struc-
tures such as bones attenuate the radiation more strongly than fat tissue and thus result
in higher intensity values.

To maintain consistency across scans and machines, the attenuation values in a CT
are linearly transformed [FO11]. Specifically, air is assigned a value of -1000, while water
is attributed a value of 0, under standard temperature and pressure conditions. Mathe-
matically, this transformation is expressed as

HU(µ) = 1000 · µ− µwater

µwater − µair
, (2.1)

where µ is the attenuation value of a given voxel while µwater and µair are attenuation
values of water and air, respectively. This transformation is called the Hounsfield unit
(HU) scale. Calibration according to this scale ensures that the attenuation of any tissue
is always relative to water’s attenuation. As a result, values remain standardized across
different images, CT machines, imaging parameters, and institutions. The approximate
Hounsfield unit values corresponding to various tissues are shown in Table 2.1.
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Table 2.1 Approximate Hounsfield values of various tissues [FO11; KLG16].

Tissue Hounsfield value
Fat -30 to -70 HU
Muscle 20 to 40 HU
Bone 1000 HU
Blood 13 to 50 HU

The Hounsfield unit values play a pivotal role in the analysis of CT scans. Beyond
facilitating the identification of specific tissues or structures, variations in Hounsfield
values of the same tissues across patients or scans can hold significant diagnostic impli-
cations. For example, clotted blood exhibits a higher HU value than its unclotted coun-
terpart, establishing the Hounsfield value as a potential marker for intracranial hemor-
rhage [KLG16]. In another context, the mean HU value of epicardial fat can be indicative
of myocardial infarction [Mah+17].

The range of gray levels in a CT scan is far wider than what the human eye can
discern. Therefore, it is standard practice for professionals to employ a technique called
“windowing” when reviewing scans [BM17]. In essence, windowing compresses the
value range by applying two specific thresholds (t1, t2), as defined by

y(x) =


t1, if x ≤ t1

x, if t1 < x < t2

t2, if x ≥ t2

, (2.2)

where x is a given HU value. This allows CT visualization software to visually stretch
the remaining range of gray values, thus enhancing the differences in attenuation, as
seen in Figure 2.1. This technique is not limited to human experts; it finds applications
in image segmentation as well. It is common to window CT image inputs into segmen-
tation neural networks. For example, if segmenting fat, it is often beneficial to discard all
voxels outside of the fat tissue range [Ben+22], reducing the number of voxels that the
network needs to process.

Figure 2.1: A cardiac CTA in its full range (left) and windowed (right).
[Rad+22]
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Magnetic Resonance Imaging (MRI)

Much like CT, MRI produces voxel-based images that visualize the insides of an object.
The process of obtaining an MRI image can be separated into several steps [Gro+15]:

1. The machine applies a strong magnetic field to the subject. This causes protons in
the body to align in the same direction — parallel to the z-axis.

2. Next, the machine emits a brief radio frequency pulse, perturbing a small portion
of the aligned protons and causing them to deviate from their uniform alignment.

3. After the pulse is turned off, the protons gradually return back to alignment. As
they realign, the movement of their positive charge induces an electric current in
a coil inside the MRI machine. In contrast to CT, which gauges the attenuation of
X-rays, MRI measures this induced current.

The time to reach the equilibrium state depends on the specific tissue type, so the
measured current allows the differentiation of tissues in the image. The equilibrium state
is achieved through two independent processes: T1 and T2. T1 measures the time it takes
the protons to reach equilibrium longitudinal alignment, while T2 measures the time to
regain its equilibrium transverse alignment. Different tissues return to their equilibrium
states at varying rates for T1 and T2, enabling two different types of MRI images: T1-
or T2-weighted. For example, water exhibits a long T1 time, while fat has a shorter
one. This means that in T1-weighted images, fat appears brighter than water, while the
opposite is true in T2-weighted images. This can be seen in Figure 3.1.

The relative differences in T1 and T2 images make each more suitable for imaging
specific tissues [Boa+22]. For instance, T1-weighted images allow for identifying fatty
tissue or detecting liver lesions, while T2-weighted images are more effective for identi-
fying white matter lesions and edemas.

The voxels in an MRI, much like a CT, are generally rectangular solids and can be
different in width, height, and depth. The image resolution is determined by several
factors, including the scanner’s field of view, the MRI machine itself, and specific imag-
ing parameters. Generally, increasing resolution leads to higher levels of noise and a
longer acquisition time [Mac96]. Consequently, an optimal balance between resolution,

Figure 2.2: An example T1-weighted MRI (left) and a T2-weighted MRI
(right) showing a diffuse glioma. [Cal+22]
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noise, and scan time must be found, tailored to the tissue being imaged and the specific
diagnostic objective.

MRI has several advantages over CT. For one, MRI usually offers superior contrast
resolution (the minimal detectable difference between tissues) when imaging soft tissues
[Cha+87]. This has established MRI as the gold standard for a large number of diagnos-
tic procedures. Much like with CT scans, MRI contrast can be further enhanced using
contrast agents. Furthermore, as MRI uses magnetic fields instead of ionizing radiation,
it poses no radiation-induced risks to patients.

However, MRI has its own set of limitations. MRI scans typically take longer than
CT scans, which can be uncomfortable for patients, particularly those who are claustro-
phobic or have mental and cognitive disabilities [TSD08]. MRI is contraindicated for
individuals with certain non-removable magnetic objects, like coronary pacemakers and
specific implants [SSC07]. A notable drawback is the lack of standardization in MRI val-
ues across different scans and machines [Wah+21]. Contrary to CT scans, an MRI voxel’s
intensity is not consistent across different scans and can only be reliably interpreted in
relation to adjacent tissue in the same scan.

2.1.2 2D Modalities

3D modalities, while offering a detailed view of a subject, often entail time-consuming
and infeasible procedures in common clinical use. 2D modalities such as X-ray and di-
agnostic ultrasound are often quicker and more readily available. This ease and speed of
2D modalities contribute to the large amount of publicly available datasets in 2D modal-
ities compared to 3D ones. For example, analyzing X-ray images is one of the most active
fields in computerized medical image analysis research [Ngu+20; Irv+19].

X-ray imaging

X-ray imaging, also known as radiography, can be thought of as the 2D equivalent of a
CT as it also relies on ionizing radiation [Sei04]. To obtain an image, X-rays are emitted
on one side of the subject and captured on the opposite side. The intensity of the pixels
corresponds to the attenuation of the emitted radiation. Denser materials appear with a
higher intensity on the resulting image due to their high attenuation.

When capturing an X-ray image, an expert manually positions the generator. The
relative positioning of this generator and the subject directly influences the image’s mag-
nification and field of view. If the subject is closer to the detector than the generator, it
will appear magnified on the resulting image. Such magnification makes the scale on an
X-ray image non-standard and precludes the possibility of making objective length and
area measurements.

The expert also determines various parameters that ultimately change the quality
and quantity of the X-ray beams. The quality measures the ability of an X-ray to pene-
trate tissue and is proportional to the X-ray energy level. Quantity, on the other hand,
measures the number of photons constituting the beam. A high beam quality is advan-
tageous for imaging denser tissues, like bones, or traversing larger volumes. However,
high-quality beams reduce the contrast in soft tissues. Owing to the variability intro-
duced by these parameters, X-ray image intensities lack the uniform standardization
found in CT scans. Consequently, there is no standardized unit for gauging X-ray inten-
sity across images.
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Dermatological images (clinical and dermatoscopic)

The application of deep learning models to dermatology, especially skin lesion analy-
sis, has gained significant momentum. This is driven in part by organizations such as
the International Skin Imaging Collaboration (ISIC) which curates large dermatologi-
cal datasets [Rot+21]. These datasets consist of two primary types of dermatological
images: dermatoscopic and clinical. Clinical images are regular photographs of skin
lesions, while dermatoscopic images are captured with a device called a digital epilumi-
nescence dermatoscope. A dermatoscope consists of a camera attached to a magnifying
lens with a built-in light source. It allows capturing detailed and magnified images of a
skin lesion while filtering out skin reflections.

The primary application of deep learning in dermatological images is for classifi-
cation, e.g. predicting whether a lesion is benign or not or detecting the type of skin
disease. However, by precisely outlining the boundary of a skin lesion, segmentation
techniques can yield more consistent and objective descriptors of the lesion, aiding clas-
sification algorithms [Rot+21].

Microscopy

In biomedicine, one of the predominant uses of computer vision is in segmenting, ana-
lyzing, and quantifying microscopic images [Kha+18]. This covers a broad array of tasks
in digital pathology, from identifying cancerous cells and segmenting nuclei to quanti-
fying white blood cell counts.

Publicly available microscopic images of cells are abundant due to how frequently
they are captured and that they do not contain any personally identifiable information.
However, the large size of these images can present a challenge. Often spanning multiple
megapixels, they exceed the capacity of current deep-learning models and machines.
Consequently, to make them more manageable, these images are typically divided into
smaller patches, downscaled, or processed using a coarse-to-fine approach [Jha+21].

As can be seen, both 2D and 3D biomedical images are exceedingly diverse in their
appearance, use, technical details, and format. Yet, many segmentation techniques prove
versatile enough to be applied across different modalities. In the next section, we will
provide a general outline of how image segmentation works, highlighting commonly
used methods.

2.2 Image Segmentation: From Images to Segmentation Maps

Image segmentation is the process of categorizing each pixel (or voxel) of an image into
one of several predefined classes. Consider a 3-class segmentation scenario for CT im-
ages, with classes being liver, liver tumor, and background. Each of these classes is
assigned a distinct numeric identifier, termed the class label. For illustration, the labels
could be ‘0’, ‘1’, and ‘2’ for the background, liver, and tumor respectively. The segmen-
tation process outputs an image identical in dimensions to the original but with each
pixel’s value corresponding to the class label of that position in the original image. As
an example, pixels corresponding to the liver will all have the value ‘1’. This resulting
image is called a segmentation map since it, like a map, delineates important regions on
the original image.

In medical image segmentation, it is common to extract only a single tissue type
against the backdrop, a technique known as binary segmentation. Additionally, multi-
class segmentation challenges can be decomposed into multiple binary segmentation
tasks, with each class having its individual class-vs-background segmentation map.
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Therefore, one can frame any segmentation problem as a set of binary segmentation
problems.

Mathematically, given a set of K classes, and an input d-dimensional image of N
channels I(A), I ∈ RN , A ∈ Nd where A is the location of each voxel, the segmentation
map M : Nd → RK maps each pixel location to a vector of class probabilities:

M(A) = ( Pr(C1 | I(A)), Pr(C2 | I(A)), · · ·, Pr(CK | I(A)) ), (2.3)

where Pr(Ci | I(A)) is the probability that the voxel I(A) contains an object of class
Ci. Expressed this way, the segmentation map is a K-channel image of the same size as
I(A). Each channel of the image corresponds to a probability map of finding an object
of a given class at a given voxel location.

In binary segmentation, where K = 2, the classes can be denoted as C1 for the back-
ground and C2 for the target object. Given this, for all voxel locations A, the relation
Pr(C2 | I(A)) = 1− Pr(C1 | I(A)) holds true. Therefore M(A) simplifies to a scalar value
M(A) = Pr(C2 | I(A)). This representation is very common in medical image segmenta-
tion problems such as segmenting organs, cell nuclei, and skin lesions, among others.

Often, the next step in the process is to binarize the segmentation map M(A). Voxels
corresponding to the target object are set to ‘1’, while the background is marked as ‘0’.
In such cases, M(A) is frequently termed a segmentation mask. In computer vision,
“mask” refers to a binary image M01(A) ∈ {0, 1} that hides (masks) regions in another
image I(A), resulting in a masked image Im(A) = I(A)M01(A). Within the context of
deep learning-based image segmentation, the terms “segmentation map” and “segmen-
tation mask” are often used interchangeably.

Having laid the foundation for the mathematical framework of image segmentation,
we can now transition to exploring specific segmentation techniques. The next section
presents an overview of common segmentation methods, from traditional ones based on
heuristics to complex model-based approaches prevalent today.

2.2.1 Traditional Image Processing Methods

Despite the popularity of deep learning, traditional techniques, rooted in fundamen-
tal image characteristics, still play a vital role in modern medical image segmentation.
Traditional techniques are often used as methods for pre-processing and data augmen-
tation, as well as refining deep learning model outputs. As we will show later in the
dissertation, traditional methods can increase the robustness and data efficiency of deep
learning-based segmentation models.

Rather than relying on data-intensive training phases, these techniques often operate
deterministically, using explicit algorithms that manipulate image characteristics. They
directly use image properties such as intensity and texture, combined with heuristic
strategies that draw from empirical observations and domain knowledge. Heuristics
are best-practice rules derived from previous samples and experiences. For instance, the
longest component in the bone intensity range of an X-ray image is usually the femur.
These methods provide a clear, interpretable pathway to segmentation.

However, traditional methods are usually developed with a very specific applica-
tion in mind and are hard to translate to other tasks and domains without significant
changes. They are also sensitive to parameter selection and properties of the image such
as intensity level. Helpfully, since they do not use a learning component their limitations
can be known ahead of time. Their validity can also be confirmed using fewer samples
than is the case for learning-based methods.
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Image Thresholding

Thresholding is a fundamental technique that isolates regions in an image based on a
specified range of intensities. In essence, it removes or retains portions of the image
where the intensity either falls outside or within a given threshold.

To illustrate the use of thresholding, consider an example of segmenting adipose tis-
sue on a CT scan. As mentioned earlier in this chapter, voxel intensities on CT scans
quantify a tissue’s X-ray radiation attenuation as measured in Hounsfield units. Typi-
cally, fatty tissue lies between -250 HU and -30 HU. Thresholding the entire scan to this
range segments fatty tissue from all other tissues on the scan with no need for additional
complex models. For preprocessing, Hounsfield unit thresholding is an efficient way to
discard irrelevant voxels, allowing the rest of the segmentation process to focus on fewer
voxels.

Thresholding can be also used to greatly simplify a model’s task using domain
knowledge. Take, for instance, the segmentation of epicardial fat, which refers to the fat
in proximity to the heart wall. Epicardial fat is sparsely distributed in a complex shape
inside the pericardium. Yet, the pericardium itself has a smooth, elliptical shape and is
comparatively easy to segment. By first segmenting the pericardium and subsequently
thresholding the pericardium region to the fatty tissue range, we can find epicardial fat
without having to segment its complex shape directly [Ben+22].

Region Growing Techniques

Region growing is a voxel-based image segmentation method [AB94]. Beginning from
a designated seed voxel, the method assesses neighboring pixels in successive steps. If
these pixels meet a specified criterion, often related to pixel values or textures, they are
integrated into the region. This process continues until all image pixels are assessed.
Despite being a straightforward method, region growing is very sensitive to the selected
seed point and may struggle with nuanced transitions between regions. This process is
shown in Figure 2.3.

Figure 2.3: A demonstration of region growing for delineating the internal
and external areas of the pericardium on a CT slice, set to the adipose
tissue intensity range. The left image is the original input, and the right
image depicts the segmented outcome with the heart exterior in red and
the interior in blue. The green dots represent the manually chosen seed

points initiating the region-growing technique. [Ben+22]
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Figure 2.4: A demonstration of employing active contours to complete
the absent segments of the pericardium line, displayed in white. The con-
tour, illustrated in blue, starts as a complete circle surrounding the image.
With every iteration, the contour adapts more closely to the image’s shape.

[Ben+22]

Active Contours or Snakes

Active contours, often termed “snakes”, are segmentation methods that employ dynamic
curves to outline image parts [KWT88]. The process involves tightening a preliminary
curve around an object iteratively until it conforms to the object’s shape. The adaptation
is guided by an energy function that evaluates the curve’s smoothness and proximity to
edges. A practical depiction of active contours is displayed in Figure 2.4.

Atlas-Based Segmentation

Atlas-based methods, differing from contour-based ones, leverage the spatial relation-
ships among identified structures in an image [Roh+05]. First, a template image is se-
lected and an expert creates an atlas (a segmentation map) by manually segmenting and
labeling structures in the template image. Due to anatomical variations, multiple rep-
resentative images are often merged to produce a template image. The atlas can then
be employed to segment new images using a registration algorithm. Image registration
is an optimization problem where one image, called the moving image, is deformed to
best align with a target image according to some scoring function. The scoring function
usually uses the distance between heuristic-based landmarks in the target and moving
images to determine how well the two images align. In atlas-based segmentation, a new
moving image is deformed to be aligned with the template image that was used to con-
struct the atlas. The atlas can then be used as a segmentation map for the moving image,
as it is now aligned with the atlas. The atlas-based registration process is illustrated in
Figure 2.5.

A disadvantage of this approach is that the process can lead to a complete failure to
segment the image if the target and moving images are too dissimilar. Therefore, atlas-
based segmentation has fallen out of favor due to the emergence of deep learning-based
methods. However, recently there has been significant progress in image registration
and atlas-based segmentation using deep learning-based techniques [Sin+22]. These ap-
proaches offer good potential for merging traditional and newer approaches will be dis-
cussed later in the chapter.



18 Chapter 2. Neural Network-Based Segmentation of Biomedical Images

Figure 2.5: A schematic representation of the registration procedure. Ini-
tially, input and target images are chosen. Throughout the registration
phase, the input image (shown in green) undergoes deformation to align

with the fixed target image (shown in red). [Ben+22]

2.2.2 Machine Learning

While deep learning generally falls within the machine learning umbrella term, in this
dissertation the term “machine learning” will be used to refer to techniques that are
not based on deep neural networks. This encompasses methods such as support vector
machines, random forests, and other statistical learning techniques that rely on manually
engineered image features.

In this context, image segmentation can be viewed as a voxel-wise classification prob-
lem expressed as

H(x; θ) = ( Pr(C0 | x), Pr(C1 | x), · · · , Pr(CK−1 | x) ), (2.4)

where H is a classification function parameterized by θ, which maps an input vector x
of voxel-level features to the probability that the voxel contains the class Ci. The features
are manually constructed based on domain knowledge and represent each pixel and its
surrounding region. Commonly, these include the pixel’s intensity, mean intensity of
the area, image moments, and other information deemed relevant for the classification.
The classifier is trained to minimize a predefined loss function by feeding each pixel’s
features to the classifier and comparing the output to the ground truth output. This is
presented visually in Figure 2.6.

Another common approach is to divide the image into smaller patches and then em-
ploy a machine learning classifier to categorize each patch into one of the predefined K
classes. The classifications are then fused together to form a segmentation map. Both
patch- and voxel-based machine learning approaches can be more data efficient than
deep learning-based approaches [Ben+22], but they often lack the ability to model com-
plex features and dependencies.

It is clear that these traditional techniques have inspired and paved the way for more
complex deep learning methods — while still playing a vital role as parts of segmen-
tation pipelines today. In the next section, we will provide an overview of how deep
learning builds on traditional machine learning to achieve more powerful models that
can segment very complex regions.



2.3. Deep Learning-Based Segmentation Methods 19

Figure 2.6: A schematic of a supervised linear classifier in a machine learn-
ing workflow. The upper section illustrates the training phase. Here, fea-
tures are color-coded according to their known class from training data,
depicted in red and blue. The parameters of the decision boundary, which
demarcates the zones of the two classes (highlighted in light red and grey),
are determined during training. The lower part of the diagram depicts
the inference stage. In this phase, features are extracted from new images,
and the trained model is employed to classify each pixel in the image.

[Ben+22]

2.3 Deep Learning-Based Segmentation Methods

Machine learning encompasses a broad range of techniques for building statistical mod-
els, which includes deep learning — a subset of machine learning that focuses on using
artificial neural networks. Artificial neural networks consist of simple nodes called neu-
rons. Each neuron is a non-linear function of the sum of its inputs. This non-linear
function is called the activation function. The neurons are all arranged in a graph where
the outputs of one set of neurons are connected to the input of another set of neurons.
Each connection has an associated weight and bias parameter. The value on the connec-
tion is multiplied by the weight and the bias is added before it is fed into the subsequent
neuron. The exact configuration of the graph, including the number of neurons and
how they are connected, is determined by hand and is referred to as the neural network
architecture. Typically neurons are arranged into layers, where neurons of one layer
connect only to the next layer. Current deep-learning networks usually have between
ten and 100 layers. A typical neural network architecture can be seen in Figure 2.7.

Mathematically, a neuron is a function that maps some input vector to a scalar value.
First, the dot product between the input vector x = [x0 x1 · · · xn−1] and the weights
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Figure 2.7: A small neural network with three layers, wherein each layer
is connected to every neuron in the next layer. [HTF09]

column vector w is calculated and added with the bias vector b:

z(x; w, b) =
[
x0 x1 · · · xn−1

] 
w0
w1
· · ·

wn−1

+
[
b0 b1 · · · bn−1

]
. (2.5)

Then, all of the inputs are summed and the neuron output is produced using the
activation function g:

f (x; w, b) = g

(
n−1

∑
i=0

z(x; w, b)i

)
. (2.6)

The parameters b and w associated with each neuron can be consolidated into a large
matrix, denoted as θ. This matrix is called the parameters of the network. Current deep
learning networks usually have multiple millions of parameters.

One example of an activation function is the rectified linear unit (ReLU) function:

ReLU(x) =

{
x, if x > 0,
0, otherwise.

. (2.7)

ReLU can be seen as a simple thresholding function that sets all negative values to zero.
Despite its simplicity, ReLU is one of the most prevalent activation functions in neural
networks.

2.3.1 Neural Network Training, Validation and Testing

Initially, the parameters of a neural network are often initialized with random values.
These values are then fine-tuned during a procedure called training, which iteratively
adjusts the parameters to minimize a loss function. The loss function measures how well
the network is performing its task by comparing its output to known correct values. For
example, in image segmentation, the loss function would measure the similarity between
the network’s segmentation map and a hand-labeled counterpart. Through a process
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called backpropagation, each parameter is updated in the direction that will decrease
the loss. This is repeated multiple times for each image in a training dataset.

However, there is a caveat. The training dataset, much like any statistical data, is a
sampling of the “real world” data from some unknown distribution. Depending on the
size and quality of the dataset, it is possible that the training dataset does not represent
the true distribution of the data. Moreover, the network can learn to produce correct
solutions for each training image individually instead of learning general patterns in
the data. This is called overfitting — the model excels on the training data but fails on
unseen data. To detect and mitigate this, two additional datasets are introduced: the
validation and test datasets.

The validation dataset serves a critical role during model development. After train-
ing, the model is assessed using this dataset to inform decisions about its architecture,
preprocessing, and other facets. During the development cycle, the network is constantly
modified and re-evaluated on the validation dataset. Since adjustments to the model are
based on its performance on the validation dataset, there’s a risk of inadvertently tai-
loring the model to the specific distribution of the validation data. To counteract this
potential bias, a test dataset (often termed a hold-out dataset) is used. This dataset is re-
served exclusively for a final evaluation, offering the least biased estimate of the model’s
real-world performance.

The training, validation, and testing datasets are created before the model develop-
ment process. Usually, they are sampled randomly from a larger dataset with ratios such
as 80%, 10% and 10% for the training, validation, and testing datasets, respectively.

In the next chapter, we will further discuss overfitting in neural networks. For now,
we will move on to describing neural network architectures in more detail.

2.3.2 Encoders and Decoders

Machine and deep learning-based segmentation methods can be conceptualized as a
two-stage process. The first stage, termed the encoder stage, is a function En : RD×C →
Rn×m×d. In other words, a D-dimensional image with C channels is mapped to a tensor
commonly referred to as a feature map. This feature map has an arbitrary size and depth
determined by the network architecture. The encoder effectively compresses the image
by distilling salient information into a smaller representation, the feature map. In deep
learning parlance sometimes this is referred to as the backbone of the network.

The output of the encoder then goes to the second stage called the decoder or the
head. The decoder is a function De : Rn×m×d → RD×K that maps a given three-
dimensional feature map tensor of size n×m× d into a two-dimensional segmentation
map of size D× K. Each pixel value of the segmentation map corresponds to the proba-
bility of finding the target object on that pixel.

Given an image I, the segmentation process can then be written as

M = (En(θEn) ◦ De(θDe))(I), (2.8)

where En and De are functions parameterized by a θEn and θDe, respectively. In conven-
tional machine learning, En is not a trainable function. Instead, θEn consists of hand-
selected parameters to extract pre-selected features from the image. The value of θDe, on
the other hand, is determined by minimizing a loss function. In deep learning, both θEn
and θDe are determined by minimizing a loss function.

Thus, the difference between traditional machine learning and deep learning is in
the encoder stage. Deep learning utilizes neural networks to define features, whereas
traditional machine learning uses handcrafted functions.
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The separation of segmentation models into encoder and decoder stages is a crucial
aspect of current research in deep learning. This separation allows for independent im-
provement of both stages and an easy combination of different encoders and decoders.
For instance, a classification and segmentation network could use the same encoder ar-
chitecture. While the classifier would utilize a simpler decoder to map input features to
a class probability vector, the segmentation model would employ a more complex de-
coder to produce a segmentation map. However, both models would use the exact same
encoder. In fact, there are models such as Mask R-CNN [He+17] that use two parallel
decoders, one for segmentation and another for object detection, both connected to the
same encoder. Throughout the rest of this thesis, when describing neural network archi-
tectures, we will describe them in terms of their encoder and decoder and how the two
are connected.

2.3.3 Convolutional Neural Networks

Convolutional neural networks have profoundly impacted computer vision, establish-
ing deep learning as the prevailing approach for complex computer vision tasks. The
foundational element of a CNN is its convolutional layer, which uses a convolution-like
operation in place of the conventional neurons mentioned earlier in this chapter.

Convolution

Generally, convolution is a mathematical operation between two functions. In the con-
text of this thesis, however, we will focus on discrete 2D convolution between two square
images, as that is most relevant for image segmentation. Convolution is denoted as

Figure 2.8: A visual depiction of a convolution procedure step-by-step.
In each step, the kernel slides over the image (shown in blue). The over-
lapping elements between the kernel and the image are multiplied and
then summed to produce a value in the resultant image (shown in green).

[DV18]
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I(A) ⋆ k(B) where I(A) is an image I(A) ∈ RW×H and k(B) is a matrix k(B) ∈ Rw×h in-
dexed by locations B ∈N2 for called the convolutional kernel. At position A = (ax, ay),
the convolution operation is defined as

(I ⋆ k)(ax, ay) =
h

∑
j=1

w

∑
i=1

I(ax − i, ay − j)k(i, j). (2.9)

Explained differently, the resulting image is produced by sliding the kernel over the
input image pixel by pixel. At each pixel location, values where the kernel and the
image overlap are multiplied, and all of the products are summed together to form the
corresponding pixel’s value in the output image. This is shown visually in Figure 2.8.

While mathematically a simple operation, convolution is exceedingly powerful and
can produce almost endless transformations of an image. It is most commonly used
for filtering — a convolution can elegantly find patterns in the image and increase their
intensity in the image. One such example is the convolution with a kernel called the
Prewitt operator:

Iy = I ⋆

−1 0 1
−1 0 1
−1 0 1

 . (2.10)

When convolved with this kernel, the resulting image has high-intensity pixels in regions
where vertical edges are present, and low intensity everywhere else. This can be seen in
Figure 2.9.

Vertical edges necessarily have to have a large jump in values going from left to
right or right to left. Otherwise, there would be no perceptible edge. This kernel takes
advantage of that fact to accentuate parts of the image where there is such a jump. It
does this by replacing each pixel with the difference between the pixels on its left and its
right.

This process happens as follows. For each pixel of the input image, the kernel is
placed such that it is centered on that pixel. This means that the values of the pixel as
well as its neighbors above and below are all multiplied by zero. The neighbors on the
left are multiplied by -1, and the ones on the right are multiplied by 1. Summed together,
the result represents the sum of the values on the right of the pixel, minus the sum of the
values on the left.

Figure 2.9: An example of an input image (left) convolved with the Prewitt
operator (right). Note that vertical edges are accentuated in the convolu-

tion result.
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To illustrate this, let us consider 1× 3 region of the image where no vertical edges are
present, skipping the two pixels on the borders during the convolution:[

128 130 136
]
⋆
[
−1 0 1

]
=
[
−1× 128 + 0× 130 + 1× 136

]
=
[
8
]

This section of the image does not contain a vertical edge, so the convolution result
is a relatively low value. In a standard image with values in [0, 255), 8 would appear
almost completely black.

However, consider some section of the image where a vertical edge is indeed present
(again skipping the two pixels on the border of the region):[

63 66 132
]
⋆
[
−1 0 1

]
=
[
−1× 64 + 0× 66 + 1× 132

]
=
[
68
]

The value is now much larger due to the difference between the left and right sides
of the image. This example demonstrates how a relatively simple kernel can capture
complex features of an image.

Beyond edge detection, there are many commonly used convolution kernels to per-
form tasks such as blurring, sharpening, or denoising images. A CNN can leverage the
power of the convolution by stringing together sequences of intricate kernels to match
complex patterns in the image.

Convolutional Layers

A CNN operates by passing an image through a sequence of convolutions. The output
from one convolution serves as the input for the next. Interspersed between these con-
volutions are non-linear transformations of the outputs. This layered approach enables
the network to successively find more and more intricate features by combining simpler
ones. For instance, combining edges into corners, corners into shapes, and ultimately
detecting objects from shapes. The addition of non-linearity drastically increases the
complexity of features the network is able to detect and combine.

More technically, in a CNN, convolutional layers are connected to one another sim-
ilarly to how fully connected layers are connected in fully connected neural networks.
Each convolutional layer performs a set number of convolutions, denoted by n. The
results are stored in an n-channeled feature map. Each channel corresponds to a con-
volution with a distinct kernel. Hence, a convolutional layer contains n unique kernels.
The values of the kernels are the parameters of the layer, optimized during training to
minimize a loss function like weights and biases of standard neurons. Finally, a convo-
lutional layer also applies a non-linear activation function to the resulting feature map.

It is worth noting that the operation within a convolutional layer differs from a stan-
dard 2D discrete convolution. Here, both the kernel and the input are three-dimensional
and have the same depth, but the kernel is usually much smaller in width and height.
Since the kernel has the same width as the input, during the operation the kernel only
slides along the width and height dimensions. The output of each sliding window step
is still a single scalar since all overlapping elements in the sliding window volume are
multiplied and summed together. This means that the output of the whole operation is
a two-dimensional image. This is visualized in Figure 2.10.

Pooling Layers

Most CNN-based encoders follow a pattern of gradually reducing the width and height
of the feature maps while increasing their depth. Depth is increased by giving each
successive convolutional layer more kernels. Since each channel represents the result of
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I(A) I(A)⭑k(B)k(B)

Figure 2.10: A view of one step of a single convolution operation inside
a CNN layer. The layer performs multiple convolutions, each with a dif-
ferent kernel that has an equal number of channels as the input image. In
each step, the whole kernel slides over the width and height of the im-
age, and the overlapping channels are multiplied together and summed
to produce a single output value. The output of the convolution is one
channel of a n-channel image where n is the number of different kernels

in the layer.

a convolution with a specific kernel, having more kernels directly increases the output
depth. To reduce the width and height, pooling layers are employed. These layers
downsample the image, often by averaging pixel values within a defined neighborhood.
This downsampling serves dual purposes in a CNN. Firstly, it compresses the image
by gradually removing spatial information and retaining relevant semantic information.
Secondly, the network is gradually able to build up large complex features by combining
small general features. Such an architecture is shown in Figure 2.11.

To illustrate this, consider a contrived example of a CNN encoder trained to detect
grapes on a vine. The first few layers might focus on simple operations such as edge
detection, requiring a large amount of spatial information. The next layer could use the
edge information to detect circles. This layer does not need as much spatial detail since
the edges are already identified. A third layer might then combine the locations of the
circles to detect a cluster of grapes. By this stage, the spatial information is even less
important, with the overall arrangement of circles being the primary focus.

A convolutional decoder essentially reverses the encoder process. Instead of adding
channels, a convolutional decoder successively removes channels up to and upsamples
the image. By the end, the output matches the input image’s width and height, and the

Pooling Convolution Pooling Convolution Pooling Pooling

3@128x128

3@64x64

24@64x64
24@32x32

32@32x32 32@16x16

1x32

Figure 2.11: A typical architecture of a CNN encoder. The encoder consists
of consecutive convolutional and pooling layers that gradually increase
the feature map depth and decrease its width and height. The result is
a map of features that tells the decoder what features are on the image
but does not provide much spatial information about the location of those

features. [Lec+98]
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number of output channels equals the number of classes.
One way in which upsampling is implemented in a convolutional decoder is with a

transposed convolutional layer. These layers are very common in segmentation neu-
ral networks and allow for dynamic, learned upsampling of the image. Regular con-
volutions cannot increase the image dimension width and height. To overcome this, a
transposed convolution produces an output matrix for each step of the sliding window
process, instead of just a scalar value. For instance, a transposed convolution with a
2× 2 kernel produces 4 new values for each pixel in the input image. This is done by
performing scalar multiplication of the whole kernel and the pixel it is sliding over dur-
ing each sliding window step. All of the sliding window results are joined as a grid to
form a final, larger, image.

To better understand this, consider an example of upscaling a 2× 2 2D input image
m with a 2× 2 kernel k. The transposed convolution can be calculated as follows:

m ⋆T k =

m11k11 m11k12 0
m11k21 m11k22 0

0 0 0

+

0 m12k11 m12k12
0 m12k21 m12k22
0 0 0

+

 0 0 0
m21k11 m21k12 0
m21k21 m21k22 0

+

0 0 0
0 m22k11 m22k12
0 m22k21 m22k22


This method can be similarly applied to images and kernels of any size. While trans-

posed convolution is often referred to as deconvolution, in this thesis, we will avoid using
the term to prevent confusion with the meaning of deconvolution outside of the context
of deep learning.

Segmentation models that use only convolutional and pooling layers are called fully
convolutional models and are one of the most widely used types of models for medical
image segmentation. In the following section, we will describe these and other com-
monly used CNN architectures in medical image segmentation.

2.4 CNN Architectures for Medical Image Segmentation

Deep learning’s application in medical image segmentation has predominantly seen the
use of convolutional neural networks. This field has witnessed a rapid evolution, giv-
ing rise to a diverse range of architectures. While some of these architectures were ini-
tially designed for general image classification and segmentation tasks, others have been
specifically tailored to overcome challenges specific to medical imaging. In this section,
we will highlight the most influential CNN architectures that have shaped medical im-
age segmentation, presented in their chronological development.

2.4.1 Fully Convolutional Network (FCN)

The fully convolutional network (FCN), one of the more straightforward contemporary
CNN architectures for image segmentation, was introduced in [LSD15]. As mentioned
earlier, convolutional encoders gradually downsample the image while increasing the
number of channels in the feature maps. There is then a need to reverse the process and
decode the features into an image of equal width and height as the original input image.
FCN achieves this using convolutional layers and upscaling.

In FCN, the output of the encoder is interpreted as a coarse heatmap of detected fea-
tures. An output segmentation map needs to be constructed based on these features and
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Figure 2.12: A diagram of how FCN forms predictions based on the out-
put of different encoder layers. Encoder layers are shown on the left and
the grid represents the coarseness of the feature map. The maps are com-
bined at three different levels to produce three predictions. Each predic-
tion is compared with the ground truth during training, but for inference

only the 8x upsampled prediction is used. [LSD15]

have a number of channels equal to the number of classes. FCN does this by using a
convolutional layer with 1× 1 kernels — one kernel for each class. The resulting con-
volutions combine the features depth-wise to form a class prediction for each location
of the image. However, the resulting segmentation map has a very low spatial resolu-
tion. To be useful, it needs to be upsampled using transposed convolution to the original
image resolution.

As noted earlier, the encoder’s output feature map is only a rudimentary representa-
tion of spatial details. To inject additional spatial information into the final segmentation,
FCN combines predictions from multiple encoder layers to form the final prediction.
This is done by upsampling 1× 1 convolution results from different encoder layers to a
uniform size and summing them together. The composite prediction is then upsampled
to the original image resolution. This process is shown in Figure 2.12.

2.4.2 U-Net and Its Variants

U-Net [RFB15] is one of the most influential and commonly used architectures in medical
image segmentation. Aside from being a standard baseline model, a well-tuned U-Net
network with data preprocessing has reached state-of-the-art performance in various
segmentation challenges across different domains and modalities [Ise+21].

At its core, U-Net follows a straightforward architectural pattern, comprised of a
fully convolutional encoder and decoder with only convolutional and pooling layers.
The encoder and decoder have a symmetrical structure: the encoder gradually decreases
the width and height of the feature maps while increasing the number of channels, while
the decoder does the opposite using upsampling or transposed convolutions. While
FCN uses only one 1× 1 convolutional layer and upsampling to form a prediction, U-
Net uses a sequence of several convolutional and upsampling layers to gradually build
a segmentation map. This progressive structure allows U-Net to produce more detailed
feature maps.

Earlier we mentioned that spatial information is important for the precise localization
of the features. Like FCN, U-Net also uses the outputs of different encoder layers to
maintain spatial information in the decoder but does so in a different way. In U-Net, the
output of every encoder layer is added to the input of its corresponding decoder layer
on the other side of the network. This gives each decoder layer concurrent access to
information about which features are on the image and where they are located. U-Net’s
architecture can be seen in Figure 2.13.
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Figure 2.13: A diagram of the U-Net model. The output of each layer of
the encoder is concatenated to the input of its corresponding layer in the

decoder. [RFB15]

Because of its symmetrical structure and skip connections, U-Net is often visualized
in the shape of the letter U, giving it its name. U-Net is only one of a class of networks
that are sometimes called U-shaped networks. Aside from being a state-of-the-art archi-
tecture for medical image segmentation, U-Net is also widely used as a component of
influential deep learning models in other domains such as image generation [Rom+21]
and registration [Sin+22].

nnU-Net

U-Net is a powerful baseline model that can be carefully tuned using various heuristics
and combined with beneficial data preprocessing to achieve state-of-the-art results, even
when compared to much more complex models. However, tuning the parameters of
the model and preprocessing is a laborious process that requires experise and empirical
research. nnU-Net [Ise+21] aims to automate this tuning process by producing an op-
timal data pre- and postprocessing pipeline and a U-Net-based architecture for a given
dataset. This is achieved through a set of heuristics, rules, and optimization techniques.

The nnU-Net framework begins by calculating key parameters of the data distribu-
tion, such as intensity distribution and median image size. Based on these parameters,
a set of predefined rules determine the network’s architecture and training strategy, in-
cluding the number of layers, training parameters, and preprocessing approach.

Using the determined parameters, nnU-Net trains three models: one using 2D slices
of the data, another using the entire 3D volume, and the third using a cropped 3D region
of interest. During inference, outputs from these models are combined through prepro-
cessing to form an ensemble prediction, enhancing the overall accuracy and robustness
of the segmentation. This process is shown in Figure 2.14.

nnU-Net has demonstrated exceptional performance, establishing itself as a state-of-
the-art solution in a variety of CT and MRI segmentation tasks. nnU-Net is a hugely
important tool for both academia and industry, as it allows for creating well-tuned base-
line models with very little manual intervention or technical expertise.
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Figure 2.14: A diagram of the nnU-Net procedure of creating a training
configuration. [Ise+21]

Furthermore, nnU-Net exemplifies the critical role of preprocessing and parame-
ter tuning in improving model performance, particularly when working with small
datasets. This is the cornerstone of this thesis: improving data efficiency through pre-
processing. The success of nnU-Net serves as a validation of this approach.

U-Net++

In standard U-Net, skip connections link encoder layer outputs to decoder layer inputs
through basic concatenation operations. This approach leaves room for more intricate
integration of the decoder and encoder outputs. Additionally, U-Net only merges fea-
tures at corresponding levels of the encoder and decoder. An enhancement to this could
be to allow each decoder layer access to features from multiple encoder layers. U-Net++
[Zho+19] takes advantage of these opportunities with a flexible architectural design.

In U-Net++, skip connections are reimagined as a network of convolutional layers.
This setup connects each encoder layer to its respective decoder layer through multi-
ple convolutional layers. This enhances the information fed into the skip convolutional
layers. Additionally, the outputs of these skip connections are further upscaled and fed
into the subsequent decoder layers. This design results in a significantly more complex
network architecture. Here, each decoder layer not only receives features from its direct
encoder counterpart but also from all deeper encoder layers. This multifaceted connec-
tion system is visually represented in Figure 2.15.

In U-Net++, skip connections are reimagined as a network of convolutional layers
instead of simple concatenation. Moreover, outputs from each encoder layer (except
the first) are upscaled and then supplied as additional inputs to the skip connections of
the preceding layer. The outputs of the skip connections themselves are also upscaled
and given to the next corresponding decoder layer. Thus, each decoder layer not only
receives features from its direct encoder counterpart but also from all deeper encoder
layers. This architecture is presented in Figure 2.15.

There are several advantages to U-Net++ over U-Net. Each decoder layer has access
to multi-scale features of the input image and thus can produce more accurate outputs.
Conceptually, U-Net++ can be viewed as an ensemble of U-Nets with varying depths,
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Figure 2.15: A comparison between U-Net (left) and U-Net++ (right).
Each node in the graph represents a convolutional layer. The dashed ar-
rows represent skip connections, while full arrows are downsampling or

upsampling operations. [Zho+19]

which helps in faster convergence compared to a standard U-Net of similar depth. Fur-
ther, instead of finding the optimal U-Net depth, due to the flexibility of neural networks,
U-Net++ learns the optimal depth during training. This makes U-Net++ more flexible,
requiring fewer design decisions. However, U-Net++ has a higher parameter count and
does not necessarily enhance data efficiency. In some cases, its performance benefits can
be matched or surpassed by a well-preprocessed and tuned U-Net [Ise+21].

2.4.3 Mask R-CNN

Earlier in the chapter we mentioned that CNN-based segmentation networks generally
consist of encoder and decoder stages. Segmentation architectures such as U-Net employ
a decoder that progressively upsamples the feature maps to construct a segmentation
map. This differs from how object detection decoders work.

Object detection aims to find the location of an object in an image. Instead of classi-
fying each pixel as in segmentation, object detection typically outputs the coordinates of
a bounding box surrounding the object. In technical terms, the output is not an image
but rather a vector of four numbers for each object. As such, the decoders in object de-
tection networks are usually much shallower and employ fully connected layers instead
of convolutional layers.

Despite these differences, both object detection and segmentation networks share
similar encoder designs. Mask R-CNN [He+17] takes advantage of this to combine ob-
ject detection and segmentation into a single network. In Mask R-CNN, a standard CNN
encoder generates a feature map from an input image. This map is then given to two par-
allel decoders: one for segmentation and the other for object detection. The segmentation
decoder, akin to those in standard segmentation networks, uses convolutional layers and
upsampling to generate a segmentation map for each object. The detection decoder, in
contrast, employs downsampling and fully connected layers to output the bounding box
and class label of each object. The Mask R-CNN architecture can be seen in Figure 2.16.

Consequently, for every detected object, Mask R-CNN provides a bounding box, a
class label, and a segmentation mask. The network is trained using a composite loss
function, optimizing for segmentation, detection, and classification simultaneously.
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Figure 2.16: A diagram of the Mask R-CNN architecture. Two parallel
decoder branches are used to achieve segmentation and object detection

simultaneously. [He+17]

The integration of these tasks in Mask R-CNN takes advantage of synergies between
them. The information learned for classifying an object is relevant to its detection. Simi-
larly, by using a bounding box the segmentation decoder can focus on the relevant por-
tion of the image and be invariant to the scale of the object on the image. This joint
learning approach enhances performance across all tasks compared to training sepa-
rate networks for each task. However, Mask R-CNN’s complexity can pose challenges,
particularly when trained on very small datasets, where simpler segmentation-focused
architectures like U-Net might be more effective.

2.4.4 Other Notable Segmentation CNNs

A central challenge in CNN-based segmentation is balancing spatial information with
feature complexity. As the network increases the feature map depth and decreases width
and height, spatial information is erased but more complex features can be detected on
the image. Effective segmentation requires both elements. While U-Net addresses this
with skip connections, other architectures use different methods to integrate multi-scale
features.

One approach involves pyramid pooling, as utilized in PSPNet [Zha+17]. Initially,
PSPNet uses a standard encode to create a feature map. This map is then rescaled to
various sizes, and each rescaled map undergoes processing through a series of convo-
lutional layers. The resulting outputs from these layers are resized to a uniform spatial
dimension and concatenated. This combined feature map is then fed into a decoder to
produce the final segmentation map.

Pyramid pooling is also employed by DeepLabV3 [Che+17] albeit in a different way.
Like in PSPNet, the encoder first creates a feature map. This feature map then goes
through a series of parallel layers that each use an atrous convolution. In atrous convo-
lution, the kernel is dilated by introducing gaps between its values. During each sliding
window step, the gaps are ignored and the result is convolved regularly for non-empty
kernel values. This technique enables covering a larger area of the image without in-
creasing kernel parameters. Each parallel layer uses different gap sizes in the kernel,
creating multi-scale features. These features are upscaled, merged, and further decoded
into a segmentation map.

MA-Net [Fan+20] takes a different route by incorporating an attention mechanism
for combining multi-scale features. Rather than directly concatenating in skip connec-
tions like U-Net, MA-Net introduces a multi-scale attention block. This block aims to
capture the interdependencies of different features to focus on more salient ones before
they are concatenated to the decoder layer input. Additionally, the final decoder layer
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is processed through a position-wise attention block to highlight significant features in
specific image locations. MA-Net has shown performance improvements in liver tumor
segmentation on CT images compared to U-Net and U-Net++.

2.5 Fully Connected Transformers for Medical Image Segmen-
tation

So far most of this chapter dealt with CNNs. However, another class of networks —
transformers [Vas+17] — has recently gained traction and even surpassed the segmen-
tation quality of CNNs for many tasks. The key to the transformer’s impressive per-
formance is the ability to support very deep neural networks. Empirical observations
suggest that with enough data, network performance tends to increase with the depth
of the network. Hence, transformers have become state-of-the-art in tasks where a large
amount of data is available. Notably, current transformers used in natural language pro-
cessing contain more than 100 layers and trillions of parameters, orders of magnitude
more than CNN-based models.

Transformers first became broadly used in the field of natural language processing
and achieved groundbreaking results in text generation, machine translation, and un-
derstanding natural language. Broadly, transformers employ a combination of regular
(non-convolutional) fully connected layers and attention mechanisms, which are the key
to their success. Attention allows a layer to learn the interdependencies between parts of
its input or across different input values. In linguistic contexts, this leads to a more nu-
anced understanding of syntactic relationships, enabling the network to learn concepts
such as the interplay between subjects and objects or the likelihood of certain adjectives
preceding specific nouns.

2.5.1 Attention

For each element xi of an input sequence of length n, an attention mechanism aims to
produce a vector vi = (vi1, vi2, · · · , vin) where vij measures how dependent xi is on xj. In
a natural language scenario, if we consider a sentence as our input sequence, this mecha-
nism can be envisioned as going word by word, and for each word producing relevance
scores for every other word in the sentence. For instance, in the sentence “Susan has a
brown dog that she loves.”, the word “she” should have a high relevance score for “Su-
san”, and a low score for “brown” since it is not pertinent to encoding the meaning of
“she” in this sentence.

Mathematically, attention can be expressed as a series of matrix multiplications. First,
each input sequence element is transformed into a query vector. This transformation
represents a learned encoding by the network, converting an input element into a lower-
dimension vector. The query serves to identify the current input element in the sequence.
Let X be an input matrix where each row is a new element of the sequence. Let WQ
be a matrix of weights learned by the network that encodes each element of the input
sequences into a vector. The query matrix Q can then be calculated as

Q = WQX, (2.11)

where each row Qi represents the query for Xi. Remember that the goal of attention is to
score the relevance between an input element Xi and some other element Xj of the same
input sequence. Having encoded each element Xi in the form of Qi, we need to similarly
encode each Xj in a different matrix K where Kj is called the key for some input sequence
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Figure 2.17: A visualization of a single encoder layer in a transformer
network. This shows the encoding process for one element of the input

sequence.

element Xj. We can do so as
K = WKX, (2.12)

where WK is another weight matrix that the model optimizes during training. Given K
and Q, we can compute the relevance scores for every combination of input elements xi
and xj as

A = QKT. (2.13)

Here, Aij represents the relevance score between xj and xi. It is important to note that
this is only one of many ways the matrix A can be calculated. In practice, A is scaled to
be in [0, 1] or transformed in some other way.

Finally, to get the output Z of the self-attention layer, we weigh each element of the
original input sequence X by the attention scores A:

Z = AV, (2.14)

Z consists of X elements weighted by how relevant they are to the encoding of the whole
sequence. Visually, this process for one element of the input sequence can be seen in
Figure 2.17.

Encoder and decoder layers in a transformer include an attention layer followed by
a fully connected layer. In the encoder, the attention layers are generally self-attention,
where both the key and the query come from the input sequence. In contrast, the decoder
layers employ both self-attention and encoder-decoder attention. In the latter, the keys
and values come from the encoded features of the last layer of the encoder. Finally, each
attention layer performs Z calculation multiple times using different W and K weights,
and the weighted values are concatenated together. This design enables the network to
simultaneously learn and apply various types of attention within each individual layer.

2.5.2 Positional Encoding

The position of each word in a sentence carries important information. The sentence
“The yellow notebook is on top of the red notebook.” has a different meaning than “The
red notebook is on top of the yellow notebook.”, even though both sentences contain
the same words. To capture this in transformers, the position of each input element is
encoded and included as part of the input.

Each input sequence element index is mapped to a matrix via a function f : Z+ → Rd

where d is the dimensionality of the layer’s input. Mapped that way, the positional
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encoding can simply be concatenated to the layer’s input with no additional changes in
the network. While it is possible for this encoding function to be represented as neural
network layers and learned during training, a common approach is to use a predefined,
fixed function. For instance, in citeattnAllYouNeed, given an element index pos, the i-th
element of the positional encoding is calculated as

PE(pos, i) =

{
sin(pos/10002i/d), i is even
cos(pos/10002i/d), i is odd

. (2.15)

The choice of positional encoding functions is guided by their numerical characteristics,
ensuring they are efficiently processed by the neural network.

2.5.3 Adapting Transformers to Image Segmentation

Convolutional Neural Networks (CNNs) have traditionally dominated image process-
ing due to their efficiency in handling large inputs. Consider a 128× 128 pixel image
which, when flattened into a row vector, results in 16,384 elements. In a fully connected
network, where each input element connects to every output element, this translates
into 16, 3842 parameters for just one layer. Even if the image were to be heavily down-
scaled and ignore the loss of information this would create, managing such a network
on current GPUs is infeasible.

Transformers that use fully connected layers face a challenge when applied to image
data due to this very issue. The key solution, as utilized in the Vision Transformer (ViT)
[Dos+21], is treating an image as a sequence of small patches, allowing the image to be
processed similarly to text.

ViT, primarily designed for image classification, begins by partitioning each image
into uniform square patches (e.g. 32 × 32 pixels). The patches, ordered starting from
the top-left of the image, form an input sequence X. Each patch is then flattened to a
row vector and given to a fully connected layer to encode it as a d-dimensional vector.
Then, a d-dimensional positional encoding is added to the encoding as a function of the
patch index. The resultant matrix serves as the input for the encoder, which operates
identically to a standard transformer network. This architecture can be seen visually in
Figure 2.18.

While ViT originally used a classification decoder, it is possible to combine the ViT
encoder with a segmentation decoder to obtain a segmentation map. There are sev-
eral ways this has been achieved. For instance, the Segmentation Transformer (SETR)
[Zhe+21] introduces two distinct CNN-based segmentation decoders connected to a ViT
encoder. The first variant follows a conventional convolutional decoder design, where
the encoder’s output goes through a series of upsampling and convolutional layers, pro-
ducing a segmentation map in the original image resolution. The second decoder variant
is similar to the way FCN works — outputs from various encoder layers are resized to a
uniform resolution, merged, and then decoded into a segmentation map.

Later transformer-based segmentation networks modified the ViT encoder as well.
For instance, the authors of the Swin Transformer [Liu+21] argue that neural networks
for computer vision need to be built with translation and scale invariance in mind. Swin
Transformer starts with small patches, similar to ViT, but in each successive encoder
layer neighboring patches are merged. Rather than computing self-attention within in-
dividual patches, Swin uses non-overlapping windows of multiple patches to perform
self-attention. This ensures that Swin’s computational demand increases linearly with
image size, a significant improvement over ViT’s exponential growth. A key aspect of



2.5. Fully Connected Transformers for Medical Image Segmentation 35

Figure 2.18: The ViT architecture for image classification. [Dos+21]

Swin is that each successive layer shifts the window by half of the window size. This al-
lows self-attention between two different windows and more global information about
the image. Finally, Swin’s encoder output is fed into a DeepLab-like decoder to produce
the segmentation map.

Transformers have demonstrated exceptional performance in image segmentation,
particularly in large datasets and benchmarks with upwards of 20,000 natural images
[Liu+21; Zhe+21; Che+22]. However, their advantage is less pronounced in smaller
datasets. This aligns with observations from [Vas+17] — convolutional layers have prop-
erties that are naturally a good fit for extracting information out of images. Transformers
need to compensate for their lack of convolutions by using more layers. However, as we
will see in the next chapter, there is a relationship between the number of parameters of
a network and the number of samples required to train that network.
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3 Data Efficiency in Neural
Network-Based Image Segmentation

In this chapter, we will introduce the concept of data or sample efficiency, as well as how
it relates to various factors such as model complexity, problem complexity and sample
size. In this thesis, we define data efficiency as a measure of the amount of training data
needed for a model to adequately perform its task. While somewhat loosely defined, this
term is widely used in the deep learning literature [Nik+22]. In reinforcement learning,
the term “sample efficiency” is commonly used to denote the same concept [MMP22].
However, in the context of deep learning models, both the number of samples as well as
the number of features in each sample matter to how well a model performs. Therefore,
we will prefer the term data efficiency to encompass both the number of samples and
features.

Above all, the accuracy of neural networks is governed by three factors: problem
complexity, model complexity, and sample size. Each of these factors contributes to
accuracy in different ways and they have complex interdependent relationships. We
need to understand these relationships to grasp the concept of data efficiency. In this
chapter, we will show how the three factors impact model error by examining neural
networks as function approximators.

Consider a machine learning scenario where we estimate the 10-year risk of heart
disease based on age. Here, some underlying function maps age to heart disease risk,
based on a complex physical process that is almost impossible to understand and model.
Our only recourse is to collect a set of data points and try to approximate the underlying
function. Our goal is to iteratively search for a function that minimizes some criterion
that measures the discrepancy between the function and our collected data points.

One can construct an infinite number of functions that fit a set of data points equally
well under a selected criterion. Therefore, to derive a single solution, we have to choose
a finite class of functions to evaluate. One of the simplest classes of functions we could
use is lines — leading to a simple linear regression. A line is defined by two parameters,
its slope θ1 and intersect θ0:

f (x) = θ1x + θ0. (3.1)

In this equation, f (x) represents our regression model. The objective is to determine the
optimal value of θ = {θ1, θ2} that most accurately represents the collected data pairs
(xi, yi). This can be achieved by minimizing the squared distance between the line and
each data point:

min
θ

N

∑
i=1
|yi − f (xi)|2. (3.2)

We will conduct a simulated experiment. We will construct an underlying function
as a cosine function with an added Gaussian noise:

y(x) = −(cos(0.01πx)− 1) · 0.4 + Z, Z ∼ N (0, 0.1), (3.3)
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where N (0, 0.1) is the normal distribution with a mean of zero and a standard devia-
tion of 0.1 from which Z is sampled. We will generate several (xi, yi) pairs and apply
the previously discussed linear model and criterion to fit a line through these points.
In real-world conditions, the underlying function and the nature of the measurement
noise remain unknown. However, for this simulation, knowing these details is useful to
demonstrate the divergence between the fitted function and the underlying one. Figure
3.1 illustrates the fitted line using varying numbers of data points.

The simulation with only three points clearly demonstrates a mismatch between
the approximated and underlying functions. This discrepancy is known as overfitting.
Overfitting occurs when the model is overly influenced by the specific sample of data,
particularly the noise, and fails to generalize to new, unseen examples. As the number of
samples increases, the approximated function aligns more closely with the underlying
one. However, even with 20 measurements, there is a notable difference between the
approximated and underlying functions. The underlying function is a non-linear cosine
function. No matter how many data points we use, a line cannot perfectly approximate
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Figure 3.1: A simulated example of heart disease risk prediction using
simple linear regression. The plots on the right show how the approxi-

mated function depends on the sample size.
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this non-linear function. This is an example of underfitting, where the model lacks suf-
ficient parameters to capture the complexity of the underlying function.

To address underfitting, a more complex model is required, meaning we need a
broader class of functions for optimization. Our current regression can be viewed as
fitting a polynomial function to the dataset. Initially, we have employed polynomials of
degree 1 — lines. We can generalize our model to an n-degree polynomial:

f (x) = θnxn + θn−1xn−1 + · · ·+ θ1x + θ0. (3.4)

To increase our function class, we will choose a larger polynomial degree and again
minimize the mean squared distance to obtain θn through θ0. By increasing the degree
we are increasing the complexity of the model and the model will be able to represent
more complex underlying functions. We can observe what happens when we choose
degrees 2, 3, or 5 in Figure 3.2.

In the case with 10 measurements, we observe that the approximated polynomial
with n = 2 follows the underlying function somewhat well. However, as we increase
the degree the function quickly begins to overfit. This experiment demonstrates that the
likelihood of overfitting increases with model complexity. Yet, we need complex models
to approximate complex functions.

This inherent conflict between overfitting and underfitting is known as the bias–
complexity tradeoff (alternatively, the bias—variance tradeoff). Let us investigate this
problem more formally. We can decompose the error of a deep learning model into two
components [SB14]. Consider a trained model fθ with optimal parameter values θ from
a class of functions F . Let there be a function L( f ) that measures the error between any
model f ∈ F and the underlying function we are approximating. The total error of the
trained model can be expressed as:

L( fθ) = ϵapp + ϵest where: ϵapp = min
f∈F

L( f ), ϵest = L( fθ)− ϵapp, (3.5)

where ϵapp is the approximation error and ϵest is the estimation error. The approxima-
tion error is the residual error when using the best possible approximator within our
chosen class of functions F . In other words, the error that remains given the best possi-
ble model parameters. For instance, in the earlier function approximation example with
a 1st-degree polynomial, even with infinite data, there would always be some discrep-
ancy in approximation compared to the underlying function. The approximation error
depends entirely on the class of functions we use and can only be reduced by adopt-
ing a different class, such as polynomials of a higher degree. The remaining estimation
error depends on the quality of our parameters θ. It is possible to have a class of func-
tions capable of perfectly approximating the underlying function but still fail to precisely
identify the optimal function within that class.

In our previous experiment, we observed that the estimation error is influenced by
both the sample size and the complexity of the model. To formally analyze this, we can
explore the concept of sample complexity. Sample complexity, denoted as n(ϵ, δ) for
chosen ϵ, δ ∈ (0, 1) measures the number of samples needed for a model f chosen from a
finite class of functions F to be probably approximately correct. This means that, across
different samplings of data points, there is a probability of 1− δ that the model is correct
within some margin of error ϵ, i.e. L( f ) ≤ ϵ. Assuming there exists some unknown
f ′ ∈ F for which L( f ′) = 0, we can say that the approximation error is zero. Then, it can
be shown [SB14] that:

n(ϵ, δ) ≥ log(|F |δ)
ϵ

. (3.6)
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We can see that an increased function class size (for instance, by choosing a higher-degree
polynomial) necessitates a larger sample size n to probably approximately correctly ap-
proximate the underlying function. Thus, we conclude that the estimation error can be
reduced either by adding more data samples or by decreasing the size of the function
class we are optimizing over.

In medical image segmentation, we have an unfortunate stalemate between the three
factors governing estimation and approximation errors. The complexity of medical im-
age segmentation demands a large number of parameters, which in turn increases the
estimation error. Ideally, this error could be mitigated by adding more data samples, but
in the realm of medical imaging, acquiring ample data is often impractical.

To reduce the estimation error, we are left with reducing the size of the function class.
We can do so in two ways. The first involves reducing the parameters of the model
itself, shrinking the class of functions, and allowing the model to more easily find the
optimal function. This usually requires transforming the data such that it can be easily
segmented with a less complex model, or using domain-specific knowledge to reframe
the problem. The second method involves initializing the model with parameters that
are already near-optimal. In this case, the model starts close to the optimal function,
needing only to search within a local space around these parameters. This is typically
achieved by first optimizing the model on similar data for a related task that involves
learning features pertinent to segmentation, followed by further optimization for the
specific segmentation task.

In the subsequent sections, we will delve into specific techniques from these two
approaches, providing examples of their application in neural network-based medical
image segmentation.

3.1 Transfer Learning

Consider the task of segmenting liver tumors in CT scans. Suppose we have a limited
dataset of labeled liver tumor regions, but a more extensive collection of labeled liver
regions. In such a scenario, the first step would be to train a neural network for liver
segmentation. The rationale here is that most of the parameters learned for liver segmen-
tation will be relevant and close to those needed for liver tumor segmentation. Therefore,
when we are developing the liver tumor segmentation network, we copy the values of
the parameters learned in the liver segmentation network. We can then say that the net-
work was pre-trained or initialized on a liver segmentation dataset and fine-tuned on
the liver tumor segmentation dataset.

In this thesis, we refer to this basic technique as “simple transfer learning”. There
are many other more complex ways of achieving pre-training and fine-tuning. In this
section, we will present an overview of some of these methods.

3.1.1 Simple Transfer Learning

Simple transfer learning is a prevalent technique in medical image segmentation. Typ-
ically, segmentation neural networks in this field are initialized with weights trained
on the ImageNet dataset [Den+09]. ImageNet comprises a collection of natural images,
which significantly differ in distribution from medical images. As a result, initializing
with ImageNet-trained weights does not usually enhance accuracy but it does make the
network converge faster. This is because such initialization ‘skips’ the phase of learning
fundamental image features common across various types of images, including medical
ones. Figure 3.3 illustrates this process.
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Figure 3.3: An overview of the simple transfer learning procedure. First, a
model is pretrained on some related segmentation task. Then, part of the
trained model’s weights are copied to a new model that is then fine-tuned

on the target segmentation task.

Recent datasets, like Wasserthal et al. [Was+23], comprising over 1000 subjects, are
increasingly utilized for transfer learning, improving the accuracy of downstream tasks
[MON23; Myr+23]. While these approaches can result in impressive performance im-
provements, their application is constrained to fields where ample, similar data is acces-
sible. In more specialized modalities or segmentation problems, the knowledge learned
during pre-training may not be adequate for improving downstream accuracy. A poten-
tial solution to bridge this gap involves adapting the pre-trained model to the specific
target domain, a topic we’ll explore in the following section.

3.1.2 Domain Adaptation

Neural networks often struggle to generalize across different datasets, even within sim-
ilar domains [TE11]. This is referred to as the “domain shift” problem. Overcoming this
problem could lead to an increase in data efficiency since a model trained on some simi-
lar large dataset can perform well on a smaller target dataset. Various domain adaptation
techniques have been developed to tackle this challenge.

One class of methods aims to explicitly penalize domain shift by including an esti-
mate of domain shift in the loss function. For instance, Liu et al. [Liu+18] first train a
network on a source domain with abundant data. This network is then adapted to per-
form segmentation on a target domain with limited data. During adaptation, the loss
function includes a term for the maximum mean discrepancy between the encoded fea-
ture vectors of the source and target domains. Minimizing this term forces the encoder
to maintain consistent feature representations rather than shifting the distribution of the
encoded feature maps.

Another approach involves reducing the network’s ability to distinguish between
source and target domains, thereby removing information that leads to domain shift.
Ganin and Lempitsky [GL15] add a classification head to the network to identify the
input’s domain. Typically, networks adjust their parameters to minimize loss during
each iteration. However, in [GL15], the gradients from the domain classifier are inverted
so the network updates its parameters to make it harder to differentiate between the two
datasets. This method is illustrated in Figure 3.4.

Domain adaptation has been effectively applied to medical image segmentation, as
demonstrated in the work of Bermudez-Chacon et al. [Ber+18]. They utilized a U-Net-
like architecture with dual encoder branches, each processing images from a different
domain, paired with a shared decoder. Their loss function incorporates a maximum
mean discrepancy term, comparing the decoder’s final feature maps from inputs of both
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Figure 3.4: A diagram of the domain adaptation approach in Ganin and
Lempitsky [GL15]. The gradients of the domain classification head which

are applied to the encoder are reversed during backpropagation.

domains. This method was employed for segmenting mitochondria and synapses in
microscopic images.

Although domain adaptation techniques enhance transfer learning performance,
they generally require labeled data from the source domain. There is growing inter-
est in methods that can utilize unlabeled data to identify general features in images from
the target domain regardless of the specific task. We’ll explore these methods in the
following section.

3.1.3 Semi-Supervised and Self-Supervised Learning

Semi-supervised learning combines both labeled and unlabeled data to train neural net-
works. One such approach is self-supervised learning, where a feature extractor can be
trained in a completely unsupervised manner using a large number of images. Then,
that feature extractor can be employed via transfer learning to train a network for some
specific task such as segmentation. One common strategy for this involves a pretext task,
where the network is trained on a task for which solutions can be automatically gener-
ated from unlabeled data, using automatically generated labels to train the network. A
pretext task could be, for instance, solving jigsaw puzzles [NF16]. An image is divided
into 3× 3 tiles, the tiles are randomly shuffled and fed into the network. The network
is tasked with reordering these tiles to reconstruct the original image. Solving this task
forces the network to learn to identify salient features such as recognizing a single object
across multiple tiles. Such an approach is visualized in Figure 3.5.

Recently, a more common approach to self-supervised learning is contrastive learn-
ing. This approach focuses on training the encoder to minimize the distance between

Figure 3.5: A self-supervised learning approach using shuffling image
tiles as a pretext task presented by Carr et al. [Car+21]. The trained feature
encoder learns to extract relevant features and its parameters are trans-

ferred to a model trained to perform the downstream task.
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feature vectors of similar (or positive) examples while maximizing the distance between
dissimilar (or negative) examples. Positive examples are generated in an unsupervised
manner, often by applying random augmentations to an image to create two variants.
The goal is for the feature vectors of these variants to be closely aligned. This teaches
the network to recognize similar objects in a way that is invariant to the augmentations.
Notable implementations of contrastive learning include SimCLR [Che+20] and MoCo
[He+19].

3.2 Synthetic Data

The data efficiency methods we’ve discussed so far revolve around pre-training net-
works with unlabeled or similar data. An alternative strategy involves generating syn-
thetic data that mimics the target distribution. There are various techniques for this,
each offering different levels of complexity and generation quality. A straightforward
and commonly used method for expanding dataset size is data augmentation.

Data augmentation refers to the application of random transformations to input im-
ages, thereby artificially increasing their diversity. These transformations can be simple
ones such as adjusting brightness or contrast, flipping the image horizontally, or more
intricate, involving complex random deformations of the image. Generally, the choice
of transformations is governed by domain knowledge — the network is forced to dis-
regard transformations that we know it should be invariant to. Data augmentation is
a standard practice in segmentation models, often employed alongside other data effi-
ciency techniques. However, its implementation typically relies on simple deformation
or transformation methods, which limits its capacity to create truly diverse samples.

Recently, the field of deep learning-based image generation, especially generative
adversarial networks and diffusion models, has sparked a large interest in generating
synthetic medical images. Generative adversarial networks [Goo+14] consist of two
neural networks, a generator and a discriminator, that are trained simultaneously. The
generator creates synthetic images intended to be indistinguishable from real images,
while the discriminator learns to differentiate between the two. The process continues
until the generator produces images so convincing that the discriminator cannot easily
distinguish them from real images. This technique has been particularly effective in
generating realistic medical images for data augmentation [Shi+18].

Diffusion models [HJA20], a more recent development in the field of generative mod-
els, offer an alternative approach to image generation. These models, inspired by the
physical process of diffusion, work by gradually adding noise to an image and then
learning to reverse this process. The result is the generation of new images by reversing
the noise addition process from a randomly sampled noise distribution. Diffusion mod-
els have been shown to generate high-quality images that can be particularly useful in
medical imaging contexts [Kha+23].

3.3 Regularization

Aside from getting new data, the easiest way to reduce the estimation error is by limiting
the size of the function class our model optimizes. In a traditional machine learning
approach, this would be done by hand-selecting a class of functions with a lower number
of parameters and then training the model. In deep learning, however, this approach is
usually replaced with regularization, where the parameters themselves are manipulated
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to simplify the model.1 Instead of selecting the number of parameters, we can penalize
the network for the complexity and size of the parameters. In other words, the loss
function between a predicted model output ypred and a ground-truth label y has the form:

L(θ; ypred, y) = Lseg(θ; ypred, y) + αΩ(θ), (3.7)

where θ are the model parameters, Lseg is the segmentation loss function, and Ω(θ) is a
parameter norm penalty, i.e. a measure of the complexity of the model [GBC16]. As we
increase α, the strength of the regularization increases and the loss is more impacted by
the complexity of the model. As the network is being trained, it will seek to both reduce
Ω(θ) as well as Lseg, leading to a more constrained model.

A commonly used parameter norm penalty is the L2 regularization, also known as
weight decay in deep learning contexts. Assuming θ consists of a set of weights w, |w| =
n and biases b, the L2 norm is defined as Ω(w) =

√
(w2

1 + w2
2 + · · ·+ w2

n). In other
words, the network is exponentially penalized for moving weights away from zero. This
regularisation, in effect, forces the network to use fewer parameters.

Thus, a deep learning network can learn to use fewer parameters without necessarily
changing the architecture of the network itself. However, what remains unsolved is how
to transform the data such that the network can solve the problem with fewer parame-
ters. We will discuss that in the next chapter, where we present a different approach to
achieving data efficiency.

3.4 Conclusion

As we have seen, there are several approaches to increasing the data efficiency of neural
network-based segmentation of medical images. This thesis focuses on using regular-
isation by transforming the input data in such a way as to allow the network to use
fewer parameters to achieve its segmentation task. We do so by combining predictions
of neural networks with more traditional approaches from image processing and data
augmentation. In the next chapter, we will introduce this idea and some specific appli-
cations.

1Often, any method of reducing the estimation error of the model is broadly termed as regularization.
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4 Data Efficiency via Model-Driven
Preprocessing

In this chapter, we will propose a way of achieving data efficiency in neural network-
based medical image segmentation different from the ones described in the previous
chapter. Using this new proposed approach, we will develop a method using the polar
transformation to preprocess medical images and thus improve the data efficiency of
segmentation methods.

Our approach centers on preprocessing the input data using domain knowledge and
traditional image-processing techniques to make the image more easily segmentable.
However, instead of manually selecting transformation parameters, we will model the
parameters as functions of the image, and train a neural network to estimate optimal
transformation parameters. As discussed in the previous chapter, regularization enables
a network to limit its number of parameters to what is necessary for the given problem’s
complexity. Through strategic image transformation, we aim to simplify the complexity
of the segmentation task, thus allowing for efficient segmentation with fewer parame-
ters.

We will first present some motivation to show how it is possible to transform data to
be easier to model. This is followed by a detailed outline of our method, as well as an
empirical study, demonstrating the effectiveness of our approach across various medical
image segmentation tasks. We then show an improvement of the method to support
multiple segmenting objects and another empirical study using the improved approach.

4.1 Motivation: Using The Polar Transform for Preprocessing

Our approach is centered on discovering transformations of data that enable neural
networks to approximate decision boundaries with fewer parameters. This strategy is
grounded in a particular interpretation of neural networks. Consider a network tasked
with classifying a given image region I(x, y) as class “0” or “1”. All conceivable image
regions I(x, y) form part of a d-dimensional space, known as the input space. Here, d
represents the total number of pixels in the region multiplied by the number of channels
in each pixel. The neural network, through iterative optimization, seeks to transform
the input space into some other n-dimensional in such a way that it becomes linearly
separable by an n-dimensional hyperplane into two distinct classes. This process and its
outcome are depicted in Figure 4.1.

To find the transformation, the network needs a sufficient number of parameters.
More parameters allow for more complex transformations. For instance, to accurately
approximate a circular decision boundary, the network needs at least three neurons in
its second layer. We exemplify this in Figure 4.2.

The goal of data efficiency is to find a decision boundary given fewer data samples.
As discussed in the previous chapter, this necessitates narrowing the search space of
possible decision boundaries, or, in other words, reducing the number of neural net-
work parameters. In the current and subsequent chapters, our focus will be on devising
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Input Space Hidden Layer Output Space

Figure 4.1: An example of how a 2-class classification neural network
bends an input space (left) such that it is linearly separable with a hy-

perplane.

1 neuron 2 neurons 3 neurons

Figure 4.2: The decision boundary (shown as the background color) ac-
cording to a fully connected neural network with three layers where the

second layer has one, two, or three neurons.

methods to pre-process the data into an intermediary form, denoted as Xpre, which is
more easily separable than the original input space X . By transforming data into Xpre,
the network requires fewer parameters as it has a smaller search space to find X′. This
transformation process is referred to as T .

A commonly used example of T is the polar transform. In the two-dimensional case,
the polar transform T (Xi; C), defined by a chosen origin C = [c0, c1], converts an input
vector X = [x0, x1] into a vector TC(X) = [θ, r]. The transformation is as follows:

r =
√
(x0 − c0)2 + (x1 − c1)2,

θ =atan2(x1 − c1, x0 − c0)
, (4.1)

where arctan(x, y) is the two-argument arcus tangent function, defined as the angle be-
tween the vector (x, y) ∈ R2\{0} and the positive x-axis.

The polar transform effectively converts a circular decision boundary into a linear
one. This transformation enables linear separability in our example dataset, which then
requires only a single neuron in the second layer for effective classification. This is
demonstrated in Figure 4.3.

However, the key to the polar transform’s success in facilitating separability lies in
the correct selection of the polar origin. When the origin is shifted away from the center
of class “0”, the decision boundary in the polar space ceases to be linear. This effect
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Cartesian Polar, 1 neuron

Figure 4.3: An example circular dataset transformed using the polar trans-
form. The background color shows the decision boundary of a fully con-

nected network with one neuron in the second layer.
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Figure 4.4: The polar transformation of the simulated data using different
polar origins (C).

of origin displacement on the linearity of the decision boundary in the polar space is
illustrated in Figure 4.4.

Building on the example of the polar transform, we propose a methodology where
key transformation parameters, like the polar origin, are dynamically estimated using a
neural network. We call this approach model-driven preprocessing, specifically tailored
to enhance data efficiency in medical image segmentation. While the above examples
have focused on a classification problem, if we frame a segmentation model as predicting
a decision boundary between two regions of an image, we can make an argument that
reducing region boundary complexity also reduces the required hypothesis space of a
segmentation model.

4.2 Model-driven Preprocessing

The concept illustrated with the polar transform can be effectively applied to image seg-
mentation. Imagine an image where pixels belonging to one class fall mostly within a
circular decision boundary, with the background occupying the space outside this cir-
cle. A segmentation model tasked with this scenario needs to approximate a circular
boundary to segment the image accurately. By applying the polar transform, this circular
boundary is converted into a linear one, significantly simplifying the task and allowing
for segmentation with a less complex model.
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Figure 4.5: A visual summary of the model-driven preprocessing ap-
proach. First, the transformation parameter predictor network predicts
a segmentation-like map, from which the transformation parameters are
calculated using a transformation parameter function. Then, the input im-
age is transformed and the transformed representation is segmented by a
segmentation neural network. The final segmentation map is obtained by

inverting the transformation.

We propose a general formulation of this approach, wherein images are transformed
such that they can be made linearly separable using simpler transformations. We do so
by carefully selecting transformations derived from traditional image processing meth-
ods. The success of these transformations hinges on the correct selection of parameters.
To address this, we employ neural networks trained specifically to predict these optimal
transformation parameters. The preprocessed image is then segmented using a regular
neural network. Importantly, since the preprocessed image is inherently simpler to seg-
ment, the segmentation network can be designed with fewer parameters compared to a
network segmenting unprocessed images. This is, in essence, a model-driven approach
to preprocessing the image. A visual summary of this approach is shown in Figure 4.5.
In the remainder of this section, we will describe this approach in more detail.

To preprocess the image, we select a transformation function Tϕ(I), where ϕ rep-
resents the transformation parameters, and I is the original image. This transformation
yields a new image, I′, which can be segmented with fewer parameters than the original.

The transformation function T can vary, encompassing affine transformations, de-
formation fields, thresholding techniques, and, as previously mentioned, the polar trans-
form. The choice of T is contingent upon the specific segmentation task. For instance,
the polar transform is advantageous for segmenting elliptical objects. When segmenting
small objects, we might opt for an affine transformation that scales each object to a uni-
form scale. The design of T should be informed by domain knowledge and validated
through empirical testing. An important requirement is that T must be invertible, al-
lowing the resulting segmentation mask to be mapped back to the original image space.
The segmentation process on the transformed image can be represented as:

M(I) = (T −1
ϕ ◦ Fseg ◦ Tϕ)(I), (4.2)

where M(I) is the resulting segmentation mask for image I, Fseg is the segmentation
neural network.

The effectiveness of preprocessing is highly dependent on the appropriate choice of
ϕ, as illustrated with the polar transform. It is also important to note that ϕ is specific to
each image: the origin, scale, location, and distribution of objects differ across images.
Acknowledging this, we propose training a model to estimate the optimal ϕ for a given
image:

ϕ(I) = FT (I; θT ), (4.3)
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where FT is a neural network with parameters θT trained to estimate the correct param-
eters for T given an image I. In our approach, we use various types of neural networks
as FT , though it is also possible to use more traditional approaches.

More precisely, FT is structured similarly to a regular segmentation network, pro-
ducing a segmentation mask Mϕ(I) in its second-to-last layer. The final layer, which is a
non-trainable function ϕ(I) = fϕ(Mϕ(I)), produces transformation parameters given a
predicted segmentation map. FT can then be expressed as:

FT (I; θT ) = fϕ(FT seg(I; θT )), (4.4)

where FT seg is the segmentation sub-network producing Mϕ(I). FT seg can be trained
using segmentation-like loss functions, where Mϕ can be compared to a ground truth
segmentation mask Mgt(I).

The function fϕ is hand-constructed using knowledge of the transformation. For
instance, we know that for the polar transform, the optimal origin lies in the center of
the object. Therefore, we may use the centroid of the ground truth segmentation labels
as fϕ. Other examples of fϕ for various transformations include:

• CT Thresholding: The transformation parameters are the maximum and mini-
mum Hounsfield units representing a specific tissue. The function fϕ could use
the minimum and maximum values within the predicted segmentation mask to
determine these parameters.

• Rescaling: For rescaling transformations, the parameters are the x and y scaling
factors. We can determine these factors using the predicted segmentation mask to
ensure that the object attains a predefined fixed width and height.

• Translation: The translation parameters, in terms of x and y shifts, can be calcu-
lated by measuring the distance between the object’s center and a desired reference
point.

It is important to note that Mϕ(I) does not have to be a conventional segmentation
mask. Depending on the requirements for predicting optimal transformation parame-
ters, we can create pseudo-labels that are more suitable for the task. For example, in
cases where transformation parameters are contingent on an object’s centroid, Mϕ(I)
could be modeled as a heatmap with its focus on the object’s central point. This ap-
proach enables the network to learn to predict the centroids of objects rather than their
boundaries. Consequently, fϕ can determine the object’s centroid by locating the pixel
with the highest intensity in Mϕ(I).

Using this approach, data efficiency is achieved by reducing the total function class
size when compared to a standard segmentation neural network. We do so by using two
smaller neural networks instead of one large one. Since the decision boundaries of the
preprocessed images are simplified, the segmentation network needs fewer parameters
to model them. Transformation parameters often have a much smaller dimensionality
than the segmentation mask, and therefore the network predicting transformation pa-
rameters can naturally use much fewer parameters.

The core idea of our approach is that T will simplify the segmentation problem such
that a regularized segmentation network Fseg will be able to perform the segmentation
using fewer parameters. To effectively implement this, both FT (the network predict-
ing transformation parameters) and Fseg (the segmentation network) require specialized
training techniques, which will be elaborated in the forthcoming section.
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4.2.1 Training Model-Driven Preprocessing Networks

As mentioned earlier, using the approach of model-driven preprocessing requires spe-
cific neural network training techniques. In our approach, two separately trained neural
networks are used: the transformation parameter predictor FT and the segmentation
network Fseg.

Training the Transformation Parameter Predictor

FT is designed to process original, untransformed images and output the corresponding
transformation parameters, ϕ(I). As previously discussed, the penultimate layer of FT
generates a segmentation-like mask Mϕ(I). The training data for FT comprises pairs of
images and their corresponding ground truth masks, represented as (I, Mgt). Given a
predicted segmentation mask Mϕ = FT seg(I) and the transformation parameter function
fϕ(M(I)), the transformation parameters loss LT can be calculated as:

LT (I, Mϕ, Mgt) = αLϕ( fϕ(M), fϕ(Mgt)) + βLM(Mϕ, Mgt), (4.5)

where Lϕ measures the error in predicting the transformation parameters, while LM is a
segmentation-like loss that measures the error in predicting the segmentation mask used
to calculate the transformation parameters. The coefficients α and β, which balance these
two terms, are determined empirically.

Training the Segmentation Network

The segmentation network is trained using ground-truth transformation parameters (ϕ)
to preprocess the input image. For every pair of image and ground truth segmentation
label (I, Mgt), the ground truth transformation parameters are derived using:

ϕ = fϕ(Mgt) + zϕ, (4.6)

where fϕ is the transformation parameter function, identical to the one used in the pa-
rameter predictor network. The term zϕ represents a random noise vector matching ϕ’s
dimensions. This noise serves as a form of augmentation, enhancing the segmentation
network’s resilience to less-than-ideal ϕ predictions.

Given ϕ, the input to the segmentation network is constructed as I′ = Tϕ(I). The
network’s final layer applies an inverse transformation to the output segmentation map,
T −1

ϕ (M). To train the network, we use a standard segmentation loss Lseg(M, Mgt).

Transfer Learning

Given that the parameter predictor mirrors the structure of a segmentation network, we
can utilize the same encoder and decoder in both networks, leveraging various forms of
transfer learning. This approach offers several advantages:

1. Both networks employ a standard encoder, enabling the initialization of these net-
works with weights pre-trained on extensive medical or natural image datasets.

2. The development process can start by training a standard baseline segmentation
model on untransformed data. Subsequently, the learned weights from this model
can be transferred to both the segmentation and transformation parameter predic-
tor networks. In this case, the parameter predictor already knows how to localize
the objects, thereby enhancing its ability to predict optimal transformation param-
eters.
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3. The transformation parameter predictor network’s main role is to robustly trans-
form input images. Domain shifts or unrealistic data, which are critical concerns
for the segmentation network, are less problematic for the parameter predictor.
This leniency allows for the use of extensive augmentation during training, further
improving the network’s robustness and adaptability.

Having laid out the theoretical framework of this approach, the remainder of this
chapter will detail a specific application of this methodology, demonstrated through an
empirical study across various medical imaging datasets. This study aims to showcase
the practical effectiveness and adaptability of the model-driven preprocessing approach
in real-world scenarios.

4.2.2 Related Work

Several image segmentation methods were proposed that utilize polar coordinates. Liu
et al. [Liu+19] proposed an approach they call Cartesian-polar dual-domain network
(DDNet) to perform optic disc and cup segmentation in retinal fundus images. The
neural network contains two encoding branches, one for a Cartesian input image and
another for the polar transformation of the same input image. The predictions are fused
into a single feature vector which is then decoded into a final segmentation. Salehine-
jad et al. [Sal+18] used the polar transformation as a way to augment training data by
transforming each input image into multiple polar images at various polar origins, thus
increasing the number of training data. Kim et al. [Kim+20] proposed a convolutional
neural network layer for images in polar coordinates to achieve rotational invariance.
Their cylindrical convolution layer uses cylindrically sliding windows to perform a con-
volution. Kim et al. [Kim+18] proposed a user-guided segmentation method where an
expert selects the point used as the polar origin. The transformed image is then seg-
mented using a convolutional neural network (CNN). Esteves et al. [Est+18] proposed
a polar transformer network for image classification. Note that "transformer network"
here refers to spatial transformer networks [Jad+16] and not attention-based networks
commonly called transformers. The network consist of a polar origin predictor and a
neural network that predicts a heatmap. The centroid of the heatmap is then used as the
origin for a polar transformation of the input image. The polar image is classified using
a CNN. This approach is most similar to our proposed method, however, their approach
focuses on image classification, not segmentation. In addition, our approach uses two
separate neural networks, which allows us to better focus on improving data efficiency.

While there are proposed methods that combine polar transformation with neural
networks, most of them solve classification tasks. Some medical image segmentation
methods use the polar transformation as a preprocessing step, however, the way they
obtain the origin of the polar transformation is usually based on heuristics. To our
knowledge, there is currently no work that explores using the polar transformation with
a dynamic polar origin as a preprocessing step for semantic segmentation in a variety of
medical image datasets.

4.3 Model-Driven Polar Transform Using Centerpoint Predic-
tion

Earlier in this chapter, we discussed how the polar transform can simplify complex de-
cision boundaries, making segmentation tasks more manageable. Drawing from this
insight, this section introduces a practical implementation of our model-driven prepro-
cessing approach, utilizing the polar transform. The approach involves two networks:
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a transformation parameter predictor and a segmentation network. In this specific im-
plementation, the parameter predictor is designed to determine the polar origin of an
image, functioning as a centerpoint predictor network. Its objective is to identify the
center of a singular object within the image. We will explore two distinct designs for this
centerpoint predictor network:

1. Segmentation-like Network: This design focuses on identifying the centroid of a
segmentation mask. It operates like traditional segmentation networks but is specifically
optimized to pinpoint the center of an object.

2. Heatmap Prediction Network: Alternatively, this network predicts the center-
point directly as a heatmap. This approach is more direct, as it aims to localize the
object’s center without necessarily delineating its entire boundary.

Once the centerpoint is determined, the image undergoes a transformation using the
predicted polar origin. The transformed image is then fed into a segmentation network
that has been trained on images processed with the polar transform. This setup aims
to demonstrate the effectiveness of preprocessing in simplifying the segmentation task,
potentially allowing for more accurate and efficient segmentation with neural networks.
The subsequent parts of this section will delve into the specifics of these network designs
and their performance in practical scenarios.

Our method is evaluated on the tasks of polyp segmentation, liver segmentation, skin
lesion segmentation, and epicardial adipose tissue (EAT) segmentation. The proposed
method can be used as a pre-processing step for existing neural network architectures,
so we evaluate the methods using common neural network architectures for medical im-
age segmentation including U-Net [RFB15b], U-Net++ [Zho+19] with a ResNet [He+16]
encoder, and DeepLabV3+ [Che+18] with a ResNet [He+16] encoder. Evaluation of our
approach as a pre-processing step shows that it improves segmentation performance
across different datasets and neural network architectures while making the networks
more robust to small dataset sample sizes.

4.3.1 Methodology

The polar transform’s potential for simplifying the segmentation of images with ellipti-
cal borders was discussed earlier in this chapter. Transforming such images into polar
coordinates effectively turns a perfect circle from Cartesian coordinates into a straight
line, significantly simplifying the decision boundary. This simplification means that a
less complex model can accurately predict borders in polar coordinates. As illustrated
in Figure 4.6, even for complex shapes, transforming roughly elliptical objects into polar
coordinates can reduce the complexity required for accurate segmentation. Moreover,
by using the object’s center as the polar origin, the approach standardizes the location
and border distances in each training example. This standardization allows the model
to focus on learning the border distance from the origin at various angles, obviating the
need for object localization learning.

Given a polar origin (cx, cy) of a Cartesian image I(x, y) of resolution H ×W, we
obtain each point (r, ϑ) of the polar transformed image I′(r, ϑ) as:

r =
H
2π
· atan2(x− cx, y− cy)[·180/π],

ϑ =
W√

(W/2)2 + (H/2)2
·
√
(x− cx)2 + (y− cy)2

, (4.7)

where arctan is the 2-argument arctangent function.
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Figure 4.6: An example image and label from the lesion dataset and their
corresponding polar transformation. [Ben+21]

All of the proposed methods rely on training a neural network model to segment
polar images. To train on polar images, the input images need to be transformed using
a polar origin which is near the center of the segmented object. The correct origin is not
known ahead of time, so a prerequisite for predictions on polar images is a method to
determine the correct polar origin. We propose and evaluate two different methods for
automatically obtaining the polar origin: (1) estimation via a segmentation trained on
non-polar images and (2) training a center-point predictor that predicts heatmaps from
input images. This section describes these methods, as well as methods to train the final
segmentation model on the polar images.

In each of our approaches, the final segmentation is done using a neural network
trained on polar transformations of the input images. In the rest of this section, we re-
fer to this network as the polar network. In all of the described approaches, the polar
transformation is not part of the network architecture itself, but happens as a prepro-
cessing step for the polar network. To transform each input image, the polar origin is
determined as the center of mass of the ground truth label for that image. The center
of mass of an image I(x, y) is calculated by first calculating the spatial image moments
matrix M, where the entry of the matrix at row i and column j is calculated as:

Mij = ∑
x,y

I(x, y) · xi · yj. (4.8)

The center of mass (cx, cy) of the image can then be calculated as:

cx = M10/M00,
cy = M01/M00

. (4.9)

Finally, to increase the model’s robustness to suboptimal center point predictions, we
augment the calculated center for training images [Est+18]. Each training image has a
30% chance of varying the center’s x and y coordinates by a random value in the range
(−0.05S, 0.05S), where S is the smallest resolution of the image, i.e. S = min(W, H).

4.3.2 Centerpoint prediction

Once the polar network is trained, inference can be done by transforming an input image
to polar coordinates. The polar network requires choosing a center that is close to the
center of mass of the segmented object. Because a future input image is unlabeled, the
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correct center needs to be inferred from the image. We propose two ways to accomplish
this, described in this section.
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Figure 4.7: A diagram of the approach (A) of predicting polar origins from
a Cartesian network. The first network performs an initial segmentation,
which is then used to extract a polar origin for the polar transformation.
The method does not rely on any specific neural network architecture.
The Polar and Cartesian network can be any neural network that takes an
input image and produces a binary segmentation mask as output. The red
point shows the extracted polar origin. The Polar network is trained on
polar image transformations. The polar transformation is not part of the
network itself, but happens as a preprocessing step for the Polar network.

[Ben+21]

Figure 4.8: A diagram of the approach (B) of using a centerpoint predic-
tion network. The first network can be any neural network that predicts
a heatmap from an input image, which is then used to extract the polar
origin, shown as a red point. The Polar network can be any semantic seg-
mentation neural network that produces a binary mask output from an in-
put image. The Polar network is trained on polar image transformations.
The polar transformation is not part of the network itself, but happens as

a preprocessing step for the Polar network. [Ben+21]

(A) Training the same neural network on cartesian and polar images

Our first approach is training the same neural network on cartesian and polar images. A
summary of this approach is presented in Figure 4.7. With this approach, the inference is
done by first feeding the original Cartesian input images into a neural network used for
segmentation. We refer to this network as the Cartesian network. For an input image,
the polar origin is calculated as the center of mass of the Cartesian network’s prediction
for that input image, using (4.9). This polar origin is used to transform the original in-
put image to polar coordinates, and the transformed image is fed to the polar network.
The output of the polar network is transformed back to Cartesian coordinates to obtain
a final segmentation. We assume identical architectures for both the Cartesian and polar
networks. This makes applying this framework to existing architectures very straight-
forward, as it does not require designing new neural network architectures or specific
hyperparameter optimization and allows for the use of transfer learning to initialize the
networks.

(B) Training a centerpoint predictor

In the second approach for determining the optimal polar origin, we train a model specif-
ically tasked with predicting the correct polar origin for each input image, which is then
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used to transform the input image. The approach is shown in Figure 4.8. We do this
by training a neural network based on the stacked hourglass architecture [NYD16] first
used for human pose estimation. Instead of training a regressor network to predict key
points in an image, the stacked hourglass architecture uses a series of stacked encoder-
decoder networks, where the output of each stack is a heatmap centered on the key
point to be predicted. The output of each stack is fed as input into the next stack, allow-
ing successive refinement of the heatmap prediction. During training, the loss of each
stack’s output is averaged to produce the final loss, allowing deep supervision. The final
prediction heatmap is the output of the last stack in the network. To predict the center
point, we use 8 stacked hourglass blocks, which we empirically determined as the value
providing the best results. The network receives images in Cartesian coordinates and
predicts a heatmap of the image.

Data Processing

The ground truth heatmaps were generated by calculating the center of mass of each
ground truth label image using (4.9). We then create the heatmap as an image with a 2D
Gaussian placed on the calculated center of mass and a standard deviation of 8 pixels
for all datasets except the liver, and 16 for the liver. The optimal value for the standard
deviation was determined empirically on the validation datasets. We found that the
optimal value of the standard deviation is proportional to the size of the object. Example
heatmaps are shown in Figure 4.9.

Additionally, during training, we use augmentation to increase the number of train-
ing inputs. In particular, during training for each input example, the following random
augmentations are applied: (1) a 50% chance of a horizontal flip; (2)a 30% chance of a
random combination of shifting up to 6.5% of the image dimensions, scaling up to 10%
and rotating up to 45◦; and (3) a 30% chance for a grid distortion, details of which are
described in [Bus+20].

Figure 4.9: Examples of heatmaps generated for the polyp dataset. The
heatmap is a Gaussian centered on the center of mass of the ground-truth
label of the image. The center is shown as a blue point on the input images.

[Ben+21]
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The center-point predictor outputs 8 separate heatmaps [NYD16]. We calculate the
predicted center as the coordinates of the pixel with the largest intensity in the heatmap
predicted by the final layer of the model. This predicted center is then used to transform
the input image to polar coordinates, and the transformed image is fed into the polar
network to perform the segmentation. Finally, the segmentation label is transformed
back to Cartesian coordinates.

4.3.3 Experiments

To validate segmentation accuracy and data efficiency improvements of our method, we
trained a variety of neural network architectures on multiple medical imaging datasets.
In particular, we trained three different neural network architectures: U-Net [RFB15b],
U-Net++ Zhou et al. [Zho+18] with a ResNet encoder and DeepLabV3+ [Che+18] with
a ResNet encoder. Notably, each dataset we use presents a problem wherein almost all
examples a single roughly elliptical object needs to be segmented. For each dataset and
network architecture combination, we train a Cartesian and polar network, and we then
perform four different experiments:

1. testing the Cartesian network using Cartesian images

2. testing the polar network using the ground-truth polar origin

3. testing the polar network using polar origins obtained from predictions of the
Cartesian network, as outlined in 4.3.2

4. testing the polar network using polar origins from the centerpoint predictor, as
outlined in 4.3.2.

Datasets description

We used four different datasets to train the network. In this section, we give an overview
of each used dataset and how it was preprocessed. Note that for training the center-point
predictor, the input images were resized to a resolution of 256× 256 to improve training
times, while the generated heatmaps were resized to 64× 64 pixels to improve computa-
tional requirements. Otherwise, all preprocessing steps described here are applied to the
center-point model datasets as well. Each dataset was globally normalized using prede-
termined Hounsfield ranges for relevant tissues as minimum and maximum values, and
zero-centered based on the mean intensity across the training dataset, to facilitate better
network convergence.

Polyp dataset: The CVC-ClinicDB dataset [Ber+15] contains 612 RGB colonoscopy
images with the resolution 288× 384 with labeled polyps from MICCAI 2015. We nor-
malize each image to a range of [−0.5, 0.5]. We use the original image resolution to train
all networks except the centerpoint network. As is used in [Jha+20], we use an 80%, 10%
and 10% split for training, validation, and testing datasets, respectively. An example of
the dataset is shown in Figure 4.10(a).

Liver dataset: The second dataset we use is the LiTS dataset [Bil+19] from the Liver
Tumor Segmentation Challenge from MICCAI 2017. The dataset contains 131 CT scans
of patients with hepatocellular carcinoma, with the liver as well as tumor lesions labeled
by experts. In our experiments, we disregard the lesion segmentation labels and treat the
dataset as a binary liver segmentation problem. In addition, we removed all slices that
did not contain a ground-truth liver segmentation label, resulting in a dataset of roughly
15,000 slices. Each axial slice is thresholded to a Hounsfield scale range of [0, 200] HU
that contains the liver. Next, the slices are normalized to a [0, 1] range and zero-centered
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(a) Polyp dataset (b) Lesion dataset

(c) Liver dataset (d) EAT dataset

Figure 4.10: Example input images and ground-truth labels for each
dataset used in our experiments. [Ben+21]

by subtracting the global intensity of all training slices (0.1). We then proceed to train
the networks on each axial slice separately. We use 101 scans for training, 15 scans for
validation, and the remaining 15 scans for testing. Example liver segmentation images
are shown in Figure 4.10(c).

Lesion dataset: The third dataset we use is the ISIC 2018 Lesion Boundary Segmenta-
tion dataset [Cod+18; TRK18] which contains 2,694 dermatoscopy images of skin lesions
with expert labels of the lesions from various anatomic sites and several different insti-
tutions. We resize each image to a resolution of 384× 512 and use a training, validation,
and test split of 80%, 10%, and 10%, respectively. This is consistent with [Jha+20]. Addi-
tionally, we normalize each image to a range of [−0.5, 0.5]. An example of a lesion input
image and its corresponding label is shown in Figure 4.10(b).

EAT dataset: Finally, we also train on a dataset of labeled EAT regions from 20 pa-
tients’ cardiac CT scans from the Cardiac Fat Database [Rod+16]. The dataset has three
classes labeled: the pericardium, EAT, and pericardial adipose tissue. We disregard all
original labels except EAT and treat the dataset as a binary EAT segmentation dataset.
The dataset is first split into training (10 patients), validation (5 patients), and test (5 pa-
tients) datasets. In the original dataset, each slice is thresholded to the adipose tissue
range of [−200,−30] HU and registered so that anatomical structures have the same lo-
cations. In addition to these original pre-processing steps, we normalize each slice to
a [0, 1] range and zero-center the dataset by subtracting a global mean intensity of the
training set (0.1). We then train on each CT slice separately. An input image of the EAT
dataset and its corresponding label is shown in Figure 4.10(d).

Implementation details

We use the OpenCV linear polar transformation implementation. Each model is imple-
mented and trained using PyTorch 1.7.1 on an NVIDIA GeForce RTX 3080 GPU. For all
networks, we use the Adam optimizer with a learning rate of 10−3. A batch size of 8 was
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used for all networks except the center-point model, where a batch size of 6 was used for
the lesion and liver datasets and 8 for all remaining datasets. We trained all models up
to a maximum of 200 epochs and used checkpoints after each epoch to store the model
with the best validation loss. We modify the Dice coefficient to act as a loss function as
follows:

DSCloss = 1− 2|X ∩Y|+ λ

|X|+ |Y|+ λ
, (4.10)

where X and Y are the input and predicted images, respectively, and λ is a smoothing
parameter set to 1 in our experiments used to avoid dividing by zero. This loss function
is used to train all models except the center-point model.

The centerpoint model outputs eight heatmaps [NYD16]. We use a loss function
that is the mean of the mean squared errors between each of the heatmaps and the
ground truth heatmap. The code used for all experiments is available at github.com/
marinbenc/medical-polar-training.

4.3.4 Results and Discussion

We evaluate segmentation performance along with four key metrics: the Dice coefficient
(DSC), the median intersection-over-union score (mIoU), precision, and accuracy. Pre-
cision and accuracy are both calculated pixel-wise. The results of training the different
approaches presented in 4.3.3 are shown in Table 4.4 for polyp, lesion, liver, and EAT
segmentation. In all cases, training on polar coordinates improves the segmentation in
all metrics when compared to training the same model on Cartesian coordinates. As is
to be expected, testing the polar network on images transformed using the ground truth
polar origins produces the best results in terms of DSC. A close second predicts the polar
origin from the center-point predictor. Predicting polar origins from the Cartesian model
leads to less accurate polar origins, and the results are worse in terms of DSC, however,
they are still better than using only the Cartesian model.

We also compare our methods to other state-of-the-art methods that use the same
datasets, shown in Table 4.5. We achieve state-of-the-art results for the polyp and liver
datasets. Additionally, we achieve state-of-the-art liver segmentation when compared
to other per-slice methods, and nearly state-of-the-art results when compared to 3D-
based methods. For EAT segmentation, our approach outperforms standard medical
image segmentation networks but does not achieve state-of-the-art performance due to
segmenting EAT directly and not first segmenting the pericardium.

A training graph for a polar and Cartesian U-Net-based network is shown in Figure
4.11. Additionally, we evaluate the accuracy of the different ways of obtaining the polar
origin. This accuracy is compared with segmentation performance in Figure 4.12.

Figure 4.11: The training and validation Dice coefficient (DSC) of the polar
and Cartesian U-Net models during training. [Ben+21]

github.com/marinbenc/medical-polar-training
github.com/marinbenc/medical-polar-training
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Table 4.1 Results of our proposed approaches for different tasks for three different neu-
ral network architectures. The Cartesian network is the network trained on Cartesian
images. “GT centers” refers to obtaining a polar origin from the ground-truth labels and
segmentation using the polar network.“Cartesian centers” refers to predicting the polar
origins from the Cartesian network and then performing segmentation using the polar
network. “Model centers” refers to using the centerpoint predictor to obtain polar ori-
gins. (Continued on the next page.)

Polyp Segmentation

Architecture Method DSC mIoU Prec. Rec.

U-Net

Cartesian 0.8315 0.7604 0.8513 0.8334
GT centers 0.9484 0.9141 0.9563 0.9442
Cart. centers 0.8973 0.8571 0.8996 0.8998
Model centers (Ours) 0.9374 0.8977 0.9488 0.9368

Res-U-Net++

Cartesian 0.8356 0.7636 0.9004 0.8256
GT centers 0.9557 0.9260 0.9583 0.9554
Cart. centers 0.9063 0.8685 0.9243 0.9027
Model centers (Ours) 0.9332 0.8924 0.9477 0.9321

DeepLabV3+

Cartesian 0.8706 0.8013 0.8857 0.8876
GT centers 0.9593 0.9296 0.9576 0.9682
Cart. centers 0.9212 0.8823 0.9179 0.9397
Model centers (Ours) 0.9338 0.8967 0.9436 0.9347

Lesion Segmentation

Method DSC mIoU Prec. Rec.

U-Net

Cartesian 0.8256 0.7393 0.8407 0.8712
GT centers 0.9320 0.8824 0.9261 0.9541
Cart. centers 0.8836 0.8317 0.8746 0.9492
Model centers (Ours) 0.9224 0.8699 0.9165 0.9494

Res-U-Net++

Cartesian 0.8664 0.7925 0.8728 0.9122
GT centers 0.9439 0.9014 0.9418 0.9584
Cart. centers 0.9125 0.8653 0.9075 0.9540
Model centers (Ours) 0.9253 0.8743 0.9253 0.9464

DeepLabV3+

Cartesian 0.8717 0.7984 0.8807 0.9068
GT centers 0.9459 0.9059 0.9418 0.9632
Cart. centers 0.9162 0.8686 0.9097 0.9536
Model centers (Ours) 0.9235 0.8721 0.9125 0.9570
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Table 4.1 Results of our proposed approaches (continued).

Liver Segmentation

Segm. net. Method DSC mIoU Prec. Rec.

U-Net

Cartesian 0.8976 0.8505 0.8997 0.9201
GT centers 0.9553 0.9227 0.9595 0.9569
Cart. centers 0.9302 0.8985 0.9279 0.9429
Model centers (Ours) 0.9125 0.8828 0.9108 0.9219

Res-U-Net++

Cartesian 0.8908 0.8463 0.8936 0.9085
GT centers 0.9548 0.9215 0.9492 0.9661
Cart. centers 0.9219 0.8898 0.9119 0.9428
Model centers (Ours) 0.9109 0.8795 0.9009 0.9306

DeepLabV3+

Cartesian 0.8868 0.8341 0.8995 0.8959
GT centers 0.9518 0.9171 0.9547 0.9550
Cart. centers 0.9253 0.8932 0.9244 0.9361
Model centers (Ours) 0.9092 0.8783 0.9075 0.9199

EAT Segmentation

Segm. net. Method DSC mIoU Prec. Rec.

U-Net

Cartesian 0.7544 0.5812 0.7190 0.6949
GT centers 0.8088 0.6607 0.7986 0.7675
Cart. centers 0.7835 0.6227 0.7455 0.7208
Model centers (Ours) 0.7840 0.6252 0.7451 0.7302

Res-U-Net++

Cartesian 0.3410 0.1743 0.2700 0.3294
GT centers 0.8030 0.6827 0.7939 0.8043
Cart. centers 0.5466 0.3980 0.5286 0.5066
Model centers (Ours) 0.7740 0.6140 0.7156 0.7453

DeepLabV3+

Cartesian 0.6380 0.4246 0.5665 0.5940
GT centers 0.6952 0.5123 0.6519 0.6779
Cart. centers 0.6696 0.4716 0.5988 0.6454
Model centers (Ours) 0.6720 0.4779 0.6070 0.6488

We also train several models with both polar and Cartesian coordinates on subsets
of the training dataset. Namely, we trained models on 25%, 50%, 75%, and 100% of the
lesion training dataset for 50 epochs. The results of this training are shown in Figure
4.13. The polar network is much more data efficient and achieves better results than the
cartesian network even with only 25% of the data.
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Table 4.2 A comparison between our method (model centers approach with best under-
lying architecture) and the state of the art on the same datasets.

Dataset Method DSC mIoU Prec. Rec.

Polyp
PraNet [Fan+20a] 0.8990 0.8490 - -
FANet [Tom+21] - 0.8937 0.9401 0.9339
Our method 0.9374 0.8977 0.9488 0.9368

Lesion
DeepLabV3+ [Che+18] 0.8717 0.7984 0.8807 0.9068
DoubleU-Net [Jha+20] 0.8962 0.8212 0.9459 0.8780
Our method 0.9253 0.8743 0.9253 0.9464

Liver
U-Net [RFB15b] 0.8976 0.8505 0.8997 0.9201
KiU-Net 3D [Val+20] 0.9423 0.8946 - -
Our method 0.9302 0.8985 0.9279 0.9429

EAT
U-Net. [RFB15b] 0.7544 0.5812 0.7190 0.6949
Zhang et al. [Zha+20] 0.9119 0.8425 - -
Our method 0.7840 0.6252 0.7451 0.7302

Figure 4.12: The relationship between mean squared errors of the centers
used for the polar transformation and segmentation performance of the
polar network on the lesion dataset. The mean squared errors are calcu-

lated compared to the ground-truth centers. [Ben+21]
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Figure 4.13: The best Dice coefficient by epoch 50 for models trained on
subsets of the lesion training dataset. [Ben+21]

Discussion

We obtain state-of-the-art results for polyp and lesion segmentation by training common
biomedical image segmentation models. In the liver dataset, we achieve state-of-the-
art results when compared to other 2D methods, but 3D methods achieve the same or
slightly better results [Val+20]. The liver dataset is by far the largest dataset we eval-
uated. As such, improvements gained from encoding localization information and re-
ducing dimensionality might not be as large as in smaller datasets, since the network
has enough data to learn these complex structures. The EAT dataset is one where the
task is not to find a single object, but instead, to segment multiple smaller pockets of
tissue around the heart. This task is more challenging for common models like U-Net
and requires a more complex approach [Zha+20]. It is possible that combining these
existing approaches, namely segmenting the pericardium first, with training on polar
coordinates would lead to an improvement in the state of the art.

We also show that training on polar images leads to a significant improvement in
segmentation performance when compared to training on Cartesian images for the same
network architecture. Additionally, as shown in Figure 4.11, the polar network portions
of our approach converge in much fewer epochs than the Cartesian networks. This is
in part due to the location information being encoded in the image itself via the polar
origin, and in part due to a possible data dimensionality reduction, allowing the network
to more easily optimize the loss function. The polar networks are also more robust to
low dataset sample size. This is especially important in biomedical image segmentation
where the availability of large labeled datasets is often very limited.

Predicting the center point from the Cartesian model, while still an improvement
over the plain Cartesian network leads to slightly lower DSC results than those obtained
by the center point predictor model. We conclude that segmentation is highly dependent
on choosing the correct polar origin. This dependency is somewhat loosened by adding
polar origin augmentation when training the polar network.

Figure 4.14 shows a random sampling of predictions from the polar network using
the center point predictor for polar origins. Qualitatively, we conclude that the network
segmentation achieves a high overlap with the target object. The network successfully
segments both small and elliptical as well as large and unevenly shaped polyps. On the
lesion images, the network predicts a smooth border when sometimes the actual border
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Table 4.3 Ablation study of our approach for the polyp dataset.

Method DSC Difference

Cartesian 0.8315 -
Polar (Cartesian origins) 0.8918 +0.0603
Polar (Centerpoint predictor) 0.9094 +0.0176
+ centerpoint augmentation 0.9288 +0.0194
+ polar network training augmentation 0.9374 +0.0086

of the lesion is rough, as shown in the left-most example on Figure 4.14(b), however,
the network still does a good job of delineating a lesion border even when the color of
the lesion is very similar to the surrounding skin. The network successfully predicts
a liver border both when the liver is very large and very small on the image, showing
good scale invariance, but sometimes under segments the liver when multiple connected
components are needed. On the EAT dataset, the network successfully learns to segment
EAT despite its highly discontinuous and sparse distribution. However, the network
sometimes under segments EAT.

Finally, we also perform an ablation study shown in Table 4.3. Training on the polar
coordinates with the polar origins predicted from the cartesian network yields the largest
performance improvement. Predicting the polar origin from the center point predictor
as well as adding center point augmentation to the predictor play a roughly equally
important role in the performance. Lastly, a small performance improvement is further
achieved by using data augmentation when training the polar network.

The center points could also be obtained by a more basic segmentation approach like

(a) Polyp predictions (b) Lesion predictions

(c) Liver predictions (d) EAT predictions

Figure 4.14: A random sampling of inverse polar transformed predictions
from the polar network with the polar origins predicted from the center-
point predictor for various datasets. The prediction is shown in green
and overlaid on top of the original input image. EAT predictions (d) are

cropped and zoomed to better show the predictions. [Ben+21]
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thresholding or other traditional image processing methods, leading to a possible reduc-
tion in the number of required neural network parameters to achieve good segmenta-
tion. Furthermore, in our experiments, we found that the segmentation is dependent
on choosing the correct standard deviation of the generated heatmaps for training the
center point predictor. An improvement to our method could be made by developing a
method to automatically estimate the standard deviation from the training or validation
data without needing to first train the center point predictor.

In conclusion, the polar transform demonstrates significant potential in simplifying
the segmentation of elliptical objects, thus reducing the complexity of the neural network
model required. However, a key limitation of this approach is that only one elliptical
object can be segmented. The next section will introduce further advancements to this
method, allowing the segmentation of multiple objects on the image.

4.4 Supporting Multiple Transformations of an Image

In this chapter, we’ve explored an approach where each image undergoes a single trans-
formation before being processed by the segmentation network. We will now extend this
model-driven preprocessing approach to accommodate multiple transformations of the
same input image. This modification is particularly useful in scenarios where an image
contains several objects, each with its distinct decision boundary. By applying a separate
polar transformation for each object center, we can generate multiple segmentation maps
for a single image. These maps can then be combined to create a unified segmentation
result. The process involves the following steps:

1. Our transformation predictor network will be enhanced to predict a set of transfor-
mation parameters {ϕ1, ϕ2, · · · , ϕn}, where n varies based on the image and repre-
sents the number of transformations. n is dynamically chosen by the network and
corresponds to the predicted number of objects in the image.

2. For each transformation parameter in ϕi we will produce a corresponding trans-
formed image I′i = Tϕi(I).

3. Each transformed image I′i will be segmented using the segmentation network,
producing a series of segmentation maps {Mi}, where Mi = Fseg(I′i ).

4. Finally, all of the segmentations will be fused using an aggregation function fagg,
resulting in a final segmentation map M = fagg({Mi}).

To exemplify this, we will present a case of using the polar transformation as we did
earlier, only this time we will be segmenting images with multiple connected compo-
nents (objects) in their segmentation maps. Therefore, we will use multiple polar trans-
formations for each image, one for each connected component. The transformation pa-
rameter predictor will be modified to predict the centroid of each connected component,
instead of just a single centroid. Each centroid will be used to transform and segment
the image. For the aggregation function, we will choose a weighted sum and a hysteresis
thresholding function th with thresholds t1 and t2:

fagg({Mi}) = th(
n

∑
i=1

MiWi; t1, t2), (4.11)

each weight Wi functions as an image matching the dimensions of Mi, where the pixels
correspond to the relative importance of that pixel in the corresponding segmentation
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map. For instance, in the case of the polar transform, the value assigned to each element
in Wi depends on its relation to the connected component associated with the polar ori-
gin for the corresponding segmentation mask Mi. Specifically, elements that belong to
the same connected component as the polar origin used for the i-th segmentation are
assigned a value of 2. Elements outside this connected component are assigned a value
of 1. With this weighing strategy, regions belonging to the connected component that is
most beneficially transformed are more heavily weighted than other pixels.

The hysteresis thresholding function th, defined by two thresholds t1 and t2, operates
in two stages. Initially, it eliminates all pixels with intensity levels below t1. First, it
removes all pixels with an intensity lower than t1. Next, in the remaining pixels of the
image, for each connected component, if any of the component’s pixel intensities are
higher than t2, the whole connected component is preserved, otherwise the connected
component is removed, as illustrated in Figure 4.15.

The approach of model-driven preprocessing using multiple transformations has
several advantages. First, each object can benefit from the reduction in segmentation
complexity. For example, in the case of the polar transform, one object is always the
bottom part of the polar transformed image to be segmented, so the network does not
need to learn to first localize the object. Secondly, a consequence of this approach is that
images with multiple connected components are over-sampled during training. This is
beneficial since these images are usually under-represented (when compared to images
with fewer connected components) and harder to segment (since they require segment-
ing multiple objects).

What follows is an empirical study of this approach for aorta segmentation, which is
a modification of the one presented in 4.3 to allow support for multiple transformations
of the input image, one for each object in the image.

The aorta is the largest artery of the human body and supplies oxygenated blood
from the heart to all parts of the body. It is one of the most clinically significant struc-
tures to analyze for cardiovascular disease diagnosis and prevention. Several conditions
could occur on the aorta which can be detected using 3D medical imaging, including
aneurysms, dissections, stenoses, coarctations, or traumas. All of these conditions can be
dangerous and require careful screening, following, and potentially surgical treatment,
while a failure or delay in the diagnosis of these conditions could be fatal. Therefore, de-
veloping a fully automated method to efficiently and accurately segment the aorta could
be beneficial for earlier detection of these conditions. By producing a 3D model of the
aorta from CT or MRI scans, a computer algorithm could perform automatic measure-
ments to screen and detect aortic aneurysms, dissections, and other conditions that are
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Figure 4.15: A visual explanation of hysteresis thresholding. Kept regions
are marked with green checkmarks, while deleted regions are marked
with red crosses. The pixel intensity scale is shown on the right, where

t1 is marked in yellow and t2 is marked in blue.
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Figure 4.16: A summary of our approach. An input image is first seg-
mented using a U-Net network. For each connected component in the
segmentation, the input image is transformed to polar coordinates using
the centroid of the connected component as the origin. These images are
then fed into a U-Net trained on polar images, and the predictions for each
object are fused, hysteresis thresholded, and transformed back to cartesian
coordinates. Note how one of the false positive connected components
in the initial segmentation was removed during hysteresis thresholding
since the component was only predicted in one of the three polar predic-

tions. [Ben+22]

commonly diagnosed by imaging the aorta.
Several methods based on deep learning were proposed for segmenting the aorta

from CT images. Fantazzini et al. [Fan+20b] use a cascade of U-Net-based networks.
They first perform a rough segmentation on axial slices to extract a region of interest.
They then use separate networks to segment axial, sagittal, and coronal slices of the
region of interest. Several other papers have used 3D U-Net-based architectures for this
task [Yu+21; Che+21a].

4.4.1 Methodology

The approach presented in this section is an extension of the approach presented in 4.3.
We obtain the center points of the objects in the image using a rough segmentation from
a U-Net-based network, instead of using a center point predictor as is described in 4.3.
A summary of the approach is shown in Figure 5.1.

As described earlier in this section, we perform several key modifications to allow
the network to segment multiple objects on an image. During the training of the polar
network, we construct a dataset that contains one polar transformation per connected
component in the ground truth segmentation label. The origins of these polar transfor-
mations are the centroid of each corresponding connected component.

We also employ prediction fusion during inference. First, a 2D U-Net-based network
is used to obtain an initial rough segmentation. A separate polar transformation for each
connected component in the rough segmentation is constructed using the centroid of
each component as the origin. The polar network predicts a segmentation map for each
transform, resulting in a number of predictions equal to the number of connected com-
ponents. In the predicted image, a weight of 2 is assigned to the connected component
which contains the origin for that prediction, and a weight of 1 to all other connected



74 Chapter 4. Data Efficiency via Model-Driven Preprocessing

Figure 4.17: Hystersis-thresholded segmentation output. For each polar
prediction, the component that contains the origin of the transform gets a
weight of 2 assigned, while all other components get a weight of 1. This
left-most image is the result of summing the predictions of 3 polar trans-
formations of the original image (one for each connected component), con-
verted to cartesian coordinates. Note how the thresholding removes the
false positive object on the left of the image while keeping the true posi-

tive objects intact. [Ben+22]

components. We then sum all of the weighted images together. As shown earlier in
this chapter, the polar network generally performs best on objects which contain the po-
lar origin, and worse at predicting other objects on the image. Therefore, we assign a
larger weight to that component as a proxy for a confidence measure. We then sum all
of the weighted predictions together and normalize the prediction to a 0-1 range. This
leads to a segmentation map where each non-zero pixel represents the confidence that
the pixel belongs to the aorta class. To obtain the final segmentation, we use hysteresis
thresholding where the bottom threshold is 0, and the top threshold is 0.4, empirically
determined according to the best Dice coefficient on the validation dataset. An example
of thresholding a prediction is shown in Figure 4.17.

Data Description and Preprocessing

We used a publicly available dataset of CT scans with corresponding aorta labels
[Rad+22] including the ascending aorta, the aortic arch as well as the descending and
abdominal aorta. While the original dataset contains scans from three different centers,
in our experiments, we only use the data from Dongyang Hospital. In total, we use 18
CT scans, each containing 122-251 slices, with a slice thickness of 2 or 3 mm.

Each CT slice is windowed to a range of 200 to 500 HU to remove information from
irrelevant tissues, then normalized to a range of -0.5 to 0.5, and zero centered using the
global mean value across all slices in the validation set. The slices were each resized
from 512× 666 to 256× 256 pixels. We use augmentation during training for both the
cartesian and the polar network. The augmentations we use include a 50% chance of a
random combination of affine transforms including a shift of up to 6.25%, a scale of up
to 10% and a rotation of up to 15◦; as well as a 30% chance of a horizontal flip.

All of our models were implemented using PyTorch 3.9 using an NVIDIA GeForce
RTX 3080 GPU. We use the U-Net [RFB15a] architecture for both the cartesian and the
polar network. For training, we use a batch size of 8 and the Adam optimizer with a
learning rate of 0.001. All models were trained for 60 epochs with checkpointing where
the model with the best validation Dice coefficient was selected. We use the Dice loss
function as described in the previous section of this chapter. All of the code, as well as
the trained networks, can be found at github.com/marinbenc/medical-polar-training.

https://github.com/marinbenc/medical-polar-training
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4.4.2 Results and Discussion

To perform evaluation, we use 3-fold cross-validation on the 18 scans. For each fold,
we train a polar and non-polar model using the slices of 12 CT scans and run inference
on the slices of the remaining 6 scans. All results presented in this section are averaged
across each CT scan and then across the three folds.

A summary of our segmentation results is presented in Table 4.4. Random exam-
ples of segmentation results are shown in Figure 6.5. In the experiments in 4.3 the polar

Figure 4.18: Random examples of predictions. Columns from left to right
show: the input image, the initial prediction from the non-polar network,
the final fused polar prediction, and the ground truth segmentation label.

[Ben+22]
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networks achieve the best segmentation performance when using accurate center points
during inference. As the accuracy of the center points goes down, so does the segmenta-
tion performance. The experiments in this section follow the same pattern, the polar net-
works perform significantly better than the cartesian networks when using ground truth
centers. However, even with less accurate centers obtained from initial rough segmenta-
tion by the non-polar network, the results yield only slightly lower Dice coefficients than
when using ground-truth centers directly. The non-polar network can also be seen as a
baseline model, and our approach results in a significant improvement over this baseline
in all segmentation metrics.

In some problems in medical imaging, e.g. segmenting cancerous tissues, a higher
recall is beneficial since the cost of missing tissues can be very high [TH15]. A key advan-
tage of our approach is that by fusing multiple predictions and using hysteresis thresh-
olding the threshold value can be used to impact the precision–recall tradeoff. Our ex-
periments show that the average per-patient pixel-level recall increased when compared
to the baseline model.

We also present the standard deviation across CT scans as a measure of segmenta-
tion reliability. Using the polar coordinates decreases the standard deviation between
patients of all performance metrics, indicating that the predictions are more reliable and
more robust to inter-patient differences. To further emphasize this, we present a box
plot of segmentation results for each patient in Figure 4.19. Note that, in contrast with
the baseline model, when using our approach there are no outliers in the box plot.

A comparison of our results with other deep learning-based approaches for aorta
segmentation in the literature is shown in Table 4.5. Our approach achieves performance
comparable to the state of the art, and a large improvement over the baseline methods.
Note that the results are evaluated on different datasets and with a different number of
cases. Therefore, it is hard to objectively compare these approaches.

Table 4.4 A summary of the mean segmentation results of our experiments. Non-polar are
the results of the U-Net trained using cartesian images. Polar + GT centers are the results
of the U-Net trained on polar images, using ground-truth connected component centers
during inference, as an example of the best case possible results. Polar + NP centers are
the results when running inference on the polar model using center points obtained from
the non-polar model predictions. *Our proposed method.

Method DSC mIoU Prec. Rec.
U-Net (non-polar) 0.886± 0.049 0.825± 0.052 0.901± 0.074 0.893± 0.039
Polar + GT centers 0.937± 0.053 0.895± 0.055 0.944± 0.064 0.937± 0.040
Polar + NP centers* 0.932± 0.027 0.895± 0.033 0.915± 0.040 0.973± 0.018
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Figure 4.19: A box plot of the per-scan Dice coefficients of our experi-
ments. Non-polar are the results of the U-Net trained using cartesian im-
ages. Polar + GT centers are the results of the U-Net trained on polar im-
ages, using ground-truth connected component centers during inference.
Polar + NP centers are the results when running inference on the polar
model using center points obtained from the non-polar model predictions.

[Ben+22]

Table 4.5 A comparison of our approach with results reported in papers describing deep
learning-based aorta segmentation methods. Note that the datasets used for obtaining
the results are not the same. n is the number of cases used to obtain the evaluation.

Method DSC mIoU n

Yu et al. [Yu+21] 0.958 - 25

Fantazzini et al. [Fan+20b] 0.928± 0.013 0.866± 0.023 10

Cheung et al. [Che+21b] 0.912 - 14

Proposed method 0.932± 0.027 0.895± 0.033 18

4.5 Conclusion

In this chapter, we’ve outlined an approach to enhance data efficiency in medical image
segmentation by employing two smaller neural networks, rather than a single large one.
The first network is designed to predict parameters for a strategically chosen transfor-
mation, aimed at reducing the complexity of segmentation. The second network then
handles the segmentation of these transformed images. Our empirical studies, particu-
larly with the polar transform, demonstrate the efficacy of this approach across various
medical imaging segmentation tasks. We observed notable improvements in training
efficiency, especially in cases involving the segmentation of a single, roughly elliptical
object. Furthermore, segmentation of polar-transformed images has shown state-of-the-
art results in small datasets and near state-of-the-art performance in larger datasets, even
when utilizing generic, low-parameter-count models such as U-Net.

We’ve enhanced this approach by introducing the capability to perform multiple
transformations on a single image, followed by the fusion of segmentation results from
each transformation using hysteresis thresholding. Applying this method using polar
transformations of CT images of the aorta improved segmentation results compared
to baseline networks trained on Cartesian images. This improvement was observed
across various metrics without a substantial increase in training time or network archi-
tecture complexity. Moreover, the fusion of individual object segmentations on an image
through hysteresis thresholding has proven beneficial in increasing pixel-level recall, a
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valuable trait in medical image segmentation tasks.
We have further improved this approach by allowing multiple transformations of the

same image and fusing segmentations of each transformation using hysteresis threshold-
ing. When applied to the polar transform, we showed that this leads to large improve-
ments over baseline networks trained on cartesian images for segmenting the aorta. We
see improvements across a variety of metrics without significantly increasing training
times or the complexity of the used neural network architectures. In addition, by fus-
ing separate predictions of different objects on the image with hysteresis thresholding
we can increase pixel-level recall (at the cost of accuracy) which is often beneficial in
medical image segmentation tasks.

This is a flexible approach that allows leveraging domain knowledge as it can be used
with any invertible image transformation. Moreover, it is invariant to the downstream
segmentation architecture as it is a separate network. Thus, it can be used as a general
preprocessing step regardless of the segmentation method. Moreover, if the transfor-
mation parameter predictor and segmentation networks share similar architectures, one
can use transfer learning between the two networks. The approaches presented in this
chapter have been published in [Ben+21] and [Ben+22].



References 79

References
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5 Reducing Model Input Sizes with
Model-Driven Crops

In this chapter, we will present a simple but powerful way of reducing the sizes of input
images to segmentation neural networks using image crops. We will show why reducing
the input size can lead to an increase in data efficiency. Finally, we will evaluate the
approach empirically using two similar methods on various medical image modalities.

In Chapter 3 of this thesis we discussed how increasing the number of parameters
of a model allows it to overfit more easily. Additionally, we discussed how more com-
plex problems require more parameters to be modeled. Thus, for small datasets, it is
beneficial to reduce the complexity of the problem to allow for using networks of fewer
parameters. A simple way to reduce the complexity of problems in convolutional neural
networks is to reduce the size of the images.

To understand how reducing input size reduces model complexity, let us revisit the
concept of sample complexity n(ϵ, δ) and its established bounds [SB14]:

n(ϵ, δ) ≥ log(|F |/δ)

ϵ
, (5.1)

where n represents the minimum number of samples needed for a model from the hy-
pothesis spaceF to achieve a performance that is ’probably approximately correct’—that
is, within an error margin ϵ with a confidence level of 1− δ. It is clear from this relation
that as the size of the hypothesis space expands, so does the sample complexity.

The hypothesis space refers to the set of all functions that the model is capable of
approximating, encompassing every conceivable mapping from the domain D to the
codomain C. Therefore, the magnitude of the hypothesis space can be expressed as

|F | = |C||D|. (5.2)

For binary CNN-based image segmentation, the model maps c-channeled images
I ∈ Rw×h×c to binary masks M ∈ {0, 1}w×h. The hypothesis space thus grows with
the image dimensions w, h, and the number of channels c. Reducing image size directly
decreases the hypothesis space, lowering the sample size needed for effective training.
This relationship is supported by empirical findings — Tan and Le [TL20] show that
convolutional neural networks perform best when input size, network depth, and width
are scaled proportionally.

Smaller input sizes also offer technical benefits, notably reduced memory demands.
Since CNN memory requirements grow exponentially with image size, larger inputs sig-
nificantly limit batch size during training. This constraint not only slows down the train-
ing process but can also affect the accuracy of gradient estimates per batch, potentially
destabilizing training.

The method of image scaling is crucial for performance in medical image segmenta-
tion tasks, where images are typically downscaled uniformly. This process can lead to
the loss of critical fine details, such as edges, which are vital for segmentation accuracy in
medical imaging. For example, the pericardium’s thin structure around the heart, often
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less than 2 mm and represented by only a few pixels in cardiac CT scans, can be obscured
or entirely lost through downsampling. This information loss is particularly detrimental
for small objects, which are prevalent in medical images.

An effective way to overcome this loss of information while still reducing the image
is cropping the image to a region of interest. By focusing on the area containing the target
object for segmentation, the network’s learning task is simplified, removing the need to
filter out irrelevant background areas. Additionally, centering and uniformly scaling the
object across images can further reduce the variance of the data, enabling the network
to use fewer parameters. Given this, we will now propose a method to effectively use
image cropping as a way of reducing neural network input size.

5.1 Model-Driven Image Cropping

We introduce a strategy to minimize the input size for segmentation networks, focusing
on cropping rather than uniform downsampling. This method involves isolating each
object within the original high-resolution image, cropping these areas, and performing
segmentation on the individual cropped sections. By concentrating on smaller crop re-
gions instead of the entire image, we significantly reduce the network’s input size while
preserving essential pixel information within the objects. This approach is illustrated in
Figure 5.1, providing a visual summary of the process.

The inference procedure using our method is as follows. Let I be an input image of
size W × H. We obtain a rough segmentation using Mrough = gϕ1(C(I)), where Mrough is
a binary segmentation mask generated by gϕ1 , a CNN with input and output size S× S,
parameterized by ϕ1; and C is a uniform downsampling operation from W × H to S× S.

Given N connected components of Mrough, a set of bounding boxes {bi}, i ∈ [1..N]
is calculated enclosing each connected component, described in more detail later in this
chapter. The bounding boxes are used to generate a set of crops {Ii : Ii = I(Ti(bi))},

Figure 5.1: A visual summary of our approach. (1) An image is uniformly
downsampled from its original resolution. (2) A rough segmentation is
predicted by a neural network, and the bounding box of each connected
component is calculated. (3) The bounding boxes are scaled to the orig-
inal image space and crops of the input image are taken in the original
resolution and scaled to a common input size. (4) Each crop is segmented
separately by a second neural network specifically trained on cropped im-
ages. These crops are fused to form a final segmentation in the original

high resolution. [Ben+23]
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where Ti is a scaling and translation of the bounding box in S × S space to the corre-
sponding region in the W × H space. The crops are used to generate a set of fine seg-
mentation masks Yf using:

Yf = {Yf i : Yf i = gϕ2(Ci(Ii)), i ∈ 1..N}, (5.3)

where gϕ2 is a CNN of the same architecture as gϕ1 and size S× S, parameterized by ϕ2,
and Ci is a scaling operation from the width and height of Ii to S× S. A final segmenta-
tion y is formed using:

y = max({(Ti ◦ C−1
i )(Yf i), i ∈ 1..N}), (5.4)

where y is the resulting segmentation formed as the maximum value in all of the fine
segmentations, transformed to their corresponding regions in W×H space. This process
is described in more detail in Algorithm 1.

The rough segmentation network gϕ1 is trained on uniformly downsampled images.
The network outputs a rough, low-resolution segmentation mask. The rough segmenta-
tion mask contains a number of connected components. For each connected component,
we calculate a bounding box that encompasses all of its pixels. These bounding boxes
are the crop regions used for the fine segmentation network. Since we only use this seg-
mentation to obtain rough regions of interest, the input images to this network can be
heavily downsampled without impacting the final fine segmentation.

The fine segmentation network gϕ2 is trained on cropped images using the ground
truth segmentation masks to generate the bounding boxes. This network produces a fine
segmentation of that region of the image. Since we know the original bounding box of
each crop, we can resize the final segmentation to its original size and translate it to its
original position. We perform this for each object in the image, fusing each of the fine
segmentation masks into a final segmentation mask in the original image resolution.

In other words, our method performs zooming and panning around the original im-
age and builds a final segmentation piece-wise from each zoom and pan. This allows us
to use neural networks with very low input sizes without requiring a large amount of
downscaling. What follows is a detailed description of the different parts of the segmen-
tation process.

Cropping

The key to reducing downscaling in our approach is that we take crops from the image
in the original resolution. The crop regions themselves are predicted on a downscaled
image and then projected to the original image space.

The cropping procedure is as follows. First, a bounding box fully encompassing
each connected component in the rough segmentation is calculated. The coordinates of
the bounding box are then scaled to the high-resolution image space. An empirically
determined padding of S/8 (for an S × S input size) is added along each of the four
sides. This way of cropping preserves the context of the object and decreases the number
of false negatives inside the bounding box.

The box is then squared, i.e. its height and width are set to the larger of the two
dimensions. The box is also shifted (maintaining its width and height) to be fully inside
the region of the image. Finally, the bounding box is used as a region to crop the original
high-resolution image. The rough segmentation sometimes results in noisy regions, so
each crop whose width or height is less than 5 pixels is discarded.
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Algorithm 1 Inference algorithm for one input image

Input: High-resolution input image I of size H ×W,
input size S, padding k,
neural network NET_1 trained in S× S downscaled images,
neural network NET_2 trained on ground truth S× S image crops.

Output: Output image Y of size H ×W.

I′ ← RESIZE(I, (S, S))
y′ ← NET_1(I′)
y′ ← RESIZE(y′, (H, W))
ccs← CONNECTED_COMPONENTS(y′)
crops← [ ] ▷ An array of S× S images
bboxes← [ ] ▷ An array of bounding boxes for each crop

for cc in ccs do
bbox ← bounding_box(cc)
bbox.width← bbox.height← MAX(bbox.width, bbox.height)
bbox ← (bbox.le f t− k, bbox.top− k, bbox.width + k, bbox.height + k)
bbox ← SHIFT_TO_IMAGE_REGION(bbox, (H, W))
crops.ADD(CROP(I, bbox))
bboxes.ADD(bbox)

end for

for crop, i in crops do
l, t, w, h← bboxes[i]
crop← RESIZE(crop, (S, S))
ycrop ← NET_2(crop)
ycrop ← RESIZE(ycrop, (h, w))
Y[t : t + h, l : l + w]← Y[t : t + h, l : l + w] || ycrop

end for
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Fine Segmentation and Fusion

Each crop of the high-resolution image is scaled to the input size of the fine segmentation
network. The fine segmentation network outputs a number of segmentation masks equal
to the number of connected components in the rough segmentation. A high-resolution
segmentation mask is created by translating and scaling each of the fine segmentation
network outputs to their original position. By doing so we construct a full segmentation
piece by piece, where each piece is a fine segmentation of a single object in the image, as
detected by the rough segmentation. If the cropped regions overlap in the final segmen-
tation, we use a logical OR operator to resolve the conflict in the fine segmentation mask.
This process is presented in Algorithm 1.

Training the Fine Segmentation Network

The fine segmentation network is trained on ground truth image crops. The crops are ob-
tained by using the connected components of ground truth segmentation masks. From
there, the crops are prepared in the same way as described above. Since the images have
multiple crop regions, we choose one of the crop regions of the full-resolution image at
random during each training iteration. If the original image has no connected compo-
nents in the ground truth segmentation mask, the whole image is used as training input.
All input images to the fine segmentation network are resized to S× S, where S is a pre-
determined input size that matches the input size used to train the rough segmentation
network.

During training, we add an augmentation step by adding random noise to the crop
region. When preparing the crops during training, a uniformly distributed random num-
ber between ±16 pixels is added to each dimension of the bounding box (the x- and
y-coordinate, width, and height). This ensures that the trained network is robust to im-
perfect rough segmentation masks during inference.

In our experiments, we used the same architecture for both the rough and fine seg-
mentation networks, as this allows us to use transfer learning. However, there is no
requirement that the networks use the same architecture.

5.1.1 Related work

The approach presented in this chapter is motivated partly by the work of Qiu, Qin, and
Zhang [QQZ18], where a dataset of images is manually cropped to the object boundary,
leading to an increase in segmentation performance. This was applied to skin lesions
where it achieved a scale-unifying effect across the dataset. In this chapter, we adapt this
approach to use a neural network to predict the optimal object boundary and develop
specific ways to train the fine segmentation network on cropped images. In addition, we
allow for taking multiple crops on the image and later fusing them in the final segmen-
tation, which makes the method applicable to a wider range of segmentation tasks.

In the previous chapter, a related approach is presented using the polar transform
as a pre-processing step. The main novelty in this chapter is the use of cropping as a
transformation step. The rest of the approach was then adapted to better suit a cropping
transformation, including bounding box augmentation and padding the bounding box.
This allows our approach to be used to reduce the input size of the networks.

Detect-then-segment

Several recent end-to-end neural network architectures for segmentation incorporate
cropping in one of their layers [Gir+14; He+17]. These generally use object detection
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to find a region of interest which is then segmented. This approach can be called detect-
then-segment. In models such as R-CNN [Gir+14] the objects are first detected and then
fed into the segmentation pipeline. Mask R-CNN [He+17] uses object detection to extract
a region of interest in the feature masks within the network. These methods effectively
concentrate the network on a region of the image. However, information is still lost if the
images are uniformly downsampled as a preprocessing step. In contrast, our approach
allows one to use low input sizes by cropping the image before it enters the network.
Compared to detect-then-segment approaches, cropping as a preprocessing step reduces
the number of parameters while increasing the pixel-level information in the salient re-
gions of the image. In addition, our approach leads to rescaling each object to the same
size before the fine segmentation, which increases the scale-invariance of the models.

Coarse-to-fine Segmentation

Our approach can be described as a coarse-to-fine approach to image segmentation.
There have been similar approaches to medical image segmentation. Zhou et al.
[Zho+17] describe an approach to pancreas segmentation using a fixed-point model
[Li+19]. They train a coarse and a fine segmentation network. The coarse network ob-
tains an initial region of the pancreas which is then re-segmented using the fine network.
The fine network then re-segments its output again, and this process is repeated itera-
tively until a stable solution emerges. They also use bounding box augmentation during
training. Our approach differs in two ways. Firstly, we only use one iteration at a stable
input size, improving the inference time. Secondly, our approach supports segmenting
multiple objects on the image.

Zhu et al. [Zhu+18] describe an approach to pancreas segmentation with two neu-
ral networks. The first network is a coarse segmentation network trained on overlap-
ping 3D regions of the whole CT volume. The second network is a fine segmentation
network that is trained on only the regions where the ground-truth images contain the
pancreas. During inference, the fine network re-segments densely overlapping regions
of the rough segmentation. The main difference in our approach is the use of only one
region of interest per object where the whole object is visible and uniform in scale. This
allows us to use networks of a lower capacity while still maintaining good segmentation
results.

Similarly to our approach, Jha et al. [Jha+21] split the segmentation process into de-
tection and segmentation stages. They use a neural network to first detect an object in
a downsampled image. They then use the bounding box to crop the object in the high-
resolution image. Our approach differs in several ways. Firstly, our approach allows the
detection of multiple objects on the image and describes a way to fuse the segmentations
of different objects. Secondly, we present new ways to train the fine segmentation net-
work to make the fine segmentation network more robust to imperfect bounding boxes.
Finally, we propose a generalized approach evaluated on a variety of different modalities
of medical images.

Non-uniform Downsampling

The resolution of an input image for neural networks can be reduced using a more com-
plex sampling strategy. Marin et al. [Mar+19] use non-uniform downsampling for this
task. Their approach consists of training a neural network to sample points near object
boundaries. The sampling points are then used to downsample the image and perform a
final segmentation using a second neural network trained on the downsampled images.
Similarly, Jin et al. [Jin+22] use a learnable deformable downsampling module which is
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trained together with a segmentation module end-to-end. Our approach differs in the
use of cropping instead of non-uniform downsampling, which preserves the topology of
the image and provides localization of the object.

Other Approaches to Reducing Input Resolution

Recently, transformer-based architectures such as SegFormer [Xie+21] and the Swin
Transformer [Liu+21] have become popular approaches to semantic segmentation.
These networks are trained on a large number of small, overlapping patches of the im-
age. The network uses self-attention to determine the saliency of each patch. In a sense,
this allows the network to be trained on very small input image dimensions. However,
transformers require a very large amount of data to be trained and have large memory
requirements [Dos+21], so their use is currently limited in the domain of training on
downscaled medical images.

For whole slide images, the input size is often reduced by dividing the image into
equally sized patches [NAE18; Hou+16]. A downside of this approach is computational
complexity during inference since not all patches are relevant. Additionally, errors can
arise when the objects are split by the patch boundary.

5.1.2 Results

We evaluate our approach on three separate datasets, hereafter referred to as the cells,
aorta, and polyp datasets. First, for each dataset, we trained a rough segmentation U-
Net, Res-U-Net++, and DeepLabv3+ network at various downscaled input resolutions.
These models are also used as baseline models to compare against our approach. To
evaluate our approach, we train fine segmentation models using the same combinations
of datasets, architectures, and input sizes.

Altogether more than 100 neural networks were trained to evaluate our approach,
including both the baseline networks and networks trained on cropped images.

Each network is trained from scratch using the downscaled dataset. The outputs
from the networks are then upscaled to the datasets’ original resolution, and the met-
rics are calculated using those outputs. We use the held-out test datasets for all of the
results reported in this section. The baseline models are used as the rough segmentation
networks for the experiments using our approach. The hyperparameters used for each
network are reported in Table 5.1.

In the interest of providing objective metrics of model performance, all of the hyper-
parameters were tuned using the validation dataset on the baseline U-Net. Those same
hyperparameters are then used for each of the models in our approach. Each model is
trained using the Adam optimizer up to a maximum number of epochs and the best
model with the best validation loss is saved during training. The validation loss is cal-
culated as the Dice score coefficient (DSC) over the validation dataset at the same reso-
lution as the input images. We do not upscale the outputs for the validation loss as we
do for calculating the final metrics. Each model was trained using PyTorch 1.10 on an
Nvidia GeForce RTX 3080 GPU. Where possible, we have fixed the random seed value
an arbitrarily chosen value of “2022”, but we have also run the experiments on two other
random seeds and obtained similar results. Other hyperparameters were chosen based
on validation DSC.
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Table 5.1 The hyper-parameters used for each of the models in our experiments.

Dataset Batch size Learning rate Max. epochs

Cells 16 5 · 10−4 100
Polyp 8 10−3 175
Aorta 8 10−3 100

Datasets

This section briefly describes the datasets used in our experiments as well as the pre-
processing steps for the images. For more details, we direct readers to the supplemental
code repository available at github.com/marinbenc/segment-then-segment. To evalu-
ate our approach, we chose three datasets across different medical imaging modalities,
including CT scans, microscopy imaging, and colonoscopy images. We hope that the
variety in the datasets will show the generalizability of our approach. Aside from the
variety, the datasets were selected because they include images of large dimensions on
which small objects of various sizes need to be segmented. These types of tasks are most
likely to suffer from the loss of information due to downscaling and are thus particularly
suitable to be segmented using our approach.

Aorta Dataset: For aorta segmentation we use the AVT dataset [Rad+22], a multi-
center dataset of labeled CTA scans of the aortic vessel tree. We only use a subset of
the dataset from Dongyang Hospital, a total of 18 scans of between 122 and 251 slices.
Each slice is windowed to 200 to 500 HU, normalized to [−0.5, 0.5], and zero-centered by
subtracting 0.1 from each slice. The original resolution of the slices is 512× 666 pixels. We
use augmentation during training. Each input has a 50% chance of an affine transform
(translation of ±6.25%, scaling of ±10%, rotation of ±14◦), as well as a 30% chance of a
horizontal flip. The dataset is split per patient into a training set (12 scans), validation
set (3 scans), and test set (3 scans).

Cells Dataset: For cell nucleus segmentation we use the 2018 Data Science Bowl
dataset, otherwise known as image set BBBC038v1 from the Broad Bioimage Benchmark
Collection [Cai+19]. We use 670 RGB images and their corresponding labels from the
stage1_train repository. The original files are of various sizes ranging from 256× 256
to 1024× 1024 pixels. We did not further split the images into patches, all training is
done on the whole images. We use the same augmentation as for the aorta dataset. The
dataset is split into a training set (80%, 536 images), validation set (10%, 67 images), and
test set (10%, 67 images).

Polyp Dataset: For polyp segmentation, we use the Kvasir-SEG dataset [Jha+20],
which contains 1000 annotated gastroscopy images containing polyps. The size of the
original images ranges from 332 to 1920 pixels in width. We split the dataset into train
(80%, 800 images), validation (10%, 100 images), and test (10%, 100 images) datasets.

Quantitative Assessment

The results of our experiments are shown in Table 5.2. Our approach, using low in-
put sizes, results in segmentation DSC on par or better than baseline models trained on
larger input sizes using downscaled images. This is especially apparent at large down-
scaling factors of 4 and more, where the baseline models quickly deteriorate in their
performance but our models were still able to achieve results that are close to those on
full-size images. The biggest improvement is seen in terms of recall. For instance, on the
4x downscaled cells dataset, our approach leads to a 4.3 times larger recall. Likewise,
for the polyp images, the recall improves from 0.039 to 0.799, a 20 times improvement.

https://github.com/marinbenc/segment-then-segment
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Table 5.2 The results of our approach using U-Net as the underlying architecture. The
U-Net results are based on uniformly downscaled images.

DSC [%] IoU [%] Prec. [%] Rec. [%]

Cells (256× 256)

64× 64 - U-Net 75.70± 11.82 62.13± 13.29 75.27± 12.61 76.79± 12.70
64× 64 - Ours 84.28± 12.83 74.50± 15.45 84.75± 14.85 86.22± 13.25

128× 128 - U-Net 84.52± 10.34 74.33± 13.05 85.21± 11.61 84.66± 11.61
128× 128 - Ours 84.54± 9.64 74.26± 12.73 83.97± 13.00 86.86± 9.39

256× 256 - U-Net 87.62± 13.55 79.75± 15.46 89.44± 14.09 86.58± 14.83
256× 256 - Ours 84.91± 12.65 75.24± 13.92 83.52± 14.50 87.53± 13.76

Polyp (256× 256)

64× 64 - U-Net 81.76± 18.81 72.40± 21.00 83.94± 21.36 84.84± 17.30
64× 64 - Ours 83.82± 19.91 75.90± 22.51 86.32± 21.87 86.72± 17.84

128× 128 - U-Net 82.86± 20.72 74.75± 23.32 83.30± 22.73 88.93± 17.50
128× 128 - Ours 81.36± 26.57 74.58± 27.52 82.49± 27.55 85.23± 25.33

256× 256 - U-Net 83.80± 16.08 74.88± 20.44 87.91± 19.29 84.37± 16.55
256× 256 - Ours 84.68± 19.40 77.11± 22.53 87.10± 20.91 87.42± 18.41

Aorta (256× 256)

128× 128 - U-Net 81.03± 14.45 70.13± 17.02 85.09± 14.14 78.30± 15.04
128× 128 - Ours 88.50± 11.08 80.73± 13.93 92.42± 10.33 86.02± 12.25

256× 256 - U-Net 72.30± 28.69 62.97± 28.74 91.21± 25.39 63.80± 29.11
256× 256 - Ours 80.10± 25.18 72.12± 25.74 86.75± 24.14 76.39± 26.51

512× 512 - U-Net 89.34± 14.59 83.10± 18.26 96.03± 11.52 85.66± 17.44
512× 512 - Ours 85.51± 14.80 76.85± 17.17 90.90± 14.15 82.39± 15.54

Recall is especially important in medical image segmentation since the cost of false neg-
atives can often far outweigh the cost of false positives.

We evaluate how general our approach is by applying it to two other state-of-the-art
semantic segmentation architectures, Res-U-Net++ [Jha+19; Zho+18] and DeepLabv3+
[Che+18]. The results of these experiments are shown in Table 5.3.

Furthermore, our approach achieves much better stability of results as the input size
decreases. This is shown visually in Figure 5.2. The stability improvements are especially
visible in Figure 5.3, where it can be seen that the distribution of the results from our
approach remains more stable than in the baseline models.

The goal of our approach is increasing segmentation performance on downscaled
images, so we do not expect a performance increase on the full-size images. While our
approach offers significant improvements when using downscaled images, the main dis-
advantage of our approach is that it requires training two separate neural networks.
However, this downside is lessened by two key factors. First, the cropped networks
converge much faster since the objects are already localized and unified in scale in the
images, making the problem easier for the network to learn. Secondly, since the archi-
tecture of the two networks is identical, one can use transfer learning from the trained
rough segmentation network to the fine segmentation network.
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Table 5.3 A comparison of the Dice Score Coefficients of our approach using other un-
derlying architectures at 4x and 2x downscaled images. The Baseline model is trained
on uniformly downscaled images.

Model Size Baseline [%] Ours [%]

Cells (256× 256)

Res-U-Net++ 64× 64 75.18± 11.85 86.63± 10.06
Res-U-Net++ 128× 128 84.74± 9.64 86.90± 11.77

DeepLabv3+ 64× 64 66.93± 15.93 80.41± 16.80
DeepLabv3+ 128× 128 81.43± 13.74 84.34± 16.91

Polyp (256× 256)

Res-U-Net++ 64× 64 79.92± 19.72 81.35± 20.82
Res-U-Net++ 128× 128 84.23± 17.74 83.34± 20.73

DeepLabv3+ 64× 64 76.62± 21.78 77.53± 24.56
DeepLabv3+ 128× 128 83.65± 18.86 85.02± 19.37

Aorta (512× 512)

Res-U-Net++ 128× 128 81.59± 14.43 88.21± 13.25
Res-U-Net++ 256× 256 88.21± 13.19 86.11± 14.02

DeepLabv3+ 128× 128 76.30± 22.81 86.73± 16.94
DeepLabv3+ 256× 256 87.71± 12.13 89.28± 11.75

Figure 5.2: The relationship between input dimensions and the mean Dice
Score Coefficient (DSC) and recall for different datasets. The points are
measured values from our experiments. The Baseline model is trained on

uniformly downscaled images.
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Figure 5.3: Violin plots of Dice Score Coefficients of our approach com-
pared to the baseline models trained on uniformly downscaled images at
various input dimensions. The dashed lines represent quartiles of the dis-

tributions.
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Qualitative Assessment

Qualitatively, there is a large improvement when using our approach over the baseline
methods on downscaled inputs. At large downscaling factors, outputs from the base-
line models often include artifacts on the border since the pixel grid is not fine enough
to represent small variations on the object boundary. These issues disappear with our
approach, as the overall downscaling amount is much lower. This effect is especially
visible on the cells dataset due to its relatively small object size, as shown in Figure 5.4.
We observe a similar effect on the aorta dataset, shown in Figure 5.6.

On the polyp dataset, our approach greatly reduces the number of false negative pix-
els on the image, as can be seen in Figure 5.5. U-Net fails to predict the whole polyp
region on small input sizes, leading to ragged object boundaries and holes in the pre-
dicted regions. By comparison, our approach produces smoother, closed contours and
manages to capture more of the object boundary than U-Net equivalents at the same
input size.

Figure 5.4: Example outputs from the models for the cells dataset at vari-
ous input sizes. [Ben+23]
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Figure 5.5: Example outputs from the models for the polyp dataset at var-
ious input sizes. [Ben+23]

Figure 5.6: Example outputs from the models for the aorta dataset at var-
ious input sizes. [Ben+23]

Computational Performance Characteristics

Since our approach consists of using a cascade of two U-Nets, the number of parameters
of the network is doubled. However, the peak GPU memory utilization during training
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and inference remains exactly the same when using our approach as with a baseline
model on the same input size. Our approach allows one to reduce the input size while
still maintaining the same segmentation metrics, thus allowing larger batch sizes during
training. This is presented in Table 5.4.

In terms of computational performance, the largest downside of our approach is that
it increases inference time non-linearly with the size of the images, which can be seen in
Figure 5.7.

This increase is explained by two key features of our approach. Firstly, cropping and
rescaling operations take up a large percentage of the time. Secondly, each connected
component in the initial segmentation is processed separately by the second network,
thus inference time increases with the number of objects to be segmented. This is most
apparent in the cells dataset, as the input images have the largest number of objects.
Note that we use the implementation of torch.nn.functional.interpolate with the
nearest-neighbor mode in Pytorch 1.10 for all resizing. The inference time depends on

Table 5.4 Performance characteristics of our approach compared to the baseline model
with similar mean test Dice Score Coefficients.

Input size DSC Peak
VRAM1,3

Inf. time2,3 Max. batch
size3

Cells

U-Net 642 75.70 1.9 GB 24 ms 300
Seg-Then-Seg 642 84.28 1.9 GB 122 ms 300
U-Net 1282 84.52 2.3 GB 24 ms 80

Polyp

U-Net 482 78.42 2.9 GB 16 ms 850
Seg-Then-Seg 482 81.68 2.9 GB 29 ms 850
U-Net 1282 82.86 3.8 GB 16 ms 150

Aorta

U-Net 1282 81.03 2.9 GB 13 ms 46
Seg-Then-Seg 1282 88.50 2.9 GB 26 ms 46
U-Net 5122 89.34 10.1 GB 16 ms 9

1 Measured using a batch size of 8 for all rows.
2 Mean inference time across all inputs in the test set, calculated per slice for the aorta dataset.
3 Measured using PyTorch 1.10 on an Nvidia GeForce RTX 3080 GPU and an AMD Ryzen 7 3700x 8-core
CPU with 32 GB of RAM.

Figure 5.7: Mean per-input inference time across different input sizes for
the U-Net-based models. [Ben+23]
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the specific implementation of the resizing algorithm as well as the hardware it is being
run on.

While these increases seem large in relative terms, it should be noted that in absolute
terms the increases are in the order of magnitude of tens of milliseconds. We argue that
such an increase in inference time does not limit the applicability of our approach in
practical use cases.

Note that the goal of our method is not to produce state-of-the-art segmentation re-
sults on high-resolution images. Instead, the goal is to allow training on heavily down-
scaled images without sacrificing segmentation performance.

This initial version of the approach presents a promising avenue for future research.
One way to improve the approach is to use a single end-to-end trainable network. We
describe this kind of extension in the next section.

5.2 An End-to-End Extension of Model-Driven Image Cropping

So far, both in this chapter as well as the previous chapter, we employed separate net-
works for initial rough segmentation and subsequent fine segmentation. Instead of using
separate neural networks, connecting the two networks end-to-end and training them as
a single architecture presents distinct advantages. Training the rough and fine segmen-
tation modules together could enhance the rough segmentation’s ability to identify more
accurate regions of interest, while the fine segmentation module could improve its ro-
bustness to imperfect initial segmentations.

A straightforward approach might involve chaining the two networks: an input im-
age first undergoes rough segmentation, followed by fine segmentation of the trans-
formed image, with both subnetworks trained simultaneously. This naive approach has
several challenges. Firstly, since the network now needs to perform two segmentations,
network convergence is much harder as there is no straightforward flow of gradients
from the output to the input of the network. Secondly, the transformation procedure is
potentially non-differentiable, and thus there could be no gradient calculated between
the output layer of one subnetwork and the input layer of the other subnetwork.

To address these issues, we suggest two key modifications for a viable end-to-end
model. Firstly, the output from the rough segmentation module is incorporated as an
additional input channel to the fine segmentation module, facilitating gradient flow and
providing context about the object’s location. Secondly, we pre-train both subnetworks
so they are already capable of segmenting images before they are fine-tuned together.
This drastically reduces the chance that the end-to-end network will not converge. What
follows is a more detailed description of the end-to-end network architecture.

5.2.1 End-to-end Network Architecture and Training

As illustrated in Figure 5.8, the network consists of two stages, a coarse and fine seg-
mentation stage, connected by a cropping layer. Both stages use the same U-Net-based
segmentation architecture. The input size of each stage is fixed and smaller than the
original image resolution. Assuming the input size of the network is w × h, given a
high-resolution input image I′ of size W × H, we first uniformly downscale the image
into I of size w× h using linear interpolation. This image is then input into the coarse
segmentation module producing a segmentation mask Mcoarse(I).

The segmentation mask Mcoarse is then upscaled to M′coarse of size W × H and thus
matches the high-resolution image. Then, a bounding box is calculated such that it en-
compasses all non-zero regions of M′coarse and expanded by 20 pixels in each direction,
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clipped to the bounds of the image. The bounding box is used to crop I′ and the crop
is then scaled to w× h, producing a high-resolution input region of interest Icrop. Note
that scaling the crop region to w × h results in a much lower total scaling than it does
when scaling down the whole image. In cases where Mcoarse has no non-zero pixels, the
bounding box is set to the whole image, i.e. Icrop = I. From our experiments, such cases
are exceedingly rare.

Then, an input vector is constructed for the fine segmentation network as x f ine =
[Icrop, Mcoarse] — in other words, the first channel is the high-resolution crop, while the
second channel is the coarse segmentation mask. The fine segmentation network then
produces a final segmentation mask M(x f ine) which is used as the output of the whole
model.

We use pre-training to allow the two networks to reliably converge. First, we train
a regular segmentation network on uniformly downscaled images I. Once trained, the
weights of this model are transferred both to the rough and fine segmentation modules
of our proposed network architecture.

5.2.2 Experiments in Clinical Dermatological Image Segmentation

We validate this end-to-end architecture on segmenting the skin lesion boundary in clin-
ical dermatological images using datasets of small sample sizes. Namely, we use the
University of Waterloo skin cancer database [GWC14] (available at [12b]) of clinical skin
lesion images. The dataset consists of manual segmentation labels of two publicly avail-
able skin lesion databases, DermIS [12a] (69 images) and DermQuest (137 images, no
longer available). We treat these two collections as two different centers to evaluate
out-of-sample performance. The images are of various sizes from 300 to 550 pixels in
height and width. As a preprocessing step, each image of each dataset is normalized to
[−0.5, 0.5].

We use PyTorch 1.10 for all experiments. All models are trained on an Nvidia
GeForce RTX 3080. Wherever possible, we fix an arbitrarily chosen random seed value
of “2022” to increase reproducibility. We use the Adam optimizer for all training while
reducing the learning rate on plateaus by a factor of 0.1. The best model is selected
and saved during training based on validation loss. We use a learning rate of 10−4 for
both pre-training and fine-tuning. We set the batch size to 16 for all input sizes except
512× 512, where the batch size was set to 4. The aforementioned hyperparameters were
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Figure 5.8: An illustration of the end-to-end model-driven cropping ar-
chitecture, comprising two interconnected modules: a coarse and a fine
segmentation module, linked via a cropping layer. Both modules are de-
signed to handle images of small, fixed input sizes. The first module pro-
cesses a downscaled version of the input image. Its segmentation out-
put determines the region of interest in the high-resolution image, which,
along with the cropped initial segmentation, is fed into the fine segmen-
tation module. Before being fine-tuned together, both networks are pre-

trained as standard segmentation networks.
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chosen based on the validation DSC of the models. For ease of implementation, all high-
resolution input images are resized to 1024× 1024 pixels, but this is not a required step
for our method, which can work with any high-resolution input image size.

Results and Discussion

To evaluate our method, we train a baseline U-Net model and our end-to-end image-
cropping approach for input sizes 64× 64, 128× 128, 256× 256, and 512× 512. The same
architecture was used for the baseline U-Net model as well as for the rough and fine
segmentation modules in our method. We employed 5-fold cross-validation to evaluate
in-sample performance, resulting in five distinct models for each dataset. For out-of-
sample performance evaluation, each image in one dataset was segmented using the
five models trained on the other dataset. Segmentation metrics were calculated for each
prediction and then averaged, ensuring that all reported out-of-sample metrics represent
an average from models trained across five different data splits.

The two segmentation metrics we use for the evaluation are the Dice Similarity Coef-
ficient (DSC) as well as the Thresholded Jaccard Index. DSC takes into account both the
accuracy and recall of the method and is thus a good general segmentation metric. The
Thresholded Jaccard Index was proposed for lesion segmentation in the ISIC 2018 chal-
lenge [Cod+18] to account for specific needs in skin lesion segmentation. Low-accuracy
segmentations (in this case defined as those with a Jaccard Index less than 0.65) are not
useful for further lesion analysis. Therefore, instead of a simple mean result calculation,
all results with a Jaccard Index below 0.65 are set to zero. This has been shown to better
represent true segmentation performance in the context of lesion segmentation.

Visually, our approach demonstrates enhanced performance in delineating lesion
boundaries, as evident in Figure 5.9. The segmentation results more accurately adhere
to the ground truth contours and exhibit fewer false-positive regions compared to those
generated by the baseline models.

Quantitatively, in-sample and out-of-sample results of our model compared to a
baseline U-Net are shown in Table 6.1. When comparing our method and a baseline
U-Net using the same input size, we note an increase in DSC in almost all experiments.
We see similar results for the Thresholded Jaccard Index. These increases can give us an
estimate of how much we can reduce the input size of an image while still retaining the
same segmentation quality. For instance, using our approach, we can go from 256× 256
to 64× 64 images while achieving the same in-sample as well as out-of-sample Thresh-
olded Jaccard Index for DermIS.

The thresholded Jaccard index assumes that any segmentation with a Jaccard index
below 0.65 is a failed segmentation, i.e. it cannot be used for any downstream analysis of
the legion due to its insufficient accuracy. Consequently, we examined the frequency of
these failed segmentations across various input sizes, as depicted in Figure 5.10. The
findings indicate a general improvement in the mean Jaccard Index (exceeding 0.65)
when utilizing our model, particularly for smaller input sizes, and this trend persists
even in out-of-sample evaluations. Additionally, there is a noticeable decrease in the in-
cidence of failed segmentations (Jaccard Index < 0.65) in all but two experiments. This
decline is most pronounced with smaller input sizes, suggesting that our method signif-
icantly enhances the robustness of segmentations derived from images with small input
sizes.
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Figure 5.9: Randomly chosen examples of out-of-sample segmentation
results. The columns, from left to right, show the input image with the
ground truth segmentation mask, the final output segmentation mask of
our approach, the rough segmentation of our approach, and the output of
a baseline U-Net model. The images are zoomed in on the lesion region.
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Table 5.5 Results of our approach and the baseline model in terms of the Dice Coeffi-
cient (DSC) as well as the thresholded Jaccard index (Th. Jacc.) for various experiments.
Results are shown in the form of mean ± standard deviation. The top two groups show
in-sample performance within the DermIS and DermQuest datasets, while the bottom
two groups show out-of-sample performance when trained on DermIS and tested on
DermQuest, and vice-versa.

U-Net Ours

Size DSC Th. Jacc. DSC Th. Jacc.

DermIS

64 85.51 ± 15.50 70.31 ± 31.38 87.01 ± 15.06 74.57 ± 27.97
128 86.53 ± 15.71 72.21 ± 30.78 88.82 ± 11.93 75.84 ± 28.41
256 88.09 ± 14.58 73.58 ± 33.01 89.88 ± 12.49 77.04 ± 30.77
512 89.85 ± 16.90 81.32 ± 26.32 90.35 ± 17.07 83.40 ± 24.35

DermQuest

64 87.75 ± 9.07 71.61 ± 29.56 87.83 ± 8.97 73.96 ± 25.84
128 88.83 ± 10.19 76.59 ± 25.76 89.45 ± 10.09 77.93 ± 25.00
256 89.61 ± 11.20 77.34 ± 27.73 90.10 ± 11.22 78.99 ± 26.18
512 91.14 ± 9.18 81.31 ± 23.69 90.52 ± 12.98 81.16 ± 24.76

DermIS→ DermQuest

64 77.11 ± 13.58 43.40 ± 34.37 80.94 ± 12.85 54.56 ± 31.45
128 80.20 ± 12.92 50.81 ± 33.87 79.61 ± 14.15 52.46 ± 32.36
256 78.67 ± 15.32 51.10 ± 33.30 80.07 ± 14.55 55.18 ± 31.51
512 80.96 ± 14.38 60.73 ± 26.96 83.34 ± 13.29 66.72 ± 24.61

DermQuest→ DermIS

64 78.94 ± 18.81 54.98 ± 34.36 81.85 ± 17.24 60.87 ± 32.66
128 78.31 ± 19.36 51.57 ± 37.63 81.51 ± 18.23 60.10 ± 35.86
256 81.10 ± 19.54 60.81 ± 35.41 81.97 ± 19.46 63.12 ± 34.89
512 83.60 ± 18.73 65.59 ± 32.99 82.82 ± 19.70 64.50 ± 33.35
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Figure 5.10: A box plot of Jaccard indices above or equal to 0.65 (above)
and the number of Jaccard indices below 0.65 (below). The first two
columns show in-sample results, while the last two columns show out-
of-sample results for models trained on DermIS and tested on DermQuest

and vice-versa.
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5.3 Conclusion

Downscaling is a common source of segmentation errors in neural networks. In this
chapter, we presented an approach to training neural networks that reduces downscal-
ing by utilizing two neural networks and salient crops. We show how training a second
neural network on cropped image regions can improve segmentation performance on
small input sizes with few downsides. Our approach improves segmentation metrics on
downscaled images across different modalities and image sizes, especially in terms of
recall. We show that, while this approach increases inference time, it allows for train-
ing using much larger batch sizes while maintaining the same segmentation metrics. By
utilizing transfer learning, we successfully addressed issues related to network conver-
gence and provided an end-to-end extension of this method. Using our approach, we
were able to reduce input sizes by at least half while retaining the same segmentation
quality.

A significant advantage of our approach is the reduced requirement for detailed seg-
mentation labels in the rough segmentation stage. This stage only necessitates approxi-
mate object localization, achievable through simpler, potentially unsupervised methods
like heuristic-based and traditional image processing techniques. Moreover, one can use
weakly supervised training using pseudo-labels, instead of segmentation masks. While
we did not evaluate our approach on 3D networks in this chapter, there is nothing in our
approach that is specific to 2D images. Our approach can be extended to 3D images by
using 3D neural network architectures and 3D bounding boxes for crop regions.

However, our approach has certain limitations. Notably, from our experiments in
datasets with large sample sizes, our method did not substantially improve segmen-
tation quality. We speculate that our approach acts as a form of regularization, bene-
ficial in scenarios where overfitting is a concern due to small sample sizes and high-
capacity networks. This regularization may be redundant in cases with ample sample
sizes. Nonetheless, the primary aim of our approach is to improve data efficiency in
terms of both input size and sample size.

We believe that this method can be broadly applied to enhance segmentation perfor-
mance and robustness in a variety of image segmentation challenges, particularly where
object scale and location variance are significant and the sample size is small. The meth-
ods presented in this chapter were published in [Ben+23] and [BHG24].



104 Chapter 5. Reducing Model Input Sizes with Model-Driven Crops

References

[12a] DermIS — Dermis.Net, Dept. of Clinical Social Medicine (Univ. of Heidelberg)
and the Dept. of Dermatology (Univ. of Erlangen). https://www.dermis.net/.
2012. (Visited on 01/23/2024).

[12b] Skin Cancer Detection | Vision and Image Processing Lab — Uwaterloo.ca,
University of Waterloo. https://uwaterloo.ca/vision-image-processing-
lab/research-demos/skin-cancer-detection. 2012. (Visited on 01/23/2024).
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6 Adding Depth Information to 2D
U-Nets for CT Segmentation

In the previous two chapters, we discussed two specific methods of model-driven pre-
processing and their extensions. In this chapter, we will introduce a preprocessing tech-
nique designed to incorporate depth information into 2D images, aiming to bridge the
gap between 2D and 3D image segmentation. CT scans, being 3D images, are often seg-
mented with 3D neural networks. However, directly segmenting 3D scans poses two
key challenges:

Firstly, 3D scans are naturally very large, as instead of processing one e.g. 256× 256
slice, the network now needs to process a 256× 256× 256 volume. This dramatically
increases memory requirements and restricts the maximum batch size. In extreme cases
where processing an entire scan is infeasible, the data is either partitioned into smaller
patches [Zhu+18], downsampled with focused re-segmentation on regions of interest
[Ise+21], or segmented using semi-3D networks [Wen+20].

Secondly, the scarcity of large 3D datasets exacerbates the risk of overfitting, as we
have established that using large images necessitates the use of high-capacity models.
Segmenting individual slices, on the other hand, can act as a form of regularization,
creating multiple samples from a single subject and allowing for the use of smaller net-
works.

Therefore, there is a need for methods that can effectively integrate depth informa-
tion into 2D segmentation networks, maintaining the technical benefits of a 2D network
while enhancing them with depth perception.

One potential solution to incorporate depth information into 2D segmentation net-
works is to condition the network’s output on the slice depth by adding the slice depth
coordinate as an additional input feature. This would give the network more informa-
tion about the expected segmentation shape as a function of slice depth both globally
and individually for that slice. However, integrating such scalar information into a fully
convolutional network like U-Net is not straightforward.

This problem has been solved in the field of image generation, where the condition
is added as a separate input channel. For an image I ∈ RW×H×C and a condition vector
x, the image is augmented to include |x| additional channels. Each new channel c(i) ∈
RW×H is constructed so that every pixel c(i)xy equals x(i) for all x, y coordinates [MO14].
This approach is illustrated in Figure 6.1.

Drawing inspiration from this, we propose a new and simple way of incorporating
3D information into 2D fully-convolutional neural networks for medical image segmen-
tation. Consider a 3D scan comprising D slices:

I = {Id(x, y) | Id(x, y) ∈ RW×H, d ∈ [1..D]}. (6.1)

For every slice Id, we create a depth information channel Cd(x, y) = d/D for all x, y,
i.e. each pixel is equal to the normalized z-coordinate of that slice. The network’s input
for each slice becomes I′d = [Id, Cd] where the first channel is Id and the second channel
contains the depth information.
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Figure 6.1: An illustration of conditioning an image by adding a channel
to the image where each pixel is equal to the condition value.

This method enables 2D networks to utilize depth cues without significant modifica-
tions to their architecture or an increase in parameter count, maintaining compatibility
with transfer learning from 2D datasets. Throughout the rest of this chapter, we evaluate
this technique on the specific task of epicardial adipose tissue (EAT) segmentation.

6.1 Epicardial Adipose Tissue Segmentation

Epicardial adipose tissue (EAT) is a type of adipose tissue located within the peri-
cardium, a protective layer around the heart. EAT lies between the myocardium (the
heart muscle) and the fibrous outer layer of the pericardium. Due to EAT’s proximity to
the myocardium, it is believed to be a metabolically active organ that has a direct impact
on various cardiovascular diseases.

For instance, EAT has been shown to play a direct role in coronary atherosclero-
sis and cardiomyopathy [SF07; MA13]. EAT thickness has been shown to correlate
with metabolic syndrome [Che+09] and coronary artery disease independently of obe-
sity [Iac+11]. It relates in general with the progression of coronary artery calcification
[Gor+08]. Additionally, the volume and density of EAT have been linked to major ad-
verse cardiac events in asymptomatic subjects [Goe+18]. Additionally, EAT plays a role
in insulin resistance, is an accurate therapeutic target, and impacts heart morphology
and adiposity [Iac09].

EAT’s active role in cardiovascular diseases makes measuring its volume and thick-
ness an important diagnostic tool. Currently, EAT is most often quantified by measuring
EAT thickness using echocardiography. This estimation of the volume from the thick-
ness at a single point can introduce inaccuracies and inter-observer variability. Using
3D medical imaging technologies such as CT results in more accurate measurements,
however, the availability of CT machines as well as the procedure’s cost and duration
make it impractical for common clinical use. Another downside of using CT to mea-
sure EAT is the time required to manually measure EAT volume, which can take up to
an hour per patient [Mil+19] and is prone to inter-observer variability of around 10%
[MA13] of the measured volume. Fully or semi-automatic methods of EAT segmenta-
tion and quantification from CT images could reduce time requirements and the cost of
EAT quantification.

Segmenting EAT is a challenging image-processing task. Its uneven distribution
around the heart, peculiar shape, and its similarity to other adipose tissues nearby com-
plicate the process. Segmenting EAT relies on delineating the pericardium, which is less
than 2 mm thin and can often be hard to delineate on CT images due to partial volume
effects.
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6.2 Related Work

Incorporating depth information into 2D segmentation networks often involves training
on preselected regions of interest, where multi-channel images are constructed from se-
quential slices of a 3D volume [Wen+20]. These multi-slice images serve as input for con-
ventional 2D networks. Our approach diverges by directly supplying the z-coordinate
as an additional input channel. Similar strategies are employed in U-Net-based architec-
tures in image generation, such as Imagen [Sah+22]. We suggest that a similar method
of incorporating supplementary information could improve the data efficiency of image
segmentation tasks.

There are several semi-automatic and fully automatic methods for EAT segmentation
proposed in the existing literature. One of the first methods of EAT segmentation was
proposed by Coppini [Cop10]. They use a semi-automatic approach where an expert
places control points on the pericardium which are used to segment the pericardium us-
ing thresholding and geodesic active contours. An improved semi-automatic segmenta-
tion method is presented by Militello et al. [Mil+19]. Their method requires expert input
to define the VoI on a few slices of the scan, and the rest of the VoI is then interpolated,
saving time while still offering manual-level segmentation accuracy.

Ding et al. [Din+14] propose a method similar to Coppini [Cop10] but instead of rely-
ing on manual initialization, they initialize the pericardium contour using an atlas-based
method achieving fully automatic segmentation. Rodrigues et al. [Rod+16] propose a
fully automatic machine-learning-based method. Their method consists of extracting
hand-selected salient features from the CT slices, which are then segmented by a learned
random forest classifier.

Commandeur et al. [Com+18] proposed one of the first EAT segmentation methods to
use deep learning. They use a multi-task approach consisting of two convolutional neu-
ral networks to classify whether a slice contains the heart and segment the pericardium
as well as EAT. More recent works propose deep learning methods based on variations
of the U-Net architecture. Li, Zou, and Yang [LZY19] use a U-Net with a pyramid pool-
ing structure, while He et al. [He+20] use a 3D-based U-Net with an added attention
mechanism. Zhang et al. [Zha+20] use two stacked U-Net-based networks. The first
network segments a pericardium region, which is then refined using morphological op-
erators. This region is used as a mask for the input into the other U-Net, which segments
the EAT region. While similar, our approach differs from this work in several ways. We
only use one U-Net-based neural network, significantly reducing the number of param-
eters. Additionally, we modify the input data to allow the network to utilize slice-depth
information during training and inference.

6.3 Dataset Description

We use a dataset of CT scans of 20 patients from Rio de Janeiro obtained and released
publicly by Rodrigues et al. [Rod+16]. The original ground truth was obtained via man-
ual segmentation of 878 total slices by a physician and a computer scientist. The slices
were also registered, scaled, and cropped to a similar anatomical region, as well as
thresholded to the adipose tissue range of [−200,−30] HU. Of the 20 patients, 10 are
male and 10 are female. The mean age of the patients is 55.4. Each scan has an average
of 42.95 slices with a slice thickness of 3 mm. The CT scans were obtained with two dif-
ferent scanners, 9 patients were scanned by a Phillips scanner, while the other 11 were
scanned by a Siemens scanner.
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Figure 6.2: An example of the original image label and our relabeled im-
age. The EAT label is shown in red, while the pericardium label is shown

in white. [BHG21]

The original labels contain three classes: pericardium, EAT, and paracardial adipose
tissues. Using these labels as a reference, we manually labeled a closed pericardium
region on each slice. During labeling, we follow the pericardium line where available
and mark the pericardium region as the border separating the two adipose tissues when
a label is not visible. We then create a separate set of EAT labels by multiplying the input
images, thresholded to the range of adipose tissue, with the pericardium label. I.e. we
define EAT as all adipose tissue masked by the pericardium label. A comparison of the
original label and our re-labeled images is shown in Figure 6.2.

6.4 Methodology

We achieve segmentation of the pericardium using a deep neural network architecture
based on U-Net [RFB15]. The input to the model is a 2-channel 128× 128 image. The first
channel is a single slice of a patient’s CT scan. The second channel, as described earlier
in the chapter, represents the slice depth of that slice. The pericardium region varies
highly by slice depth. Therefore, we utilize depth information by first normalizing the
slice depth of each input slice to a value between 0 and 1. We then create a 128× 128
image where each pixel has the value of the slice depth. This image is used as the second
channel of the neural network input. This allows the network to utilize additional depth
information without changing the underlying architecture. Example input images are
shown in Figure 6.3.

We use a loss function which is a modified version of the Dice coefficient:

DSCloss = 1− 2|X ∩Y|+ λ

|X|+ |Y|+ λ
, (6.2)

Figure 6.3: A sample of the inputs to the neural network from a single
patient, sorted by slice depth. The first channel (CT adipose tissue) is
shown in full white, while the second channel (the slice depth) is shown

from black (highest z-axis) to green (lowest z-axis). [BHG21]
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Figure 6.4: Different random augmentation examples of the same input
image. [BHG21]

where X and Y are the input and predicted images, respectively, and λ is a smoothing
parameter set to 1 in our experiments.

6.4.1 Data Preprocessing

We apply several data preprocessing steps on the original dataset to achieve better seg-
mentation results. First, the images are all normalized and zero-centered by subtracting
the global mean intensity of all pixels of the training dataset (0.1). The images are then
scaled down from 512× 512 to 128× 128 pixels. We also removed a total of 112 slices
from the original dataset that did not include EAT labels, either because of labeling errors
in the original dataset or because the slices were outside the heart region.

Furthermore, we utilize heavy data augmentation to increase model generalizability.
In real-world distributions, anatomical structures can differ drastically from one person
to the next. To simulate these differences, we add a random chance of augmenting each
input image during the training phase. Each input image has a 50% chance for a hori-
zontal flip, and a 30% chance of a random combination of affine image transformations,
including (1) a translation of max. 6.25% of the image’s width, (2) a scaling of max. 10%
of the image’s scale, and (3) a rotation of a max. 45 degrees. Additionally, each input
image has a 20% chance of a non-linear mesh deform. Examples of augmented images
are shown in Figure 6.4.

6.4.2 Model Training

The neural network is implemented and trained using PyTorch 1.7.1 on an NVIDIA
GeForce RTX 3080 GPU. The networks were trained for 200 epochs, with a checkpoint
mechanism after each epoch. We select the model with the best validation loss during
training. In our experiments, the model converged around epoch 100 after 5 minutes.
The training was done using the Adam optimizer with a learning rate of 0.001. The used
batch size was 8. These hyperparameters were chosen based on the resulting valida-
tion Dice Similarity Coefficient of the model. We arbitrarily choose a manual random
seed value of 42 for all experiments to increase reproducibility. We use 2-fold per-patient
cross-validation for all experiments. Each model was trained on the slices of 10 patients
and validated on the remaining 10 patients.
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6.5 Experiments and Results

The results in this section are evaluated on the two cross-validation folds and averaged
across folds. Segmentation quality is evaluated using the Dice Similarity Coefficient
(DSC) and the Jaccard Index. We analyze the model’s quantification quality with a
Bland-Altman analysis [MA86] as well as with the Pearson correlation coefficient. To cal-
culate the Pearson correlation and to perform the Bland-Altman analysis, we threshold
all segmented pericardium regions to obtain the EAT segmentation results and calculate
the number of pixels labeled as EAT on each image. We also calculate the number of EAT
pixels on the ground truth images. The pixel counts are used as a proxy for volume mea-
surement, as the EAT volume of a patient is proportional to the number of segmented
EAT pixels in the patient’s CT scan.

Our method’s mean DSC and correlation results are presented in Table 6.1. The
network provides better results for pericardium segmentation than EAT segmentation,
which is expected given the pericardium’s smoother shape. The DSC for EAT indicates
that our method performs slightly worse inter-observer variability, but still achieves
good segmentation in a fraction of the time needed for manual segmentation. The pre-
cision and recall have similar values both for EAT and the pericardium, showing a good
potential for future use to measure EAT volume. Examples of predictions from our
model are presented in Figure 6.5.

The Bland-Altman analysis of our method is presented in Figure 6.6. Bland-Altman
analysis is a common way of visualizing the agreement between two clinical measuring
methods. It consists of a scatterplot where the x-axis is the average and the y-axis is the

Table 6.1 Mean results of the cross-validation. The Corr. value is the Pearson correlation
between the total number of EAT pixels for each slice of the validation dataset (p <
0.0001).

Target DSC Jaccard Prec. Rec. Corr.

Pericardium 0.9264 0.8819 0.9319 0.9345 -

EAT 0.8646 0.7807 0.8787 0.8690 0.8864

Figure 6.5: Examples of EAT predictions compared to the ground truth
images. [BHG21]
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Figure 6.6: The Bland-Altman analysis of the number of pixels predicted
as EAT on each slice of the test dataset for each fold. The dashed lines

indicate a 95% confidence interval. [BHG21]

Table 6.2 A comparison of our approach with other deep-learning-based approaches for
EAT segmentation.

Method DSC Jaccard Prec. Rec. Params

U-Net for EAT 0.75 0.58 0.72 0.69 5.8 M

Zhang et al. [Zha+20] 0.91 0.84 - - 11.6 M

He et al. [He+20] 0.85 - 0.86 0.89 6.4 M

Our method 0.86 0.78 0.89 0.87 5.8 M

difference between two measurements. In this case, we show the average between the
ground truth and the predicted measure of the number of epicardial fat pixels in a slice
of a CT scan. The analysis shows a high level of agreement between our method and
ground-truth annotations. The plot also shows a small positive bias from our method.
Additionally, the plot does not show a strong proportional bias. However, while most
measurements fall within the 95% confidence interval, there are outliers. The most likely
reason for these errors is the noisy nature of the ground truth labels especially towards
the edges of the heart region.

Additionally, we compare our results to using a U-Net to directly segment the peri-
cardium, as well as with other state-of-the-art approaches This comparison is presented
in Table 6.2.

6.6 Conclusion

Our approach achieved a mean Dice Similarity Coefficient (DSC) of 0.8574 and a corre-
lation coefficient of 0.8864. Although these figures fall short of the state-of-the-art, it is
important to note that our dataset underwent relabeling to minimize noise and errors,
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making direct comparisons to results from the original dataset challenging. In addition,
our method uses a more direct neural network with fewer preprocessing steps and fewer
parameters than existing deep-learning methods ([Com+18; LZY19; He+20]), leading to
lower inference times. We demonstrate the effectiveness of segmenting the pericardium
region as a proxy for directly segmenting epicardial adipose tissue (EAT), leveraging the
simpler task of learning the smooth contour of the pericardium compared to the more
complex, irregular distribution of EAT. Furthermore, we explore incorporating depth
information into an encoder-decoder neural network without resorting to 3D volume
patch training. By adding slice depth as an extra channel we have improved segmenta-
tion performance without changing the underlying architecture and while maintaining
the ability to use transfer learning from 2D datasets. The method presented in this chap-
ter was published in [BHG21].
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7 Conclusion

Recent advances in neural network-based image segmentation have largely been
achieved by leveraging very large datasets to train high-capacity neural networks. There
has been comparatively less research in improving performance using small neural net-
works on datasets with few samples. Rather than relying on foundation models that
offer good initial segmentation on unseen datasets but lack the precision necessary for
medical purposes, our work emphasizes the importance of domain-specific knowledge
to develop smaller, more precise networks tailored to specific medical imaging tasks.
These networks are not only more suitable for medical applications but also more man-
ageable for fine-tuning and evaluation on standard computing hardware due to their
reduced complexity.

Our methodology integrates traditional image processing techniques with neural
networks to simplify the segmentation process. We employ small neural networks for
initial object localization. Using hand-crafted functions, optimal image transformation
parameters are estimated from the initial segmentation. The image transformations
themselves are chosen to be beneficial for the specific task based on domain knowledge
from both medicine and image processing. As a result, downstream neural networks
trained on the transformed images require fewer parameters for effective segmentation,
enhancing their data efficiency.

We have investigated this approach in a wide variety of contexts in medical imaging.
Initially, we focused on the polar transform to simplify the segmentation boundary of
elliptical shapes commonly seen in organs, vessels, and skin lesions. By employing a
neural network to determine the optimal origin for the polar transform, we enhanced
segmentation accuracy in CT scans, colonoscopies, and dermatoscopic images, achieving
state-of-the-art results for lesion and polyp segmentation. We also showed that we can
reduce the sample size and still achieve good segmentation performance.

Furthermore, we have evaluated image cropping both for improving segmentation
as well as reducing image input sizes in segmentation convolutional neural networks. By
cropping a high-resolution image to a region of interest predicted by a neural network,
we can segment only the relevant portion of the image, maintaining fine details while re-
ducing the total input size. Since convolutional neural network complexity grows with
image input size, this approach can improve data efficiency by reducing model com-
plexity. This concept was further developed into a unified end-to-end trainable model,
improving the robustness of both the initial localization and detailed segmentation pro-
cesses.

Our approach offers a versatile framework for enhancing data efficiency in medical
image segmentation, opening up numerous avenues for future research to refine and
expand these methods. One promising direction is to reformulate the image transforma-
tions we’ve employed into differentiable functions, allowing them to be integrated into
the neural network. This would enable the network to learn image features beneficial
for estimating the transformation parameters, potentially improving the results.

Additionally, there is significant potential in leveraging unlabeled data to improve
the data efficiency of our approach. Given that the estimation of image transformation
parameters depends only on a rough localization of the target object, there is a reduced
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need for precise segmentation labels for this stage. This opens up the possibility of train-
ing the localization network with weaker forms of annotations, such as bounding boxes
or heatmaps derived from neuron activations, which are less granular than segmentation
masks but can still provide valuable spatial information about the object’s location.

Furthermore, the reliance on hand-crafted functions to estimate transformation pa-
rameters based on object localization could be eliminated by employing a neural net-
work to directly predict the optimal parameters for transformation. We have already
taken steps in this direction by treating center point prediction as a Gaussian image pre-
diction task. One could go further and use regression neural networks to achieve similar
results. However, a regression-based approach might present challenges, as models re-
gressing values from images tend to converge more slowly compared to image-to-image
models, such as those used in segmentation tasks. Thus, careful consideration of loss
functions would be needed.

Finally, one could fully remove any explicit transformation selection from the ap-
proach, and instead use a general deformation field as the transformation. The neural
network would generate the values for this deformation field, akin to techniques used in
image registration tasks. This would allow the network to automatically discover bene-
ficial transformations or be guided to learn them by training with manually transformed
versions of the input image as targets. This approach could potentially improve adapt-
ability and data efficiency in medical image segmentation by allowing the network’s
capacity to learn and apply optimal transformations for each specific segmentation task
and image.

All of these proposed improvements as well as the approaches described in this the-
sis represent different points on the spectrum of model complexity. As suggested by
statistical learning theory, there is an inherent tradeoff between a model’s bias and its
variance. By explicitly incorporating domain knowledge into the model, we improve
its data efficiency but limit its ability to model complex functions. Our approach fa-
cilitates a more nuanced management of this balance, offering a level of flexibility and
precision that more traditional neural network-based segmentation strategies may not
provide. Calibrating the balance between bias and variance is a fundamental decision
when creating reliable medical image segmentation models, particularly when working
with limited datasets. We hope that this work inspires further future research in ways to
embed domain knowledge to simplify segmentation neural networks, as we believe such
an approach is necessary in the field of medical imaging to achieve reliable segmentation
when faced with small sample sizes.
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